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Category theory

A category consists of objects and arrows, that can be composed
and the composition is associative.

objects + arrows
sets + functions

groups + group homomorphisms
topological spaces + continuous functions

vector spaces + linear mappings
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Definition

Given a category V, an evolution system with universe V is a
structure of the following form

E = 〈V, T , θ〉,

where T is a distinguished class of V-arrows called transitions and
θ is a fixed V-object called the origin.
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Minimal assumptions

I Every sequence has a colimit in V
I Any V-object can be fixed as the origin

the initial object?
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Transitions

Transitions are supposed to be as simple as possible. Therefore we
only need two axioms

1. ∀X∈Ob(V) idX ∈ T
2. ∀t∈T ∀h−iso h ◦ t ∈ T

•

• •h◦t

t h
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Trivial examples of transitions

I We can consider the class T to be all V-arrows.

I We can also take only identities and isomorphisms to be
transitions.

Both cases are not particularly interesting.
Let V = Sets. The class T can also consist of one-point
extensions, namely

f ∈ T (X )
df⇔ f : X

1−1→ Y ∧ |Y \ f [X ]| ≤ 1,

where T (X ) is the set of all transitions with domain X .
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Evolution

Definition

We are interested in investigating evolutions, namely sequences of
objects and transitions

θ = A0 → A1 → A3 → . . .
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Examples

Let V be a category of finitely generated structures in a fixed
first-order language. Let T consists of all isomorphisms and
embeddings of the form f : X → Y where Y is generated by
f [X ] ∪ {r} for some r ∈ Y .

I the class of all finite fields with θ being p-element field
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Let V be the category of graphs with graph homomorphisms.
Starting from the empty graph θ or with a single vertex, at each
step we either add a vertex or connect two disconnected vertices by
an edge.
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Let V=LinSets be a category of linearly ordered sets. Consider an
evolution system where transitions are strictly order preserving
functions and the empty set or any singleton to be the origin. At
each step we can add just one point in different ways:
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What structure do we obtain after infinitely many steps?
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Subcategory Efin

I A finite composition of transitions is called a path.

I An object is called finite if there exists a path to it from the
origin.

Consider the category Efin of finite objects and paths. It clearly is a
subcategory of E and an evolution system itself.
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Amalgamation property

We say that E has the finite amalgamation property (FAP) if for
every two transitions f , g ∈ T (•), where • is a finite object, there
exist two further transitions f ′, g ′ such that f ′ ◦ f = g ′ ◦ g .

• •

• •

f

g

g ′

f ′

Remark

If E has the finite amalgamation property then Efin has the amalga-
mation property.
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Absorption property
We say that an evolution

θ X1 X2 . . .
x1x0 x3

has the absorption property if for every n ∈ ω and every transition
t ∈ T (Xn) there exist m > n and a path g ∈ Efin such that

g ◦ t = xm−1 ◦ . . . ◦ xn.

Namely

θ . . . Xn Xn+1 . . . Xm . . .
xn−1 xn xm−1 xm

t path g

xn+1x0
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Theorem

Theorem

Assume E is an essentially countable evolution system that has the
finite amalgamation property. Then there exists a unique, up to an
isomorphism, evolution with the absorption property.

The colimit of the evolution with the absorption property will be
called the Frá̈ıssé limit of Efin.

I a framework for studying generic structures
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Abstract rewriting systems

I A rewriting system is an arbitrary set X together with a binary
relation → called rewriting.

I We can easily equip X with quasi-order simply by taking the
transitive-reflexive closure of →.

I That way X becomes a category and therefore it can be
considered an evolution system.

evolution generalises rewriting
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Differences

rewriting system − evolution system

poset − category

terminating − extending

result − process

confluence − amalgamation
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•

local confluence • •

•

•

confluence • •

•

t2

t1

path

path

path

path

path

path
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A variant of Newman’s lemma

Theorem

A locally confluent iso-stable terminating evolution system is
confluent.

Paulina Radecka Warsaw University of Technology

Abstract evolution systems



I W. Kubís, R. Abstract evolution systems
https://arxiv.org/abs/2109.12600
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