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Abstract

We study spherical completeness of ball spaces and its stability under
expansions. We give some criteria for ball spaces that guarantee that spher-
ical completeness is preserved when the ball space is closed under unions of
chains. This applies in particular to the spaces of closed ultrametric balls in
ultrametric spaces with linearly ordered value sets, or more generally, with
countable narrow value sets. We show that in general, chain union closures of
ultrametric spaces with partially ordered value sets do not preserve spherical
completeness. Further, we introduce and study the notions of chain union sta-
bility and of chain union rank, which measure how often the process of closing
a ball space under all unions of chains has to be iterated until a ball space is
obtained that is closed under unions of chains.
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1 Introduction

In [4, 5, 6, 7, 8, 1], ball spaces are studied in order to provide a general framework for
fixed point theorems that in some way or the other work with contractive functions.
A ball space (X,B) is a nonempty set X together with any nonempty collection
of nonempty subsets of X. The completeness property necessary for the proof of
fixed point theorems is then encoded as follows. A chain of balls (also called a nest)
in (X,B) is a nonempty subset of B which is linearly ordered by inclusion. A ball
space (X,B) is called spherically complete if every chain of balls has a nonempty
intersection. Further, we say that a ball space (X,B) is chain union closed if the
union of every chain in B is a member of B. We define cu(B) to be the family of all
sets of the form

⋃
C, where C ⊆ B is a chain (recall that, by default, chains of sets

are supposed to be nonempty). More formally,

cu(B) =
{⋃

C | ∅ ≠ C ⊆ B, C is a chain
}
.

Hence a ball space (X,B) is chain union closed if and only if cu(B) = B. In the
present paper, we study the process of obtaining a chain union closed ball space
from a given ball space and the question under which conditions the spherical com-
pleteness of (X,B) implies the spherical completeness of (X, cu(B)).

A ball space (X,B) is said to be chain union stable if (X, cu(B)) is chain union
closed. In other words, for every chain D ⊆ cu(B) there exists a chain C ⊆ B
with

⋃
C =

⋃
D. Clearly, every chain union closed space is chain union stable.

Furthermore, (X,B) is chain union stable if and only if cu(B) is chain union closed.

Example 1.1. Let B be the family of all finite nonempty subsets of a fixed set
X ̸= ∅. Then cu(B) is the family of all nonempty countable subsets of X. Note that
(X,B) is chain union stable if and only if X is countable.

JJJAAAKKK

The main inspiration for these definitions and questions is taken from the theory
of ultrametric spaces and their ultrametric balls. An ultrametric u on a set X is a
function from X×X to a partially ordered set Γ with smallest element ⊥, such that
for all x, y, z ∈ X and all γ ∈ Γ,

(U1) u(x, y) = ⊥ if and only if x = y,

(U2) if u(x, y) ≤ γ and u(y, z) ≤ γ, then u(x, z) ≤ γ,
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(U3) u(x, y) = u(y, x) (symmetry).

Condition (U2) is the ultrametric triangle law; if Γ is linearly ordered, it can be
replaced by

(UT) u(x, z) ≤ max{u(x, y), u(y, z)}.

When dealing with such ultrametric spaces, we can say that a set A has diameter
≤ γ if u(x, y) ≤ γ for every x, y ∈ A. On the other hand, the diameter of A may not
be defined, unless the value set Γ is a complete meet semilattice. A closed ultrametric
ball is a set Bα(x) := {y ∈ X | u(x, y) ≤ α}, where x ∈ X and α ∈ Γ. The problem
with general ultrametric spaces is that closed balls Bα(x) are not necessarily precise,
that is, there may not be any y ∈ X such that u(x, y) = α. Therefore, we prefer to
work only with precise ultrametric balls, which we can write in the form

B(x, y) := {z ∈ X | u(x, z) ≤ u(x, y)},

where x, y ∈ X. Note that a precise ultrametric ball B(x, y) has diameter precisely
u(x, y). We obtain the ultrametric ball space (X,Bu) from (X, u) by taking Bu to be
the set of all such balls B(x, y). Specifically, Bu := {B(x, y) | x, y ∈ X}.

More generally, an ultrametric ball is a set

BS(x) := {y ∈ X | u(x, y) ∈ S} ,

where x ∈ X and S is an initial segment of Γ. We call X together with the collection
of all ultrametric balls the full ultrametric ball space of (X, u). Every ultrametric ball
can be written as the union over a chain of precise balls:

BS(x) =
⋃

{B(x, y) | u(x, y) ∈ S} .

Hence the full ultrametric ball space is just (X, cu(Bu)).
Typically, ultrametric spaces are considered with a linearly ordered value set,

in which case the ball structure is a tree, in the sense that given a ball B, the set
{C ⊇ B | C is a ball } is a chain. This is not true when the distance set is partially
ordered, however we still have the following easy and well-known weaker fact.

Proposition 1.2. Let (X, u) be an ultrametric space and let B0, B1 be ultrametric
balls with nonempty intersection and the same diameter. Then B0 = B1.

We will exploit the fact that classical ultrametric spaces are tree-like. A ball space
(X,B) is called tree-like if for every B1, B2 ∈ B the following implication holds.

(I) B1 ∩B2 ̸= ∅ =⇒ B1 ⊆ B2 or B2 ⊆ B1.

See [3] for some remarks on tree-like ball spaces.

JJJAAAKKK
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We now formulate our main results.

Theorem 1.3. Let (X,Bu) be the ball space of an ultrametric space (X, u) with
linearly ordered value set. Then the following assertions hold:

(1) The ball space (X,Bu) is chain union stable.

(2) If (X,Bu) is spherically complete, then so is (X, cu(Bu)).

This result is a consequence of Theorem 4.1 and the fact that ultrametric spaces
with linearly ordered value set are tree-like.

The next result is actually a simple example, therefore we present the proof
immediately. Given two ball spaces (X,B) and (X,B′) on the same set X, we call
(X,B′) an expansion of (X,B) if B ⊆ B′. In general, we cannot expect the existence
of chain union closed expansions which preserve spherical completeness:

Theorem 1.4. There exists a countable spherically complete ultrametric space with
a countable partially ordered value set, whose ultrametric ball space does not admit
any expansion that is chain union closed and spherically complete.

Proof. Let Γ = {∅} ∪Γ′, where Γ′ is the set of all closed intervals [k, ℓ], where k < ℓ
are nonnegative integers. Then (Γ,⊆) is a countable poset and ∅ is its smallest
element. Define u : N2 → Γ by u(x, y) = u(y, x) = [x, y] if x < y and u(x, x) = ∅.
Clearly, (N, u) is a spherically complete ultrametric space; its balls are finite intervals
of natural numbers. Now suppose B′ is a chain union closed expansion of Bu. Then
for each n ∈ N the unbounded interval

[n,∞) ∩ N =
⋃
m>n

[n,m] ∩ N

belongs to B′. Finally, {[n,∞)}n∈N is a chain in B′ whose intersection is the empty
set.

So we cannot hope for extending Theorem 1.3(2) to partially ordered value sets.
It turns out that part (1) of this theorem holds in a more general setting.

Theorem 1.5. Assume (X, u) is an ultrametric space with a countable partially
ordered value set. Then its ball space (X,Bu) is chain union stable.

We shall deduce this result from a more abstract statement involving the concept
of chain regularity, inspired by a similar notion in category theory.

We finish this section with the following simple example exhibiting problems
with uncountable cardinalities.

Example 1.6. Let X = ω × ω1 and let B consist of all rectangles [0, n) × [0, α)
where both n ∈ ω, α ∈ ω1 are positive. Note that cu(B) consists of all rectangles of
the form [0, ξ)× [0, β), where either ξ < ω, β < ω1 or ξ = ω and β < ω1 or ξ < ω and
β = ω1. In particular, X /∈ cu(B). It follows that (X,B) is not chain union stable.
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2 Chain regularity

We say a ball space (X,B) is chain regular if for every chain C ⊆ B, for every
ball B ⊆

⋃
C there exists C ∈ C with B ⊆ C. This notion is well justified by the

following:

Proposition 2.1. Every ultrametric ball space (with a partially ordered value set)
is chain regular.

Proof. Assume A ⊆
⋃

C, where C is a chain of precise ultrametric balls. Let a, b ∈ A
be such that A = B(a, b) and choose C ∈ C such that a, b ∈ C. Then the diameter
of C is ≥ the diameter of A, therefore A ⊆ C.

Lemma 2.2. Assume (X,B) to be a chain regular ball space such that all chains in
cu(B) have countable cofinality. Then (X,B) is chain union stable.

Proof. Let C = {Cn}n∈ω be a chain in cu(B). For each n ∈ ω choose a chain An ⊆ B
whose union is Cn. By our assumptions, An has countable cofinality.

Using standard induction together with chain regularity, construct a matrix of
balls {Bi,j}i,j<ω such that

1. Bi,j ∈ Ai and
⋃

n∈ω Bi,n = Ci,

2. Bi,j ⊆ Bi+1,j,

for every i, j < ω. Finally, the union of the diagonal {Bn,n}n∈ω is
⋃

n∈ω Cn.

We shall need the following simple result concerning partially ordered sets.

Lemma 2.3. Let (P,≤) be a partially ordered set, Q ⊆ P and C a chain in P such
that each element of C is the supremum of a chain in Q. Let κ be an uncountable
regular cardinal such that |Q| < κ. Then C does not contain a copy of (κ,∈).

Proof. Assume φ : κ → C preserves ≤. We are going to show that φ is eventually
constant. Refining1 Q, we may assume that for each q ∈ Q there is αq < κ with
q ≤ φ(αq). Let δ = sup{αq | q ∈ Q}. Then δ < κ, because κ is regular. Furthermore
φ(δ) is an upper bound of the whole setQ, therefore φ(β) = φ(δ) for every β > δ.

Proof of Theorem 1.5. We can apply Lemma 2.2, as long as we prove that all chains
in cu(Bu) have countable cofinality.

Assume C = {Cα}α<ω1 is an ω1-chain in cu(Bu), i.e., Cα ⊆ Cβ whenever α < β.
Choose z ∈ C0. Each Cα is the union of a chain of balls {Bα,n}n∈ω ⊆ Bu and we may
assume that z ∈ Bα,0 for every α < ω1. We claim that the family F = {Bα,n | α <
ω1, n ∈ ω} is countable. Then Lemma 2.3 gives Cβ = Cδ for all big enough β, δ < ω1.

Given α, α′ < ω1, n, n
′ < ω, note that Bα,n = Bα′,n′ whenever diam(Bα,n) =

diam(Bα′,n′) (Proposition 1.2). This shows that F is countable, which completes the
proof.

1By refining a set we mean removing “unnecessary” or “irrelevant” elements.
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The structure of ultrametric spaces with partially ordered value sets is in general
much more complex than in the case of linearly ordered value sets. But we can at
least prove the following. Recall that a partially ordered set (“poset”) is narrow if
it contains no infinite sets of pairwise incomparable elements.

Theorem 2.4. Let (X,Bu) be the ball space of an ultrametric space with countable
narrow value set. Then (X,Bu) is chain union stable.

This theorem will be deduced from Theorem 4.5 at the end of Section 4, where
we study chain union closures for a class of ball spaces that constitutes a slight
generalization of the class of ball spaces whose chain intersection closures we have
studied in [3, Section 3].

We do not know whether the countability assumption can be dropped in Theo-
rem 2.4.

3 Chain union and chain intersection closures

Let B be a nonempty family of nonempty sets. Using transfinite recursion, we define
cuα(B) and ciα(B) for each ordinal α, as follows:

cu0(B) = B, cuα(B) = cu

(⋃
ξ<α

cuξ(B)

)
for α > 0 ,

ci0(B) = B, ciα(B) = ci

(⋃
ξ<α

ciξ(B)

)
for α > 0 ,

where ci(B) is defined in [3] as

ci(B) =
{⋂

C | ∅ ≠ C ⊆ B, C is a chain
}
.

We have cu(B) = cu1(B) and ci(B) = ci1(B). We observe that

(1) B ⊆ B′ ⇒ ciα(B) ⊆ ciα(B′) and cuα(B) ⊆ cuα(B′) for all α .

We define the chain union rank of B, denoted by cur(B), to be the smallest
ordinal α such that cuα+1(B) = cuα(B). Thus, cur(B) = 0 if and only if B is chain
union closed, while cur(B) ≤ 1 means that in order to make B chain union closed, it
suffices to extend it by adding all unions of chains. In general, we call (X, cuα(B)),
with α = cur(B), the chain union closure of (X,B). It could also be described as a
ball space (X,B′), where B′ ⊇ B is minimal such that B′ is stable under unions of
chains.
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Recall from the introduction that a ball space (X,B) is chain union stable if for
every nonempty family F consisting of chains in B such that {

⋃
C | C ∈ F} is a

chain, there exists a chain U ⊆ B satisfying⋃
U =

⋃
C∈F

⋃
C .

Obviously, this is equivalent to saying that cur(X,B) ≤ 1. In [3], the notions of
chain intersection rank, denoted by cir(B), of chain intersection closure and of chain
intersection stable were defined analogously, just with “cu” replaced by “ci”. Note
that both cur and cir are well-defined, because there is a cardinality on the powerset
of the ball space.

If (X,B) is a ball space, then also (X, cplB) with

cplB := {X \B | B ∈ B, B ̸= X}

is a ball space; we will call it the complement ball space of (X,B). Note that cplB =
cpl(B \ {X}). We collect a number of useful properties of chain unions and chain
intersections.

Lemma 3.1. Take a ball space (X,B).
1) If S ⊆ B is a finite set and B \ S ≠ ∅, then
i) ciα(B) = ciα(B \ S) ∪ S and cuα(B) = cuα(B \ S) ∪ S for all α,
ii) cir(B) ≤ cir(B \ S) and cur(B) ≤ cur(B \ S).
2) If X ∈ B and B \ {X} ̸= ∅, then ciα(B) \ ciα(B \ {X}) = {X} for all α and
cir(B) = cir(B \ {X}).
3) For all α, (X, ciα(cplB)) is the complement ball space of (X, cuα(B)).
4) We have that

cur(B) ≥ cir(cplB) .

If cir(cplB) = β and X ∈ cuβ(B), then cur(B) = cir(cplB).

Proof. 1): We treat the case of chain intersections; the case of chain unions is anal-
ogous. We have that ci(B) = ci(B \ S) ∪ S as all members of S can be removed
from any infinite chain without changing the intersection. This implies assertion i)
for α = 1 in the case of chain intersections.

Now we proceed by induction on α. Assume that assertion i) holds for ci and
ciα . Then

ciα+1(B) = ci(ciα(B)) = ci(ciα(B \ S) ∪ S) = ci((ciα(B \ S) ∪ S) \ S) ∪ S
= ci(ciα(B \ S)) ∪ S = ciα+1(B \ S) ∪ S ,

where we have used our assertion for ciα for the second equality, our assertion for ci
for the third equality, and then again our assertion for ci with ciα(B \ S) in place of
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B for the fourth equality. This proves the successor case of the induction. The limit
case is straightforward.

In order to prove assertion ii), assume that cir(B\S) = α, that is, ciα+1(B\S)) =
ciα(B \ S). Then by assertion i),

ciα+1(B) = ciα+1(B \ S) ∪ S = ciα(B \ S) ∪ S = ciα(B) .

This proves that cir(B) ≤ α = cir(B \ S).

2): Since the only chain that hasX as its intersection is {X}, no ball space B satisfies
X ∈ ci(B \ {X}). By induction, X /∈ ciα(B \ {X}) for all α. Hence if X ∈ B and
B \{X} ≠ ∅, then X ∈ ciα(B)\ ciα(B \{X}), and it follows from assertion i) of part
1) that ciα(B) \ ciα(B \ {X}) = {X}.

From assertion ii) of part 1) we know that cir(B) ≤ cir(B \ {X}); we have to
show that also “≥” holds. Assume that ciα+1(B) = ciα(B). Then by what we have
just proved,

ciα+1(B \ {X}) = ciα+1(B) \ {X} = ciα(B) \ {X} = ciα(B \ {X}) .

This proves the desired inequality and thus the second assertion of part 2).

3): The assertion is proven by induction on α using the fact that the complement of
the union of a chain {Bi}i∈I is the intersection of the chain {X \Bi}i∈I .

4): Let cur(B) = α, that is, cu(cuα(B)) = cuα(B). Pick a chain C in ciα(cplB) such
that

⋂
C ≠ ∅. By part 3), {X \ B | B ∈ C} is a subset of cuα(B), and it is also a

chain. By assumption, B′ :=
⋃
{X \ B | B ∈ C} ∈ cuα(B). Since

⋂
C ≠ ∅, we have

that B′ ̸= X. Using part 3) again,
⋂
C = X \ B′ ∈ ciα(cplB). We have proved that

ciα(cplB) is chain intersection closed, which shows that cir(cplB) ≤ α. Hence our
first assertion holds.

Now assume that cir(cplB) = β and that X ∈ cuβ(B). By what we have proved
before, it suffices to show that cur(B) ≤ β. Pick a chain C in cuβ(B); we wish to
show that

⋃
C ∈ cuβ(B). As X ∈ cuβ(B), we may assume that

⋃
C ≠ X, so that

B′ :=
⋂
{X \ B | B ∈ C} ≠ ∅. By part 3), {X \ B | B ∈ C} is a subset of ciβ(cplB),

and it is also a chain. Since cir(cplB) = β, we find that B′ ∈ ciβ(cplB). Using part
3) again,

⋃
C = X \ B′ ∈ cuβ(B). This shows that cur(B) ≤ β = cir(cplB), as

desired.

Note that it can happen that

cir(cplB) = cur(B) < cur(B \ {X}) .

For example, take X = N and B to be the collection of all initial segments of N.
Then (X,B) is chain union closed, while cur(B \ {X}) = 1. Further, we see that
cpl(B) is the collection of all final segments of N. It is chain intersection closed, i.e.,
cir(cpl(B)) = cur(B) = 0.
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We will now demonstrate by an example that both the chain union rank and the
chain intersection rank of a ball space can be equal to any ordinal α. Since the ball
space (X,P(X) \ {∅}) for nonempty X is both chain union and chain intersection
closed, we have to show this only for the case of α ≥ 1.

Example 3.2. Take an ordinal α ≥ 1 and set X := ℵα. For β any ordinal, define
Bβ to be the collection of all nonempty subsets of ℵα of cardinality smaller than or
equal to ℵβ . Set B := B0 . We note that X /∈ B since α ≥ 1. A standard transfinite
induction shows that cuβ(B) = Bβ for every β ≤ α.

Since the subsets of ℵα have cardinality at most ℵα , it follows that cuα(B) =
Bα = P(ℵα) \ {∅} = P(X) \ {∅}. Therefore, cuα(B) is chain union closed. On the
other hand, cuβ(B) is not chain union closed for any β < α. Hence, cur(B) = α.

Finally, we show that cir(cplB) = α. By part 4) of the preceding lemma, β :=
cir(cplB) ≤ cur(B) = α. Applying part 1)i) of the same lemma with S = {X}, we
obtain that cuβ(B ∪ {X}) = cuβ(B) ∪ {X}. We have that

β = cir(cplB) = cir(cpl(B ∪ {X})) = cur(B ∪ {X}) ,

where the last equality follows from part 4) of the previous lemma. This implies that
cuβ(B) ∪ {X} = Bβ ∪ {X} is chain union closed. But as we have seen above, this
can only be if Bβ ∪ {X} = Bα . Since X is not the only subset of X of cardinality
ℵα, this can only be the case if β = α, showing that cir(cplB) = α.

Modifying the example above, namely, declaring B to be the family of all nonempty
finite sets, we obtain a spherically complete ball space (X,B) such that (X, cu(B))
is not spherically complete.

4 Chain union closed or stable ball spaces

We wish to find conditions for a ball space (X,B) to be chain union closed/stable.

Theorem 4.1. Let (X,B) be a tree-like ball space. Then cu(B) is tree-like and chain
union closed. Furthermore, if (X,B) is spherically complete then so is (X, cu(B)).

Proof. Fix D0, D1 ∈ cu(B) with a ∈ D0 ∩ D1. Let C0, C1 be chains in B with
Di =

⋃
Ci, i < 2. We may assume a ∈

⋂
Ci, by refining the chain. Now C0 ∪ C1

is a chain, because B is tree-like. Suppose D1 ̸⊆ D0 and fix b ∈ D1 \ D0. Choose
C1 ∈ C1 with b ∈ C1. Now C ⊆ C1 for every C ∈ C0, because the other inclusion is
impossible. Hence D0 =

⋃
C0 ⊆ C1 ⊆

⋃
C1 = D1. This shows that cu(B) is tree-like.

Now, take a chain D in cu(B) and a point a ∈
⋃
D. After refining D, we may

assume a ∈ D for all D ∈ D. Next, for D ∈ D, let D =
⋃

CD, where CD is a chain
in B. Again, we may assume that a ∈ C for every C ∈ CD. Since (X,B) is tree-like,
we conclude that

⋃
D∈D CD is a chain in B with the same union as D. Hence, cu(B)

is chain union closed.

9



Finally, assume (X,B) to be spherically complete and fix a strictly decreasing
chain {Dα}α<κ in cu(B). Fix α < κ. Choose a ∈ Dα+1 and b ∈ Dα\Dα+1. Since Dα is
the union of a chain from B, we can find Bα in that chain such that a, b ∈ Bα. Hence
Bα ⊆ Dα. We also haveDα+1 ⊆ Bα, because a ∈ Dα+1∩Bα and b ∈ Bα\Dα+1, so the
opposite inclusion is impossible. Finally, {Bα}α<κ is a chain in B with

⋂
α<κBα =⋂

α<κDα.

Every ultrametric space with linearly ordered value set is tree-like, since in this
case property (I) follows from the ultrametric triangle law. Hence Theorem 1.3 fol-
lows from Theorem 4.1.

JJJAAAKKK

For our next theorem, we will need two lemmas that reflect important and well
known properties of narrow posets. The first one is an immediate consequence of
the Erdős-Dushnik-Miller Theorem.

Lemma 4.2 (cf. [3, Lemma 3.2]). Let (P ,≤) be a narrow poset and A ⊆ P infinite.
Then there exists a chain C ⊆ A such that |C| = |A|.

Recall that a subset A of a poset (P,≤) is directed if for every a0, a1 ∈ A there is
b ∈ A with a0 ≤ b and a1 ≤ b. The following fact can be found in [2]. We presented
a proof in [3, Lemma 3.3].

Lemma 4.3. Every narrow poset is a finite union of directed subsets.

We need one more general combinatorial fact.

Lemma 4.4. Assume A = A0 ∪ · · · ∪ Ak−1 is a family of sets such that
⋃
A is the

union of a chain of sets that are unions of chains in A. Then there exists j < k
such that

⋃
A =

⋃
Aj.

Proof. Our assumption says that
⋃

A =
⋃

α<κ Cα where Cα ⊆ A is a chain for each
α < κ and

⋃
Cα ⊆

⋃
Cβ whenever α < β. We may assume that κ is a regular

cardinal. For each α < κ we choose j(α) < k such that
⋃
Cα =

⋃
(Cα ∩ Aj(α)).

If κ is finite then
⋃

A =
⋃
(C(κ−1) ∩ Aj(κ−1)) ⊆

⋃
Aj(κ−1). Otherwise, there is an

unbounded set S ⊆ κ such that j(α) = j for every α ∈ S. Then⋃
A =

⋃
α∈S

Cα ⊆
⋃

Aj.

We will now extend Theorem 4.1 to a larger class of ball spaces (X,B). For every
z ∈ X, we set

B(z) := {B ∈ B | z ∈ B} .
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Theorem 4.5. Let (X,B) be a ball space such that for every z ∈ X, the poset
(B(z),⊆) is narrow and admits only countable strictly increasing sequences. Then
(X,B) is chain union stable.

Proof. Fix a strictly increasing chain D = {Dα}α<κ, where κ is an infinite regular
cardinal. We may assume that for each α < κ there is some zα ∈ Dα \

⋃
ξ<α Dξ

(otherwise, replace Dα by Dα+1). Let z := z0. Each Dα is the union of a chain
from B(z), so we may restrict attention to the narrow poset (B(z),⊆) in which all
chains have countable cofinality. Using transfinite induction, we construct for each
α < κ a chain {Bα,n}n∈ω ⊆ B(z) with

⋃
n∈ω Bα,n = Dα and zα ∈ Bα,0. By this way,

if Bα,n ⊆ Bα′,n′ then α ≤ α′, because otherwise zα ∈ Bα,n \ Bα′,n′ . It follows that
A := {Bα,n}α<κ,n<ω is well-founded.

By Lemma 4.2, we conclude thatA is countable and consequently κ = ℵ0. Finally,
Lemma 4.3 says that A is the union of finitely many directed subfamilies. The union
of one of them must be equal to

⋃
D, according to Lemma 4.4. A countable directed

family of sets obviously has a cofinal chain, therefore
⋃
D is the union of an ω-chain

of balls.

We need the following lemma in order to deduce Theorem 2.4.

Lemma 4.6. Let (X,B) be the ball space of an ultrametric space with countable
narrow value set Γ. Then for each z ∈ X, (B(z),⊆) is narrow and admits only
countable strictly increasing sequences.

Proof. Take {B(xi, yi)}i<ω ⊆ B(z) . Then there are k < ℓ < ω such that u(xk, yk) ≤
u(xℓ, yℓ) or u(xℓ, yℓ) ≤ u(xk, yk). Since the intersection of B(xk, yk) and B(xℓ, yℓ)
is nonempty as they have the element z in common, it follows that B(xk, yk) ⊆
B(xℓ, yℓ) or B(xℓ, yℓ) ⊆ B(xk, yk). This proves that (B(z),⊆) is narrow.

Take a ball B(x, y) and x′, y′ ∈ B(x, y), and set γ := u(x, y). Then u(x, x′) ≤ γ
and u(x, y′) ≤ γ, hence by (U2), u(x′, y′) ≤ γ. Assume that u(x′, y′) = γ, and take
any a ∈ B(x, y), i.e., u(x, a) ≤ γ. The latter together with u(x, x′) ≤ γ implies that
u(x′, a) ≤ γ = u(x′, y′), that is, a ∈ B(x′, y′). Consequently, u(x′, y′) = γ implies
B(x, y) ⊆ B(x′, y′). Therefore, B(x′, y′) ⊊ B(x, y) ⇒ u(x′, y′) < u(x, y). Hence if
Γ is countable, then (B,⊆), and thus also (B(z),⊆), admits only countable strictly
increasing sequences.

Take an ultrametric space (X, u) with countable narrow value set. Then the
previous lemma shows that the assumptions of Theorem 4.5 are satisfied, which
proves Theorem 2.4.

5 A result on chain union stability

Given a poset Γ, define σΓ to be the set of all nonempty directed initial segments
of Γ of countable cofinality. In other words, C ∈ σΓ if there exists a sequence
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p0 ≤ p1 ≤ · · · in Γ such that C = {x ∈ Γ | (∃n) x ≤ pn}. Then σΓ is a poset with
inclusion that can be viewed as the “ω-completion” of Γ, namely, Γ is naturally
embedded into (σΓ,⊆) and every countable chain in σΓ has a least upper bound
(the union of that chain is directed and has a countable cofinality, by a standard
diagonalization).

A poset Γ is up-countable if for every p ∈ Γ the set {x ∈ Γ | p < x} is countable.
Given a ball space (X,B), an ultradiameter is a function δ : B → Γ, where Γ is a

poset, such that δ is increasing with respect to inclusion and the following condition
holds:

(U) (∀ B0, B1 ∈ B) δ(B0) ≤ δ(B1) & B0 ∩B1 ̸= ∅ =⇒ B0 ⊆ B1.

Theorem 5.1. Assume (X,B) is a chain regular ball space with an ultradiameter
δ : B → Γ such that Γ is up-countable. Then (X,B) is chain union stable.

Proof. Fix a chain F = {Fα}α<κ in cu(B) such that α < β =⇒ Fα ⊊ Fβ, where
κ is an infinite cardinal. For each α < κ choose a chain Cα ⊆ B with

⋃
Cα = Fα.

Choose C0 ∈ C0. We may assume C0 is minimal in C0.
Using the chain regularity of B and refining each of the chains Cα, we may assume

that C0 ⊆ C for every C ∈ Cα, for every α < κ.
Let B(C0) = {B ∈ B | C0 ⊆ B}. So Cα ⊆ B(C0) for every α < κ. Note that δ

restricted to B(C0) satisfies

δ(B0) ≤ δ(B1) ⇐⇒ B0 ⊆ B1.

This is thanks to property (U). Hence δ ↾ B(C0) is an isomorphic embedding of
(B(C0),⊆) into Γ. Since Γ is up-countable, we conclude that B(C0) is countable.
Lemma 2.3 implies that κ = ω. Finally, Lemma 2.2 finishes the proof.

Note that more generally, the assertions of Lemma 4.6 also hold when a ball space
(X,B) admits an ultradiameter with values in a countable narrow poset, which is
shown in the proof of [3, Theorem 3.4]. Thus we obtain one more criterion for chain
union stability.

Theorem 5.2. Assume (X,B) is a ball space admitting an ultradiameter with values
in a countable narrow poset. Then (X,B) is chain union stable.

6 Final remarks and questions

Question 6.1. Can ”narrow” be omitted from Thms 2.4, 4.5 and 5.2?

Question 6.2. Can ”countable” be omitted from Thm 5.2?
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