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QE in m MacIntyre (1976) shows quantifier elimination for the
valued

fields theory of p-adically closed fields in the language of
valued fields extended with power predicates:

P,(z) «— 3y :y" ==x.

m Pas (1989) shows quantifier elimination for the theory of
henselian valued fields of residue characteristic 0,
relative to the value group and the residue field, in the
Denef-Pas language with angular component map.
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Hucd m In 1991, Basarab obtains quantifier elimination for the

el theory of henselian valued fields of characteristic 0,
relative to the mixed structures.

m In 1994, Kuhlmann simplifies the structures of Basarab
introducing the structures of additive and multiplicative
congruences (ame-structures).

m In 2011, Flenner simplifies the structures introduced by
Kuhlmann even further, with the leading term
structures (RV-structures).
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amec-structures

Definition (Kuhlmann)

Let (K, v) be a valued field and v € vK>g. The
- amc-structure of level v of (K,v), denoted by K, , consists

structures Of

m The residue ring 07 := O,/ M".
m The multiplicative quotient group G7 := K* /1 + M.

m A binary relation
Oy :={(7,y) € O" xG" |2 € Oy : Tyz = x AT 2 = y}.

where 7, and 7 are the canonical epimorphisms onto
O7 and G7, respectively.
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RV -structures

Definition (Flenner)

Let (K,v) be a valued field and v € vK>g. The
- RV -structure of level v of (K,v) is

structures

K*/1+ M7 u{0}
with its multiplicative structure and a ternary relation

By (x,y,2) =
dz,y,z€ K :rvy(z) =xArvy(y) =y
Arvy(z) =zAzc+y==z2
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Let (K,v) be a valued field. The graded ring associated to
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Definition
Let (K,v) be a valued field. The graded ring associated to
he (K,v) is
structures grU(K) — @ PPY/M’Y’
yevK

where P7 := {zx € K | vx > ~}.
The wnitial form of x € K is iny(z) := = + M"*.
The set

H(gr,(K)) = |J PY/M

yeEVK

is called the set of homogeneous elements of gr,(K).
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Hyperfields

Recall from the talk of H. Stojalowska that a hyperfield is a
e tuple (F,+,-,0,1), where (F'\ {0},-,1) is a group and
S (F,+,0) is a canonical hypergroup.

Byperfields In particular, + : F' — P*(F') is an associative, commutative,
invertible and reversible multivalued operation and -
distributes over +.




The factor construction

Given a field K and a subgroup T' of K*, one can always
construct a hyperfield, called the factor hyperfield of K
modulo 7', denoted by K.

Krasner’s
valued
hyperfields



The factor construction

Given a field K and a subgroup T' of K*, one can always
construct a hyperfield, called the factor hyperfield of K
modulo T, denoted by Kr. As a set it is K* /T U {[0]r}.

Krasner’s
valued
hyperfields



The factor construction

Given a field K and a subgroup T' of K*, one can always
construct a hyperfield, called the factor hyperfield of K
Krasnor's modulo T, denoted by Krp. As a set it is K* /T U{[0]r}. For
valued x € K*, the coset 2T is denoted by [z]7.
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Given a field K and a subgroup T' of K*, one can always
construct a hyperfield, called the factor hyperfield of K
Krasnors modulo T, denoted by Krp. As a set it is K* /T U{[0]r}. For
MERl = € K™, the coset 271" is denoted by [z]7.

The hyperoperation is defined as follows:

[z]r + [ylr == {[zr +ytlr € Kr |t € T}.
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Definition (Davvaz and Salasi, 2006)

Take a hyperfield F' and an ordered abelian group I' (written
additively). A surjective map v : F' — I" U {oo} is called a
Krasner’s valuation on F' if it has the following properties:

valued
hyperfields



Valuations on hyperfields

Definition (Davvaz and Salasi, 2006)

Take a hyperfield F' and an ordered abelian group I' (written
additively). A surjective map v : F' — I" U {oo} is called a
Krasner’s valuation on F' if it has the following properties:

valued
hyperfields

Bva=00 <= a=0;



Valuations on hyperfields

Definition (Davvaz and Salasi, 2006)

Take a hyperfield F' and an ordered abelian group I' (written
additively). A surjective map v : F' — I" U {oo} is called a
Krasner’s valuation on F' if it has the following properties:

valued
hyperfields

Bva=00 <= a=0;
m v(ab) = va + vb;



Valuations on hyperfields

Definition (Davvaz and Salasi, 2006)

Take a hyperfield F' and an ordered abelian group I' (written
additively). A surjective map v : F' — I" U {oo} is called a
Krasner’s valuation on F' if it has the following properties:

valued
hyperfields

Bva=00 <= a=0;
m v(ab) = va + vb;
mcEa+b = vc>min{va,vb}.



Valuations on hyperfields

Definition (Davvaz and Salasi, 2006)

Take a hyperfield F' and an ordered abelian group I' (written
additively). A surjective map v : F' — I" U {oo} is called a
Krasner’s valuation on F' if it has the following properties:

valued
hyperfields

Bva=00 <= a=0;
m v(ab) = va + vb;
mcEa+b = vc>min{va,vb}.

If v is a valuation on a hyperfield F' we call (F,v) a valued
hyperfield.
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The ~v-valued hyperfields

Definition

Let (K, v) be a valued field and v € vK>q . The vy-valued
hyperfield of (K, v) is the factor hyperfield Kj4 v -

Krasner’s

by perfelds It is a valued hyperfield since 1 + M7 C O Its valuation is
denoted by v, .

The hyperoperation + can be encoded by a ternary relation
symbol:

ry(z,y,2) <= z€x+y.
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Valued hyperfields and RV -structures

Let (K, v) be a valued field and v € vK>q .
As sets, H~(K) and the RV-structure of level v of (K, v) are
the same thing.

P The relation which encodes the hyperoperation of H(K) is
the same thing as Flenner’s relation ©,.

between the
structures



Valued hyperfields and amc-structures

Theorem

Let (K,v) and (L, w) be valued fields, v € vK>o and
0 € wL>q . The valued hyperfields (H(K),vy) and
b (Hs(L),ws) are isomorphic if and only if the amc-structures

between the

—— K., and Ls are isomorphic.




Valued hyperfields and graded rings

Regarding the graded rings, one has
in, (z) = [z]o

as subsets of K, for all z € K*.
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Valued hyperfields and graded rings

Regarding the graded rings, one has

in,(x) = [z]o

as subsets of K, for all z € K*.
W There is a language £, extending the language of rings such
rnetes that gr,(K) is an Lg,-structure and the hyperfield structure
of Ho(K) is interpretable in gr,(K).



Residue characteristic 0

Elementary
equivalence
theorems




Residue characteristic 0

Theorem

Let (L,w) and (F,u) be henselian valued fields of residue
characteristic 0 and (K,v) a common valued subfield. The
following are equivalent:

Elementary

equivalence
theorems



Residue characteristic 0

Theorem

Let (L,w) and (F,u) be henselian valued fields of residue
characteristic 0 and (K,v) a common valued subfield. The
following are equivalent:

U (L7w) =(Kv) (Fv u);

Elementary
equivalence

theorems



\\NERS},

CZEC\‘V\L}

Elementary

equivalence
theorems

R C‘ . . .
WUsg Residue characteristic 0
ESN N

Theorem

Let (L,w) and (F,u) be henselian valued fields of residue
characteristic 0 and (K,v) a common valued subfield. The
following are equivalent:

U (L7w) =(Kv) (Fv u);
m Ho(L) =p(x) Ho(F) as hyperfields;



\\NERS},

CZEC\‘V\L}

Elementary

equivalence
theorems

R C‘ . . .
WUsg Residue characteristic 0
ESN N

Theorem

Let (L,w) and (F,u) be henselian valued fields of residue
characteristic 0 and (K,v) a common valued subfield. The
following are equivalent:

U (L7w) =(Kv) (Fv u);
m Ho(L) =p(x) Ho(F) as hyperfields;
m RV(L) =gy (k) RV(F) (Flenner);
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Let (L,w) and (F,u) be henselian valued fields of residue

characteristic 0 and (K,v) a common valued subfield. The
following are equivalent:

= (L’w) =(Kw) (Fv u);

m Ho(L) =4,(x) Ho(F) as hyperfields;
Elementary m RV(L) =gy (k) RV(F) (Flenner);
r—— m Ly =g, Fo (Kuhlmann);

theorems
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Let (L,w) and (F,u) be henselian valued fields of residue

characteristic 0 and (K,v) a common valued subfield. The
following are equivalent:

_ (L7w) =(K,v) (Fv u);

Ho(L) =po(x) Ho(F) as hyperfields;

RV (L) =gy (k) RV(F) (Flenner);

Ly =k, Fo (Kuhlmann);

gty (L) =g, (k) 8Ty (F) as Lgr-structures.

Elementary

equivalence
theorems
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Mixed characteristic

Theorem

Let (L,w) and (F,u) be henselian valued fields of
characteristic 0 and residue characteristic p > 0. Let (K, v)
be a common valued subfield. The following are equivalent:

_ (Law) =(Kv) (F7 U),’
w Hpp(L) =ty (K) Hnwp(F) for alln € N;
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Theorem

Let (L,w) and (F,u) be henselian valued fields of
characteristic 0 and residue characteristic p > 0. Let (K, v)
be a common valued subfield. The following are equivalent:

_ (Law) =(Kv) (F7 U),’
w Hpp(L) =ty (K) Hnwp(F) for alln € N;
8 RVpup(L) =Ry, (k) BViwp(F) for alln € N (Flenner);
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Theorem

Let (L,w) and (F,u) be henselian valued fields of
characteristic 0 and residue characteristic p > 0. Let (K, v)
be a common valued subfield. The following are equivalent:

U (L’w) =(Kv) (Fv u);

w Hpp(L) =ty (K) Hnwp(F) for alln € N;

8 RVpup(L) =Ry, (k) BViwp(F) for alln € N (Flenner);
8 Lnwp =K,y Frovp for alln € N (Kuhlmann,).
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Mixed characteristic

Theorem
Let (L,w) and (F,u) be henselian valued fields of

characteristic 0 and residue characteristic p > 0. Let (K, v)
be a common valued subfield. The following are equivalent:

U (L7w) =(Kv) (Fv u);

m Hppp(L) = 0p(K) Hnwop(F) for alln € N;

8 RVpup(L) =Ry, (k) BViwp(F) for alln € N (Flenner);
8 Lnwp =K,y Frovp for alln € N (Kuhlmann,).

Elementary
equivalence
theorems

Remark

The graded rings are not sufficient in the mixed
characteristic case.
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