Pushing Anscombe-Jahnke up the ladder Szczecin

Blaise Boissonneau PhD student of Franziska Jahnke

WWU, Münster

March 29, 2022

Complexity of first-order theories

What combinatorial truth patterns can a theory express?

Stable – no order property

A formula $\varphi(x,y)$ is said to have the order property (in M) if there is $(a_i)_{i \in \omega}, (b_i)_{i \in \omega} \in M$ such that $M \models \varphi(a_i,b_j)$ iff i < j.

A first-order theory T is said to be *stable* if no formula has the order property (in any $M \models T$). A structure M is said to be stable if Th(M) is.

Examples of stable structures

- Finite structures, infinite sets without structure;
- (ℤ, succ);
- finitely generated free groups (Sela, 2006);
- separably closed fields (Wood, 79).

Examples of unstable structures

- Linear orders;
- $(\mathbb{Q}, +, \times)$ and $(\mathbb{R}, +, \times)$;
- ordered abelian groups and non-trivially valued fields.

NIP – no independence property

A formula $\varphi(x,y)$ is said to have the independence property (in M) if there are $(a_i)_{i\in\omega}, (b_J)_{J\subset\omega}\in M$ such that $M\vDash\varphi(b_J,a_i)$ iff $i\in J$. A first-order theory T is said to be NIP if no formula has the independence property (in any $M\vDash T$). A structure M is said to be NIP if Th(M) is.

Examples of NIP structures

- Stable structures;
- Linear orders,
- $(\mathbb{R}, +, \times)$ (Tarski, 48) and $(\mathbb{Q}_p, +, \times, \nu_p)$ (Macintyre, 76);
- ordered abelian groups (Gurevitch-Schmidt, 84);
- separably closed valued fields (Anscombe-Jahnke, 2019).

Examples of IP structures

- Simple unstable structures;
- the random graph;
- pseudo-algebraically closed fields (Duret, 80)

NIP_n – no independence property of order n

A formula $\varphi(x; y_1, \ldots, y_n)$ is said to have the independence property of order n (in M) if there are $(a_i^1)_{i \in \omega}, \ldots, (a_i^n)_{i \in \omega}, (b_J)_{J \subset \omega^n} \in M$ such that $M \vDash \varphi(b_J, a_{i_1}^1, \ldots, a_{i_n}^n)$ iff $(i_1, \ldots, i_n) \in J$. A first-order theory T is said to be NIP $_n$ if no formula has IP $_n$ (in any $M \vDash T$). A structure M is said to be NIP $_n$ if Th(M) is and strictly NIP $_n$ if it is NIP $_n$ and IP $_{n-1}$.

Examples of NIP_n structures

- Stable, NIP an NIP_k structures are NIP_n for k < n;
- The random n-hypergraph is strictly NIP $_n$.
- $(\mathbb{F}_p^{<\omega}, \mathbb{F}_p, 0, +, \times)$, with $(a_i) \times (b_i) = \sum a_i b_i \in \mathbb{F}_p$, is strictly NIP₂ (Hempel, 2016).
- Strictly NIP $_n$ pure groups are known (Chernikov-Hempel, 2019).

Example of IP_n structure

• PAC fields are IP_n for all n (Hempel, 2016).

Simple – no tree propperty

A formula $\varphi(x,y)$ is said to have the tree property (in M) if there are $(a_s)_{s\in\omega}<\omega\in M$ such that for each $\sigma\in\omega^\omega$, $\{\varphi(x, a_{\sigma|o}), \varphi(x, a_{\sigma|o}), \varphi(x, a_{\sigma|o}), \ldots\}$ is consistent, but for any $s \in \omega^{<\omega}$, $\{\varphi(x, a_{s0}), \varphi(x, a_{s1}), \varphi(x, a_{s2}) \dots\}$ is k-inconsistent. A first-order theory T is said to be simple if no formula has the tree property (in any $M \models T$). A structure M is said to be simple if Th(M) is.

Examples of simple structures

- Stable structures:
- the random *n*-hypergraph;
- bounded PAC fields (Hrushovski 2002).

Examples of non-simple structures

- NIP unstable structures;
- unbounded PAC fields (Chatzidakis, 99);
- non-trivially valued fields.

The tree property

NTP2 – no tree property of order 2

A formula $\varphi(x,y)$ is said to have the tree property of order 2 (in M) if there is $(a_{ij})_{i,j\in\omega}\in M$ such that:

- For any $i \in \omega$, $\{\varphi(x, a_{ij}) \mid j \in \omega\}$ is k-inconsistent,
- ullet For any $f:\omega o\omega$, $\left\{arphi(x,a_{if(i)})\mid i\in\omega
 ight\}$ is consistent.

A first-order theory T is said to be NTP2 if no formula has the tree property of order 2. A structure M is said to be NTP2 if Th(M) is.

Examples of NTP2 structures

- Simple and NIP structures;
- bounded pseudo real closed and pseudo p-adically closed fields (Montenegro, 2014);

Examples of TP2 structures

- Unbounded PAC, PRC and PpC fields;
- ZFC, Peano...

Conjectures on complex (theories of) fields

Classification of NIP henselian valued fields

Theorem (Anscombe-Jahnke, 2019)

Let (K, v) be henselian. (K, v) is NIP iff k is NIP and:

- ch(K, k) = (0, 0) or (p, p) and (K, v) is SAMK or trivial;
- ② ch(K, k) = (0, p), (K, v_p) is finitely ramified and (k_p, \overline{v}) checks 1;
- \circ ch(K, k) = (0, p) and (k_0, \overline{v}) is AMK.

" \Leftarrow " is by CHIPS transfer theorem and " \Rightarrow " is because:

- *k* is interpretable and thus NIP;
- Infinite NIP fields of characteristic p are Artin-Schreier closed (Kaplan-Scanlon-Wagner, 2011), so if ch(K) = p it is SAMK: no separable alebraic immediate extension, Γ p-div, k p-closed.
- In mixed characteristic we decompose around v(p): $K \xrightarrow{\Gamma/\Delta_0} k_0 \xrightarrow{\Delta_0/\Delta_p} k_p \xrightarrow{\Delta_p} k$. Convex subgroups are externally definable, so by Shelah's expansion theorem the structure (K, v, v_0, v_p) remains NIP and we work part by part.

Anscombe-Jahnke for NIP_n and NTP2

To prove Anscombe-Jahnke for NIP_n :

- Infinite NIP_n fields are AS-closed (Hempel, 2016), so we can do " \Rightarrow " of the equicharacteristic case, but
- We need a NIP_n transfer theorem,
- For mixed characteristic, when doing the decomposition, we can't use Shelah's expansion theorem.

As for NTP2:

- Transfer works in the same cases, but
- NTP2 fields are not AS-closed, they are only AS-finite (Chernikov-Kaplan-Simon, 2013),
- We also can't use Shelah's expansion theorem.

Chernikov-Hils Im Plus SE (CHIPS) transfer

Chernikov-Hils isolated 2 conditions which gives NTP2 transfer; they have since been adapted to NIP transfer by Jahnke-Simon and to NIP $_n$ transfer:

- (SE): The residue field and the value group are stably embedded.
- (Im): For any model K and any singleton b (from a model $K^* \succcurlyeq K$) such that K(b)/K is immediate, we have that tp(b/K) is implied by instances of NTP2 formulas, that is, there is $p \subset tp(b/K)$ preserved under conjunctions and such that:
 - any formula $\varphi(x,y) \in p$ where x is the cast for b and y for (a finite subtuple of) K is NTP2,
 - $\psi(b, K)$ holds iff $p \vdash \psi$.

Anscombe-Jahnke

SAMK fields and unramified fields have NIP CHIPS.

It directly implies that they have NTP2 CHIPS, and with a bit of work, it is possible to prove they have NIP_n CHIPS; with a bit more work we have NTP2 and NIP_n transfer in all cases of Anscombe-Jahnke.

Localising KSW-H

Proof scheme of Artin-Schreier closure of NIP_n fields:

- If K is NIP_n, then any definable family of additive subgroups checks Baldwin-Saxl-Hempel's condition,
- $H_{a_1,...,a_n} = \{a_1 \cdots a_n(t^p t) \mid t \in K\}$ is a such a definable family,
- If $H_{a_1,...,a_n}$ checks Baldwin-Saxl-Hempel's condition, then K is AS-closed.

Baldwin-Saxl (75), Hempel (2016)

Let $H_{a_1,...,a_n}=\{x\in M\mid M\vDash \varphi(x,a_1,\ldots,a_n)\}$ be a definable family of subgroups (of a definable group of M). φ is NIP_n iff there is $N\in \omega$ such that for any d>N, for any $(a_j^i)_{j\leqslant d}^{i\leqslant n}$, there is $\overline{k}=(k_1,\ldots k_n)$ with $\bigcap_{\overline{j}\in d^n}H_{a_{\overline{j}_1}^1,\ldots,a_{j_n}^n}=\bigcap_{\overline{j}\neq \overline{k}}H_{a_{\overline{j}_1}^1,\ldots,a_{j_n}^n}$.

Local KSW-H

Let K be infinite and of characteristic p.

$$\varphi(x; y_1, \dots, y_n) : \exists t \, x = y_1 \cdots y_n(t^p - t) \text{ is NIP}_n \text{ (in } K) \text{ iff } K \text{ is AS-closed.}$$

Localising CKS

Proof scheme of CKS:

- If K is NTP2, then any definable family of additive subgroups checks a certain chain condition,
- $H_a = \{a(x^p x) \mid x \in K\}$ is a such a definable family,
- If H_a checks this chain condition, then K is p-finite.

CKS chain condition

Let $H_a = \{x \in M \mid M \vDash \varphi(x,a)\}$ be a definable family of subgroups (of a definable group of M). $\psi(x,y,z)$: $\exists t \, x \in zH_y$ is NTP2 iff for any $(a_i)_{i \in \omega}$, there is j such that $\left[\bigcap_{i \neq j} H_{a_i} : \bigcap_{i \in \omega} H_{a_i}\right]$ is finite.

Local CKS

Let K be of characteristic p. $\psi(x, y, z)$: $\exists t \, x = y(t^p - t) + z$ is NTP2 iff K is AS-finite.

Artin-Schreier lifting

The formulas we obtained are positive existential formulas. If they witness a pattern in a residue field, we can lift this pattern by henselianity.

Lifting Artin-Schreier complexity

Let (K, v) be henselian of mixed characteristic. If k is infinite & not AS-closed, then K has IP_n as a pure field; if k is not AS-finite, then K has TP2 as a pure field.

Thus, when doing the decomposition $K \xrightarrow{\Gamma/\Delta_0} k_0 \xrightarrow{\Delta_0/\Delta_p} k_p \xrightarrow{\Delta_p} k$, we can say, to some extent, that relevant parts are p-closed/p-div/defectless without adding the intermediate valuations in the language. As a consequence, we have " \Rightarrow " of Anscombe-Jahnke for NIP $_n$, and we obtain strong conditions on NTP2 henselian valued fields.

Summary of NIP_n results

NIP_n Anscombe-Jahnke

Let (K, v) be henselian. (K, v) is NIP_n iff k is NIP_n and:

- ch(K, k) = (0, 0) or (p, p) and (K, v) is SAMK or trivial;
- ② ch(K, k) = (0, p), (K, v_p) is finitely ramified and (k_p, \overline{v}) checks 1;
- **3** $\operatorname{ch}(K, k) = (0, p)$ and (k_0, \overline{v}) is AMK.

Corollaries

- NIP_n henselian valued fields with NIP residues are NIP;
- in particular, algebraic extensions of \mathbb{Q}_p or $\mathbb{F}_p((t))$ are NIP_n iff they are NIP.
- With the help of Jahnke-Koenigsmann definability results, we obtained that if K is NIP_n, if v is henselian and if $ch(k_v) = p$, then (K, v) is NIP_n.

Summary of NTP2 results

NTP2 transfer

Let (K, v) be henselian. If k is NTP2 and if:

- ch(K, k) = (0, 0) or (p, p) and (K, v) is SAMK or trivial;
- ② ch(K, k) = (0, p), (K, v_p) is finitely ramified and (k_p, \overline{v}) checks 1;

then (K, v) is NTP2.

NTP2 consequences

Let K be NTP2 and v be henselian. Then (K, v) is either

- of equicharacteristic 0, hence tame, or
- 2 of equicharacteristic p and semitame, or
- **3** of mixed characteritic with (k_0, \overline{v}) semitame, or
- ullet of mixed characteristic with v_p finitely ramified and (k_p, \overline{v}) semitame.

In particular, (K, v) is gdr.

Thank you for your attention!

