Diophantine problems over tamely ramified fields

Kartas Konstantinos

University of Oxford

Szczecin 2022

Overview

RV-structures

Tame Ramification

Resolution of singularities

RV-Hensel's Lemma

Main Theorem

Overview

Main Theorem

Theorem

- Assume resolution of singularities.
- O_F an excellent DVR.
- (K, v), (L, w) are henselian and tamely ramified over (F, v_0) .
- $RV(K) \equiv_{\exists,RV(F)} RV(L).$

Then $K \equiv_{\exists,F} L$ in L_{rings} .

cf.

- (1) Known (unconditionally) in equal characteristic 0 and unramified mixed characteristic. (Ax-Kochen/Ershov '66)
- (2) Recently proved (unconditionally) for *finite* tame ramification in mixed characteristic (with perfect residue fields). (J. Lee '21)
- (3) Encompasses the *conditional* existential decidability results for $\mathbb{F}_p((t))$. (Denef-Schoutens '03)
- (4) No finiteness restriction on ramification.
- (5) No restriction on the characteristic.

Overview

Some applications

Let $l \neq p$ be prime.

Corollary

- Assume resolution of singularities.
- (1) Then $\mathbb{Q}_p(p^{1/l^{\infty}})$ is existentially decidable in L_{rings} .
- (2) Then $\mathbb{F}_p((t))(t^{1/l^{\infty}})$ is existentially decidable in L_t .

Corollary

- Assume resolution of singularities.
- (1) Then \mathbb{Q}_p^{tr} is existentially decidable in L_{rings} .
- (2) Then $\mathbb{F}_p((t))^{tr}$ is existentially decidable in L_t .

Corollary

$$\mathbb{F}_{\rho}((t))(t^{1/I^{\infty}}) \preceq_{1} \mathbb{F}_{\rho}((t^{\Gamma_{I}})), \text{ where } \Gamma_{I} = \frac{1}{I^{\infty}}\mathbb{Z}.$$

cf.

$$\mathbb{F}_{\rho}((t))(t^{1/p^{\infty}}) \not\preceq_1 \mathbb{F}_{\rho}((t^{\Gamma_{\rho}})).$$
 (Abhyankar '56)

Overview

RV-structures

Tame Ramification

Resolution of singularities

RV-Hensel's Lemma

Main Theorem

RV-structures

Motivating example

$$K = k((t)).$$

Idea: Define "leading term arithmetic" in K, i.e., we want to do arithmetic by forgetting higher order terms:

1. Define $x \sim y$ when their leading terms are equal.

Example

2t +
$$t^2 \sim$$
 2t + t^3 because their leading term is 2t.
rv(x)= "equivalence class of x"; RV(K) = {rv(x) : $x \in K$ }.

- 2. Define multiplication on RV(K). (does not depend on representatives)
- 3. Try to define addition on RV(K):

Example

(1)
$$rv(2t + t^3) + rv(3t + 2t^4) = rv(5t + t^3 + 2t^4)$$
. (OK)

(2)
$$rv(\mathbf{t} + t^2) + rv(-\mathbf{t}) = rv(\mathbf{t}^2)$$
 but $rv(\mathbf{t} + t^3) + rv(-\mathbf{t}) = rv(\mathbf{t}^3)!$

Moral: Addition has to be multi-valued! (i.e., relation)

RV-structures

General case

Setting:

- \triangleright (K, v) a valued field; \mathcal{O}_K valuation ring; \mathfrak{m} maximal ideal.
- $k = \mathcal{O}_K/\mathfrak{m}$ residue field.
- Γ value group.

Consider the exact sequence of abelian groups

$$0 \to k^{\times} \xrightarrow{\iota} K^{\times}/(1+\mathfrak{m}) \xrightarrow{\nu} \Gamma \to 0$$

- 1. Define $RV(K^{\times}) = K^{\times}/(1+\mathfrak{m})$. (Leading term structure)
- 2. Define the multiplicative monoid $RV(K) = RV(K^{\times}) \cup \infty$.
- 3. \oplus (a, b, c) holds if there are x, y, $z \in K$ such that rv(x) = a, rv(y) = b, rv(z) = c and x + y = z.
- 4. We also equip RV(K) with a binary relation $va \le vb \iff vx \le vy$, where rv(x) = a and rv(y) = b.

Overview

RV-structures

Tame Ramification

Resolution of singularities

RV-Hensel's Lemma

Main Theorem

Tamely ramified extensions

Algebraic case

Setting:

- (L, w)/(K, v) **finite** valued field extension.
- \triangleright 1/k residue field extension.
- ightharpoonup Δ/Γ value group extension.

Definition

(L, w)/(K, v) is said to be tamely ramified if

- 1. I/k is separable.
- 2. $p \nmid [\Delta : \Gamma]$, where $p = \operatorname{char}(k)$.
- 3. (L, w)/(K, v) is defectless.

Example

The extension $(\mathbb{Q}_p(p^{1/n}), v_p)/(\mathbb{Q}_p, v_p)$ is tamely ramified if and only if $p \nmid n$.

Remark: Our base field will always be defectless, so (3) can be ignored.

Tamely ramified extensions

Transcendental case

Setting:

- (L, w)/(K, v) valued field extension.
- ▶ *I/k* residue field extension.
- ightharpoonup Δ/Γ value group extension.

Definition

(L, w)/(K, v) is said to be tamely ramified if

- 1. I/k is separable. (not necessarily algebraic)
- 2. Δ/Γ is *p*-torsion-free, where p = char(k).
- 3. $(L_1, w)/(K, v)$ is *defectless*, for every finite subextension L_1/K .

Example

- (a) $(\mathbb{Q}_p(p_{\underline{l}}^{1/l^{\infty}}), v_p)/(\mathbb{Q}, v_p)$ is tamely ramified, $l \neq p$ prime.
- (b) $(\mathbb{F}_p((t^{\Gamma})), v_t)/(\mathbb{F}_p(t), v_t)$ is tamely ramified if and only if 1 is not p-divisible in Γ .

Overview

RV-structures

Tame Ramification

Resolution of singularities

RV-Hensel's Lemma

Main Theorem

Some geometry

Regular schemes and normal crossings

Informally: Regular = non-singular.

Definition

- X be a Noetherian scheme.
- (a) X is regular at $x \in X$ if $\mathcal{O}_{X,x}$ is a regular local ring.
- (b) X is regular if it is regular at all $x \in X$.

Regular system: A minimal set of generators of $\mathfrak{m}_{X,x}$ is called a *regular system* of parameters at x.

Example

- (1) $X = \text{Spec}(k[x, y]/(y^2 x))$ is regular.
- (2) $X = \text{Spec}(k[x, y]/(y^2 x^3))$ is singular at x = y = 0.

Some geometry

Regular schemes and normal crossings

Setting:

- R a DVR; t a uniformizer; κ the residue field.
- ▶ $X \to \operatorname{Spec} R$ a morphism.
- $X_s = X \times_{\operatorname{Spec} R} \operatorname{Spec}(\kappa)$ is the special fiber. (set t = 0)

Informally: X_s *locally* looks like a union of smooth varieties crossing transversely.

Definition

- (a) $X \to \operatorname{Spec} R$ has strict normal crossings at $x \in X$ if there exists a regular system of parameters $f_1, ..., f_n$ of X at x and $h \in \mathcal{O}_{X,x}^{\times}$ such that $t = h \cdot f_1^{e_1} \cdot f_2^{e_2} \cdot ... \cdot f_m^{e_m}$.
- (b) $X \to \operatorname{Spec} R$ has strict normal crossings if it has strict normal crossings at all $x \in X$.

Resolution of singularities

Definition

- R a discrete valuation ring.
- ▶ K = Frac(R).

R is called *excellent* if \widehat{K}/K is separable.

Conjecture (Log-Resolution)

- R excellent DVR.
- X a reduced, flat scheme of finite type over R.

Then there exists a blow-up morphism $f: \tilde{X} \to X$ in a nowhere dense center $Z \subsetneq X$ such that

- 1. \tilde{X} is a regular scheme.
- 2. $\tilde{X} \to \operatorname{Spec} R$ has strict normal crossings.
- **cf.** (ε % of literature):
- (1) Known in residue char.0. (Hironaka '64).
- (2) Known when dim $X \leq 3$. (Cossart-Piltant '13)

Overview

RV-structures

Tame Ramification

Resolution of singularities

RV-Hensel's Lemma

Main Theorem

RV-Hensel's Lemma

Classical geometric Hensel's Lemma

Setting: R henselian local ring; κ residue field.

Slogan: Smooth κ -points of X_s lift to integral points of X.

Lemma (Hensel's Lemma)

- $ightharpoonup X
 ightarrow \mathrm{Spec} R$ a smooth morphism.
- $\rightarrow x \in X_s(\kappa).$

Then there is $P \in X(R)$ specializing to x.

Motivation for RV-Hensel's Lemma:

- ▶ Log-Resolution *does not* guarantee that $X \to \operatorname{Spec} R$ is smooth.
- The best we can hope for is strict normal crossings.
- We need to prove a Hensel's Lemma version for strict normal crossings.

RV-Hensel's Lemma

RV-Hensel's Lemma

Setting:

R DVR; κ residue field; π uniformizer.

 $A \supseteq R$ henselian local ring; k residue field.

Slogan: RV-points lift to integral points (under SNC $+p \nmid e_1$).

Lemma (RV-Hensel's Lemma)

- ▶ $X \to \operatorname{Spec} R$ finite type with strict normal crossings.
- $ightharpoonup x \in X_s$ a closed point; $\kappa(x)/\kappa$ is separable.
- ▶ $\pi = h \cdot x_1^{e_1} \cdot ... \cdot x_n^{e_n}$, where $e_i \in \mathbb{Z}^{>0}$, $h \in \mathcal{O}_{X,x}^{\times}$ and $\{x_1, ..., x_n\}$ part of a regular system of parameters at x.
- p ∤ e₁.
- There exist $a_1, ..., a_n \in A$ such that $\iota(\overline{h}) \cdot rv(a_1^{e_1} \cdot ... \cdot a_n^{e_n}) = rv(\pi)$.

Then there is $P \in X(A)$ specializing to the RV-point.

Overview

RV-structures

Tame Ramification

Resolution of singularities

RV-Hensel's Lemma

Main Theorem

Main Theorem

Theorem

- Assume Log-Resolution.
- O_F an excellent DVR.
- (K, v), (L, w) are henselian and tamely ramified over (F, v_0) .
- $RV(K) \equiv_{\exists,RV(F)} RV(L).$

Then $K \equiv_{\exists,F} L$ in L_{rings} .

First Step: Geometric reformulation.

Second Step: Strict normal crossings case.

(via RV-Hensel's Lemma)

Third Step: General scheme case (via Log-Resolution).

Overview

RV-structures

Tame Ramification

Resolution of singularities

RV-Hensel's Lemma

Main Theorem

Applications

Corollary

- Assume Log-Resolution.
- ▶ (K, v) henselian and tamely ramified over (\mathbb{Q}, v_p) (resp. $(\mathbb{F}_p(t), v_t)$ or $(\mathbb{Q}(t), v_t)$).
- ▶ (K, v) admits a cross-section that extends a cross-section of (\mathbb{Q}, v_p) (resp. $(\mathbb{F}_p(t), v_t)$ or $(\mathbb{Q}(t), v_t)$).

Then K is existentially decidable in L_{rings} relative to k in L_{rings} and (Γ, vp) in L_{oag} with a constant for the value of p (resp. t).

Ramification fields:

 $\mathbb{Q}_p^{tr}=$ "maximal tamely ramified algebraic extension of \mathbb{Q}_p ". (similarly $\mathbb{F}_p((t))^{tr}$)

Example (Ramification fields)

- (a) \mathbb{Q}_p^{tr} is \exists -decidable in L_{rings} .
- (b) $\mathbb{F}_p((t))^{tr}$ is \exists -decidable in L_t .

Remark: Also, $\mathbb{Q}_p(p^{1/l^{\infty}})$ and $\mathbb{F}_p((t))(t^{1/l^{\infty}})$, $l \neq p$ prime.