THE NEWTON POLYGON AND VALUES OF ROOTS OF POLYNOMIALS

Hanna Ćmiel

Institute of Mathematics, University of Szczecin Second Graduate Students' Workshop on Algebra, Logic and Analysis

Szczecin, March 24, 2022

Throughout the presentation we consider the following:

• a field K,

- a field K,
- a Krull valuation $v: K \to \Gamma \cup \{\infty\}$,

- a field K,
- a Krull valuation $v: K \to \Gamma \cup \{\infty\}$,
- the polynomial ring K[x].

- a field K,
- a Krull valuation $v: K \to \Gamma \cup \{\infty\}$,
- the polynomial ring K[x].
- Denote by v the Gauss valuation on K[x], that is,

$$v\bigg(\sum_{i=0}^n a_i x^i\bigg) := \min_{0 \le i \le n} v(a_i).$$

Throughout the presentation we consider the following:

- a field K,
- a Krull valuation $v: K \to \Gamma \cup \{\infty\}$,
- the polynomial ring K[x].
- Denote by v the Gauss valuation on K[x], that is,

$$v\bigg(\sum_{i=0}^n a_i x^i\bigg) := \min_{0 \le i \le n} v(a_i).$$

• We will write $vK := v(K) \setminus \{\infty\} = v(K[x]) \setminus \{\infty\}.$

Throughout the presentation we consider the following:

- a field K,
- a Krull valuation $v: K \to \Gamma \cup \{\infty\}$, for Γ 'large enough'
- the polynomial ring K[x].
- Denote by v the Gauss valuation on K[x], that is,

$$v\bigg(\sum_{i=0}^n a_i x^i\bigg) := \min_{0 \le i \le n} v(a_i).$$

• We will write $vK := v(K) \setminus \{\infty\} = v(K[x]) \setminus \{\infty\}.$

Step 1: Take $f(x) = \sum_{i=0}^{n} a_i x^i \in K[x]$. For each i such that $a_i \neq 0$, draw the points (i, va_i) in the Cartesian product $\mathbb{R} \times \Gamma$.

Step 2: The leftmost point (that is, the point with the smallest first coordinate) is always a *vertex* of the Newton Polygon.

Step 2.5: If 0 is a root of f, then the vertical line coming from the leftmost point will be the first *face* of the Newton Polygon.

Step 3: Consider the finite set of segments connecting the first vertex with each of the other points and choose the one with the smallest *slope*.

Step 4: Among all the points located on the chosen segment, we choose the rightmost one to be the next *vertex*.

Step 5: We repeat step 3 with the next vertex, considering only the points located to the right of this point.

Step 6: We repeat step 4 to choose the next vertex as the rightmost point on the chosen segment.

Step 7: We continue with step 3 and 4 until we reach the rightmost point. This point will also always be the *vertex*.

The function given by the resulting graph is called the Newton Polygon and denoted by NP_f .

The function given by the resulting graph is called the Newton Polygon and denoted by NP_f . The Newton Polygon:

(a) is piecewise linear on [k, n], where $n = \deg f$ and $k \le n$ is the multiplicity of 0 as a root of f,

The function given by the resulting graph is called the Newton Polygon and denoted by NP_f . The Newton Polygon:

- (a) is piecewise linear on [k, n], where $n = \deg f$ and $k \le n$ is the multiplicity of 0 as a root of f,
- (b) is upward convex,

The function given by the resulting graph is called the Newton Polygon and denoted by NP_f . The Newton Polygon:

- (a) is piecewise linear on [k, n], where $n = \deg f$ and $k \le n$ is the multiplicity of 0 as a root of f,
- (b) is upward convex,
- (c) each point (i, va_i) lies on or above the graph of NP_f ,

The function given by the resulting graph is called the Newton Polygon and denoted by NP_f . The Newton Polygon:

- (a) is piecewise linear on [k, n], where $n = \deg f$ and $k \le n$ is the multiplicity of 0 as a root of f,
- (b) is upward convex,
- (c) each point (i, va_i) lies on or above the graph of NP_f ,
- (d) NP_f is the largest function for which points (a)–(c) hold.

The segments of the graph of NP_f are called the faces of the Newton *Polygon.* If 0 is a root of f, then the first face is informally a 'segment' from $(0, \infty)$ to (k, va_k) .

The segments of the graph of NP_f are called the faces of the Newton Polygon. If 0 is a root of f, then the first face is informally a 'segment' from $(0, \infty)$ to (k, va_k) . The slopes of the segments, that is, the values $\frac{NP_f(i+j)-NP_f(i)}{i}$, are the slopes of the Newton Polygon. If 0 is a root of f, then the first slope is equal to $-\infty$.

The segments of the graph of NP_f are called the faces of the Newton Polygon. If 0 is a root of f, then the first face is informally a 'segment' from $(0,\infty)$ to (k,va_k) . The slopes of the segments, that is, the values $\frac{\operatorname{NP}_f(i+j)-\operatorname{NP}_f(i)}{j}$, are the slopes of the Newton Polygon. If 0 is a root of f, then the first slope is equal to $-\infty$. The vertices are the points (i,va_i) on the graph at which the slopes change.

The segments of the graph of NP_f are called the faces of the Newton Polygon. If 0 is a root of f, then the first face is informally a 'segment' from $(0,\infty)$ to (k,va_k) . The slopes of the segments, that is, the values $\frac{\text{NP}_f(i+j)-\text{NP}_f(i)}{j}$, are the slopes of the Newton Polygon. If 0 is a root of f, then the first slope is equal to $-\infty$. The vertices are the points (i,va_i) on the graph at which the slopes change. The length of the face is the distance between the respective first coordinates of the vertices.

The segments of the graph of NP_f are called the faces of the Newton Polygon. If 0 is a root of f, then the first face is informally a 'segment' from $(0,\infty)$ to (k,va_k) . The slopes of the segments, that is, the values $\frac{\text{NP}_f(i+j)-\text{NP}_f(i)}{j}$, are the slopes of the Newton Polygon. If 0 is a root of f, then the first slope is equal to $-\infty$. The vertices are the points (i,va_i) on the graph at which the slopes change. The length of the face is the distance between the respective first coordinates of the vertices.

Theorem 1

Take a polynomial $f \in K[x]$. If the Newton Polygon of f has a face of length k with slope $-\gamma$, then f has exactly k many roots of value γ (counted with multiplicity).

'Continuity' of Newton Polygons

Denote the distinct values of the roots of a polynomial f by $\gamma_1, \ldots, \gamma_s$, with $\gamma_i < \gamma_{i+1}$ for $1 \le i < s$. We define k_i to be the number of roots of f of value strictly greater than γ_i .

'Continuity' of Newton Polygons

Denote the distinct values of the roots of a polynomial f by $\gamma_1, \ldots, \gamma_s$, with $\gamma_i < \gamma_{i+1}$ for $1 \le i < s$. We define k_i to be the number of roots of f of value strictly greater than γ_i .

Theorem 2

Consider polynomials $f,g\in K[x]$ with f monic and $\deg g\geq \deg f=:n$. Fix some $\varepsilon\geq 0$, assume that $v(f-g)>n\varepsilon$ and that the set

$$\{\ell \in \{1\ldots,s\} \mid \gamma_\ell \leq \varepsilon\}$$

is nonempty. If ℓ_{ε} is the maximum of this set, then $NP_f(k) = NP_g(k)$ for $k \in [k_{\ell_{\varepsilon}}, n]$.

For $\gamma \in \Gamma$ let $n_s(f, \gamma)$ be the number of roots of f with value γ , and let $n_b(f, \gamma)$ be the number of roots of f with value strictly greater than γ .

For $\gamma \in \Gamma$ let $n_s(f, \gamma)$ be the number of roots of f with value γ , and let $n_b(f, \gamma)$ be the number of roots of f with value strictly greater than γ .

Theorem 3

For $\gamma \in \Gamma$ let $n_s(f, \gamma)$ be the number of roots of f with value γ , and let $n_b(f, \gamma)$ be the number of roots of f with value strictly greater than γ .

Theorem 3

(a)
$$n_s(g,\gamma) = n_s(f,\gamma)$$
 if $\gamma_1 < \gamma < \varepsilon$ or if $\gamma = \varepsilon$.

For $\gamma \in \Gamma$ let $n_s(f, \gamma)$ be the number of roots of f with value γ , and let $n_b(f, \gamma)$ be the number of roots of f with value strictly greater than γ .

Theorem 3

- (a) $n_s(g, \gamma) = n_s(f, \gamma)$ if $\gamma_1 < \gamma < \varepsilon$ or if $\gamma = \varepsilon$.
- (b) $n_s(g, \gamma_1) \ge n_s(f, \gamma_1)$ and equality holds if and only if the point (n, vb_n) is a vertex of NP_g .

For $\gamma \in \Gamma$ let $n_s(f, \gamma)$ be the number of roots of f with value γ , and let $n_b(f, \gamma)$ be the number of roots of f with value strictly greater than γ .

Theorem 3

- (a) $n_s(g, \gamma) = n_s(f, \gamma)$ if $\gamma_1 < \gamma < \varepsilon$ or if $\gamma = \varepsilon$.
- (b) $n_s(g, \gamma_1) \ge n_s(f, \gamma_1)$ and equality holds if and only if the point (n, vb_n) is a vertex of NP_g .
- (c) $n_b(g,\gamma) = n_b(f,\gamma)$ for $\gamma_1 \le \gamma \le \varepsilon$ and $n_b(g,\gamma) \ge n_b(f,\gamma)$ for $\gamma < \gamma_1$.

For $\gamma \in \Gamma$ let $n_s(f, \gamma)$ be the number of roots of f with value γ , and let $n_b(f, \gamma)$ be the number of roots of f with value strictly greater than γ .

Theorem 3

- (a) $n_s(g, \gamma) = n_s(f, \gamma)$ if $\gamma_1 < \gamma < \varepsilon$ or if $\gamma = \varepsilon$.
- (b) $n_s(g, \gamma_1) \ge n_s(f, \gamma_1)$ and equality holds if and only if the point (n, vb_n) is a vertex of NP_g .
- (c) $n_b(g,\gamma) = n_b(f,\gamma)$ for $\gamma_1 \le \gamma \le \varepsilon$ and $n_b(g,\gamma) \ge n_b(f,\gamma)$ for $\gamma < \gamma_1$.
- (d) $k_{\ell_{\varepsilon}} = n_b(f, \gamma_{\ell_{\varepsilon}}) = n_b(g, \gamma_{\ell_{\varepsilon}}) = n_b(g, \varepsilon) = n_b(f, \varepsilon)$. If $\gamma'_{\ell'_{\varepsilon}}$ is chosen for g in the same manner as $\gamma_{\ell_{\varepsilon}}$ was chosen for f, then $\gamma'_{\ell'_{\varepsilon}} = \gamma_{\ell_{\varepsilon}}$.

For $\gamma \in \Gamma$ let $n_s(f, \gamma)$ be the number of roots of f with value γ , and let $n_b(f, \gamma)$ be the number of roots of f with value strictly greater than γ .

Theorem 3

- (a) $n_s(g, \gamma) = n_s(f, \gamma)$ if $\gamma_1 < \gamma < \varepsilon$ or if $\gamma = \varepsilon$.
- (b) $n_s(g, \gamma_1) \ge n_s(f, \gamma_1)$ and equality holds if and only if the point (n, vb_n) is a vertex of NP_g .
- (c) $n_b(g,\gamma) = n_b(f,\gamma)$ for $\gamma_1 \le \gamma \le \varepsilon$ and $n_b(g,\gamma) \ge n_b(f,\gamma)$ for $\gamma < \gamma_1$.
- (d) $k_{\ell_{\varepsilon}} = n_b(f, \gamma_{\ell_{\varepsilon}}) = n_b(g, \gamma_{\ell_{\varepsilon}}) = n_b(g, \varepsilon) = n_b(f, \varepsilon)$. If $\gamma'_{\ell'_{\varepsilon}}$ is chosen for g in the same manner as $\gamma_{\ell_{\varepsilon}}$ was chosen for f, then $\gamma'_{\ell'_{\varepsilon}} = \gamma_{\ell_{\varepsilon}}$.
- (e) g has $(\deg g k_1)$ many roots of value $\leq \gamma_1$.

For $\gamma \in \Gamma$ let $n_s(f, \gamma)$ be the number of roots of f with value γ , and let $n_b(f, \gamma)$ be the number of roots of f with value strictly greater than γ .

Theorem 3

- (a) $n_s(g, \gamma) = n_s(f, \gamma)$ if $\gamma_1 < \gamma < \varepsilon$ or if $\gamma = \varepsilon$.
- (b) $n_s(g, \gamma_1) \ge n_s(f, \gamma_1)$ and equality holds if and only if the point (n, vb_n) is a vertex of NP_g .
- (c) $n_b(g,\gamma) = n_b(f,\gamma)$ for $\gamma_1 \le \gamma \le \varepsilon$ and $n_b(g,\gamma) \ge n_b(f,\gamma)$ for $\gamma < \gamma_1$.
- (d) $k_{\ell_{\varepsilon}} = n_b(f, \gamma_{\ell_{\varepsilon}}) = n_b(g, \gamma_{\ell_{\varepsilon}}) = n_b(g, \varepsilon) = n_b(f, \varepsilon)$. If $\gamma'_{\ell'_{\varepsilon}}$ is chosen for g in the same manner as $\gamma_{\ell_{\varepsilon}}$ was chosen for f, then $\gamma'_{\ell'_{\varepsilon}} = \gamma_{\ell_{\varepsilon}}$.
- (e) g has $(\deg g k_1)$ many roots of value $\leq \gamma_1$.
- (f) g has $(\deg g n)$ many roots of value $< \gamma_1$ if and only if the point (n, vb_n) is a vertex of NP_g .

For polynomials $f, g \in K[x]$ denote by α_i the roots of f and by β_i the roots of g. Denote by t_i the multiplicity of the root α_i .

For polynomials $f, g \in K[x]$ denote by α_i the roots of f and by β_i the roots of g. Denote by t_i the multiplicity of the root α_i .

Theorem 4

Let (K, v) be a valued field and take $f, g \in K[x]$, with f monic and $\deg g \ge \deg f =: n$. Take any $\varepsilon \in vK$ large enough and assume that

$$v(f-g) > n\varepsilon - \deg(f-g) \min_{1 \le i \le n} \{\min\{v\alpha_i, 0\}\}.$$

Then, after suitably rearranging indices, for every $k \in \{1, ..., n\}$ we have that $v(\alpha_k - \beta_k) > t_k \varepsilon$.

References

- D. Brink, *New light on Hensel's lemma*, Expositiones Mathematicae **24**, (2006), 291-306.
- H. ĆMIEL, F.-V. KUHLMANN AND P. SZEWCZYK, Continuity of Roots for Polynomials over Valued Fields, submitted
- Yu. L. Ershov, A theorem on values of roots and coefficients, Dokl. Math. **76**, No. 3 (2007), 913-915.
- Yu. L. Ershov, *Root continuity theorems in valued fields. II*, Siberian Math. J. **49**, No. 5 (2008), 852-856.
- F.-V. Kuhlmann, *Book on Valuation Theory (in preparation)*, https://math.usask.ca/~fvk/Fvkbook.htm.