Krasners valued hyperfields and amc-structures

Piotr Błaszkiewicz

Uniwersytet Szczeciski

25.03.2022

- $\ensuremath{\mathbf{1}}\xspace \gamma$ -valued hyperfields and amc-structures
- 2 Valuation hyperrings
- 3 Hyperideals and quotient hyperfields
- 4 Final Theorem

- $\ensuremath{\mathbf{1}}\xspace \gamma$ -valued hyperfields and amc-structures
- 2 Valuation hyperrings
- 3 Hyperideals and quotient hyperfields
- 4 Final Theorem

Consider a valued field (K, v) with a valuation ring \mathcal{O} . For any nonnegative $\gamma \in vK$ we can set an \mathcal{O} -ideal

$$\mathcal{M}^{\gamma} := \{ x \in \mathcal{O} \mid v(x) > \gamma \}.$$

Consider a valued field (K, v) with a valuation ring \mathcal{O} . For any nonnegative $\gamma \in vK$ we can set an \mathcal{O} -ideal

$$\mathcal{M}^{\gamma} := \{ x \in \mathcal{O} \mid v(x) > \gamma \}.$$

Then the quotient $K/(1+M^{\gamma})$ together with the following operations induced from the field K:

- **1** multiplication: $[a]_{\gamma}[b]_{\gamma} = [ab]_{\gamma}$, and
- ② hyperaddition: $[a]_{\gamma} + [b]_{\gamma} = \{[x+y]_{\gamma} \mid x \in [a]_{\gamma}, y \in [b]_{\gamma}\}$ forms a hyperfield.

Consider a valued field (K, v) with a valuation ring \mathcal{O} . For any nonnegative $\gamma \in vK$ we can set an \mathcal{O} -ideal

$$\mathcal{M}^{\gamma} := \{ x \in \mathcal{O} \mid v(x) > \gamma \}.$$

Then the quotient $K/(1+\mathcal{M}^{\gamma})$ together with the following operations induced from the field K:

- **1** multiplication: $[a]_{\gamma}[b]_{\gamma}=[ab]_{\gamma}$, and
- ② hyperaddition: $[a]_{\gamma} + [b]_{\gamma} = \{[x+y]_{\gamma} \mid x \in [a]_{\gamma}, y \in [b]_{\gamma}\}$

forms a hyperfield.

We will denote it by $\mathcal{H}_{\gamma}(K)$ and call it the γ -valued hyperfield of the valued field (K, v).

Take any hyperfield F and an ordered abelian group Γ (written additively). A surjective map $v: F \to \Gamma \cup \{\infty\}$ is called a **valuation** on F if it satisfies the following conditions:

- 2 v(ab) = v(a) + v(b),
- $3 c \in a + b \Rightarrow v(c) \geq \min\{v(a), v(b)\}.$

Fact

In every hyperfield $\mathcal{H}_{\gamma}(K)$ we can define a valuation by simply setting

$$v_{\mathscr{H}}[a]_{\gamma} := v(a).$$

Fact,

In every hyperfield $\mathcal{H}_{\gamma}(K)$ we can define a valuation by simply setting

$$v_{\mathscr{H}}[a]_{\gamma}:=v(a).$$

Sketch of proof

If $[a]_{\gamma}=[b]_{\gamma}$, then there exists $m_{\gamma}\in \mathcal{M}^{\gamma}$ such that $b=a(1+m_{\gamma}).$ Hence

$$v(b) = v(a(1+m_{\gamma})) = v(a) + v(1+m_{\gamma}) = v(a).$$

To prove property 1 we just need to notice, that $[0]_{\gamma} = \{0\}$. Properties 2 and 3 follows from the properties of the valuation v on the field K.

Let us quickly recall that by the \emph{amc} -structure of level γ we refer to the triple

$$K_{\gamma} = (\mathscr{O}^{\gamma}, G^{\gamma}, \Theta_{\gamma}),$$

where \mathcal{O}^{γ} is the factor ring $\mathcal{O}/\mathcal{M}^{\gamma}$, G^{γ} is the quotient $K^{\times}/(1+\mathcal{M}^{\gamma})$ and Θ_{γ} is a binary relation given by

$$\forall x \in \mathscr{O}^{\gamma} \ \forall y \in \mathit{G}^{\gamma}: \ \Theta_{\gamma}(x,y) \Leftrightarrow \exists z \in \mathscr{O}: z + \mathscr{M}^{\gamma} = x \wedge z (1 + \mathscr{M}^{\gamma}) = y.$$

We will extend the meaning of the relation Θ_{γ} by fixing

$$\Theta_{\gamma}(x,0) \Leftrightarrow x=0.$$

- $oldsymbol{1}{}$ γ -valued hyperfields and amc-structures
- 2 Valuation hyperrings
- 3 Hyperideals and quotient hyperfields
- 4 Final Theorem

A subset A of a hyperring R is called a **subhyperring** of R if it is closed under multiplication and with the induced hyperaddition

$$a+_{S}b:=(a+_{R}b)\cap S$$

for all $a, b \in S$, is itself a hyperring.

A subset A of a hyperring R is called a **subhyperring** of R if it is closed under multiplication and with the induced hyperaddition

$$a+_S b := (a+_R b) \cap S$$

for all $a, b \in S$, is itself a hyperring.

Definition

A subhyperring \mathscr{O} of a hyperfield F is called a **valuation** hyperring if for all $x \in F$ we have that either $x \in \mathscr{O}$ or $x^{-1} \in \mathscr{O}$.

Proposition

Let $v: F \to vF \cup \{\infty\}$ be a valuation on a hyperfield F. Then

$$\mathscr{O} := \{ x \in F \mid vx \ge 0 \}$$

is a valuation hyperring of the hyperfield F.

Proposition

Let $v: F \to vF \cup \{\infty\}$ be a valuation on a hyperfield F. Then

$$\mathscr{O} := \{ x \in F \mid vx \ge 0 \}$$

is a valuation hyperring of the hyperfield F.

Lemma

Let $\mathcal{O}_{v_{\mathscr{H}}}$ denote the valuation hyperring of the valued hyperfield $(\mathscr{H}_{\gamma}(K), v_{\mathscr{H}})$ and \mathcal{O} denote the valuation ring of the valued field (K, v). Then

$$\mathscr{O}_{\mathsf{v}_\mathscr{H}}=\mathscr{H}_\gamma(\mathscr{O}).$$

2 Valuation hyperrings

3 Hyperideals and quotient hyperfields

4 Final Theorem

A subhyperring I of a hyperring R is a **hyperideal** if it satisfies following conditions:

- **1** For all $a, b \in I$ one has that both $a b \subseteq I$ and $ab \in I$,
- 2 for any $r \in R$ and $x \in I$ we have that $rx \in I$.

Lemma

Let (K, v) be a valued field and $0 \le \gamma \in vK$. Then $\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$ is a hyperideal of $\mathcal{H}_{\gamma}(\mathcal{O})$.

Let x, y be elements of the hyperring R. Set I to be a hyperideal of R and let x + I denote the union $\bigcup_{a \in I} x + a$. We introduce the following relation:

$$x \sim_I y \Leftrightarrow x + I = y + I$$
.

Let x, y be elements of the hyperring R. Set I to be a hyperideal of R and let x + I denote the union $\bigcup_{a \in I} x + a$. We introduce the following relation:

$$x \sim_I y \Leftrightarrow x + I = y + I$$
.

The relation \sim_I is an equivalence relation.

Let x, y be elements of the hyperring R. Set I to be a hyperideal of R and let x + I denote the union $\bigcup_{a \in I} x + a$. We introduce the following relation:

$$x \sim_I y \Leftrightarrow x + I = y + I$$
.

The relation \sim_I is an equivalence relation.

The proof of this fact, as well as the proofs of the next two lemmas can be found in work Algebraic geometry over hyperrings by Jaiung Jun.

Let R be a hyperring and I a hyperideal of R. Then for all $x, y \in R$

$$x \sim_I y \Leftrightarrow (x - y) \cap I \neq \emptyset.$$

Let R be a hyperring and I a hyperideal of R. Then for all $x, y \in R$,

$$x \sim_I y \Leftrightarrow (x - y) \cap I \neq \emptyset.$$

Remark

For any $[a]_{\gamma}, [b]_{\gamma} \in \mathcal{H}_{\gamma}(\mathcal{O})$ we have that $[a]_{\gamma} \sim_{\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})} [b]_{\gamma}$ is equivalent to $[a]_{\gamma} - [b]_{\gamma} \subseteq \mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$.

Let us denote by $[x]_I$ the equivalence class of $x \in R$ under the relation \sim_I . We will denote the set of all equivalence classes of \sim_I on R by

$$R/I := \{ [x]_I \mid x \in R \}.$$

Let us denote by $[x]_I$ the equivalence class of $x \in R$ under the relation \sim_I . We will denote the set of all equivalence classes of \sim_I on R by

$$R/I := \{ [x]_I \mid x \in R \}.$$

Lemma

The set R/I together with hyperaddition

$$[a]_I + [b]_I := \{ [c]_I \mid c \in a + b \}$$

and a multiplication

$$[a]_{I} \cdot [b]_{I} := [ab]_{I}.$$

forms a hyperring.

We call this hyperring a quotient hyperring of R modulo $I_{-\frac{1}{2}} = -9.96$

For all $a, b \in \mathcal{H}_{\gamma}(\mathcal{O})/\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$ we have that a+b is a singleton.

Uniwersytet Szczeciski

For all $a,b\in \mathscr{H}_{\gamma}(\mathscr{O})/\mathscr{H}_{\gamma}(\mathscr{M}^{\gamma})$ we have that a+b is a singleton.

Claim

 $\mathcal{H}_{\gamma}(\mathcal{O})/\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$ and $\mathcal{O}/\mathcal{M}^{\gamma}$ are isomorphic as a hyperrings.

For all $a, b \in \mathcal{H}_{\gamma}(\mathcal{O})/\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$ we have that a + b is a singleton.

Claim

 $\mathscr{H}_{\gamma}(\mathscr{O})/\mathscr{H}_{\gamma}(\mathscr{M}^{\gamma})$ and $\mathscr{O}/\mathscr{M}^{\gamma}$ are isomorphic as a hyperrings.

Remark

Any ring (field) can be also viewed as a hyperring (hyperfield).

Consider two hyperrings R, S and a mapping $\sigma: R \to S$. If for any $x, y \in R$, σ satisfies

- **1** $\sigma(0_R) = 0_S$

then we call σ a **homomorphism** of hyperrings.

If additionally σ satisfies

$$\sigma(x +_R y) = \sigma(x) +_S \sigma(y)$$

then we call σ a **strict homomorphism** of hyperrings.

If a strict homomorphism σ is also a bijective map, then we call it an **isomorphism** of hyperrings.

Proposition

The map

$$\sigma: \mathcal{H}_{\gamma}(\mathscr{O})/\mathcal{H}_{\gamma}(\mathscr{M}^{\gamma}) \to \mathscr{O}/\mathscr{M}^{\gamma}$$
$$[x]_{\gamma,\mathcal{H}_{\gamma}(\mathscr{M}^{\gamma})} \mapsto x + \mathscr{M}^{\gamma}$$

is an isomorphism of hyperrings.

To show, that σ is independent of the chocie of the representatives we consider two distinct $x, y \in \mathcal{O}$ such that $[x]_{\gamma} \sim_{\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})} [y]_{\gamma}$. Hence $[x]_{\gamma} - [y]_{\gamma} \subseteq \mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$, and since $[x - y]_{\gamma} \in [x]_{\gamma} - [y]_{\gamma}$ we obtain $x - y \in \mathcal{M}^{\gamma}$.

To show, that σ is independent of the chocie of the representatives we consider two distinct $x,y\in \mathcal{O}$ such that $[x]_{\gamma}\sim_{\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})}[y]_{\gamma}$. Hence $[x]_{\gamma}-[y]_{\gamma}\subseteq \mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$, and since $[x-y]_{\gamma}\in [x]_{\gamma}-[y]_{\gamma}$ we obtain $x-y\in \mathcal{M}^{\gamma}$.

Surjectivity of σ follows from the fact that for any $x \in \mathcal{O}$ we have $[x]_{\gamma} \in \mathcal{H}_{\gamma}(\mathcal{O})$ and also $[x]_{\gamma,\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})} \in \mathcal{H}_{\gamma}(\mathcal{O})/\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$. This implies that $\sigma[x]_{\gamma,\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})} = x + \mathcal{M}^{\gamma}$.

To show, that σ is independent of the chocie of the representatives we consider two distinct $x,y\in \mathcal{O}$ such that $[x]_{\gamma}\sim_{\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})}[y]_{\gamma}$. Hence $[x]_{\gamma}-[y]_{\gamma}\subseteq \mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$, and since $[x-y]_{\gamma}\in [x]_{\gamma}-[y]_{\gamma}$ we obtain $x-y\in \mathcal{M}^{\gamma}$.

Surjectivity of σ follows from the fact that for any $x \in \mathcal{O}$ we have $[x]_{\gamma} \in \mathcal{H}_{\gamma}(\mathcal{O})$ and also $[x]_{\gamma,\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})} \in \mathcal{H}_{\gamma}(\mathcal{O})/\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$. This implies that $\sigma[x]_{\gamma,\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})} = x + \mathcal{M}^{\gamma}$.

To show that σ is injective we will prove that for any two $x,y\in K$, $x-y\in \mathcal{M}^\gamma$ forces $[x]_{\gamma,\mathcal{H}_\gamma(\mathcal{M}^\gamma)}=[y]_{\gamma,\mathcal{H}_\gamma(\mathcal{M}^\gamma)}.$ On the one hand, we have that $[x-y]_\gamma\in [x]_\gamma-[y]_\gamma.$ On the other hand, we have assumed that $x-y\in \mathcal{M}^\gamma$, so we have $[x-y]_\gamma\in \mathcal{H}_\gamma(\mathcal{M}^\gamma).$ Hence $[x]_\gamma-[y]_\gamma\cap\mathcal{H}_\gamma(\mathcal{M}^\gamma)\neq\emptyset$, so $[x]_{\gamma,\mathcal{H}_\gamma(\mathcal{M}^\gamma)}=[y]_{\gamma,\mathcal{H}_\gamma(\mathcal{M}^\gamma)}.$

- 4 ロ > 4 回 > 4 き > 4 き > - き - 4 Q G

To show, that σ is independent of the chocie of the representatives we consider two distinct $x, y \in \mathcal{O}$ such that $[x]_{\gamma} \sim_{\mathcal{H}_{\alpha}(\mathcal{M}^{\gamma})} [y]_{\gamma}$. Hence $[x]_{\gamma} - [y]_{\gamma} \subseteq \mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$, and since $[x - y]_{\gamma} \in [x]_{\gamma} - [y]_{\gamma}$ we obtain $x - y \in \mathcal{M}^{\gamma}$.

Surjectivity of σ follows from the fact that for any $x \in \mathcal{O}$ we have $[x]_{\gamma} \in \mathcal{H}_{\gamma}(\mathcal{O})$ and also $[x]_{\gamma,\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})} \in \mathcal{H}_{\gamma}(\mathcal{O})/\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$. This implies that $\sigma[x]_{\gamma,\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})} = x + \mathcal{M}^{\gamma}$.

To show that σ is injective we will prove that for any two $x, y \in K$, $x-y\in \mathcal{M}^{\gamma}$ forces $[x]_{\gamma,\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})}=[y]_{\gamma,\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})}$. On the one hand, we have that $[x-y]_{\gamma} \in [x]_{\gamma} - [y]_{\gamma}$. On the other hand, we have assumed that $x - y \in \mathcal{M}^{\gamma}$, so we have $[x - y]_{\gamma} \in \mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$. Hence $[x]_{\gamma} - [y]_{\gamma} \cap \mathcal{H}_{\gamma}(\mathcal{M}^{\gamma}) \neq \emptyset$, so $[x]_{\gamma,\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})} = [y]_{\gamma,\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})}$. Finally, to show that σ is a strict homomorphism of hyperrings, we recall that for any $[x]_{\gamma,\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})}, [y]_{\gamma,\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})} \in \mathcal{H}_{\gamma}(\mathcal{O})/\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$ the sum $[x]_{\gamma,\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})} + [y]_{\gamma,\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})}$ is a singleton.

Piotr Błaszkiewicz

1 The proposition gives us an answer to the question of the correspondence between the first component of amc-structures and γ -valued hyperfields.

Uniwersytet Szczeciski

- 1 The proposition gives us an answer to the question of the correspondence between the first component of amc-structures and γ -valued hyperfields.
- 2 The second component of amc-structures is $G^{\gamma} := K^{\times}/(1+\mathcal{M}^{\gamma})$. Here the correspondence with the γ -valued hyperfields is immediate, since G^{γ} is a reduct of the corresponding γ -valued hyperfield.

- 1 The proposition gives us an answer to the question of the correspondence between the first component of amc-structures and γ -valued hyperfields.
- 2 The second component of amc-structures is $G^{\gamma} := K^{\times}/(1+\mathcal{M}^{\gamma})$. Here the correspondence with the γ -valued hyperfields is immediate, since G^{γ} is a reduct of the corresponding γ -valued hyperfield.
- 3 What remains is the third element of *amc*-structure, namely the relation Θ_{γ} .

Let (K, v) be a valued field, γ a nonnegative element from its value group vK, K_{γ} the amc-structure of level γ and $\mathscr{H}_{\gamma}(K)$ the γ -valued hyperfield of the valued field K. Then for any $x \in \mathscr{O}$ and $y \in K^{\times}$ we have that $\Theta_{\gamma}(x + \mathscr{M}^{\gamma}, [y]_{\gamma})$ holds in K_{γ} if and only if $[x]_{\gamma} \sim_{\mathscr{H}_{\gamma}(\mathscr{M}^{\gamma})} [y]_{\gamma}$ holds in $\mathscr{H}_{\gamma}(K)$.

Let (K,v) be a valued field, γ a nonnegative element from its value group vK, K_{γ} the amc-structure of level γ and $\mathscr{H}_{\gamma}(K)$ the γ -valued hyperfield of the valued field K. Then for any $x \in \mathscr{O}$ and $y \in K^{\times}$ we have that $\Theta_{\gamma}(x+\mathscr{M}^{\gamma},[y]_{\gamma})$ holds in K_{γ} if and only if $[x]_{\gamma} \sim_{\mathscr{H}_{\gamma}}(\mathscr{M}^{\gamma})$ $[y]_{\gamma}$ holds in $\mathscr{H}_{\gamma}(K)$.

Proof

First let us assume $\Theta_{\gamma}(x+\mathcal{M}^{\gamma},[y]_{\gamma})$. Hence there exists some $z\in \mathcal{O}$ such that $z+\mathcal{M}^{\gamma}=x+\mathcal{M}^{\gamma}$ and $[z]_{\gamma}=[y]_{\gamma}$. Then $[x-z]_{\gamma}\in ([x]_{\gamma}-[y]_{\gamma})\cap \mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$, so $[x]_{\gamma}\sim_{\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})}[y]_{\gamma}$. For the converse, assume that $[x]_{\gamma}\sim_{\mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})}[y]_{\gamma}$. By the Remark we obtain $[x]_{\gamma}-[y]_{\gamma}\in \mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$, so in particular $[x-y]_{\gamma}\in \mathcal{H}_{\gamma}(\mathcal{M}^{\gamma})$. Hence $x+\mathcal{M}^{\gamma}=y+\mathcal{M}^{\gamma}$. This proves that $\Theta_{\gamma}(x+\mathcal{M}^{\gamma},[y]_{\gamma})$ holds in K_{γ} .

Piotr Błaszkiewicz

- $\textcircled{1}\ \gamma$ -valued hyperfields and amc-structures
- 2 Valuation hyperrings
- 3 Hyperideals and quotient hyperfields
- 4 Final Theorem

Consider two valued hyperfields H = (H, v), H' = (H', v') and an isomorphism of hyperfields $\sigma : H \to H'$.

Let \mathcal{O} , \mathcal{O}' denote the valuation hyperrings of H, H' respectively. We call σ an **isomorphism of valued hyperfields** if $\sigma(\mathcal{O}) = \mathcal{O}'$.

Definition

Consider two amc-structures K_{γ} and $L_{\gamma'}$. If there exist two maps $\sigma_r: \mathcal{O}_K^{\gamma} \to \mathcal{O}_L^{\gamma'}$, $\sigma_g: G_K^{\gamma} \to G_L^{\gamma'}$ such that σ_r is an isomorphism of rings and σ_g is an isomorphism of groups, and for every $x \in \mathcal{O}_K^{\gamma}$ and $y \in G_K^{\gamma}$ we have $\Theta_{\gamma}(x,y)$ if and only if $\Theta_{\gamma'}(\sigma_r(x),\sigma_g(y))$, then we say that K_{γ} and $L_{\gamma'}$ are **isomorphic**.

Whenever we will mention an isomorphism σ of *amc*-structures, we will in fact refer to a couple (σ_r, σ_g) .

<u>Theorem</u>

Consider two valued fields (K, v) and (L, w) and nonnegative elements γ, γ' from vK and wL, respectively. Then $K_{\gamma} \simeq L_{\gamma'}$ if and only if $\mathcal{H}_{\gamma}(K) \simeq \mathcal{H}_{\gamma'}(L)$ as valued hyperfields.

Idea of the proof

Consider an isomorphism $\sigma: K_{\gamma} \to L_{\gamma'}$ of amc-structures. Define the map $\sigma_h: \mathcal{H}_{\gamma}(K) \to \mathcal{H}_{\gamma'}(L)$ in the following way:

$$\sigma_h([x]_\gamma) = \sigma_g(x(1+\mathcal{M}_K^\gamma))$$
 for all nonzero x, and $\sigma_h([0]_\gamma) = [0]_{\gamma'}$.

To obtain the first implication we have to show that σ_h is an isomorphism of valued hyperfields.

For the converse let us consider an isomorphism of valued hyperfields $\sigma: \mathcal{H}_{\gamma}(K) \to \mathcal{H}_{\gamma'}(L)$.

To obtain an isomorphism $\sigma_g: G_K^{\gamma} \to G_L^{\gamma'}$ it is enough to restrict σ to the nonzero elements of $\mathcal{H}_{\gamma}(K)$.

Now we have to construct the isomorphism $\sigma_r: \mathscr{O}_K^{\gamma} \to \mathscr{O}_L^{\gamma'}$

We have already shown that it suffices to deduce from σ an isomorphism $\mathcal{H}_{\gamma}(\mathcal{O}_{K})/\mathcal{H}_{\gamma}(\mathcal{M}_{K}^{\gamma}) \to \mathcal{H}_{\gamma'}(\mathcal{O}_{L})/\mathcal{H}_{\gamma'}(\mathcal{M}_{L}^{\gamma'})$. The equality $\sigma(\mathcal{H}_{\gamma}(\mathcal{O}_{K})) = \mathcal{H}_{\gamma'}(\mathcal{O}_{L})$ follows from the fact that σ is value preserving.

Let us define the mapping

$$\bar{\sigma}: \mathcal{H}_{\gamma}(\mathcal{O}_{K})/\mathcal{H}_{\gamma}(\mathcal{M}_{K}^{\gamma}) \to \mathcal{H}_{\gamma'}(\mathcal{O}_{L})/\mathcal{H}_{\gamma'}(\mathcal{M}_{L}^{\gamma'})$$
$$[x]_{\gamma} + \mathcal{H}_{\gamma}(\mathcal{M}_{K}^{\gamma}) \to \sigma[x]_{\gamma} + \mathcal{H}_{\gamma'}(\mathcal{M}_{L}^{\gamma'}).$$

It remains to show, that $\bar{\sigma}$ is an isomorphism of hyperrings.

- [1] B. Davvaz, A. Salasi, *A Realization of Hyperrings*, Communications in Algebra **34** (2006), 4389-4400
- [2] J. Flenner, *Relative decidability and definability in henselian* valued fields, Journal of Symbolic Logic **76** (2011), 1240-1260
- [3] J. Flenner, *The relative structure of henselian valued fields*, PHD thesis, University of California Berkeley **76** (2008)
- [4] J. Jun, Algebraic geometry over hyperrings, Advances in Mathematics 323 (2018), 142-192
- [5] M. Krasner, A class of hyperrings and hyperfields, International Journal of Mathematics and Mathematical Sciences 6 (1983), 307-311
- [6] F.-V. Kuhlmann, Quantifier elimination for henselian fields relative to additive and multiplicative congruences, Israel Journal of Mathematics **85** (1994), 277-306

◆ロ > ← 目 > ← 目 > ← 目 → り へ ○

- K. Kuhlmann, A. Linzi, H. Stojałowska Orderings and valuations in hyperfields, submitted
- [8] J. Lee, Hyperfields, truncated DVRs and valued fields, J. Number Theory 212 (2020), 40-71

