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Abstract. The defect of valued field extensions is a major obstacle in open

problems in resolution of singularities and in the model theory of valued fields,

whenever positive characteristic is involved. We continue the detailed study
of defect extensions through the tool of distances, which measure how well

an element in an immediate extension can be approximated by elements from

the base field. We show that in several situations the number of essentially
distinct distances in fixed extensions, or even just over a fixed base field, is

finite, and we compute upper bounds. We apply this to the special case of
valued functions fields over perfect base fields. In particular, this provides

important information used in forthcoming research on the ramification theory

of two-dimensional valued function fields.

1. Introduction

By (L|K, v) we denote a field extension L|K where v is a valuation on L and K
is endowed with the restriction of v. The valuation ring of v on L will be denoted
by OL , and that on K by OK . The value group of (L, v) will be denoted by vL,
and its residue field by Lv. The value of an element a will be denoted by va, and
its residue by av.

The defect, also known as ramification deficiency, of finite extensions (L|K, v)
of valued fields is a phenomenon that only appears when the residue field Kv has
positive characteristic. It is a main obstacle to the solution of deep open problems
in positive characteristic, such as:

• local uniformization (the local form of resolution of singularities), which is not
known for arbitrary dimension in positive characteristic,

• the model theory of valued fields, in particular the open question whether Laurent
series fields over finite fields have a decidable theory.

Both problems are linked through the structure theory of valued function fields,
in which it is essential to tame the defect, as well as wild ramification, cf. [9, 12,
14, 15, 16]. While implicitly known through the work of algebraic geometers and
model theorists since the 1950s, the connection of the defect with the problem
of local uniformization and the model theory of valued fields with positive residue
characteristic has been pointed out in detail in the cited works of the second author.
Defects also appear in crucial examples, as in the paper [4].

Using tools of ramification theory, the study of extensions of valued fields of
residue characteristic p > 0 with nontrivial defect can be reduced to the study of
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normal extensions of degree p with nontrivial defect. Such extensions are immedi-
ate. An arbitrary extension (L|K, v) of valued fields is immediate if the canonical
embeddings of vK in vL and of Kv in Lv are onto. As a consequence, for every
a ∈ L \K the set

v(a−K) := {v(a− c) | c ∈ K}
does not have a maximal element; this follows from [8, Theorem 1]. If a is an
element of any valued field extension of (K, v) such that v(a−K) has no maximal
element, then this set is an initial segment of vK. We associate with it a cut in the

divisible hull ṽK of vK by taking as the lower cut set the smallest initial segment

in ṽK which contains v(a−K). This cut is called the distance of a over K and
denoted by dist (a,K). For more details, see Section 2.2.

Distances can be used to classify defect extensions. If an extension L|K of
degree p is Galois and the field K is itself of characteristic p, then L|K is an
Artin–Schreier extension, that is, L is generated over K by an element ϑ such
that

(1) ϑp − ϑ ∈ K ;

we call ϑ an Artin-Schreier generator of the extension. If such an extension
of a valued field (K, v) has nontrivial defect, then the extension of the valuation
v from K to L is unique and (L|K, v) is immediate (see Lemma 2 below); we
call it an Artin–Schreier defect extension. A classification of Artin–Schreier
defect extensions (dependent vs. independent defect) is introduced in [11]. It is
then shown that the classification can be read off from the distance dist (ϑ,K) of
the Artin-Schreier generator.

The classification is important because work by M. Temkin (see e.g. [21]) and
by the second author indicates that dependent defect is more harmful to the above
cited problems than independent defect. In the paper [4], S. D. Cutkosky and
O. Piltant give an example of an extension of two-dimensional valued function
fields consisting of a tower of two Artin-Schreier defect extensions where strong
monomialization fails. Work of Cutkosky, S. ElHitti and L. Ghezzi shows that
both of them have dependent defect (see e.g. [5]); this again lends credibility to the
hypothesis that dependent defect is the more harmful one.

In a collaboration of the second author with O. Piltant ([18]) the investigation of
two-dimensional valued function fields in the spirit of [4] is continued. Higher rami-
fication groups are employed to gain insights in the nature of the appearing defects.
As the value groups are usually not discrete, the classical ramification numbers are
replaced by cuts in the value group, which in turn are related to distances. In order
to obtain a meaningful characterization of the role the defect plays in a given valued
function field, we have to abstract from inessential differences between distances.
To this end, equivalence classes of distances have to be introduced as follows.

If c ∈ K, then v(ca − K) = {vc + v(a − c) | c ∈ K} =: vc + v(a − K), which
means that the cut dist (a,K) is just shifted by adding vc to all elements of the
lower cut set; we then write

(2) dist (ca,K) = vc+ dist (a,K) .

We do not regard dist (a,K) and dist (ca,K) as essentially distinct, so we rather
work with classes of distances that are equivalent modulo vK.

Defects are abundant in valued function fields of positive characteristic. It is
even possible to construct two-dimensional valued function fields that allow infinite



NUMBER OF DISTINCT DISTANCES 3

towers of Artin-Schreier defect extensions (see [1, 10]). Thus the question arises how
many essentially distinct distances of generators of Artin-Schreier defect extensions
exist over a fixed valued field (K, v) (and in particular, whether this number could
be finite at all). In Section 4 we give an answer under certain finiteness assumptions,
see Theorem 23. These conditions hold for instance in the following situation:

Theorem 1. Take a valued function field (K|K0, v) over a perfect trivially valued
base field (K0, v). Then the number of distinct distances of elements in Artin-
Schreier defect extensions modulo vK is bounded by 2 · trdegK|K0 .

This result is particulary important for the above described investigation of two-
dimensional valued function fields in [18]. But the scope of our results in the present
paper is not restricted to function fields, so they add significant insight to the
general theory of the defect. Also, we do not restrict our interest to the distances
appearing in Artin-Schreier defect extensions. More generally, we would like to
count all the essentially distinct distances over a valued field (K, v) of all elements

a in the algebraic closure K̃ of K for which v(a − K) has no maximal element.
But it seems unlikely that we will get a finite number if we allow the elements a
to attain arbitrarily large degree over K, so we need again some conditions. The
first way to impose suitable conditions is to restrict the scope to all elements a ∈ L
where L|K is a finite extension such that the extension of v from K to L is unique.
For this case, we obtain in Section 3 an upper bound in terms of the defect of the
extension (L|K, v) and its ramification index (vL : vK), see Theorem 19.

Another approach is to limit the scope to all a ∈ K̃ of bounded degree over K. It
is an open problem whether the number of essentially distinct distances in this case
is always finite and to compute an upper bound for it, even under the finiteness
conditions of Theorem 23. However, we are able to show that under these finiteness

conditions, the number of distances that are distinct modulo ṽK is always finite;
we give an upper bound in Theorem 24.

Note that there are examples of valued fields of rank 1, but infinite p-degree,
where even the number of distances of elements in immediate purely inseparable
extensions of degree p (and of elements in Artin-Schreier defect extensions) that

are distinct modulo ṽK is infinite.
Finally, let us give some information on the prerequisites and tools we use in this

paper. Distances were introduced in the paper [11], but the definition given there is
different from the one we use in this paper. The paper [2] presents a comparison of
the two definitions and derives the basic properties of the new notion of distances
that we use here. One important foundation of our work is Kaplansky’s theory of
pseudo Cauchy sequences (see [8]) which was developed further in [19]. But none
of our earlier papers has addressed the number of possible distances.

2. Preliminaries

For general facts from valuation theory, we refer the reader to [6, 7, 20, 22].

2.1. Defect. Take a finite normal extension L|K and a valuation v on K. Then
v has finitely many distinct extensions v1, . . . , vg to L. All of them have the same
ramification index (viL : vK), which we will denote by e, and all of them have
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the same inertia degree [Lvi : Kv], which we will denote by f . Then we have the
fundamental equality

(3) [L : K] = d · e · f · g ,
where by the Lemma of Ostrowski (cf. [20, Théorème 2, p. 236]) or [22, Corollary
to Theorem 25, Section G, p. 78]), d is a power ≥ 1 of the residue characteristic
charKv if this is positive, and equal to 1 otherwise. If d > 1, then we speak of
nontrivial defect. If in addition L|K is an extension of prime degree, then it
follows from (3) that [L : K] = d = charKv > 0 and e = f = g = 1, that is, there
is a unique extension of v from K to L and (L|K, v) is immediate. We have proved:

Lemma 2. If L is a normal extension of prime degree p of (K, v) with nontrivial
defect, then the extension of v from K to L is unique and (L|K, v) is immediate.

We will almost always consider extensions (L|K, v) for which the extension of v
from K to L is unique. We will call such extensions uv–extensions in short; they
are necessarily algebraic extensions. Note that every purely inseparable algebraic
extension is a uv–extension.

For a finite uv–extension (L|K, v), we can define its defect even if the extension
is not normal:

d(L|K, v) :=
[L : K]

(vL : vK)[Lv : Kv]
.

By the Lemma of Ostrowski, this is a power of p (including p0 = 1), where p =
charKv if this is positive, and p = 1 otherwise (this is called the characteristic
exponent of Kv). The extension is called defectless if d(L|K, v) = 1; otherwise,
we call it a defect extension. Note that if (L|K, v) is a defect extension of prime
degree p, then p = charKv. We note:

Lemma 3. If (L|K, v) is a nontrivial finite immediate uv–extension, then [L : K]
is a power of charKv and

d(L|K, v) = [L : K] .

A valued field (K, v) is henselian if it satisfies Hensel’s Lemma, or equivalently,

if the extension of v to K̃ of K is unique (i.e., K̃ is a uv–extension of (K, v)). In
this case, v extends uniquely to each algebraic extension of K. Every algebraically
closed valued field is trivially henselian.

Every valued field (K, v) admits a henselization, that is, a minimal henselian
extension of (K, v), in the sense that it admits a unique valuation preserving em-
bedding over K in every other henselian extension of (K, v). In particular, if w is

any extension of v to K̃, then (K, v) has a unique henselization in (K̃, w), as it is

the decomposition field of the normal extension (Ksep|K, v), where Ksep ⊆ K̃ is
the separable-algebraic closure of K.

Henselizations of (K, v) are unique up to valuation preserving isomorphism over
K. Moreover, they are always immediate separable-algebraic extensions of (K, v)
(cf. [6, Theorem 17.19]). A valued field is henselian if and only if it is equal to any
(and thus all) of its henselizations.

The following fact is Lemma 2.1 of [3]:

Lemma 4. An algebraic extension (L|K, v) is a uv–extension if and only if for an
arbitrary henselization Kh of (K, v), the extensions L|K and Kh|K are linearly
disjoint.
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For the remainder of this paper, we fix an extension of v from K to
K̃. This will also fix the henselization of (K, v). Therefore, we will speak of the
henselization of (K, v), and denote it by (Kh, v).

Since the henselization is an immediate extension and the compositum L.Kh of
L and Kh lies in Lh (in fact, it is equal to Lh), this lemma yields:

Lemma 5. For every finite uv–extension (L|K, v),

d(L|K, v) = d(L.Kh|Kh, v) .

2.2. Distances. Take an arbitrary extension (L|K, v) of valued fields and a ∈ L\K.
There are several possible definitions for the distance of a from K that have been
used in papers by the authors. We choose the definition that is most suitable for
our purposes in this paper.

By dist (a,K) we denote the cut induced by the set v(a−K)∩ ṽK in the divisible

hull ṽK of vK. Namely, the lower cut set of dist (a,K) is the smallest initial segment

of ṽK that contains v(a − K) ∩ ṽK. This definition is slightly different from the

one introduced in [11] and [19]. There, we have used the cut in ṽK induced by the
subset v(a −K) ∩ vK to define dist (a,K). A detailed study of the new notion of
distance and a comparison with the former notion can be found in [2]. Note that
when v(a−K) ⊆ vK, the two notions coincide.

Our definition enables us to compare dist (a,K) with dist (a, L) when (L|K, v)
is an algebraic extension since then, both dist (a,K) and dist (a, L) are cuts in the

same ordered abelian group ṽK = ṽL. Then dist (a,K) < dist (a, L) will mean that
the left cut set of dist (a,K) is a proper subset of that of dist (a, L).

The following is Lemma 3.9 of [2].

Lemma 6. Take algebraic extensions (L|K, v) and (L(a)|L, v). Then dist (a,K) ≤
dist (a, L).
If dist (a,K) < dist (a, L), then there is b ∈ L such that

v(a− b) > v(a−K) = v(b−K) and dist (b,K) = dist (a,K) .

If (L|K, v) is an arbitrary valued field extension and a ∈ L, then we will say
that a is weakly immediate over K if v(a − K) has no maximal element. In
the language of pseudo Cauchy sequences, this means that a is a pseudo limit
of a pseudo Cauchy sequence (also called “pseudo convergent sequence” in [8])
in (K, v) that has no pseudo limit in K. In the language used in [19] it means
that the approximation type of a over K is immediate. Note that this does not
imply that the extension (K(a)|K, v) is immediate (cf. [2, Example 3.17]). But
conversely, by what we have already said in the introduction, every element in an
immediate extension of (K, v) is weakly immediate over K. Observe that if a is
weakly immediate over K then ∞ /∈ v(a−K), that is, a /∈ K.

Lemma 7. Take a finite defectless uv–extension (L|K, v). Then the following as-
sertions hold.

a) For every b ∈ L \K, the set v(b−K) has a maximal element.

b) Every a ∈ L̃ = K̃ that is weakly immediate over K is also weakly immediate
over L, and

dist (a, L) = dist (a,K) .
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Proof. a): This follows from Proposition 3.12 and Lemma 3.10 of [2].

b): This is Corollary 3.11 of [2].
�

To obtain another important distance equality, we need the following theorem
from [13]:

Theorem 8. Take Kh to be the henselization of K in (K̃, v). Take a ∈ K̃ \K and
assume that for some b ∈ Kh,

v(a− b) > v(a−K) .

Then Kh and K(a) are not linearly disjoint over K.

Lemma 9. Take an algebraic uv–extension (L|K, v). Then for all a ∈ L \K which
are weakly immediate over K,

(4) v(a−Kh) = v(a−K) and dist (a,Kh) = dist (a,K) .

Proof. Take a ∈ L \K and suppose that v(a−K) ( v(a−Kh). Then there is an
element b ∈ Kh such that v(a−b) > v(a−K). But then by Theorem 8, K(a)|K and
hence also L|K is not linearly disjoint from Kh|K, a contradiction to Lemma 4. So
we have that v(a−K) = v(a−Kh), which implies the equality of the distances. �

2.3. Weakly and strongly immediate elements. We have already defined what
it means for an element in an extension of (K, v) to be weakly immediate over (K, v).
A useful stronger property is the following. Take any extension (L|K, v) of valued
fields and an element a ∈ L \K. Then we will say that a is strongly immediate
over K if v(a−K) has no maximal element and in addition, for every polynomial
g ∈ K[X] of degree < [K(a) : K] there is α ∈ v(a−K) such that for all c ∈ K with
v(a− c) ≥ α, the value vg(c) is fixed.

Lemma 10. If the element a is strongly immediate over K, then (K(a)|K, v)
is immediate. If in addition, (K(a)|K, v) is a uv–extension, then [K(a) : K] =
d((K(a)|K, v) = pk for some k ≥ 1, with p the characteristic exponent of Kv.

Proof. For the first assertion, see [19, Lemma 5.3]. The second assertion follows
from the first together with Lemma 3. �

In general, even if (K(a)|K, v) is a uv–extension and a is weakly immediate over
K, the extension may not be immediate and a may not be strongly immediate over
K. But this holds if the degree [K(a) : K] is a prime:

Lemma 11. Take a uv–extension (K(a)|K, v) of prime degree p with its generator
a weakly immediate over K. Then (K(a)|K, v) is immediate and a is strongly
immediate over K.

Proof. By [11, Lemma 9], (K(a)|K, v) is immediate. Note that by Lemma 3, p =
charKv > 0.

Suppose that there is a polynomial g ∈ K[X] of degree < p for which there is no
α ∈ v(a−K) such that the value vg(c) is fixed for all c ∈ K with v(a−c) ≥ α. Since
v(a−K) = v(a−Kh) by (4), there is no α ∈ v(a−Kh) such that the value vg(c)
is fixed for all c ∈ Kh with v(a− c) ≥ α. Take f ∈ Kh[X] to be of minimal degree
with this property. As deg f ≤ deg g < p, it follows from [19, Proposition 6.5] that
deg f = 1. Hence f(X) = X − b for some b ∈ Kh.
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Since v(a − Kh) = v(a − K) has no maximal element, we can choose some
α ∈ v(a−Kh) with α > v(a− b). Take any c ∈ Kh such that v(a− c) ≥ α. Then
v(c− b) = min{v(c− a), v(a− b)} = v(a− b), so the value vf(c) is fixed for all such
c. This contradicts our choice of f and shows that a polynomial g as chosen in the
beginning cannot exist. �

Lemma 12. Take a henselian field (K, v) and an element a ∈ K̃ which is weakly
immediate over K. If a is not strongly immediate over K, then there is an imme-
diate extension (K(b)|K, v) with dist (b,K) = dist (a,K) and [K(b) : K] < [K(a) :
K].

Proof. Using the notions of [19], we argue as follows. Since v(a−K) has no maximal
element, the approximation type appr (a,K) is immediate by [19, Lemma 4.1 a)].
Take g to be an associated minimal polynomial for appr (a,K). Since the extension
(K(a)|K, v) is not strongly immediate, we have that deg g < [K(a) : K]. Take

b ∈ K̃ to be a root of g. Then [19, Theorem 6.4] shows that there is an extension
w of v from K to K(b) such that (K(b)|K,w) is immediate and appr (b,K) =
appr (a,K). Since (K, v) is henselian, w and v must agree on K(b), showing that
(K(b)|K, v) is immediate. The equality of the approximation types implies that
v(b−K) = v(a−K), which in turn implies that dist (b,K) = dist (a,K). �

2.4. The ramification field. For general ramification theory, see [7] or [17]. For
information on tame valued fields, see [16]. We will summarise here the main
properties of the ramification field that we will use.

Let (N |K, v) be a normal algebraic extension of henselian fields. We take the
ramification field V of this extension to be the fixed field of the ramification
group {σ ∈ Aut(N |K) | 0 6= x ∈ OL ⇒ v(σx − x) > vx} of the automorphism
group of N |K in the maximal separable subextension of N |K.

The absolute ramification field of a henselian field (K, v) is the ramifica-
tion field of the normal algebraic extension (Ksep|K, v), where Ksep denotes the
separable-algebraic closure of K.

Lemma 13. Take a normal extension (N |K, v) of henselian fields with residue
characteristic p > 0. Then its ramification field V has the following properties:

a) The extension V |K is separable.
b) Every subextension of N |V is a tower of normal extensions of degree p.
c) The valued field extension (V |K, v) is tame and hence every finite subextension
(E|K, v) of (V |K, v) is defectless.
d) For every finite subextension L|K of N |K,

d(L|K, v) = d(L.V |V, v) .

e) For all a ∈ N \K weakly immediate over K,

dist (a, V ) = dist (a,K) .

Proof. Assertion a) follows from our definition.
Assertion b) follows from the fact that the ramification group is a p-group (cf.

[7, Theorem 5.3.3] and the proof of [11, Lemma 2.9]).
For assertion c), note that V is a subfield of the absolute ramification field Kr of

(K, v), which by part b) of [16, Lemma 2.13] is a tame extension of (K, v). Hence
by part a) of the same lemma, also V is a tame extension of (K, v). Thus every
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finite subextension (E|K, v) of the tame extension (V |K, v) is defectless. In view
of this, the equality of the defects follows from [11, Proposition 2.8].

For the proof of d) suppose that dist (a, V ) > dist (a,K). Then by Lemma 6
there is an element b ∈ V such that dist (a,K) = dist (b,K). On the other hand,
(K(b)|K, v) is a defectless uv–extension, by part c). Together with part a) of
Lemma 7 this contradicts the fact that a is weakly immediate over K. �

3. The number of distinct distances in a given valued field extension

Take a finite (not necessarily immediate) uv–extension (L|K, v). We wish to
count the number of distances appearing in this extension that are distinct modulo
vK. We define

ndd (L|K, v)

to be the minimal m ≥ 0 such that there are elements a1, . . . , am ∈ L \K so that
each ai is weakly immediate over K and for every b ∈ L \K for which v(b−K) has
no maximal element, there is i ∈ {1, . . . ,m} and α ∈ vK with

dist (b,K) = α+ dist (ai,K) ,

that is, dist (b,K) and dist (ai,K) are equal modulo vK. If there is no such b
(which in particular is the case when (L|K, v) is defectless, according to part a) of
Lemma 7), then we set ndd (L|K, v) = 0. We will see that such a number m always
exists.

Similarly,

ndd ∗(L|K, v)

shall denote the number of distances appearing in (L|K, v) that are distinct modulo

ṽK. Observe that

(5) ndd ∗(L|K, v) ≤ ndd (L|K, v) and ndd ∗(L|K, v) = 0 ⇔ ndd (L|K, v) = 0 .

We note:

Lemma 14. Take any algebraic extension (L|K, v) of valued fields and a subexten-
sion (L0|K, v). If ndd (L0|K, v) = 0, then dist (a,K) = dist (a, L0) for every a ∈ L
which is weakly immediate over K. The converse holds if no element of L0 lies in
the completion of (K, v).

Proof. Assume first that ndd (L0|K, v) = 0 and take a ∈ L \K weakly immediate
over K. If dist (a,K) 6= dist (a, L0), then dist (a, L0) > dist (a,K) and by Lemma 6
there is b ∈ L0 such that dist (a,K) = dist (b,K). But then v(a − K) has no
maximal element, contradicting our assumption that ndd (L0|K, v) = 0.

Now assume that ndd (L0|K, v) > 0 and that no element of L0 lies in the com-
pletion of (K, v). Take a ∈ L0 \K weakly immediate over K. Since a does not lie

in the completion of (K, v), dist (a,K) is a proper cut in ṽK. But as a ∈ L0 , the

lower cut set of dist (a, L0) is ṽK, so dist (a, L0) > dist (a,K). �

Lemma 15. Take a finite uv–extension (L|K, v) and an algebraic extension (K ′|K, v)
such that (vK ′ : vK) <∞ and dist (a,K) = dist (a,K ′) for all a ∈ L. Then

ndd (L|K, v) ≤ ndd (L.K ′|K ′, v) · (vK ′ : vK) ,

ndd ∗(L|K, v) ≤ ndd ∗(L.K ′|K ′, v) .
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Proof. Set n = (vK ′ : vK) and choose representatives β1, . . . , βn ∈ vK ′ of the
distinct cosets in vK ′/vK. If two distances dist (a1,K) and dist (a2,K) are equal
modulo vK ′ then there is i ∈ {1, . . . , n} and α ∈ vK such that dist (a1,K) =
α+βi+ dist (a2,K), where the latter is equal to βi+ dist (a2,K) modulo vK. This
shows that the maximum number of distances that are distinct modulo vK but
equal modulo vK ′ is n, which proves the first inequality.

The second inequality follows from the fact that all βi lie in ṽK. �

The next lemma computes ndd (K(a)|K, v) for uv–extensions (K(a)|K, v) with
a strongly immediate over K. We derive it from [8, Lemma 8] and [19, Lemma 5.2].
We use the Taylor expansion

(6) f(X) =

n∑
i=0

fi(c)(X − c)i

where fi denotes the i-th formal derivative of f (also called Hasse derivative or
Hasse-Schmidt derivation); these are the polynomials derived from f that allow the
above characteristic blind Taylor expansion.

Lemma 16. Take a finite uv–extension (K(a)|K, v) such that a is strongly immedi-
ate over K. Following Lemma 10, we write [K(a) : K] = pk for some k ≥ 1. Then
for every nonconstant polynomial f ∈ K[X] of degree < pk there are γ ∈ v(a−K)
and h = p` with 0 ≤ ` < k such that for all c ∈ K with v(a − c) ≥ γ, the value
vfi(c) is fixed for each i ≥ 0,

(7) v(f(a)− f(c)) = vfh(c) + h · v(a− c) ,
and

(8) dist (f(a),K) = vfh(c) + h · dist (a,K) .

Therefore, ndd (K(a)|K, v) ≤ k and, modulo vK, all distances are multiples of
dist (a,K) by powers of p.

Proof. Using the notions of [19], the assumption that a is strongly immediate over
K is equivalent to the approximation type of a over K being of degree [K(a) : K].
Hence all assertions except for the last one follow from [19, Lemma 5.2, Proposition
7.4 and Lemma 8.2] (see also [8, Lemma 8]). For the proof of the last assertion
we use the fact that every element b ∈ K(a) \ K can be written as f(a) with a
nonconstant polynomial f ∈ K[X] of degree smaller than [K(a) : K] = pk. Since
there are exactly k many distinct h = p` with 0 ≤ ` < k, equation (8) yields that
ndd (K(a)|K, v) ≤ k. �

The following corollary shows that a uv–extension of prime degree generated by
a weakly immediate element admits exactly one distance modulo vK. It follows
from the previous lemma together with Lemma 11.

Corollary 17. Take a uv–extension (K(a)|K, v) of prime degree p such that a
is weakly immediate over K. Then for every nonconstant polynomial f ∈ K[X] of
degree smaller than p there is γ ∈ v(a−K) such that for all c ∈ K with v(a−c) ≥ γ,
the value vfi(c) is fixed for each i ≥ 0, and

(9) v(f(a)− f(c)) = vf1(c) + v(a− c) .
Hence for any b ∈ K(a) \K,

dist (b,K) = α+ dist (a,K) for some α ∈ vK .
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Therefore, ndd ∗(K(a)|K, v) = ndd (K(a)|K, v) = 1.

Proposition 18. Assume that (L|K, v) is a finite uv–extension which is a tower
of extensions of degree p. If d(L|K, v) = pm with m ≥ 0, then

ndd (L|K, v) ≤ m · (vL : vK) and ndd ∗(L|K, v) ≤ m .

Proof. We consider a tower K = L0 ⊂ L1 ⊂ . . . ⊂ Ln = L of uv–extensions of
degree p. We write d(Li|K, v) = pmi , with mn = m. We proceed by induction on
i ≤ n.

The induction start is covered by Corollary 17 if (L1|K, v) is immediate. In this
case, we have (vL1 : vK) = 1, m1 = 1 and ndd (L1|K, v) = 1 = m1 · (vL1 : vK).
Also, ndd ∗(L1|K, v) = 1 = m1 . If the extension is not immediate, then it is
defectless (as it is of prime degree). Hence m1 = 0 and

ndd (L1|K, v) = 0 = m1 · (vL1 : vK) .

Also, ndd ∗(L1|K, v) = 0 = m1 .

Now we assume that for some i < n we have already shown that ndd (Li|K, v) ≤
mi · (vLi : vK) and ndd (Li|K, v) ≤ mi . Take any a ∈ Li+1 \ Li which is weakly
immediate over K. Since [Li+1 : Li] is prime, we have that Li+1 = Li(a). By
Lemma 6, either dist (a,K) = dist (b,K) holds for some b ∈ Li , or dist (a,K) =
dist (a, Li).

Suppose that there is such an element a for which the latter holds. Then a
is weakly immediate over Li and by Lemma 11, the uv–extension (Li+1|Li, v) is
immediate. Hence, d(Li+1|K, v) = d(Li|K, v) · p, so mi+1 = mi + 1. By Lemma 17,
ndd (Li+1|Li, v) = 1. This says that modulo vLi, all distances dist (a,K) arising
in this way must be equal. Consequently, there can be at most (vLi : vK) many

that are distinct modulo vK, and only one modulo ṽK. This is in addition to the
number of distinct distances arising from elements in Li . So we obtain that

ndd (Li+1|K, v) ≤ (vLi : vK) + mi · (vLi : vK) = mi+1 · (vLi+1 : vK) ,

ndd ∗(Li+1|K, v) ≤ 1 + mi = mi+1 .

Suppose now that there is no such element a. Then

ndd (Li+1|K, v) = ndd (Li|K, v) = mi · (vLi : vK) ≤ mi+1 · (vLi+1 : vK) ,

ndd ∗(Li+1|K, v) = ndd ∗(Li|K, v) = mi ≤ mi+1 .

This completes our induction. �

We will now generalize this result to arbitrary finite, not necessarily immediate,
uv–extensions.

Theorem 19. Take a finite uv–extension (L|K, v) and write d(L|K, v) = pm with
m ≥ 0. Then

ndd (L|K, v) ≤ m · [L : K]!/pm and ndd ∗(L|K, v) ≤ m .

If in addition L|K is a normal extension, then ndd (L|K, v) ≤ m · (vL : vK).

Proof. First, we show that we may assume (K, v) to be henselian. For every a ∈
L \ K, Lemma 9 shows that dist (a,Kh) = dist (a,K). By Lemma 15 we obtain
that

ndd (L|K, v) ≤ ndd (L.Kh|Kh, v) · (vKh : vK) = ndd (L.Kh|Kh, v)
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and ndd ∗(L|K, v) ≤ ndd ∗(L.Kh|Kh, v). Lemma 5 shows that d(L|K, v) =
d(L.Kh|Kh, v), and Lemma 4 yields that [L.Kh : Kh] = [L : K]. Since the
henselization of a valued field is an immediate extension of the field, (vL.Kh :
vKh) = (vLh : vKh) = (vL : vK). Thus, we may replace K by its henselization.

We denote the normal hull of L over K by N . Since (K, v) is henselian, there is
a unique extension of v from L to N and (N |K, v) is again a uv–extension. Now
we take V to be the ramification field of (N |K, v). From Lemma 13 we obtain that
(V |K, v) is a defectless uv-extension such that d(L.V |V, v) = d(L|K, v) = pm and
that dist (a, V ) = dist (a,K) for every a ∈ N \K which is weakly immediate over
K. From Lemma 15 we thus obtain that ndd (L|K, v) ≤ ndd (L.V |V, v) · (vV : vK)
and ndd ∗(L|K, v) ≤ ndd ∗(L.V |V, v). By part b) of Lemma 13 we know that
the subextension L.V |V of N |V is a tower of normal extensions of degree p. Hence
Proposition 18 shows that ndd (L.V |V, v) ≤ m·(v(L.V ) : vV ) and ndd ∗(L.V |V, v) ≤
m. Altogether we have that ndd ∗(L|K, v) ≤ ndd ∗(L.V |V, v) ≤ m and that

ndd (L|K, v) ≤ ndd (L.V |V, v) · (vV : vK)

≤ m · (v(L.V ) : vV ) · (vV : vK) = m · (v(L.V ) : vK) .

If L|K is a normal extension, then N = L and V ⊆ L. From this we get that
(v(L.V ) : vK) = (vL : vK), which yields the second assertion of our theorem.

In the general case, we have that d(N |K, v) ≥ d(L|K, v) = pm and

(v(L.V ) : vK) ≤ (vN : vK) ≤ [N : K]/d(N |K, v) ≤ [N : K]/pm .

Since [N : K] ≤ [L : K]! , this yields the first assertion of our theorem. �

4. The number of distinct distances in all Artin-Schreier defect
extensions

Throughout this section, let (K, v) be a field of positive characteristic p. As

before, we assume that v is extended to the algebraic closure K̃ of K. By Zorn’s
Lemma, there always exists a maximal immediate subextension (K ′|K, v) of the
purely inseparable extension (K1/p|K, v), where K1/p = {c1/p | c ∈ K}. Through-
out the present and the final section of this paper, we will assume that K ′|K is
finite, so that its degree is pm for some m ≥ 0. If K has finite p-degree k, that is,
[K1/p : K] = [K : Kp] = pk with k ≥ 0, then m ≤ k.

We will now apply our previous results to consider the possible distances (modulo
vK) of all elements that are contained in any Artin-Schreier defect extension of
(K, v). In view of Corollary 17, we only have to determine the distance of one
generator of such an extension. The Artin-Schreier defect extension (K(ϑ)|K, v)
with Artin-Schreier generator ϑ is called dependent if there is a purely inseparable
immediate extension (K(η)|K, v) of degree p such that

v(ϑ− η) > v(ϑ− c) for all c ∈ K .

This implies that v(ϑ− c) = v(η − c) for all c ∈ K and that

dist (ϑ,K) = dist (η,K) .

We note that by assumption, η ∈ K1/p.
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Proposition 20. Under the assumptions on (K, v) outlined above,

ndd (K1/p|K, v) = ndd (K ′|K, v) ≤ m .

Moreover, if (K, v) is of finite p-degree and d(K1/p|K, v) = ps, then

ndd (K1/p|K, v) ≤ s .

Proof. For every a ∈ K1/p which is weakly immediate over K, there must be some
b ∈ K ′ with dist (a,K) = dist (b,K). Otherwise, we would obtain that dist (a,K ′) =
dist (a,K) which yields that a is weakly immediate over K ′; since [K ′(a) : K ′] =
p, this would show by Lemma 11 that (K ′(a)|K ′, v) and hence also (K ′(a)|K, v)
are immediate extensions, contradicting the maximality of K ′. So we have that
ndd (K1/p|K, v) = ndd (K ′|K, v).

Since (K ′|K, v) is immediate, we have that d(K ′|K, v) = [K ′ : K] = pm. Hence
by Proposition 18, ndd (K ′|K, v) ≤ m, because (vL : vK) = 1.

For the proof of the last assertion, note that if (K, v) is of finite p-degree, then

pm = [K ′ : K] = d(K ′|K, v) ≤ d(K1/p|K, v) = ps.

Thus m ≤ s. �

From Proposition 20 together with Corollary 17 we obtain the following result:

Proposition 21. Under the assumptions on (K, v) outlined in the beginning of this
section, there are elements c1, . . . , cm ∈ K such that for every dependent Artin-
Schreier defect extension (K(a)|K, v) there is i ∈ {1, . . . ,m} such that for every
b ∈ K(a) \K there is some α ∈ vK with

dist (b,K) = α+ dist (c
1/p
i ,K) .

Hence all distinct distances modulo vK of elements in dependent Artin-Schreier
defect extensions of (K, v) are already among the distinct distances modulo vK of
elements in purely inseparable defect extensions of degree p of (K, v), and their
number is bounded by m.

In order to make a statement about all possible Artin-Schreier defect extensions
(K(a)|K, v), we also have to consider the independent ones, that is, the ones that
are not dependent. It is shown in [11] that if a is an Artin-Schreier generator of the
extension, then dist (a,K) is the lower edge of some proper convex subgroup H of

ṽK, that is, the lower cut set of dist (a,K) is the largest initial segment of ṽK that
does not meet H. We summarize:

Lemma 22. The distances of all elements in Artin-Schreier defect extensions
(K(a)|K, v) modulo vK are among the lower edges of convex subgroups of the value
group vK together with the distances of the elements in K1/p.

The rank of (K, v), if finite, is the number of proper convex subgroups of the
value group vK. Putting the previous results together, we obtain:

Theorem 23. Take a valued field (K, v) of finite rank r, satisfying the assumptions
outlined in the beginning of this section. Then the number of distinct distances
modulo vK of elements in all normal defect extensions of prime degree of (K, v) as
well as the number of distinct distances modulo vK of elements in Artin-Schreier
defect extensions of (K, v) are bounded by r + m. In particular, if K has finite
p-degree k, then this number is bounded by r + k.
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For a function field K over a perfect base field K0, the p-degree k is equal to
the transcendence degree trdegK|K0 . For a valued function field (K|K0, v) over a
trivially valued base field (K0, v), the rank is bounded by trdegK|K0 . This proves
Theorem 1.

5. The number of distinct distances of all elements of bounded
degree

Throughout this section we shall work under the following assump-
tions, unless indicated otherwise. We take (K, v) to be a valued field of positive
characteristic p and finite rank r.

For every natural number i we denote by ndd ∗i (K, v) the number of distinct

distances modulo ṽK of elements a ∈ K̃ \K satisfying the following conditions: [K(a) : K] ≤ pi,
(K(a)|K, v) is a uv–extension,
a is weakly immediate over K.

(10)

We will show now that for every i ∈ N the number ndd ∗i (K, v) is finite.

Theorem 24. Assume in addition that (K, v) has finite p-degree and that

d(K1/p|K, v) = pm .

Then ndd ∗i (K, v) is finite for every natural number i. More precisely,

ndd ∗i (K, v) ≤ r + im.

Proof. In what follows, let a ∈ K̃ satisfy the assumptions (10). Lemma 9 shows that
dist (a,K) = dist (a,Kh). This implies in particular that a is weakly immediate
over Kh. Furthermore, the assumptions (10) together with Lemma 4 yield that
[Kh(a) : Kh] = [K(a) : K]. Hence, for every natural number i we have that
ndd ∗i (K, v) ≤ ndd ∗i (K

h, v).
We wish to show that also (Kh, v) satisfies the assumptions stated at the be-

ginning of this section. Since Kh|K is a separable algebraic extension, Kh has the
same p-degree as K, so [(Kh)1/p : Kh] = pk. It follows that (Kh)1/p = K1/p.Kh.
Since K1/p|K is finite and v extends uniquely from K to K1/p, Lemma 5 yields
that

pm = d(K1/p|K, v) = d(K1/p.Kh|Kh, v) = d((Kh)1/p|Kh, v) .

Furthermore, vKh = vK is again of rank r. Hence we can assume that (K, v) is
henselian.

Take Kr to be the absolute ramification field of K with respect to the fixed
extension of v to K̃. Lemma 13 shows that dist (a,K) = dist (a,Kr). This implies
in particular that a is weakly immediate over Kr. Moreover, [Kr(a) : Kr] ≤ [K(a) :

K] and ṽK = ṽKr. Therefore, ndd ∗i (K, v) ≤ ndd ∗i (K
r, v) for every i ∈ N.

We wish to show that also (Kr, v) satisfies the assumptions stated at the be-
ginning of this section. Since Kr|K is a separable algebraic extension, Kr has the
same p-degree as K, so [(Kr)1/p : Kr] = pk. It follows that (Kr)1/p = K1/p.Kr.
Lemma 13 yields that

pm = d(K1/p|K, v) = d(K1/p.Kr|Kr, v) = d((Kr)1/p|Kr, v).
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Furthermore, vKr/vK is a torsion group, hence vKr is again of rank r. Hence we
can assume that Kr = K. Note that by Lemma 13 this means that the extension
K(a)|K is a tower of normal extensions of degree p. In particular, it is of degree pt

for some t ∈ {0, . . . , i}.

We proceed by induction on i. The case of i = 1 is covered by Theorem 23. Now
assume that i ≥ 2 and

ndd ∗i−1(K, v) ≤ r + (i− 1)m .

To give an upper bound for ndd ∗i (K, v), it is enough to consider elements of degree
pi over K which are weakly immediate over K. Indeed, the distances of elements
a of degree at most pi−1 are already counted in ndd ∗i−1(K, v). Hence we assume

that [K(a) : K] = pi.
If a is not strongly immediate over K, then by Lemma 12 there is an immediate

extension (K(b)|K, v) with dist (b,K) = dist (a,K) and [K(b) : K] < [K(a) : K].
By Lemma 13 the degree [K(b) : K] must be a power of p. We conclude that
[K(b) : K] ≤ pi−1, showing that dist (a,K) is already counted in ndd ∗i−1(K, v).
Hence we assume that a is strongly immediate over K. By Lemma 10 this implies
that the extension (K(a)|K, v) is immediate.

Assume first that K(a)|K is purely inseparable. Then from Lemma 6 we deduce

that dist (a,K) = dist (a,K1/pi−1

) or dist (a,K) = dist (d,K) for some d ∈ K1/pi−1

.
If the latter holds, then d is weakly immediate over K and therefore, dist (b,K) ap-
pears already as a distance of some weakly immediate element of degree ≤ pi−1.

So we may assume that the former holds. Then K1/pi−1

(a)|K1/pi−1

is a purely
inseparable extension of degree p and the element a is weakly immediate over

K1/pi−1

. Since d(K1/pi |K1/pi−1

, v) = d(K1/p|K, v) = pm, Proposition 20 shows

that there are at most m distinct distances of elements of K1/pi weakly immediate

over K1/pi−1

, modulo vK1/pi−1

= 1
pi−1 vK, hence also modulo ṽK. This renders at

most m additional distinct distances dist (a,K) modulo ṽK.

Assume now that K(a)|K is not purely inseparable. Take E to be a maximal sep-
arable subextension of K(a)|K; we have that E|K is nontrivial. Furthermore, E|K
is a tower of Galois extensions of degree p, as K(a)|K is a tower of normal extensions
of degree p. This shows that K admits an Artin-Schreier extension K(ϑ) ⊆ K(a),
where ϑ is an Artin-Schreier generator. Since K(a)|K is an immediate extension of
henselian fields, the same holds for K(ϑ)|K and thus K(ϑ)|K is an Artin-Schreier
defect extension. Take a polynomial f ∈ K[X] such that ϑ = f(a) with deg f < pi.
Since a is strongly immediate by assumption, we can apply Lemma 16 to obtain
that

dist (ϑ,K) = dist (f(a),K) = α+ psdist (a,K)(11)

for some α ∈ vK and s < i. Take c ∈ K such that vc = α.
Assume that the Artin-Schreier defect extension (K(ϑ)|K, v) is dependent. Then

dist (ϑ,K) = dist (η,K) for some η ∈ K1/p such that the extension K(η)|K is
immediate. Hence,

psdist (a,K) = dist (ϑ,K)− vc = dist (η,K)− vc = dist
(η
c
,K
)
,
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where the last equation holds by (2). Since 1
ps v(ηc −K) = v

(
(ηc )1/p

s −K1/ps
)
, we

obtain that

dist (a,K) = dist

((η
c

)1/ps
, K1/ps

)
.(12)

Since v(a − K) has no maximal element, it follows from equation (12) that also
v
(
(ηc )1/p

s −K1/ps
)

has no maximal element, so (ηc )1/p
s

is weakly immediate over

K1/ps . Moreover, K1/ps((ηc )1/p
s

)|K1/ps is a purely inseparable extension of degree

p. Hence, dist
(
(ηc )1/p

s

,K1/ps
)

has already been counted under the purely insepa-
rable case in this or an earlier induction step (depending on the value of s < i).

Assume now that K(ϑ)|K is an independent Artin-Schreier defect extension.
Then [15, Proposition 4.2] together with Equation (11) shows that

psdist (ϑ,K) = dist (ϑ,K) = vc+ psdist (a,K)

and consequently,

dist (a,K) = − 1

ps
vc+ dist (ϑ,K).

This shows that dist (a,K) is equal modulo ṽK to the distance of some weakly im-
mediate element of degree p over K, which has already been counted in ndd ∗1(K, v).

Consequently, we obtain that

ndd ∗i (K, v) ≤ ndd ∗i−1(K, v) +m.

By induction hypothesis, it follows that

ndd ∗i (K, v) ≤ r +mi.

�

An interesting special case is covered by the following result. Here the assump-
tions on the finiteness of the extension (K1/p|K, v) and its defect are not needed.

Proposition 25. Assume that (K, v) has finite rank r and that the perfect hull of
K is contained in the completion of (K, v). Then

ndd ∗i (K, v) ≤ r + 1

for every natural number i. Therefore, there are at most r + 1 distances distinct

modulo ṽK of elements satisfying (10) for arbitrary i ∈ N.

Proof. Similar to the proof of Theorem 24, except that in all purely inseparable
cases the only possible distance is ∞. In particular, there are no dependent Artin-
Schreier defect extensions. Indeed, if ϑ is an Artin-Schreier generator of an Artin-
Schreier defect extension, then [11, Corollary 2.30] yields that v(η − c) < 0 for all
c ∈ K. Hence there is no η ∈ K1/p such that v(η − c) = v(ϑ− c) for all c ∈ K. �

We can generalize the previous proposition by dropping the condition that for
each considered algebraic element a, (K(a)|K, v) is a uv–extension. If H is a proper

convex subgroup of ṽK, then H+ denotes the cut at the upper edge of H, that is,

its upper cut set is the largest final segment of ṽK which does not meet H.

Corollary 26. Under the assumptions of Proposition 25, there are at most 2r

distances distinct modulo ṽK of elements in K̃ that are weakly immediate over K.
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Proof. Assume that a is weakly immediate over K. Then dist (a,K) = dist (a,Kh)
or dist (a,K) = dist (d,K) for some d ∈ Kh.

In the first case, we obtain that a is weakly immediate over Kh. Hence a satisfies
conditions (10) for some i ∈ N with Kh in place of K. Now if (K, v) satisfies the
assumptions of Proposition 25, then so does its henselization: first of all, they have
the same rank, and secondly, (Kh)1/p

∞
= Kh.K1/p∞ ⊆ Kh.Kc ⊆ (Kh)c. Applying

Proposition 25, we see that the number of distances distinct modulo ṽK of such
elements a is bounded by r + 1.

In the second case, a is weakly distinguished over K, that is,

dist (a,K) = α+H+

for some α ∈ vK and a nontrivial convex subgroup H of vK by [13, Theorem 1].
Note that if H = vK, we have that dist (a,K) = ∞ and this distance has already

been counted above. This gives r − 1 additional possible distances modulo ṽK.

Hence we have at most (r + 1) + (r − 1) = 2r distances distinct modulo ṽK of
weakly immediate algebraic elements over K. �
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