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Hyperoperation

Let H be a nonempty set and P∗(H) the family of nonempty subsets of H.
A hyperoperation + is a function:

+ : H × H −→ P∗(H)

(x, y) 7→ x + y.

For a subset A ⊆ H and x ∈ H we have

A + x :=
⋃
a∈A

a + x and x + A =
⋃
a∈A

x + a.

Hanna Stojałowska Real hyperfields



Canonical hypergroup

Definition

A canonical hypergroup is a tuple (H,+, 0), where + is a hyperoperation on
H and 0 ∈ H is an element such that the following axioms hold:

(H1) the hyperoperation + is associative, i.e., (x + y) + z = x + (y + z) for
all x, y, z ∈ H,

(H2) x + y = y + x for all x, y ∈ H,
(H3) for every x ∈ H there exists a unique −x such that

0 ∈ x + (−x) =: x− x,
(H4) z ∈ x + y implies y ∈ z− x for all x, y, z ∈ H.
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Hyperrings and hyperfields

Definition

A (commutative) hyperring with unity is a tuple (R,+, ·, 0, 1) which satisfies
the following axioms:

(R1) (R,+, 0) is a canonical hypergroup,
(R2) (R, ·, 1) is a commutative monoid and x · 0 = 0 for all x ∈ R,
(R3) the operation · is distributive with respect to the hyperoperation +. That

is, for all x, y, z ∈ R,

x · (y + z) = x · y + x · z.

If (R,+, ·, 0, 1) is a hyperring with unity and (R \ {0}, ·, 1) is a group, then
(R,+, ·, 0, 1) is called a hyperfield.
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Hyperideal

Definition
Let R be a hyperring.

1 A nonempty subset I ⊆ R is a hyperideal if for all a, b ∈ I and for all
r ∈ R we have a + b ⊆ I, −a ∈ I and ar ∈ I.

2 A hyperideal I ( R is maximal if I satisfies the following property: if
J ⊆ R is a hyperideal of R such that I ( J, then J = R.
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Valuation in hyperfields

Definition
Take a hyperfield F and an ordered abelian group Γ (written additively). The
map v : F → Γ ∪ {∞} is called a valuation on F if it has the following
properties:
(V1) v(a) =∞ iff a = 0;
(V2) v(ab) = v(a) + v(b);
(V3) c ∈ a + b⇒ v(c) ­ min{v(a), v(b)}.

Definition
Let F be a hyperfield. A subhyperring O of F is called a valuation hyperring
if for all x ∈ F we have that either x ∈ O or x−1 ∈ O.

Proposition

Let v be a valuation on a hyperfield F. Then Ov := {x ∈ F | v(x) ­ 0} is a
valuation hyperring of F andMv := {x ∈ F | v(x) > 0} its unique maximal
hyperideal. The quotient Ov/Mv is a hyperfield, called the residue
hyperfield.
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Factor hyperfields

The following construction comes from Krasner.
Let K be a field and T a subgroup of K×. We consider the equivalence
relation:

x ∼ y if and only if x = yt for some t ∈ T.

Denote by [x]T the equivalence class of x and by KT := K×/T ∪ {[0]T} the
set of all equivalence classes. The set KT with the operations

[x]T + [y]T = {[x + yt]T | t ∈ T};

[x]T · [y]T = [xy]T ,

is a hyperfield, called a factor hyperfield (quotient hyperfield). The neutral
element of the multivalued addition in KT is [0]T = {0} and the additive
inverse of [x]T ∈ AK is [−x]T .
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Examples of hyperfields

Consider the field of real numbers R with its multiplicative subgroup (R×)2.
We can identify the factor hyperfield R(R×)2 with the set H = {−1, 0, 1}.
The hyperaddition works here as follows:

(−1) + (−1) = (−1) + 0 = 0 + (−1) = {−1}
0 + 0 = {0}
1 + 1 = 1 + 0 = 0 + 1 = {1}

1 + (−1) = (−1) + 1 = {−1, 0, 1}.

This hyperfield is called the sign hyperfield.
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Examples of hyperfields

Consider the following cartesian product F = {−1, 1} × Γ, where Γ is an
ordered abelian group. Denote F := {−1, 1} × Γ ∪ {0}. Then the tuple
(F,+, ·, 0, (1, 0)) is a hyperfield, where the hyperaddition is defined as
follows:

x + 0 = 0 + x = {x} x ∈ F

(1, γ1) + (1, γ2) = {(1,min(γ1, γ2))} γ1, γ2 ∈ Γ

(−1, γ1) + (−1, γ2) = {(−1,min(γ1, γ2))} γ1, γ2 ∈ Γ

(1, γ1) + (−1, γ2) = {(1, γ1)} γ1 < γ2 ∈ Γ

(1, γ1) + (−1, γ2) = {(−1, γ2)} γ1 > γ2 ∈ Γ

(1, γ) + (−1, γ) = {(e, δ) | e ∈ {−1, 1}, δ ­ γ} ∪ {0} γ ∈ Γ

The result of multiplication by 0 is obvious. For nonzero elements of F we
define:

(s1, γ1) · (s2, γ2) = (s1 · s2, γ1 + γ2).

During this talk we will call it the hyperfield of pairs.
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Artin-Schreier theory for hyperfields

Let F be a hyperfield. A subset P ⊆ F is an ordering of F if

P + P ⊆ P, P · P ⊆ P, P ∩ −P = ∅, P ∪ −P = F×.

A subset T ⊆ F is called a preordering in F if

T + T ⊆ T, T · T ⊆ T, (F×)2 ⊆ T, −1 /∈ T.

We say that a preordering T ⊆ F is maximal if T ⊆ S for some preordering S
in F implies that S = T . The set of all orderings of a hyperfield F will be
denoted by X (F) and the set of all orderings of F containing a subset T ⊂ F
by X (F | T).
A hyperfield F is real if X (F) 6= ∅.

Example

We observe that the sign hyperfield is real with the ordering P = {1} and the
hyperfield of pairs is real with the ordering P = {(1, γ) ∈ F | γ ∈ Γ}.
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Artin-Schreier theory for hyperfields

Theorem (M. Marshall)

Let F be a hyperfield.
1 Every maximal preordering T of F is an ordering.
2 F is real if and only if −1 /∈ Σ(F×)2.
3 For every preordering T of F we have

T =
⋂

P∈X (F|T)

P.
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Compatibility between ordering and valuation

If K is a field, then with the ordering P one can associate a linear order
defined by

a < b⇔ b− a ∈ P.

In the hyperfield case, the relation a < b⇔ b− a ⊆ P does not have to be a
linear order. However, it defines on F a strict partial order, which does not
have to be compatible with the hyperaddition.

Let K be a field. A valuation v of K is compatible with an ordering < if the
valuation ring Ov of v is convex with respect to <. The partial order < of a
real hyperfield F for an ordering P of F allows us to consider the notion of
convexity in F. Hence the questions arise:

How can we define compatibility between an ordering and a valuation
in hyperfields?

Can we use the notion of convexity to define it?
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Construction of A(P) and I(P)

Every real field K has characteristic 0, so it contains the rationals. If P is an
ordering of K, then the set

A(P) := {a ∈ K | n± a ∈ P for some n ∈ N}

is a valuation ring of K (associated with the natural valuation of P) with the
maximal ideal

I(P) := {a ∈ K | 1
n
± a ∈ P for all n ∈ N}.

We wish to construct A(P) and I(P) in real hyperfields.
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Construction of A(P) and I(P)

But how can we construct A(P) and I(P) if a hyperfield does not have to
contain the rationals?
Let F be a hyperfield with ordering P. For n ∈ N, define

In := 1 + . . .+ 1︸ ︷︷ ︸
n times

.

Define

A(P) := {a ∈ F | (In ± a) ∩ P 6= ∅ for some n ∈ N}
I(P) := {a ∈ F | (1± In · a) ⊆ P for all n ∈ N}.

Proposition

The set A(P) is a valuation hyperring in F with its unique maximal
hyperideal I(P).

Definition

An ordering P of a hyperfield F is called archimedean if A(P) = F.
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Examples of archimedean and nonarchimedean orderings

Consider the sign hyperfield F = R(R×)2 with the ordering P = {1}.
Observe that 1 + 1 = {1}, so In = {1} for every n ∈ N. Hence

A(P) = {a ∈ F | (1± a) ∩ P 6= ∅} = F,

I(P) = {a ∈ F | (1± a) ⊆ P} = {0}.

Hence P is an archimedean ordering in F.

Consider the hyperfield of pairs F. Then

A(P) = {(s, γ) ∈ F | γ ­ 0} ∪ {0} ( F,

I(P) = {(s, γ) ∈ F | γ > 0} ∪ {0}.

Hence P is a nonarchimedean ordering in F.
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A valuation compatible with the ordering P

Proposition

Let F be a hyperfield with a valuation v and an ordering P. The following
conditions are equivalent:
(i) A(P) ⊆ Ov,

(ii) P := {a +Mv | a ∈ P ∩ Ov
×} is an ordering of Ov/Mv,

(iii) 1 +Mv ⊆ P,
(iv) if (b + a) ∩ P 6= ∅ and (b− a) ∩ P 6= ∅, then v(a) ­ v(b).

Definition
A valuation v on a hyperfield F satisfying the equivalent conditions of the
last proposition is called a valuation compatible with the ordering P.
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Compatibility implies convexity

We have defined the notion of a valuation being compatible with an
ordering. Can we say that v is compatible with the ordering P if and only if
Ov is convex with respect to P?
The answer is NO.
However, we have the following lemma:

Lemma
Let v be a valuation on the real hyperfield F, compatible with an ordering P.
Then Ov is convex with respect to P.
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Orderings and valuations in factor hyperfields

Lemma
Let P be an ordering of a field K and assume that a multiplicative subgroup
T of K is contained in P. Consider the factor hyperfield
KT = {[a]T | a ∈ K}.

1 If a ∈ P, then [a]T ⊆ P.
2 The set PT := {[c]T | c ∈ P} is an ordering of KT .

The ordering PT in KT is called an ordering induced by the ordering P.

Lemma

Take a valued field (K, v) with the valuation ring Ov and let T be a subgroup
of the group of units O×v . Take the factor hyperfield KT . Then the map
vT : [a]T 7→ v(a) is a valuation of KT with value group v(K×).

The valuation vT is called the valuation on KT induced by v.
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Convexity does not imply compatibility

Proposition

Let v be a valuation on a real field K and let P be an ordering of K. Take
T = P∩O×v and consider the factor hyperfield KT with valuation vT induced
by v and ordering PT induced by P. Then:
(i) The valuation v is compatible with P if and only if vT is compatible with
PT .
(ii) If v is a rank 1 valuation which is not compatible with P, then any two
distinct elements in KT which are positive (with respect to PT ) are not
comparable. In particular, OvT is convex with respect to PT , while vT is not
compatible with PT .
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Baer-Krull Theorem for real hyperfields

We denote by X (F, v) the set of all orderings of F compatible with v.

Theorem
Let v be a valuation on a real hyperfield F with value group Γ. Then there is
a bijection between the set X (F, v) and the set X (F)× Hom(Γ, {1,−1}).
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Characteristic and C-characteristic

Definition
Let F be a hyperfield. A natural number n ∈ N is called the characteristic of
F if n is the minimal number such that

0 ∈ 1 + ...+ 1︸ ︷︷ ︸
n times

.

If there is no such number, then charF = 0.
A natural number n ∈ N is called the C-characteristic of F if n is the
minimal number such that

1 ∈ 1 + ...+ 1︸ ︷︷ ︸
n+1 times

.

If there is no such number, then C-charF = 0.

Every real hyperfield is of characteristic 0.
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Results on C-characteristic in real hyperfields

Proposition
1 For every n ∈ N there exists an infinite real hyperfield F with

C-charF = n.
2 For every even natural number n > 1 there exists a finite real hyperfield

F with n elements such that C-charF = 2.
3 There exists a finite real hyperfield with C-charF = 3.

OPEN PROBLEM: Does there exist a finite hyperfield with C-charF = n
for every n ∈ N?
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