FORMAL POWER SERIES WITH CYCLICALLY ORDERED EXPONENTS
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ABSTRACT. We define and study a notion of ring k[[C]] of formal power series with exponents in a
cyclically ordered group. These power series have well-ordered supports in any linear ordering obtained
from the cyclic ordering by cutting at an arbitrary point. Using a theorem of Rieger, we show that
such a ring is a quotient of various corresponding subrings of classical formal power series rings. If I(C)
denotes the largest totally ordered subgroup of C, then we show that k[[C]] is a field if k is a field, C
is torsion free and C/I(C) is finite. Conversely, we prove that if k[[C]] is a field, then k is a field, C is
torsion free and C/I(C) embeds in the group of all roots of unity. We show that the polynomial ring
k[C] is an integral domain if and only if k is an integral domain and C is torsion free. Further, we
characterize all subrings with 1 of k[C]]. The ring k[[C]] carries a two variable valuation function. In
the particular case where the cyclically ordered group is actually totally ordered, our notion of formal
power series is equivalent to the classical one in a language enriched with a predicate interpreted by the
set of all monomials.

1. INTRODUCTION

Throughout this paper, k£ will denote a commutative ring with unity. Further, C will denote a cyclically
ordered abelian group, that is, an abelian group equipped with a ternary relation (-,-,-) which has the
following properties:

(1) Ya,b,c, (a,b,c) =>a#b#c#a

(2) Ya,b,c, (a,b,c) = (b,c,a)

(3) Ve e C, (c,,") is a strict total order on C \ {c}.

(4) (+,-,-) is compatible, i.e., Va,b,c,d, (a,b,¢c) = (a+d,b+d,c+ d).

For all ¢ € C, we will denote by <. the associated order on C with first element c. For @ # X C C,
min, X will denote the minimum of (X, <.), if it exists.

For instance, any totally ordered group is cyclically ordered with respect to the following ternary
relation: (a,b,c) iffa <b<corb<ec<aorc<a<b. Such a cyclically ordered group is called a linear
cyclically ordered group.

Let us review quickly two basic facts about cyclically ordered groups.

A theorem of Rieger (see [1], IV, 6, th. 21), shows that there exist a totally ordered abelian group G
and a positive element z in G, such that the subgroup Zz generated by z is cofinal in G and C ~ G/Zz,
cyclically ordered in the following way: for all a,b,c € G, (a+Zz,b+Zz,c+ Zz) holds if and only if there
exista' €a+Zz, b €b+Zz,c € c+Zzsuchthatoneof 0 <a' <b < <zor0<b <c <a <z
or 0 < <d <V < zholds.

Let [(G) be the maximal convex subgroup of G not containing z; i.e., [(G) is the largest proper convex
subgroup of G. Note that [(G) C ]—z, z[. Then the restriction of the canonical epimorphism p : G — C to
I(G) is a monomorphism of totally ordered groups. Its image I(C) is called the linear part of C because
it is the largest totally ordered subgroup of C with respect to the ordering <. that we will define in
Section 4.

By Swirczkowski’s theorem (see [2]), C/I(C) embeds in the multiplicative group of all complex numbers
of absolute value 1.

In Section 2 we define k[[C]], the ring of formal power series with coefficients in k and exponents in C,
and k[C], its ring of polynomials, in such a way that they coincide with the classical notions when C is
a linear cyclically ordered group.

In Section 3, we prove the following:
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Proposition 1. There ezxists a subring A of k[[G]] such that A/(1 — X*)A ~ k[[C]].
For such a ring A, let p4 be the canonical mapping from A onto A/(1 — X*)A.

In Section 4, we give some examples of units and zero divisors in k[[C]]. Then, we prove:

Proposition 2. (a) The semi-group of all zero divisors of k[[C]] is the union of the following two subsets:
- the pa-image of the semi-group of all zero-divisors of A,

- the pa-image of the set of all elements o such that AN (1 — X*)A # o(1 — X*?)A.

(b) The group of all units of k[[C]] is the pa-image of the semi-group of all elements o such that oA +
(1-X*)A=A.

Theorem 3. If k[[C]] is a field, then k is a field, C is torsion free and C/I(C) embeds in the group of
all roots of unity. Conversely, if k is a field, C is torsion free and C/I(C) is finite, then k[[C]] is a field.

Open Problem: Suppose that k[[C]] is a field. Does this imply that C/I(C) must be finite?
Theorem 4. k[C] is an integral domain if and only if k is an integral domain and C is torsion free.

Open Problem: Is it true that £[[C]] is an integral domain if and ony if C is torsion free and % is an
integral domain?

In Section 5 we define the cyclic valuation on k[[C]] as a mapping v from C x k[[C]] onto Co := CU{o0}
(with a <p oo for all a,b € C). This extends the classical notion of a valuation in a natural way. Indeed,
if C is a linear cyclically ordered group, then the usual valuation can be defined first order by means of
the v(a,-), a € C.

The first order properties of the cyclic valuations can be stated in several languages which we will
compare, and which we will use to define the first order notion of a cyclically valued ring. Then, we
prove:

Theorem 5. A domain R is a subring of a ring k[[C]], for some domain k, if and only if the following
conditions hold:

(a) C is isomorphic to a subgroup C' of the group of units of R,
(b) there is a mapping v : C x R — C U {oo} such that (R,v) is a cyclically valued ring,
(c) for all o in R, the set {v(a,0) | a € C} is well-ordered.

Throughout this paper, N will denote the semi-group of all non-negative integers, and N*=N \ {0}
will denote the set all positive integers.

2. DEFINITION OF FORMAL POWER SERIES

A subset S of C will be called well-ordered if the totally ordered set (S, <) is well-ordered. It is not
difficult to check that S is well-ordered if and only if, for all (or for some) ¢ € C, the totally ordered set
(S, <) is well-ordered.

Lemma 2.1. The sum of any two well-odered subsets of C is well-ordered.

Proof. . Let S; and S3 be two well-ordered subsets and S = S1 +S2 = {c1 +¢c2 | c1 € S1, c2 € Sa2}.
The ordered set (C,<p) is isomorphic to the subset [0,z[ of G. S; and S; are isomorphic to well-
ordered subsets S; and S5 of [0, z[, and S1 + S, is a well-ordered subset of [0,2z]. S1+ Sa is isomorphic to
((S1482)N[0, 2)U(((S1+82)N[z,22[) —z), and this set is well-ordered. Hence S; +S; is well-ordered. [

For all o € k©, the set Supp (0) := {c € C | o(c) # 0} is called the support of o. We denote by k[[C]]
the subset of k¢ of all elements with well-ordered support. An element o of k[[C]] will be written in the
form o = ¥.c50.X¢, where S is well-ordered, and for all ¢ in S, o, = o(c). We call o a cyclic formal
power series. Note that if o, =0 for all c ¢ SN S, then Xoc50. X% = Toecsro.XC.

We let k[C] be the subset of k[[C]] of elements with finite support. An element of k[C] will be called
a polynomial.

We define addition on k[[C]] by:

o+ UI = 2cESUS' (Uc + U::)Xc’
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and multiplication by:

00 =%cesis Z oq oy | X°.
des,d’'cs’, d+d'=c
The small ¥ is the symbol for a series, the large Y | represents the sum in the ring. Indeed, like in classical
power series, one can prove that if S and S’ are well-ordered, then for all ¢ € S+.9’, there is only a finite
number of (d,d') € S x S’ such that d +d' =c.

It is routine to prove that (k[[C]],+,-) is a ring, and (k[C],+,-) is a subring of (k[[C]], +, -)-
Note that k is embedded in k[C] in a natural way. Hence we will consider it as a subring of k[C], the

elements of k being the functions with support {0}. Also note that any ring of formal power series is a
ring of cyclic formal power series.

3. CYCLIC VERSUS CLASSICAL FORMAL POWER SERIES RINGS

In this section, we focus on connections between rings of formal power series with exponents in a
cyclically ordered group, and rings of formal power series with exponents in a totally ordered group. We
set some notations which we will use throughout this paper:
oG, :={geG|g>0}.

e p is the canonical map from G onto C.
e k[G] is the ring of polynomials with (possibly negative) exponents in G and coefficients in k.
e If k[[C]] or k[C] is an integral domain, then its fraction field is denoted k((C)) or k(C), respectively.

Note that, if k is a field, then the fraction field k((G)) of k[[G]] is equal to k[[G]] because G is totally
ordered. It is also equal to J,cq, X 9k[[G]]. Nothing of this kind holds for k[[C]] (see Section 4),
which need not even be an integral domain.

In order to prove that k[[C]] is isomorphic to quotients of classical power series rings, we define the
following subsets of k[[G]]:
Ay = {o € k[[G]] | Ve € C, p *({c})NSupp(0) is finite and p(Supp(c)) is well-ordered}.
Apy = {o € Ay | Supp(o) > 0}.
Ap, := {0 € Ay | Supp(o) is bounded}.
Am+ = AM+ n Am.
Ap :={o € Ay | Supp(o) C [0, 2[}-
Ay is an additive subgroup of k[[G]] but, in general, not a subring.

Observe that we can’t drop the condition “p(Supp(c)) is well-ordered” in the definition of the ring A .
Indeed, we can find a subset S of G which is well-ordered although p(S) is not. Take G = Q (the group
of rational numbers) and z = 1. Then § = {n+ 2 | n € N"} is well-ordered, while p(S) = {1 | n € N}
is not well-ordered.

Lemma 3.1. The sets Ay and A, are subrings of k[|G]], Am+ and A,y are subrings of k[[G+]]-

Proof. . Note that these sets are non-empty because they contain 0 and 1 = X°.

We prove here that Aps is a subring of k((G)), the other proofs being similar. Take 0,0’ € Ayy.
Then Supp(—0o) = Supp(o), hence —o € Ap. Further, p(Supp(c + ¢')) C p(Supp(o) U Supp(c’)) =
p(Supp(o)) U p(Supp(c’)) is well-ordered. For all ¢ € C, p~1(c) N (Supp(c) U Supp(c’)) = (p~(c) N
Supp(c)) U (p~*(c) N Supp(o’)) is finite. Hence, o + o’ € Aypys.

Set S := Supp(o) and S’ := Supp(c’). We have that Supp(cc’) C S + S’. Furthermore, the mapping
p : G — C is a group homomorphism, hence p(S + S') = p(S) + p(S’) is well-ordered by Lemma 2.1. It
follows that p(Supp(co’)) is well-ordered. Now, take any ¢ € C' and assume that p~*({c}) N Supp(co’)
is infinite. Set H :={h € S| € S, p(h+h')=c}, H :={h' € S'|3Fh € S, p(h+h') = c}. Then
one of H and H' is infinite. But, since each element in p(S) has finitely many pre-images, H is finite if
and only if p(H) is, and the same holds for H' and p(H'), where p(H) and p(H') are both well-ordered
in Cp. Assume for instance, that p(H) is infinite, hence it contains an infinite increasing sequence, then
p(H') contains an infinite decreasing sequence, a contradiction. Consequently, oo’ € Ayy. O

Proposition 1 can be rephrased as follows:
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Proposition 3.2. Let A stand for any of the rings Ayp+, Am, Am+, Am, then k[[C]] ~ A/(1 — X*)A.

Proof. . We first prove this proposition for A = Ap;. We define p/y : Ay — E[[C]]- For an element
Yes504X9 in Ay, we set

Pa(Bges0gX?) = Beep(s) Y on | X°ekC].
heSnp=1({c})

This definition makes sense because for each ¢ in p(S), SN p~!({c}) is a finite set. It is routine to check
that the map p/, is a ring epimorphism.
Take
0=Y4cs504X9 € Ay
and assume that S is the support of 0. We have X 920 € A, for go = min(Supp(o)). Therefore, we may
assume that o € Ap;. We have

ph(o’) = EcEp(S) Z Ohp )(C .
hesnp=1({c})

Hence,
pla(0) = 0 if and only if, for all ¢ € p(S), Z on=0.
heSnp—1({c})
We assume p', (o) = 0 and prove that o = (1 — X*)o' for some o’ € Ap. For ¢ € C, we will denote by ¢é
the unique element of [0, z[ such that p(¢) = c. Set S :={¢|c € p(5)} = [0, 2[N(p~2(p(S)))- Since p(S)
is well-ordered and isomorphic to S, S 4+ Nz is well-ordered too.

For ¢ € p(S), p 1({c}) = é+ Zz, and S N p 1({c}) is finite. Let m. and n. in N be such that
Oitmez 7 0, Oatn,.z 7 0, and for n > n; or n < me, 0zyn., = 0. It follows that

Oét+nc-z = —0&tmez — O+ (me+1l)z = """~ Oc+(ne—1)-z -
For all ¢ € p(S) and m, <4 < nc, set 0%, , = Oatm.z +Tct(met1).z T+ 0cyi; Otherwise set oy, := 0.
Further, set

! _ / g
g _EQGS+NZUQX .

This is an element of Ay, since S + Nz is well-ordered, and for all ¢ € C, p~1({c})N Supp(c”) is either
empty or bounded above by ¢ + n.z showing that its cardinality is at most n.. Write

(1-X%)o" = Zgeqo, X9 € K[[G]] .

If g ¢ Supp(o’) U (2 + Supp(o’)), then oy = 0. If g € Supp(o’) U (2 + Supp(o’)), then there are c € p(S)
and m. < i < n, with g =¢+i-2. We have:

/ — e
Oimyz = Oétmez if i = m,
" ¢ s _ . .
o, = Ottiz — Oap(im1)r = Octiz if me <1< ne
, — . e
Ot (ne—1)-z — ~T&tmez T et (me+1)-z — "7 T Tt (ne—1)-z = Tétncz ifi=nc.

It follows that (1 — X?)o' = o, that is, 0 € (1 — X*)Ap.

Since p/y is a ring homomorphism and p/y(1 — X*#) = 0, we have shown that kerpy = (1 — X*)Ayy,
and therefore, k[[C]] ~ Ap/(1 — X*)Am. Observe that p/, is indeed the canonical mapping p4.

If A stands for Apry, A, Or Apyy, then kerp/y [A =kerp’, NA=(1-X*)AyNA=(1-X*)A. O

Since Ao U {X*} generates A, we have:

Remark 3.3. The family of all subrings A of Ay containing X? and such that ps(A) = k[[C]] can be
ordered by inclusion. Its smallest element is A,,.. Indeed, any element o of Ay is equivalent modulo
(1 — X*?)Ap to an element of Ag, namely (pa[Ao) 1(pa(o)).
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4. UNITS AND ZERO DIVISORS

It is not difficult to see that k[[C]] may contain zero divisors. For example, let m > 1 be an integer
and suppose that there is some g € G such that mg = z. Then

1-X9)1+X9+ X294 ... Xm V) =1 X cp,({0}).

Since C ~ G/Zz where G is torsion free, such m and g exist if and only if C is not torsion free. Therefore,
we have shown:

Lemma 4.1. If k[[C]] is an integral domain, then C is torsion free.

Trivial examples of units are the elements X¢, with ¢ € C. The following properties of cyclically
ordered groups will provide less trivial examples.

Definition 4.2. We set P := {c € C | (0,¢,—c)}. From the general properties of cyclically ordered
groups, we know that there exists at most one element of order 2, which we shall denote by e. Hence, C
is a disjoint union C = PU —P U {c | ¢ = —c}, where {c | ¢ = —c} has one or two elements. If there is
such an € in C, then we have b <g € <¢ —a for all (a,b) € P x P. If not, then € will denote the element
of the Dedekind completion of (C, <g) such that for any a,b € P, b < € <g —a. In both cases, we define
<¢ by: a <, bif and only if either (a,b) € —P x (PU{0}), or (a,b) € (—P x (—PU{0}))U((PU{0}) x P)
and a <g b.

The linear part I(C) of C defined in the introduction is the largest totally ordered subgroup of (C, <,).
(C is a linear cyclically ordered group if and only if C = [(C).) As mentioned, [(C) is the image of the
maximal convex subgroup /(G) of G not containing z under the canonical epimorphism p : G — C. Its
restriction to I(G) is a monomorphism of totally ordered groups. We lift this monomorphism to k[[I(G)]]
by setting p;(AX9) = AXP9) for X € k and g € I(G), and then using additivity and multiplicativity, such
that p; becomes a field embedding. Via this embedding, we can assume k[[{(G)]] C k[[C]]-

If k is a field, then every element of k[[I(G)]] \ {0} and every non-zero monomial is a unit in k[[C]].
But k[[C]] may also contain units which are not monomials and do not belong to k[[/(G)]]. Indeed, let
m > 1 be an integer. If A, Ay are elements of k such that A]* — A3* = 1 and if there exists g such that
mg = z, then

(M = X X)AT T+ AT 20X + -+ A7 X9 = (AT — A7 X7) € py ' ({1})
For example, if 29 = 2, (vV2+ X9)(vV2 — X9) =2 — X* € p,* ({1}).

Let us give yet another example of a unit. Let g be a positive integer and G be the subgroup of
Q;)Q generated by (1,0) = z, (0,1) and (%, %) Now let C := G/(Zz), k := Q, c := p(%,%) e C,
Si = {p(é,n—k é) Ine N} =ic+p({0} x N)for0<i<qg-1, S:= U?;(l) Sj, and 0 := X5 X® =
2, enXPOM (1 + X€ 4 ... + X(@1¢) Then o € k[[C]] because S is a well-ordered subset of C. Since
X9 = XP(%1) we have:

(1-X%0 = (1-X°)E,NXPOM (14 X+ ...+ X 1)e)
= 1-X2°)%, NyXPOP) = 5 XPOM — 5 - XPOM) =1,

Hence, 1 — X€ and o are units.

Proof. of Proposition 2.
(a) First we note that 1 — X? is not a zero divisor. Indeed, 1 is a regular element, hence for all o in A4,
the lowest element of the support of o remains the lowest element of the support of (1 — X*)o. It follows
that if oy ¢ (1 — X*)A and there exists oy such that o109 = 0, then we can assume that o3 ¢ (1 — X?)A.
Consequently, pa(o1) is a zero divisor in k[[C]].

Assume that oy is a regular element. Then p4(o7) is a non-trivial zero divisor if and only if p4(c1) # 0
and there exists o3 € A such that p4(o2) # 0 and pa(o1)pa(o2) =0, or equivalently:

(*) o1 ¢ (1 — X*)A and there exist o3 ¢ (1 — X*)A, 7 € A such that o102 = (1 — X*)7.

Now consider the condition o1 AN (1 — X#)A # 01(1 — X*)A. This is equivalent to Jop € A, 37 € A,
o102 = (1 — X?*)7 and 0102 ¢ 01(1 — X*)A (because o1(1 — X?)A C 01AN (1 — X*)A). Since o7 is a
regular element, this condition is equivalent to (*).
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(b) For all o € A,

o', pa(ea’) —1=0

do’, oo’ —1€ (1 - X*)A
o', 31, 00’ —1=(1- X*)7
o', 31, 00’ + (1 - X*)7=1.

pa(o) is a unit

=~
=
=
=~

Proof. of Theorem 3.

First assume that k[[C]] is a field. Take o € k \ {0}, that is, Supp(c) = {0}, and let 0~! be the inverse
of o in k[[C]]. {0} = Supp({1}) = Supp(co~') = Supp(c~") (because o € k), hence o~ € k. Therefore,
k is a field. From Lemma 4.1, it follows that C is torsion free.

We know that C/l(C) embeds in the multiplicative group of all complex numbers of absolute value
1. We prove that, under our present hypothesis, every element of C/I(C) must be a root of unity. In
order to deduce a contradiction, assume that there exists g € G such that [(G) < g < z + I(G) and
that the class § of g modulo I(G) and the class Z of z modulo I(G) are rationally independent. Set
c:=p(g9) €C,c#0, and 0 := (1 — X°), and let 0 ! := T;ccA;X*® be the inverse of (1 — X°) in k[[C]].
Then 1 = Y cc(As — As—c)X®. Hence, for all s € C,

_J 0 if s#0
)‘s_)‘H_{ 1 if s=0
If Ao #0, then A\, = Xg #Oforalln >0. f \y =0,then A . =1#0,and A_,. =A_=1#0 for
all n > 0. Assume A, # 0 for all n > 0 (the case of Vn > 0, A, # 0 for all n > 0 is similar, because
0# —ce ).
The quotient group I' = G/I(G) is archimedean because Zz is cofinal in G. In the archimedean group
T, z and ¢ are rationally independent, hence the image of Z¢ in the quotient group I'/(Zz) is dense. In
particular, it is not well-ordered. This implies that {nc | n > 1} is a subset of Supp(c ') which is not
well-ordered: a contradiction.

Now assume that C is torsion free and C/I(C) is finite. Let n be the cardinality of C/I(C); then
C/1(C) is isomorphic to the group of all n*® roots of unity. By hypothesis, there exist g in C and [ in
1(C) such that ng =1 and C is the disjoint union [(C) U (g + {(C))U---U((n — 1)g + 1(C)). Note that,
for every element ¢ of C, nc belongs to [(C). For c; and cy in C we set ¢ <’ ca & ncy <c nca. Then
(C, <) is a totally ordered group. Let S C C. Then there exist subsets Sg, Si,..., Sp_1 of [(C) such
that S =SoU(g+ S1)U---U((n—1)g+ Sn_1). It follows that S is well-ordered in (C, <) if and only if
Soy S1,-.., Sn_1 are well-ordered, if and only if S is well-ordered in (C, <'). Hence, k[[C]] is isomorphic
to k[[I(C)]][Y], with Y™ = X! € k[[I(C)]]- In particular, k[[C]] is a field. O

From Lemma 4.1, we see that a necessary condition for k[[C]] to be an integral domain is that C is
torsion free. Another condition is that k be an integral domain. We shall prove that for the ring of
polynomials k[C], these conditions are also sufficient. For this purpose, we need the following well known
lemma.

Lemma 4.3. Let k be a field containing a primitive n-th root of unity ¢, where n > 2. Then 1 —
X" = H;’;OI((:i —X). Let P(X) =1+4+--- and Q(X) = 1+ --- be two polynomials of k[X] such that
P(X)Q(X) =1—a"X", with a € k. Then, there ezists a partition {I,J} of {0,...,n — 1} such that
P(X) = ([Tic s ¢) [ier(¢* — aX) and Q(X) = ([Tier ¢*) [Lies (¢* — aX). In particular, P(X) and Q(X)
belong to Z(¢)[aX].

Proposition 4.4. Assume that k is an integral domain. Then 1 — X? is prime in k[G.] if and only if
z is not divisible by any natural number bigger than 1 in G.

Proof. . First assume that there are two polynomials P and @ in k[G4] such that P(X)Q(X) =1— X~.
After multiplying with a suitable constant, we can assume that P(X) = 1+ X% + ..., Q(X) =
1+ XX +.... Then P(X)Q(X) = 14+ X\ X% + M, Xb 4 A )| Xo1+b1 4 T(X), where all terms in 7'(X)
are of degree > min(ay,b;) > 0. It follows that A\; X% + \; X% = 0. In particular, a; = b; and therefore,
Supp(P)N Supp(Q) contains non-zero elements.
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Since k is assumed to be an integral domain, we may replace it by its fraction field. So we may assume
k is a field. For further purposes, we also assume that k is closed under roots of unity.
Let D(G) be the divisible hull of G. The number of exponents of the polynomials is finite. So we can

find rationally independent exponents g, ..., a,, such that z and the exponents of P and @ are all in
Naj + -+ 4+ Na,, (the existence of the a;’s can be proved by an iterative process like the Algorithm of
Perron quoted in [3]). Set X; = X, ... , X, = X,

Let z = cioq + -+ - + cpay, with ¢; € N, so
1-X* = 1— X% ... Xen .

We have P(Xy,...,X,)Q(X1,...,X,) = 1 — X7'--- XS . But Supp(P)N Supp(Q) contains non-zero
elements. Hence there exists i, say i = n, such that degx (P) > 1 and degx, (Q) > 1 (hence ¢, =
degx (P)+degy, (Q) > 2). Therefore, P and Q are in k(Xll/C", .. .,X,ll/fl")[Xn].

Let ¢ € k be an n-th root of unity, and set Y := chl/c" ---Xi"_’ll/c"Xn. Then, by Lemma 4.3, P and
Q are elements of Z(¢)[Y]. Furthermore, since degy (P) > 1 and degx (Q) > 1, we have degy (P) > 1
and degy (Q) > 1. Set d := degy (P). Then there exists 74 € Z(() \ {0} such that one of the monomials
in P is rgXdet/en ... xdena/on xd _ . x(d/en)(cr0at+enan) = py X(d/en)? Hence (d/cy)z € G.

Set % = ¥ with u, v in N* and ged(u,v) = 1, and let o/, v’ in Z such that uu' + vv’ = 1. Then

7 7
z= 3z, hence v'z +u' 3z = %z = %z and %z € G. But d < c¢,, therefore v > 1. Hence z has a

d
Ic);oper divisor in G.

If 1 — X* divides P(X)Q(X), then we can assume that P(X), Q(X), and X* are polynomials (in the
usual sense) with a finite number of variables, and they belong to a factorial ring (by embedding & in its
fraction field). Therefore, there exist P;(X) and Q;(X) such that P;(X)Q:(X) =1 — X?, and as in the

previous case, we see that z has a proper divisor. O

Proof. of Theorem 4.
The condition “z is not divisible by an integer bigger than 1” is equivalent to “C is torsion free”. Now,
Theorem 4 follows from Proposition 4.4. O

5. CYCLIC VALUATIONS

In this section, k is an integral domain. If C contains a non-trivial 2-torsion element, then we let €
be this element; otherwise, <. has been defined in Definition 4.2. We set C. = C U {e¢}. We define a
mapping v from C. X k[[C]] onto Cw by setting v(a,o) = min, Supp(o) if o # 0 and v(a,0) = co.

It is routine to check that (K[[C]],+,v(a,-)) is a valued group, for every a € C.. In particular,
for all o1 and o2 in E[[C]], v(a,01 — 02) >, min,(v(a,01),v(a,02)), and if v(a,01) # v(a,02), then
v(a, 01 — 02) = ming (v(a,01), v(a, 02)).

The behaviour of the v(a,-)’s with respect to multiplication is not trivial. However, observe that for
all a,b in C and o in k[[C]], v(a,0) = v(b,X* %0) + a — b. If 7 is a monomial of degree b — a, then
v(a,0) =v(b,70) +a —b.

If C is a linear cyclically ordered group, then k[[C]] is the usual ring of formal power series, and we
know that there is a canonical valuation defined on k[[C]]. This valuation is v(e, -) but is not among the
v(a,-)’s, a € C. Indeed, for all a € C, we can find some o € k[C] (for instance, a sum of two monomials)
such that v(e, o) # v(a, o).

If C is not a linear cyclically ordered group, then there exist @ and b in P with a +b € —P, with P as
defined in Definition 4.2. Therefore, v(e,1 + X2) = v(e, 1 + X®) = 0, v(e, (1 + X?)(1+ Xb)) =a+ b #
0=v(e, 1+ X +v(e, 1+ X°). Hence, v(e, ) is not a valuation in the usual sense.

We consider k[[C]]UC:. as a structure of a two-sorted language £ containing the usual function, relation
and constant symbols for the ring and the value group sort. Then £LU{v} will be the language £ together
with a function symbol interpreted by the mapping v.

The support mapping is interpretable in the language £ U {v}. Indeed, let o € k[[C]]. Then the
support of o is the set Supp(o) = {v(a,0) | a € C} \ {oo}. It follows that the set of all monomials
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and the degree map of monomials are definable in the language £U {v}. In the same way, the set of all
constant polynomials is definable in the language £ U {v}.

Observe that we can also characterize the monomials by other means. Indeed, o € k[[C]] \ {0} is a
monomial if and only if V7 € k[[C]], v(v(0,0),70) = v(0,0) + v(0,7). If o is a monomial, its degree is
v(a,0) =v(0,0) for all a € C.

Another characterization of the constant polynomials follows from:

Remark 5.1. Let o € k[[C]] \ {0}, then o is a constant if and only if one of the following equivalent
formulas is satisfied in M.

(a) Va € C,, Y1 € k[[C]], v(a,oT) = v(a,T).
(b) Ja € C, V7 € K[|C]], v(a,oT) = v(a,T).

Proof. . If ¢ is a constant, then (a) holds. (a) = (b) is trivial.

Assume that o is not a constant and take a € C. If v(a,0) # 0 and if 7 = 1, then v(a,o7) # v(a,T) = 0.
So we suppose that v(a,o) = 0. Then there exist A\, A\; € k, g1 € C, with \; # 0 # A, and 0 <¢ ¢1 <o a,
such that o0 = A+ A1 X9 + - - -, (necessarily, all the elements of the support are in [0, a[, that is, greater
than or equal to 0 with respect to <,). Then set 7 = X* 91, v(a,07) = a # v(a,7). This proves that
(b) implies that o is a constant. O

Before we define structures in the language £ U {v}, we focus on two languages for the rings k[[C]].
First, we let M be a unary predicate interpreted by: M(c) < o is a monomial. Then we have the
following

Proposition 5.2. In our structure k[[C]] U Cw, the languages L U {v} and L U {v(0,-), M} are bi-
interpretable.

Proof. . The set of all monomials is definable in £ U {v}. Hence, £ U {v(0,-), M} is interpretable in
LU {v}. Now, let a € C and o € k[[C]] and take 7 an invertible monomial such that v(0,7) = a. Then,
v(a,0) = v(0,7 o) + a. Hence, £ U {v} is interpretable in £ U {v(0,-), M}. O

In the ring k[[C]], the multiplicative subgroup {X¢ | ¢ € C} is isomorphic to the group C. We can
introduce a cyclic order on {X°¢ | ¢ € C} which is isomorphic to the cyclic order of C. We can also
define a valuation in a different way: set v'(X?,0) := X? if and only if v(a,o) = b, and for all a € C,
set v'(X%,0) := 0 (the 0 of the ring replaces the oo of C). Now, we consider k[[C]] as a structure of a
language L' consisting of the language of rings together with the predicate v, a predicate interpreted by
the multiplicative group {X°¢ | ¢ € C}, and a predicate for the cyclic order on {X¢ | ¢ € C'}, with, for all
a, bin C, (X2, X%, 0).

Proposition 5.3. The subgroup {X¢ | c € C} is not definable in the language LU {v}.

Proof. . Assume that k is algebraically closed, and that C contains a torsion free divisible subgroup Cj,
such that C; is a direct summand, C = C; @ C;. We know that C; is a (Q-vector space, hence it admits
a basis. For all element ¢ in this basis, we let a. be a constant, with 0 # a. # 1. For ¢ € Cs, we set
a. = 1, and we extend ¢ — o, as an isomorphism from the group C into (k,-). Now, we set Vc € C,
©(X°) := a.X°, and we extend ¢ to a homomorphism from k[[C]] onto k[[C]], such that the restriction
of ¢ to k is the identity. Then ¢ induces an £’ U {v'(X?,-)}-isomorphism. We have constructed two
distinct £’ U {v'(X0,-)}-structures on k[[C]]. But in both cases, the induced £ U {v}-structure is the
same. It follows that the subgroup {X°¢ | ¢ € C} is not definable in the language £ U {v}. However, it is
interpretable because it is isomorphic to the quotient of the group of invertible monomials by the group
of invertible constants. O

The remainder of this section is devoted to the definition of £ U {v}-structures involving the rings
k[[C]]. We will specify which of them can be embedded in a ring of formal power series with cyclically
ordered exponents.
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Definition 5.4. Let (R, +,-) be a domain, v a mapping from C x R onto C' U {0}, and o € R. The
support of o is the set Supp(c) := {v(a, o) | a € C}; o is a monomial if the support of o is a singleton. o
is a constant if o = 0 or Supp(o) = {0}. We will say that (R,v) is a cyclically valued ring if the following
conditions hold.

(1) For all a € C, (R,+,v(a,")) is a valued group.

(2) For all 0 € R and a € C, if v(a,0) = a, then there exists a unique monomial p,, such that
v(a,0 — fa,0) # a.

(3) For all 0 € R and a € C, min,(Supp(c)) exists and is equal to v(a,o).

(4) For all o and ¢’ in R, Supp(cc’) C Supp(o) + Supp(c’).

(5) For all n € N*, a € C, 0 € R and o' € R, if Supp(c) N (a — Supp(c’)) = {ai,...,a,}, then
Ma,oc0’ = May,0MHa—ay,o’ + -+ Ma,,oMha—an,o'-

Clearly, in the language £ U {v}, the ring k[[C]] is a cyclically valued ring.

Observe that if (R, v) is a cyclically valued ring, then the set of all constants of R is a subring of R.
Indeed, let o7 and o3 be constants. By condition (4), o102 is a constant. Let a € Supp(o; + 03). Then
a =v(a,01 + 03) >4 ming(v(a,o01),v(a,02)) = 0. Hence a = 0. Theorem 5 now follows from:

Theorem 5.5. Let (R,v) be a cyclically valued ring with ring of constants k. Assume that the support of
every element of R is well-ordered, and that there is an isomorphism ¢ — m, from (C,+) to (R,-) such

that for all c € C, m. is a monomial of degree c. Then the cyclically valued ring (R,v) is isomorphic to
a subring of k[[C]].

Proof. . Let 0 € R and a € C. If v(a,0) # a, we set 0, := 0; if v(a,0) = a, we set 04 := pg,m, . In
any case, g, is a constant. We have ¥,cc0,X® € k[[C]], because the support of o is well-ordered. Now,
we set (o) := Xaec0,X?. From (3), we deduce Va € C, Yo € R, v(a,¢(0)) = v(a,0).

Take 0,0’ € R. For all a € C, (04 0')q = 04 + 04, hence (o + ¢') = ¢(0) + ¢(0'). By (5), we have
¢o(aa’) = ¢(o)p(c’). We have proved that ¢ is a homomorphism.

Assume that o # ¢/, and let a € Supp(e — ¢'). Then v(a,o — ') = a, and

= v(a,(0c —a.,mg) — (0! —almy,))
>, ming(v(a,o — oamg),v(a, 0’ —olm,))
>q Q.

v(a, (0 — ') — (ama — gma))

Hence, v(a,oqmg, — 04,mg) = a. In particular, o, # o,. It follows that ¢ is one-to-one. O
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