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~ -valued hyperfields and amc-structures
°

Definition

Consider a valued field (K, v) with a valuation ring ©. For any
nonnegative v € vK we can set an (0-ideal

M ={xe0O|v(x) >~}
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~ -valued hyperfields and amc-structures
°

Definition

Consider a valued field (K, v) with a valuation ring ©. For any
nonnegative v € vK we can set an (0-ideal

M ={xe€0|v(x) >~}
Then the quotient K /(1 + .#7) together with the following
operations induced from the field K:
©® multiplication: [a],[b], = [ab],, and
@ hyperaddition: [, + [b], = {[x + y1, | x € [al. y € [6],}
forms a hyperfield.
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~ -valued hyperfields and amc-structures
°

Definition

Consider a valued field (K, v) with a valuation ring ©. For any
nonnegative v € vK we can set an (0-ideal

M ={xe0O|v(x) >~}

Then the quotient K /(1 + .#7) together with the following
operations induced from the field K:

©® multiplication: [a],[b], = [ab],, and
@ hyperaddition: [, + [b], = {[x + y1, | x € [al. y € [6],}
forms a hyperfield.

We will denote it by %, (K) and call it the 7-valued hyperfield of
the valued field (K, v).
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~ -valued hyperfields and amc-structures
°

Definition

Take any hyperfield F and an ordered abelian group ' (written
additively). A surjective map v : F — U {oo} is called a
valuation on F if it satisfies the following conditions:

® v(a) =0 a=0,
® v(ab) = v(a) + v(b),
® cca+ b= v(c)>min{v(a),v(b)}.
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~ -valued hyperfields and amc-structures

In every hyperfield .,(K) we can define a valuation by simply
setting

vorlaly = v(a).
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~ -valued hyperfields and amc-structures

In every hyperfield .,(K) we can define a valuation by simply
setting
vorlaly = v(a).

Sketch of proof

If [a], = [b], then there exists m, € .7 such that
b= a(l+ m,). Hence

v(b) = (a1 + m,)) = v(a) + V(1 + m,) = v(a).

To prove property 1 we just need to notice, that [0], = {0}.
Properties 2 and 3 follows from the properties of the valuation v
on the field K.
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~ -valued hyperfields and amc-structures
°

Let us quickly recall that by the amc-structure of level ~ we refer
to the triple

K’Y = (@"/’ G,Yv 67)7

where 07 is the factor ring O/.#", G is the quotient
K*/(1+ ") and ©, is a binary relation given by

VxeO0'Vy € G7: Oy(x,y) e Iz€0:z+M" = xNz(1+M") = y.
We will extend the meaning of the relation ©, by fixing

©,(x,0) & x =0.
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Valuation hyperrings
°

@® Valuation hyperrings
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Valuation hyperrings
°

Definition
A subset A of a hyperring R is called a subhyperring of R if it is
closed under multiplication and with the induced hyperaddition

a+sb:= (a+Rb)05

for all a, b € S, is itself a hyperring.
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Valuation hyperrings

Definition

A subset A of a hyperring R is called a subhyperring of R if it is
closed under multiplication and with the induced hyperaddition

a+sb:= (a+Rb)05

for all a, b € S, is itself a hyperring.

A subhyperring O of a hyperfield F is called a valuation
hyperring if for all x € F we have that either x € 0 or x~! € 0.
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Valuation hyperrings
°

Proposition

Let v: F — vF U {oc} be a valuation on a hyperfield F. Then
O0:={xeF|vx>0}

is a valuation hyperring of the hyperfield F.
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Hyperideals and quotient hyperfields

Proposition

Let v: F — vF U {oc} be a valuation on a hyperfield F. Then
O0:={xeF|vx>0}

is a valuation hyperring of the hyperfield F.

Let O,,, denote the valuation hyperring of the valued hyperfield
(#,(K), vor) and O denote the valuation ring of the valued field
(K,v). Then

0,, = %,(0).
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Hyperideals and quotie
°

© Hyperideals and quotient hyperfields
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Hyperideals and quotient hyperfields
°

Definition

A subhyperring | of a hyperring R is a hyperideal if it satisfies
following conditions:

@ For all a,b € | one has that both a— b C / and ab €/,
@ for any r € R and x € | we have that rx € [.

Let (K, v) be a valued field and 0 <y € vK. Then #, (/") is a
hyperideal of %, (0).
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Hyperideals and quoti hyperfields
°

Let x, y be elements of the hyperring R. Set | to be a hyperideal
of R and let x 4/ denote the union [ J,, x + a. We introduce the
following relation:

x~yesx+Il=y+ 1.
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Hyperideals and quoti hyperfields
°

Let x, y be elements of the hyperring R. Set | to be a hyperideal
of R and let x 4/ denote the union [ J,, x + a. We introduce the

following relation:

x~yesx+Il=y+ 1.

The relation ~ is an equivalence relation.
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Hyperideals and quotient hyperfields
°

Let x, y be elements of the hyperring R. Set | to be a hyperideal
of R and let x 4/ denote the union [ J,, x + a. We introduce the
following relation:

x~yesx+Il=y+ 1.

The relation ~ is an equivalence relation.

The proof of this fact, as well as the proofs of the next two
lemmas can be found in work Algebraic geometry over hyperrings
by Jaiung Jun.
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Hyperideals and quotient hyperfields
°

Let R be a hyperring and | a hyperideal of R. Then for all
X?y e R1
X~y & (x—y) N1 #0D.
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Hyperideals and quotient hyperfields
°

Lemma

Let R be a hyperring and | a hyperideal of R. Then for all
X?y E R1
X~y & (x—y) N1 #0D.

For any [a],, [b], € #,(0) we have that [a], ~s% (4 [b], is
equivalent to [a], — [b]y C %, (M7).
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Hyperideals and quoti hyperfields
°

Let us denote by [x]; the equivalence class of x € R under the
relation ~;. We will denote the set of all equivalence classes of ~
on R by

R/1:={[x]; | x € R}.
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Hyperideals and quotient hyperfields
°

Let us denote by [x]; the equivalence class of x € R under the

relation ~;. We will denote the set of all equivalence classes of ~
on R by

R/I:={[x]/ | x € R}.

Lemma

The set R/I together with hyperaddition
[a]; + [b]; :={[c]) | c € a+ b}
and a multiplication
[a]; - [b]s := [ab];.
forms a hyperring.

We call this hyperring a quotient hyperring of R modulo /.
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Hyperideals and quotient hyperfields

For all a, b € %#,(0)/%.,(M") we have that a+ b is a singleton.
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Hyperideals and quotient hyperfields
°

For all a, b € %#,(0)/%.,(M") we have that a+ b is a singleton.

Claim
H.,(0)]%y(M") and O/ M7 are isomorphic as a hyperrings.
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Hyperideals and quotient hyperfields
°

Lemma
For all a, b € %#,(0)/%.,(M") we have that a+ b is a singleton.

H.,(0)]%y(M") and O/ M7 are isomorphic as a hyperrings.

Any ring (field) can be also viewed as a hyperring (hyperfield).

Piotr Btaszkiewicz Uniwersytet Szczeciski

Krasners valued hyperfields and amc-structures 5/6



Hyperideals and quotient hyperfields
°
Definition

Consider two hyperrings R, S and a mapping ¢ : R — S. If for any
x,y € R, o satisfies

® o(0g) =05
® o(xry)=0(x)sa(y)
© o(x +ry) Co(x) +sa(y),

then we call ¢ a homomorphism of hyperrings.
If additionally o satisfies

o(x+ry)=o0(x)+sa(y)

then we call ¢ a strict homomorphism of hyperrings.
If a strict homomorphism o is also a bijective map, then we call it
an isomorphism of hyperrings.

Piotr Btaszkiewicz Uniwersytet Szczeciski

Krasners valued hyperfields and amc-structures 5/6



Hyperideals and quotient hyperfields
°
Proposition

The map

o ()9, M) = 640
[X]%%A/(/%y) — x4+ 7

is an isomorphism of hyperrings.
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Hyperideals and quotient hyperfields
°

Sketch of the proof

To show, that ¢ is independent of the chocie of the representatives
we consider two distinct x, y € O such that [x], ~g () [v]-
Hence [x], — [y]y € &, ("), and since [x — y], € [x]y — [y], we
obtain x —y € /7.
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Hyperideals and quotient hyperfields
°
Sketch of the proof

To show, that ¢ is independent of the chocie of the representatives
we consider two distinct x, y € O such that [x], ~g () [v]-
Hence [x], — [y]y € &, ("), and since [x — y], € [x]y — [y], we
obtain x —y € /7.

Surjectivity of o follows from the fact that for any x € ® we have
[x]y € #,(0) and also [x], s () € #,(0)/ %, (A7). This
implies that o[x], o (#r) = x + M.
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Hyperideals and quotient hyperfields
°
Sketch of the proof

To show, that ¢ is independent of the chocie of the representatives
we consider two distinct x, y € O such that [x], ~g () [v]-
Hence [x], — [y]y € &, ("), and since [x — y], € [x]y — [y], we
obtain x —y € /7.

Surjectivity of o follows from the fact that for any x € ® we have
[x]y € #,(0) and also [x], s () € #,(0)/ %, (A7). This
implies that o[x], o (#r) = x + M.

To show that o is injective we will prove that for any two x,y € K,
x —y € M7 forces [x], o (u~)y = [Y]y,9,(u~)- On the one hand,
we have that [x — y], € [x]y — [y],. On the other hand, we have
assumed that x —y € /", so we have [x — y], € #,(#"). Hence

[Xly — vl N2, (A7) # 0, so [X]’Yy%’y(-ﬂ’y) = [)’]7,7{’7(//17)-
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Hyperideals and quotient hyperfields
°
Sketch of the proof

To show, that ¢ is independent of the chocie of the representatives
we consider two distinct x, y € O such that [x], ~g () [v]-
Hence [x], — [y]y € &, ("), and since [x — y], € [x]y — [y], we
obtain x —y € /7.

Surjectivity of o follows from the fact that for any x € ® we have
[x]y € #,(0) and also [x], s () € #,(0)/ %, (A7). This
implies that o[x], o (#r) = x + M.

To show that o is injective we will prove that for any two x,y € K,
x —y € M7 forces [x], o (u~)y = [Y]y,9,(u~)- On the one hand,
we have that [x — y], € [x]y — [y],. On the other hand, we have
assumed that x —y € /", so we have [x — y], € #,(#"). Hence
[xly = yly N, (A7) # 0, so [x] g, .y = V]9, (-

Finally, to show that o is a strict homomorphism of hyperrings, we
recall that for any [x], s (), Y]y, () € %4(0) ), (A7) the
sum [x]y o () + [Y]y,9, () is @ singleton.
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Hyperideals and qu: hyperfields
°

@ The proposition gives us an answer to the question of the
correspondence between the first component of
amc-structures and y-valued hyperfields.
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Hyperideals and quoti hyperfields
°

@ The proposition gives us an answer to the question of the
correspondence between the first component of
amc-structures and y-valued hyperfields.

® The second component of amc-structures is
GY := K*/(1+ A"). Here the correspondence with the
~v-valued hyperfields is immediate, since G7 is a reduct of the
corresponding y-valued hyperfield.
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Hyperideals and quotient hyperfields
°

@ The proposition gives us an answer to the question of the
correspondence between the first component of
amc-structures and y-valued hyperfields.

® The second component of amc-structures is
GY := K*/(1+ A"). Here the correspondence with the
~v-valued hyperfields is immediate, since G7 is a reduct of the
corresponding y-valued hyperfield.

©® What remains is the third element of amc-structure, namely
the relation ©,.
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Hyperideals and quotient hyperfields
°
Lemma

Let (K, v) be a valued field, v a nonnegative element from its
value group vK, K, the amc-structure of level v and %, (K) the
~-valued hyperfield of the valued field K. Then for any x € 0 and
y € K* we have that ©,(x + /4", [y],) holds in K, if and only if

[xly ~3, () lyly holds in 7,(K).
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Final Theorem
°

Lemma

Let (K, v) be a valued field, v a nonnegative element from its
value group vK, K, the amc-structure of level v and %, (K) the
~-valued hyperfield of the valued field K. Then for any x € 0 and
y € K* we have that ©,(x + /4", [y],) holds in K, if and only if

[xly ~3, () lyly holds in 7,(K).

First let us assume ©,(x + ", [y],). Hence there exists some

z € O such that z+ M7 = x+ M7 and [z], = [y],. Then

[x — 2]y € (Ixly = yly) N %, (A7), so [x]y ~a (ar) Y]y

For the converse, assume that [x], ~g () [y]y. By the Remark
we obtain [x], — [y], € #y ("), so in particular

[x —yly € Zy(M"). Hence x + MY =y + M". This proves that
O©,(x+ 47, [y]y) holds in K,.
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Final Theorem
°

O Final Theorem
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Final Theorem
°

Definition

Consider two valued hyperfields H = (H, v), H' = (H',v’) and an
isomorphism of hyperfields 0 : H — H'.

Let @, O’ denote the valuation hyperrings of H, H' respectively.

We call o an isomorphism of valued hyperfields if o(0) = 0.

Definition

Consider two amc-structures K, and L./. If there exist two maps
or: O — @Z/, og: Gp — GZ/ such that o, is an isomorphism of
rings and o, is an isomorphism of groups, and for every x € @;
and y € G} we have ©,(x,y) if and only if ©,/(c+(x),0g(y)),
then we say that K, and L,/ are isomorphic.

Whenever we will mention an isomorphism ¢ of amc-structures, we
will in fact refer to a couple (o, 0g).
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Final Theorem
°

Theorem

Consider two valued fields (K, v) and (L, w) and nonnegative
elements v, from vK and wL, respectively. Then K, ~ L/ if and
only if #,(K) ~ 7.,(L) as valued hyperfields.
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Final Theorem
°

Idea of the proof

Consider an isomorphism o : K, — L,/ of amc-structures. Define
the map oy, : Z,(K) — /(L) in the following way:

on([x]y) = og(x(1 + #})) for all nonzero x, and
an([0}y) = [0

To obtain the first implication we have to show that oy, is an
isomorphism of valued hyperfields.

For the converse let us consider an isomorphism of valued
hyperfields o : %,(K) — %, (L).

To obtain an isomorphism oz : G} — GZ/ it is enough to restrict o
to the nonzero elements of %, (K).

Now we have to construct the isomorphism o, : 6} — @Z/.
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Final Theorem
°

We have already shown that it suffices to deduce from ¢ an
isomorphism 9, (O ) /9, (M},) — F,/(6L) )%, (M]"). The
equality (%, (0k)) = #.,(0L) follows from the fact that o is
value preserving.

Let us define the mapping

5+ (k) |, (M) — ,0(00) (]
[x]y + T (ML}) — olx], + Fy ().

It remains to show, that & is an isomorphism of hyperrings.
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Final Theorem
°
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