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1 Introduction.

This work was originally initiated by the question whether the (valued) power series field
IFp((t)) has a decidable theory. Viewing the solution of this problem as very remote and
difficult (which it still is), my own interest was rather to expand on the existing model
theory of valued fields and to analyse the valuation theoretical problems related to the
open questions. The present thesis is a summary of approaches and results in different
directions and may thus show a somewhat inhomogeneous appearance. I want to apologize
for that by expressing my hope that these results are not an endpoint, but a basis for new
investigations in the model theory and algebra of valued fields.

With regard to the problem mentioned above concerning the theory of IFp((t)) and of
other valued fields of characteristic p > 0 which are not covered by earlier model theoretical
results, I want to call special attention to one positive and one negative result. The positive
result states that tame fields of positive characteristic have a good model theory, which
may be expressed by saying that they satisfy an Ax–Kochen–Ershov–principle. These
fields are just the algebraically maximal perfect fields of positive characteristic, a bigger
and more natural class than the class algebraically maximal Kaplansky fields of positive
characteristic, which in some sense represented the limit of known model theory for valued
fields of positive characteristic. The negative result states that algebraically complete fields
in general do not satisfy the Ax–Kochen–Ershov–principle and that the axiom system
– (K, v) is algebraically complete
– char(K) = p > 0
– v(K) is a ZZ–group
– K = IFp

is not complete and is thus (unfortunately) not an axiomatization of the theory of IFp((t));
on the other hand, this negative result also carries an idea how the axiom system may
possibly be completed, as I will describe below.

At several instances throughout this work it turns out that an advance in the model
theory of valued fields is based on new valuation theoretical results. In the preparation of
this thesis, these valuation theoretical results step by step gained more independent interest
which culminated in an unexpected discovery of close connections between the work of M.
Matignon, J. Ohm and other authors, dealing with nonarchimedean analysis and valued
function fields, and my results which were inspired by model theoretical questions. For
this reason, I will begin with the discussion of the algebraic results centered around valued
function fields.

1.1 Results on the algebra of valued fields.

In the theory of algebraic function fields (which we will simply call function fields), the
valued function fields (where the valuation is not necessarily trivial on the ground field) play
an important role; for instance, constant reduction of function fields is given by valuations
with certain properties that we will discuss later. One can read off important information
about a valued function field from its henselizations, hence henselizations of valued function
fields appear in a natural way when valued function fields are studied; in particular, if the
valuation is nontrivial on the ground field or the transcendence degree is greater than 1
since then the completion is in general not an adequate device for the study of such valued
function fields. For example, the question may arise whether a given valued function field
F has the property that every finite extension E of F is defectless, i.e. satisfies the basic
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equality
n =

∑
eifi (1)

where n = [E : F ] is the degree of the extension and ei, fi are ramification index and inertia
degree of the finitely many prolongations of the valuation of F to the extension field E.
If a valued field has this property, then we will call it a defectless field. Note that every
valued field of residual characteristic 0 is a defectless field; this follows from the Lemma of
Ostrowski, cf. Lemma 2.3. Now if F h is a henselization of F , then it is known that F is a
defectless field if and only F h is a defectless field. Though F h has the disadvantage that it
is not itself a function field (if the given valuation is nontrivial), it has the advantage that
it satisfies Hensel’s Lemma and that the valuation admits a unique prolongation to every
algebraic extension. These facts can be very helpful for the study of the given valuation.
Note that a henselization is an immediate extension; an extension L|K of valued fields is
called immediate, if v(K) = v(L) and K = L. Here v(K), v(L) denote the value groups
and K, L denote the residue fields of K and L; we will also write K/v instead of K if
several valuations are considered. Henselian defectless fields are the same as algebraically
complete fields, i.e. fields that have a unique prolongation of the valuation to every finite
extension field and which moreover satisfies the basic equality

n = e · f (2)

which is just the version of (1) for the case of a unique prolongation.

Henselizations of valued function fields will be called “henselian function fields” though
they are in general not function fields, as we have mentioned already. Both, henselian
function fields and defectless fields will play the central role in our investigations. Without
any additional assumptions there is no hope for a simple structure theory of henselian
function fields. But under certain assumptions which are common in the theory of valued
function fields, we will prove that henselian function fields have a rather simple structure.

Let us discuss two special cases to illustrate the significance of defectless fields and
the possible assumptions on the henselian function field F |K. The valuation on both
F and K will be denoted by v. The first special case is given by the hypothesis that
F |K is a henselian function field of transcendence degree 1 and that F |K is an immediate
extension. Let us take an arbitrary element x ∈ F which is transcendent over K. Choosing
a henselization K(x)h of K(x) inside the henselian field F , we find that F |K(x)h is a finite
extension which is immediate since F |K is immediate. Note that the henselian field K(x)h

admits a unique prolongation of the valuation v to the algebraic extension field F . If in
this situation we would know that K(x)h is a defectless field (e.g. if char(K(x)h) = 0),
then the finite immediate extension F |K(x)h would necessarily be trivial:

[F : K(x)h] = e · f = (v(F ) : v(K(x)h) · [F : K(x)h] = 1 · 1 = 1 ;

here we have used equation (2). Consequently,

F = K(x)h ,

the henselization of a rational function field; such a henselian function field will be called
henselian rational function field. The assumption “char(K(x)) = 0” may also be expressed
as an assumption on the ground field K; indeed, it holds if
– char(K) = 0.
There are other possible sufficient assumptions on K:
– (K, v) is a (formally) ℘–adic field,
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or, more generally,
– (K, v) is a finitely ramified field,
i.e. v(K) admits a least positive element and there is a prime p such that v(p · 1K) is a
multiple of this element; in this case, char(K) = 0 and char(K) = p. The structure of
these fields is slightly more general than that of formally ℘–adic fields. The difference is
that the residue fields may be arbitrary not necessarily finite fields of characteristic p > 0.
It is well known that all finitely ramified fields are defectless. On the other hand, it can be
read off from the definition that an immediate extension of a finitely ramified field is again
finitely ramified, so if we assume that the ground field K is finitely ramified, the same will
hold for the immediate extension K(x)h and again, we obtain that K(x)h is defectless and
that F = K(x)h. Note that the henselian field F contains a henselization Kh of K, so we
may assume from the start that the ground field K is henselian.

Other possible assumptions on the ground field may fail in this situation, even if they
are as common as the following one:
– K is algebraically closed.
Note that every algebraically closed valued field is trivially a defectless field. Another
possible condition is known from the article “Maximal fields with valuations” of Kaplansky
[KAP1]:
– (K, v) is a henselian defectless Kaplansky–field;
a Kaplansky–field is a valued field satisfying Kaplansky’s hypothesis (A), cf. [KAP1], p.
312. This hypothesis (A) was later shown by Whaples [WHA] and, independently, by
Delon [DEL1] to mean that

(Kf 1) the value group v(K) is p–divisible (p = char(K) > 0),

(Kf 2) the residue field K is perfect (i.e. it allows no inseparable algebraic exten-
sions),

(Kf 3) every finite separable extension of the residue field has degree not divisible
by p.

In general, henselian Kaplansky–fields are not defectless fields. Even if the ground field
K is a henselian defectless Kaplansky–field, an immediate henselian function field may
not be defectless, though it is also a Kaplansky–field (since (Kf 1), (Kf 2) and (Kf 3)
are conditions only on the value group and the residue field). Similarly, there exist im-
mediate henselian function fields over algebraically closed ground fields of positive residual
characteristic which are not defectless fields. In both cases it turns out that it is not a
sufficient approach if we choose the transcendental element x without any care. We will
show that it is indeed possible to choose x well; we will do this under the assumption
that K is a perfect henselian defectless field of positive characteristic. This class of fields
includes the algebraically closed valued fields of positive characteristic and the henselian
defectless Kaplansky–fields of positive characteristic. Recall that “henselian defectless” is
the same as “algebraically complete”. For perfect fields of positive characteristic and for
Kaplansky–fields of positive characteristic, “algebraically complete” is equivalent to alge-
braically maximal which means that the valued field has no immediate algebraic extensions.
Our result for algebraically maximal perfect fields of positive characteristic is the following:

(Theorem 8.11) Let K be an algebraically maximal perfect field of positive characteristic
and F an immediate henselian function field over K. If its transcendence degree over K is
1, then F is a henselian rational function field over K. In the general case of transcendence
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degree ≥ 1, there is a finite immediate extension F ′ of F such that F ′ is a henselian rational
function field over K.

In Section 11 we will show that this theorem does not remain true if the condition
“perfect” is dropped without a substitute, cf. Corollary 11.9. Note that if we replace
the condition on the characteristic by “char(K) = 0” then the theorem remains true:
for every transcendence basis T of F |K we have F = K(T )h. This is proved as we
described above in the case of transcendence degree 1. In contrast to this short proof,
the proof of Theorem 8.11 requires the entire section 8, including material from other
sections, in particular from section 7. In section 8 we will give normal forms for certain
classes of immediate extensions, starting from a description of the structure of minimal
purely wild algebraic extensions of henselian fields of positive characteristic given by F.
Pop. The theory of purely wild algebraic extensions was developed by M. Pank [PAN1],
[PAN2] and is summarized in [KPR]. We will use it at several points as a basic tool for our
investigations. In particular, it is used in section 7 where algebraically complete perfect
fields of positive characteristic are characterized to be just the tame fields of positive
characteristic (cf. Lemma 7.2). A field K is called tame if its algebraic closure is a tame
extension in the sense of [KPR], and this holds if and only if its (absolute) ramification
field Kr is algebraically closed. The class of tame fields comprises almost all assumptions
on K that we have discussed so far:
– algebraically closed valued fields
– henselian fields of residual characteristic 0
– algebraically maximal Kaplansky fields
– algebraically maximal perfect fields of positive characteristic
are tame fields. The ℘–adically closed and the henselian finitely ramified fields are missing
in this list. But their valuation admits a finest coarsening under which they become a tame
field having a residue field of characteristic 0 with a discrete henselian valuation of residual
characteristic p > 0; this special structure guarantees that they are defectless fields.

It is likely that Theorem 8.11 holds more generally for all tame fields, and the methods
developed in this thesis already give some hints of a possible proof which would also have to
settle the case of “mixed characteristic” where char(K) = 0 and char(K) > 0. Nevertheless,
this problem exceeds the scope of the present investigations and has to be postponed to a
subsequent consideration.

For tame fields we will show an important property:

(Lemma 7.6) Let L be a tame field and K ⊂ L a relatively algebraically closed subfield.
If in addition L|K is an algebraic extension, then K is also a tame field and moreover,
v(K) is pure in v(L) and K = L.

This lemma is used several times in the proof of Theorem 8.11 and in the applications
of this theorem which we will describe in sections 9 and 10. It allows us to break up a
given transcendental extension of tame fields into an immediate and an “anti–immediate”
extension of tame fields (the meaning of the latter notion is explained below). Moreover,
it shows the immediate extension to be a tower of extensions of transcendence degree
1 of tame fields. Note that the lemma does not remain true if one replaces “tame” by
“algebraically complete” or drops the condition on the residue fields.

The second special case is somewhat the complement of the first: it is the “anti–im-
mediate” case. We have to make this precise. The assumption will be that the henselian
function field F |K has no transcendence defect, i.e.

trdeg(F |K) = trdeg(F |K) + rr(v(F )/v(K))

7



where rr(v(F )/v(K)) denotes the rational rank (i.e. the maximal number of rationally
independent elements) of the abelian group v(F )/v(K). The assumption is fulfilled if
constant reduction of function fields is studied: in this case we have by definition that

trdeg(F |K) = trdeg(F |K)

which implies rr(v(F )/v(K)) = 0 (cf. Lemma 2.19). For tame fields, extensions without
transcendence defect are indeed the complement to immediate extensions, in the following
sense: with the help of Lemma 7.6 it can be shown that every extension L|K of tame fields
admits a subextension L′|K such that L′ is a tame field, L′|K is an extension without trans-
cendence defect, and L|L′ is an immediate extension; this is the content of Corollary 7.8. In
this situation, every henselization of a finitely generated subextension L0 of L′|K is a hen-
selian function field without transcendence defect; we will use this fact and Corollary 7.8
when studying the model theory of tame fields of positive characteristic, as we will describe
below.

For henselian function fields without transcendence defect, we will prove in section 3:

(Theorem 3.1) Let F |K be a henselian function field without transcendence defect. If
K is a defectless field then F is a defectless field.

With the help of this theorem it is easy to show that a henselian function field F |K
without transcendence defect over a defectless ground field K is not only itself a defectless
field, but also that it has a simple structure: it is a finite defectless extension of a henselian
rational function field (cf. Theorem 3.2). Depending on the value group and the residue
field of F , the structure may even be much simpler. If for instance, F = K or F |K is a
rational function field and if v(K) is pure in v(F ), then F is a henselian rational function
field (cf. Theorem 3.4). If F |K is separable and v(K) pure in v(F ) then F h is “almost” a
henselian rational function field: it is a finite inert extension of a henselian rational function
field (cf. Theorem 3.4). These results together with Theorem 8.11 generalize a theorem
that was proved by M. Matignon in an unpublished paper [MAT1] and announced, together
with a sketch of the proof, in [MAT1a], cf. Théorème 3, p. 7, and in [MAT1b]. (Matignon
proves that the completion of F is the completion of a suitable rational function field,
under the following additional assumptions: v(F ) is of rank 1, i.e. archimedean, F = K,
and K is algebraically closed and complete with respect to the valuation v.)

Theorem 3.1 is a generalization of a theorem of Grauert and Remmert [GR] which works
with completions instead of henselizations and is restricted to the case of algebraically
closed complete ground fields of rank 1 (the value group is archimedean). A generalization
of the Grauert–Remmert Theorem was given by Gruson [GRU], an improved presentation
of it can be found in the book [BGR] of Bosch, Güntzer and Remmert. The proof uses
methods of nonarchimedean analysis. Further generalizations are due to M. Matignon and
J. Ohm; see also [GMP]. In a recent paper [OHM3], Ohm arrived independently of this
thesis at a version of Theorem 3.1 which is restricted to the case trdeg(F |K) = trdeg(F |K).
The idea of Ohm’s proof is to rule back the general case of valuations of arbitrary rank to
the case of rank 1 and to give an auxiliary argument for the transition from completions
to henselizations. In this way, he is able to deduce his theorem from [BGR], Proposition
3, p. 215 (more precisely, from the generalized version of this proposition which is proved
but not stated in [BGR]).

In contrast to this approach, we will give in section 3 a new proof which replaces
the analytic methods of [BGR] by valuation theoretical arguments. Such arguments may
seem to be more adequate for a theorem that appears to be of valuation theoretical nature.
Nevertheless, for the case of trdeg(F |K) > 0 there appears an argument in our proof which
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may be rather unexpected. We have to use the existence of certain bases for the function
field F |K which we will call Frobenius–closed bases. These are bases where every p–th
power of a basis element is also contained in the basis (here p denotes the characteristic
of K). The existence of such bases is shown at the end of section 3. It seems that the
deployment of such bases is fit to replace arguments of algebraic geometry that were used
in the “classical” approaches; it would certainly be an interesting task to determine the
connection between both methods.

Our proof of Theorem 3.1 also uses reduction to valuations of rank 1; further reduction
leads to Galois extensions of degree p = char(K) > 0 over a henselian “almost” rational
function field F0 over an algebraically closed ground field. Such a Galois extension is an
Artin–Schreier–extension generated by an element ϑ with ϑp − ϑ = a ∈ F0 if char(F ) = p,
and a Kummer–extension (by a p–th root of an element a ∈ F0) if char(F ) = 0. We
deduce a normal form for a which allows us to read off that the extension is defectless. A
normal form for a can also be read as a result on the structure of the group F0/℘(F0) resp.
F×

0 /(F×
0 )p. Such results can already be found in the work of Hasse, Whaples and others,

in the article “Eliminating wild ramification” of H. Epp [EPP], and in Matignon’s proof
of Theorem 3.1. In the case of char(F ) = 0, we have taken over Matignon’s approach to
replace a former proof which worked with extensions of the form ϑp − ϑ = a ∈ F0 but
did not lead to a normal form result for a (since it was an indirect proof, replacing an
extensions which was assumed to be immediate, by other immediate extensions).

A main application of generalizations of the Grauert–Remmert Theorem is that they
enable us to define a defect for valued function fields, which has good properties if the
function field has no transcendence defect. For an arbitrary algebraic extension L|K of
valued fields, the defect is defined to be

d(L|K) = d(Lh|Kh) =
[Lh : Kh]

(v(L) : v(K)) · [L : K]

if the extension Lh|Kh is finite; here the henselization Kh is always chosen inside of Lh.
The defect is a measure for the deviation from the property of being defectless. It is also
possible to use the respective ramification fields in the place of the henselizations in order
that the definition works in all cases where the extension Lr|Kr of the ramification fields
is finite; if in addition also Lh|Kh is finite then both definitions coincide (cf. p. 25 and
Lemma 2.10). Now the defect of a valued function field F |K may be defined to be

d(F |K) := sup
T

d(F |K(T )) ,

where the supremum runs over all transcendence bases T of F |K. For the case that F |K
has no transcendence defect, we will show in section 5 that this supremum is a finite
number and moreover, that it is equal to d(F |K(T )) for every valuation transcendence
basis T of F |K; this is the assertion of Theorem 5.4. A valuation transcendence basis
is a transcendence basis with special valuation theoretical properties, comparable to the
additional properties of a basis to be a valuation basis. Both, valuation bases and valuation
transcendence bases are defined and their basic properties are outlined in section 2.

Again, Theorem 5.4 was independently obtained by Ohm [OHM3] in the case where
trdeg(F |K) = trdeg(F |K). He calls this result “Independence Theorem” since it shows the
independence of the defect from the chosen valuation transcendence basis. In section 5, we
will carry through a closer investigation of the defect of function fields without transcen-
dence defect, in particular, we will connect it to certain algebraic extensions of the ground
field K and their defect, cf. Theorem 5.4 and Corollary 5.6.
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Matignon [MAT2] and later Green, Matignon and Pop [GMP] use different a definition
of the defect of valued function fields for the formulation and the proof of important
genus reduction inequalities. These inequalities connect the genus of a function field F |K
of transcendence degree 1 (where K is the exact constant field) with the genera of the
reduced function fields

F/vi |K/v (1 ≤ i ≤ s)

where the valuations vi are distinct prolongations of a given valuation v on K, all valuations
being of rank 1 and such that all extensions F/vi |K/v are transcendental, hence finitely
generated of transcendence degree 1. The defect used here coincides with the “henselian”
defect that we have introduced above, if (K, v) is henselian (see [GMP] for details). Recent
generalizations of Matignon’s results to valuations of arbitrary rank (cf. [GMP]) have led
to an increased interest in several possible notions of the defect for valuations of arbitrary
rank (and the corresponding independence results).

Matignon and Ohm (cf. [MAT2],[OHM3]) have used a completion defect which measures
the defect (for valuations of rank 1) using completions instead of henselizations; it can
be analogously defined for valued function fields. This defect is always less or equal to
the henselian defect. In [MAT2], Matignon has shown an independence result for the
completion defect of valued function fields (for valuations of rank 1). Apart from the
defect for general function fields without transcendence defect that we discussed already,
we will study in section 5 a possible generalization of the completion defect. Since for
valuations of arbitrary rank, the completion is in general not henselian, we will measure
the defect over the completion of the henselization: we will define the completion defect to
be

dc (L|K) := d(Lhc|Khc) ,

where “.hc” denotes the completion of a henselization. This defect coincides with Matignon’s
and Ohm’s completion defect if the valuation is of rank 1.

We will characterize those extensions for which the completion defect is equal to the
henselian defect, and compute the defect quotient which will be defined to be the quotient
of the henselian defect and the completion defect:

dq (L|K) :=
d(L|K)

dc (L|K)
=

[L : K]insep

[Lc : Kc]insep

where “. c” denotes the completion (cf. Corollary 5.14). For the proof, a special character-
ization of elements of henselizations is required. We will discuss this when talking about
approximation types.

The completion defect of valued function fields without transcendence defect may be
defined similarly as it was done for the henselian defect. In subsection 5.2, we will prove the
Independence Theorem for the completion defect and the defect quotient (Theorem 5.22).
Furthermore, we will study the behaviour of henselian defect, completion defect and defect
quotient under a given decomposition of the valuation (Corollary 5.8 and Corollary 5.33).

A valued field K is called c–defectless (resp. q–defectless) if every finite extension L|K
has trivial completion defect (resp. defect quotient). As an analogue to Theorem 3.1, we
will prove for the defect quotient:

(Theorem 5.20) Let F be a henselian function field without transcendence defect over
K. Assume that K is a q–defectless field or that v(K) is not cofinal in v(F ). In both cases,
F is a q–defectless field.
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The properties of being “c–defectless” or “q–defectles” are weaker than “defectless”.
Another pair of weaker properties are inseparably defectless (= every finite purely insepa-
rable extension is defectless) and separably defectless (= every finite separable extension
is defectless). For the first property, a theorem which corresponds to Theorem 3.1 is the
following:

(Theorem 4.16) Let F |K be a henselian function field without transcendence defect. If
K is inseparably defectless then F is inseparably defectless.
A special case of this theorem is actually one step in the proof of Theorem 3.1, but results
from section 4 are needed to obtain it in full generality.

The corresponding theorem for the second property is:

(Theorem 5.29) Let F |K be a henselian function field without transcendence defect. If
K is separably defectless and v(K) is cofinal in v(F ) then F is separably defectless.

For the proof of this theorem, we will first study the properties of separably defect-
less fields in section 4. This will enable us to characterize these fields as just being the
c–defectless fields, and on the basis of this identification the theorem will be proved in
section 5 (cf. Lemma 5.28 and Theorem 5.29). Since the notion “separably defectless”
appears to be quite natural, this identification also shows that it is a reasonable approach
to measure the defect over the completion of the henselization. This in turn means that
completions are of interest even for valuations of arbitrary rank; indeed, they eliminate
immediate extensions of a very special form (which in some sense are not as “wild” as the
other immediate algebraic extensions of henselian fields).

Section 4 is devoted in particular to the characterization of henselian defectless fields.
The result which is used for the proof of Theorem 5.29 is the following:

(Theorem 4.19) Let K be a separable–algebraically complete (= separably defectless hen-
selian) field of characteristic p > 0. If in addition Kc|K is separable, then K is algebraically
complete.
A slightly different characterization for henselian fields is given by the following Corollary
to Theorem 4.19:

(Corollary 4.20) Let K be a henselian field of characteristic p > 0. If K is a separable–
algebraically complete field, then Kc is an algebraically complete field, and vice versa.

Furthermore, we will prove

(Theorem 4.17) Let K be a separable–algebraically maximal field of characteristic p > 0.
If in addition K is inseparably defectless, then K is algebraically complete.
This theorem shows that a valued field is algebraically complete if and only if it is algebra-
ically maximal and inseparably defectless (since the two latter properties are consequences
of “algebraically complete”).

The key to these theorems and to other results in section 4 is the closer investigation
of immediate extensions of degree p (where 0 < p = the characteristic of the residue field
of the given valued field). These extensions are crucial since every finite extension L|K of
a henselian field K, if lifted up through a tame extension N |K, will become an extension
L.N |N which is a tower of normal extensions of degree p where some of them are immediate
if L|K is not defectless (cf. Lemma 3.15). This reduction to normal extensions of degree p
is also a main ingredient of the proof of Theorem 3.1 in section 3. If the characteristic of
K is p, then normal extensions of degree p are either purely inseparable or Artin–Schrei-
er–extensions. Both are studied in section 3 and 4. In the setting of section 3, we will
deduce certain normal forms for Artin–Schreier–extensions in order to prove that they are
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defectless under the given assumptions. After gaining some familiarity with such Artin–
Schreier–extensions, the significance of Frobenius closed bases is no longer as surprising as
may appear at first sight.

The characterization of henselian defectless fields which is given by Theorem 4.17, is
very helpful if one wants to construct henselian defectless fields, as it is done in section 11.
The “classical” method of just taking maximally valued fields (which are always henselian
defectless fields) is too coarse for certain purposes, and section 11 establishes an interesting
example for this fact. Dealing now with nonperfect fields of characteristic p > 0, we will
give a valuation theoretical axiom (suggested by L. van den Dries) for valued fields of
p–degree 1 (cf. page 144):

∀x∃y∃x0, ..., xp−1 :

(x0 = 0 ∨ v(x0) = 0) ∧ x = yp − y + x0 + txp
1 + ... + tp−1xp

p−1 . (3)

We will show that it is satisfied by all maximally valued fields of p–degree 1, hence in
particular by the power series field IFp((t)). On the other hand, we succeed in constructing
an algebraically complete field (K, v) of p–degree 1 which does not satisfy this axiom: there
is an element x ∈ K which is not of the form

x = yp − y + x0 + txp
1 + ... + tp−1xp

p−1 with x0 = 0 ∨ v(x0) = 0 (4)

in K. But we will construct an immediate function field of transcendence degree 1 over
(K, v) in which x is of the form (4). The model theoretical consequence of this will
be discussed later. Here, we should state that it can be deduced that F cannot be a
henselian rational function field over K, hence Theorem 8.11 does not remain true if “alge-
braically maximal and perfect” (which is equivalent to “algebraically complete and perfect”
if char(K) = p > 0) is replaced just by “algebraically complete”.

Finally, we want to mention valuation theoretical results obtained in section 10 by an
application of one of the model theoretical results, namely the AKE–principle for algebra-
ically maximal perfect fields of positive characteristic (which we will describe later).

In the article [KP], Prestel and the author deduced results on places of function fields
over ground fields of characteristic 0, using the AKE–principle for henselian fields of residual
characteristic 0. By an application of the AKE-principle for algebraically maximal perfect
fields of positive characteristic, it is possible to generalize two results of [KP] to the case of
perfect ground fields (of arbitrary characteristic). The generalization of the Main Theorem
of [KP] reads as follows:

(Theorem 10.1) Let F |k be a function field in n variables with perfect ground field k.
Let Q be a place of F |k and x1, ..., xm, xm+1, ..., xm+s ∈ F . Then there exists a place P of
F |k with a finitely generated residue field over k such that

xiQ = xiP for 1 ≤ i ≤ m ,
vQ(xi) = vP (xi) for m + 1 ≤ i ≤ m + s .

Moreover, if r1 and d1 are natural numbers satisfying

dim(Q) ≤ d1 ≤ n− 1 , rr(Q) ≤ r1 ≤ n− d1 ,

then P may be chosen to satisfy in addition:

(1) dim(P ) = d1 and FP is a subfield of a purely transcendental extension of the
perfect hull of FQ, finitely generated over k,
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(2) rr(P ) = r1 and vP (F ) is a finitely generated subgroup of a discrete lexicographic
extension of the p–divisible hull of vQ(F ), where p = char(k) > 0 or p = 1 if char(k) = 0.

For the other generalized result, see Theorem 10.2, p. 141. Note that the second
important ingredient for the proof of these generalizations is Lemma 7.6 on relatively
algebraically closed subfields of tame fields, which we have already introduced above.

1.2 Results on the model theory of valued fields.

The theory of henselian function fields that we have described so far, has interesting appli-
cations to the model theory of valued fields. We will consider AKE–fields, i.e. valued fields
(K, v) that satisfy the following Ax–Kochen–Ershov–principle (“AKE–principle”):
if (L, v)|(K, v) is an extension of valued field such that

v(K) ≺∃ v(L) and K ≺∃ L ,

i.e. v(K) is existentially closed in v(L) in the language of ordered groups resp. K is exis-
tentially closed in L in the language of fields, then

(K, v) ≺∃ (L, v)

i.e. (K, v) is existentially closed in (L, v) in the language of valued fields.

For a submodel N of a model M, the notion “N ≺∃ M” means that every existential
sentence with constants from N , which holds in M, will also hold in N . An elementary
class of valued fields, in which every member is an AKE–field, will be called AKE–class.
This notion is basic, in so far as model completeness and completeness results may be
derived from it. Indeed, if an elementary class K of valued fields is an AKE–class, then it
is model complete, provided that the classes

v(K) = {v(K) | (K, v) ∈ K}
K = {K | (K, v) ∈ K}

of value groups and residue fields are elementary model complete classes. Furthermore,
in many cases completeness can be deduced from model completeness by means of prime
models.

The following classes of valued fields were shown to be AKE–classes (in literature, this
was usually implicitly proved by corresponding model completeness results):

a) The class of all algebraically closed valued fields (by A. Robinson [ROB]). This may be
viewed as the beginning of the (explicit) model theory of valued fields. For applications of
Robinson’s result in number theory, see [ROQ2].

b) The class of all henselian fields of residual characteristic zero (by Ax and Kochen [AK1]
and, independently, by Ershov [ER3]). An application of this result to diophantine prob-
lems concerning the p–adics was given by Ax and Kochen in [AK1]. A short proof, this
time using the notation “existentially closed”, and an application to places of function
fields was given by Prestel and the author in [KP].

c) The class of all ℘-adically closed fields (by Ax and Kochen [AK2] for p–adically closed
fields; cf. also Prestel and Roquette [PR]).

d) The class of all henselian valued fields of finite ramification (by Ershov [ER5]; cf. also
Ziegler [ZIE]).
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e) The class of all algebraically maximal Kaplansky–fields (by Ershov [ER4]; cf. also Ziegler
[ZIE]).

f) The class of all separable–algebraically maximal Kaplansky–fields of characteristic p > 0;
but here one has to add predicates for p–independence to the language of valued fields (by
Delon, cf. [DEL1]); this means that the AKE–principle is restricted to separable exten-
sions L|K. “separable–algebraically maximal” means that these fields have no separable–
algebraic immediate extension. This result is interesting in so far as a weakening of the
condition “algebraically maximal” may be compensated by additional predicates.

In addition to these results, we will prove in section 9:

(Theorem 9.5) Every tame field of positive characteristic is an AKE–field.
We have said above that tame fields of positive characteristic are the same as algebraically
maximal perfect fields of positive characteristic, so this is the AKE–principle for algebrai-
cally maximal perfect fields of positive characteristic which we have mentioned already in
connection with its application to places of function fields over perfect ground fields.

Direct proofs for all above classes to be AKE–classes may be carried out by means of
embedding lemmata. It is deducible from general model theory that (K, v) is existentially
closed in (L, v) if and only if (L, v) is embeddable over (K, v) into every |L|+–saturated ele-
mentary extension (K, v)∗ = (K∗, v∗) of (K, v); by an “embedding of (K, v)” we will always
mean a valuation–preserving embedding. This makes sense since we assume v(K) ≺∃ v(L)
and K ≺∃ L which by the same principle as we have sketched for valued fields, shows that
v(L) may be viewed as embedded into v∗(K∗) over v(K), and L/v as embedded over K/v
into K∗/v∗; here “/v” and “/v∗” denote the respective residue fields. (Note that v∗(L∗) is
|L|+–saturated and thus also |v(L)|+–saturated, and an analogue holds for L∗/v∗). Fur-
thermore, it is deducible from general model theory that (L, v) is embeddable in this way
if already every finitely generated subextension (L0, v) of (L, v)|(K, v) is embeddable over
(K, v) into (K, v)∗. Now a finitely generated extension L0|K is nothing else but a function
field over K, so at this point, we encounter anew valued function fields.

On the other hand, it can be shown that a valued field will only satisfy the AKE–
principle if it is henselian (more precisely, it must even be algebraically complete, cf.
Lemma 11.2). In the above approach this means that (K, v) and also (K, v)∗ (being an
elementary extension of (K, v) ) will be henselian. In this situation, we will ask for an
embedding of a henselization (L0, v)h of (L0, v) over (K, v) into (K, v)∗; such embedding
would yield the desired embedding of (L0, v) just by restriction. Though we are now dealing
with the larger field (L0, v)h, we gain the possibility of using helpful structure theorems for
the henselian function field (F, v) = (L0, v)h.

To illustrate this, we want first to sketch the case where the extension (F, v)|(K, v)
is immediate: let us assume v(K) = v(F ) and K = F , which trivially yields that the
conditions “v(K) ≺∃ v(F )” and “K ≺∃ F” are fulfilled. In addition, let us assume that
the transcendence degree of F |K is 1. In order to solve the embedding problem, a suitable
property has to be imposed on (K, v) (as we have mentioned already, (K, v) has to be
algebraically complete if the AKE–principle should be satisfied in the simple language of
valued fields).

Let us now assume that (K, v) is a tame field of positive characteristic. By Theo-
rem 8.11 that we have cited above, we know that (F, v) is a henselian rational function
field (K(x), v)h for a suitable x ∈ F which is transcendent over K. Using that (K, v)∗

is highly enough saturated by assumption, it is possible to embed (K(x), v) over (K, v)
into (K, v)∗, cf. Embedding Lemma III, p. 132. Such embedding can be prolongated to an
embedding of K(x)h; this follows from the fact that (K, v)∗ is henselian and the universal
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property of henselizations (they are “minimal” henselian extensions, i.e. they admit a val-
uation preserving embedding into every other henselian extension field). The henselization
may be viewed as a certain closure which is unique up to valuation preserving isomorphism.
It is interesting to see that apart from the above approach which uses the henselian ratio-
nality, the embedding problem for the mentioned classes a) – e) may as well be solved by
using the uniqueness (up to valuation–preserving isomorphism) of suitable closures:
– the algebraic closure in the case of algebraically closed valued fields,
– the henselization for the classes as described in b), c), d),
– the henselization and its maximal algebraic purely wild extensions in the case of
Kaplansky–fields.
(A similar situation is found for real fields: the uniqueness of the real closure may serve to
prove an embedding lemma from which model completeness can be deduced.)

The solution of the special embedding problem yields that tame fields of positive char-
acteristic are existentially closed in every immediate extension of transcendence degree 1
(cf. Corollary 9.3). On the other hand, we are able to show that this does not remain true
if “tame” is replaced by “algebraically complete”. This is done in section 11 by using the
example that we have introduced above. Recall that this example consists of an algebra-
ically complete field (K, v) of p–degree 1, admitting an element x ∈ K which is not of
the form (4), together with an immediate function field (F, v) of transcendence degree 1
over K in which x is of the form (4). The fact that x is of the form (4) is an existential
sentence with just two constants, namely x and t, both of them being elements of K. Since
this sentence holds in F but not in K, we see that (K, v) is not existentially closed in the
immediate function field (F, v). Hence we conclude that
in general, algebraically complete fields do not satisfy the AKE–principle.
Moreover, since every maximally valued field (of p–degree 1) satisfies the axiom (3) as we
mentioned above, (K, v) is an example of an algebraically complete field which does not
have the property of admitting a maximal immediate extension in which it is existentially
closed. On the other hand, the latter property can be shown to imply “algebraically com-
plete” (cf. Lemma 11.2), so it is stronger than “algebraically complete”. It is an open
question whether this property allows an algebraic axiomatization.

For the proof of the AKE–principle for tame fields of positive characteristic, it is nec-
essary to deal also with the case of henselian function fields without transcendence defect.
From Theorem 3.1 we will deduce in section 6 the AKE–principle for extensions without
transcendence defect of algebraically complete fields:

(Theorem 6.4) If (L, v) is an extension without transcendence defect of the algebraically
complete field (K, v) then the “side conditions”

v(K) ≺∃ v(L) and K ≺∃ L

imply
(K, v) ≺∃ (L, v) .

Note that this theorem is not only of interest for the proof of the AKE–principle for tame
fields of positive characteristic: contrary to the case of immediate extensions, it works
already for all algebraically complete ground fields. There is no elementary axiomatization
of the class of extensions without transcendence defect of algebraically complete fields,
hence at this point it turns out to be adequate to investigate a single extension rather
than all extensions in an elementary class. Moreover, the notion “≺∃” appears to be
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more adequate than “≺”, since Theorem 6.4 becomes false if we replace ≺∃ by ≺. As an
example for this fact, we can use again the algebraically complete field (K, v) which does
not satisfy the axiom (3). Indeed, we will construct (K, v) to be an extension without
transcendence defect of the henselian field (IFp(t), v)h (valued such that v(t) is the smallest
positive element in the value group), and this extension even satisfies

v(IFp(t)
h) = ZZ ≺ v(K)

IFp(t)h = IFp ≺ K ;

on the other hand, we will show that (IFp(t), v)h satisfies (3); this will be done in Lemma 11.3.
Since (K, v) does not satisfy (3), we have (IFp(t), v)h 6≺ (K, v).

Let us return again to the class of tame fields of positive characteristic. This class
appears at the first glimpse to be only a slight generalization of the class of all algebraically
maximal Kaplansky–fields, since only condition (Kf 3) is dropped. Nevertheless, this turns
out to be a qualitative difference in two respects. Firstly, it allows a fruitful application
to places of function fields over perfect fields of positive characteristic, whereas to our
knowledge, the AKE–principle for algebraically maximal Kaplansky–fields has found no
applications to algebra (except for the subclass of algebraically closed valued fields which
is already covered by Robinson’s model completeness result). Though the very special
form of Kaplansky–fields has evoked a nice structure theory (Kaplansky [KAP1]) and a
nice Galois theoretical interpretation (cf. [KPR]), it seems that for applications, these
valued fields are of minor interest.

Secondly, with tame fields of positive characteristic we encounter the first AKE–class of
fields whose maximal immediate extensions are in general not unique up to isomorphism.
We may thus conclude that this property is not necessary for fields to be AKE–fields, and
it is adequate to replace its use by a good structure theory for henselian function fields.

Finally, model theoretical questions about valued fields have led to the discovery of the
interesting new axiom (3) for valued fields, and a whole scheme of axioms related to it,
which remain to be studied carefully. Since these axioms show a certain relation to the
theory of purely wild extensions of henselian fields, there is some hope that they are fit to
replace the insufficient axiom “algebraically complete” in the case of nonperfect fields. But
also from the valuation theoretical viewpoint, the investigation of fields satisfying these
axioms should be interesting and fruitful.

1.3 A valuation theoretical tool of independent interest: approx-
imation types.

We will use the new notion of approximation types at several instances. We use them
instead of pseudo Cauchy sequences which have been developed by Ostrowski [OS] and
Kaplansky [KAP1]. The concept of approximation types is more intrinsic than the one
of pseudo Cauchy sequences, and they eliminate the arbitrariness that lies in the choice
of one single pseudo Cauchy sequence. Moreover, they facilitate computations as well
as the comparison of two different elements in a valued field extension concerning their
approximation by elements from the ground field.

One basic advantage of approximation types in comparison to pseudo Cauchy sequences
is that they allow the treatment of elements in valued field extensions with a uniform
machinery, whether the extension is immediate or not. For instance, an element in a
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valued field extension L|K may be the limit of a pseudo Cauchy sequence over K, whereas
over an intermediate field K ′ of L|K it may not. In this situation, pseudo Cauchy sequences
are not adequate for a proper analysis. Furthermore, only pseudo Cauchy sequences which
cannot be prolongated, carry the full information. For the formulation of certain properties,
one would thus be forced to restrict the scope to those pseudo Cauchy sequences which are
maximal, i.e. which cannot be prolongated. In contrast to pseudo Cauchy sequences, the
definition of approximation types guarantees in itself the maximality, the full information.

In section 2, we will give a purely valuation theoretical definition of approximation
types. They may be viewed as filters which do not forget the values, or as a collection of
cosets. In section 12, we will give a full presentation of the theory of approximation types
as far as we were able to develop it. Since we are trying by this to replace a classical notion,
we did not respect the frame that is set by applications in other chapters; in other words,
we have developed the major part of the theory for its independent interest. It covers the
theory of pseudo Cauchy sequences and exceeds it at several points.

Starting from the abstract valuation theoretical definition of approximation types, we
will show in section 12 how approximation types can be determined by sets of simple
formulas, which may be considered as subsets of 1–types over the valued ground field.
We will also show the relation to the reduct of these types to the language of valued
vector spaces over the given ground field. This idea is recovered later when a transfer of
Kaplansky’s theory of pseudo Cauchy sequences leads to the determination of valued vector
spaces whose valuation is fixed by the approximation type. The interpretation of approxi-
mation types as subsets of 1–types also enables us to show that every approximation type
over a valued ground field K is realized by an element x in a valued field extension, so
an approximation type is no longer as abstract as appeared by its definition. In certain
cases (e.g. if the approximation type is immediate, cf. section 2), we may even assume that
(K, v) is existentially closed in (K(x), v).

The immediate approximation types are the analogue to pseudo Cauchy sequences. For
them we will define a degree and the distinction whether they are algebraic or transcendent.
Parallel to the theory of Kaplansky, we will show that algebraic approximation types
are realized in certain immediate algebraic extensions, and that transcendent approxi-
mation types are realized in certain immediate transcendent extensions. As to these results,
they are merely a transposition of Kaplansky’s work, just a bit more detailed. Then
associated minimal polynomials may be associated to algebraic approximation types; these
are the potential minimal polynomials for those immediate algebraic extensions in which
the approximation type can be realized. In his Lemma 10 in [KAP1] which Kaplansky
states without using it further, the idea is expressed that for such associated minimal
polynomials, interesting normal forms can be found. However, Kaplansky’s hypothesis
in Lemma 10 is quite restrictive. Developing Kaplansky’s approach further, we will give
normal forms in full generality.

One reason for the deployment of approximation types is to distinguish properties of
elements in valued field extensions over a common ground field by their approximation
types over that ground field. This principle will be used in section 4 for the classification
of immediate extensions of degree p of a henselian ground field. A second application is
the proof that approximation types of elements in henselizations over a valued field have
a special structure. This leads to the following lemma which in turn is used for the study
of the completion defect:

(Lemma 12.77) Let x, y ∈ K̃, y /∈ K. Assume appr(y, K) = appr(x,K) and x ∈ Kh.
Then

[Kh(y) : Kh] < [K(y) : K] .
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In particular, K(y)|K is not purely inseparable.

Through this and other examples, it appears that the new tool of approximation types
is suitable to describe properties and situations which had been remote before. We hope
that the approaches and tools as well as the new results that we introduce in this thesis,
will help to get access to some of the unsolved problems in valuation theory and the model
theory of valued fields.
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2 Preliminaries.

Throughout this dissertation we will work in a large enough fixed algebraically closed
topologically complete valued field (Ω, v) that contains all other appearing valued fields.
In doing so, every appearing field (K, v) has a unique henselization (Kh, v) which is the
relative henselization inside the henselian field (Ω, v). In this sense we will speak of the
henselization of a field K. In an analogous way we will speak of the completion Kc of K,
assuming for the moment that this completion is the unique one in Ω, i.e. that v(F ) is
cofinal in v(Ω). This guarantees that for every extension L|K of valued fields we will have
Kh ⊂ Lh and moreover that for every extension L|K with v(K) being cofinal in v(L) we
will have Kc ⊂ Lc. For general valuation theory and in particular for the definition and
the properties of henselization and completion, see [RIB1].

Here are some basic definitions of objects that we will deal with:

An extension field F of a valued field K will be called a henselian function field if it is
the henselization of an ordinary valued function field F0 over K. If F is the henselization
of a rational function field F0 over K then F will be called a henselian rational function
field over K. Furthermore, F will be called a subhenselian function field over K if its
henselization is a henselian function field over K, i.e. if F is an intermediate field between
a suitable function field and its henselization. Finally, an algebraic extension L|K will be
called h–finite if the extension Lh|Kh is finite. For h–finite extensions and subhenselian
function fields we note the following easy observations:

Lemma 2.1 Let E and F be subhenselian function fields over K. Then for every trans-
cendence basis T of F |K, the extension F |K(T ) is h–finite. If E is algebraic over F , then
E|F is an h–finite extension. Any h–finite purely inseparable extension is finite.

For a finite extension L|K over a henselian field K we will denote by d(L|K) the
ordinary defect of the extension L|K, i.e.

d(L|K) =
[L : K][

L : K
]
· (v(L) : v(K))

.

Here, the prolongation of the valuation v from K to L is uniquely determined since K is
assumed to be henselian. But also in general the prolongation is fixed by our convention
to work in a comprising valued field Ω, thus it is convenient to take the following definition
for the defect of an extension of not necessarily henselian fields: for an h–finite extension
L|K over an arbitrary, not necessarily henselian field K we define the defect of L|K to be

d(L|K) = d(Lh|Kh) .

In the literature, it is sometimes called the henselian defect. An h–finite extension L|K is
called defectless if d(L|K) = 1. Note that in the case of a finite normal extension L|K, this
extension is defectless in the sense defined here if and only if it is defectless in the classical
valuation–theoretical sense, i.e. if

[L : K] = e · f · g

where g is the number of different prolongations of the valuation v from K to L, and e resp.
f are the ramification index resp. residue degree common to all these prolongations. The
valued field K is called a defectless field if every finite extension of K is defectless. Similarly,
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it is called separably defectless if every finite separable extension of K is defectless, and
inseparably defectless if every finite purely inseparable extension of K is defectless.

For the most general definition of the defect see (9) on page 25 below. This definition
will work for extensions L|K for which the extension Lr|Kr of their respective ramification
fields is finite. It will be employed when we study the behaviour of the defect under
decompositions of the valuation.

Finally, we recall the following definitions which we will frequently use. An extension
L|K of valued fields is called immediate if v(L) = v(K) and L = K. (Note that in
particular, the henselization of a valued field is an immediate extension.) A valued field
K is called algebraically maximal if it admits no nontrivial immediate algebraic extension,
and maximal or maximally valued if it admits no nontrivial immediate extensions at all. K
is called algebraically complete if it is henselian and defectless, i.e. if every finite extension
L|K admits a unique prolongation of the valuation and satisfies [L : K] = e · f .

2.1 Some generalities about the defect and defectless fields

The following lemma is an easy consequence of our definition of the defect:

Lemma 2.2 A valued field K is a defectless field if and only if its henselization is a
defectless field. The same holds for “separably defectless” and “inseparably defectless” in
the place of “defectless”.

Furthermore we note the important

Lemma 2.3 (Lemma of Ostrowski)
The defect d(L|K) is always a power of p where p = char(K) > 0 resp. p = 1 if char(K) =
0. In particular, every valued field of residue characteristic 0 is a defectless field.

For the proof cf. [RIB1], p. 236, Théorème 2. In the literature it is even more usual to
call e the defect of L|K if pe = d(L|K) (which turns the multiplicativity of the defect
into additivity), but we suggest our use of the defect because it makes formulas easier and
allows a generalization to valued vector spaces which will be developped in a subsequent
paper.

Let us also recall

Lemma 2.4 Every algebraically complete field is algebraically maximal since the defect of
a finite immediate extension equals the degree of the extension. Every algebraically maximal
field is henselian since the henselization is an immediate algebraic extension. For valued
fields of residue characteristic 0, the properties “henselian”, “algebraically maximal” and
“algebraically complete” are equivalent by the Lemma of Ostrowski.

A subset S of a valued extension field L of K will be called linearly valuation–independent
over K if

v(
∑

s∈S

css) = min
s∈S

v(css)

for every choice of coefficients cs ∈ K, only finitely many of them being nonzero. In
particular, a set S is linearly independent over K if it is linearly valuation–independent
over K. A basis B of the valued field extension L|K will be called valuation basis of
F |K if it is linearly valuation–independent over K. We note the following two well known
lemmata:
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Lemma 2.5 Let L|K be a valued field extension and

{z1, ..., zm, u1, ..., un} ⊂ L

such that the values v(z1), ..., v(zm) ∈ v(L) belong to different cosets modulo v(K) and that
u1, ..., un are elements of OL having residues u1, ..., un ∈ L which are linearly independent
over K. Then S = {ziuj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is linearly valuation–independent over
K.

Lemma 2.6 Assume that the finite valued field extension L|K admits a unique prolon-
gation of the valuation from K to L. Then L|K is defectless if and only if it admits a
valuation basis. If L|K admits a valuation basis, then it also admits a valuation basis
containing 1.

The defect is multiplicative in the following sense:
Let L|K and M |L be h–finite extensions. The defect satisfies the following product formula

d(M : K) = d(M : L) · d(L : K) (5)

which is a consequence of the multiplicativity of the degree of field extensions and of
ramification index and inertia degree. This formula implies:

Lemma 2.7 M |K is defectless if and only if M |L and L|K are defectless.

Corollary 2.8 If K is a defectless field and if L is a finite extension of K then L is also
defectless. Conversely, if there exists a finite extension L of K such that L is a defectless
field and the extension L|K is defectless, then K is a defectless field. The same holds for
“separably defectless” and “inseparably defectless” in the place of “defectless”.

For some proofs in the sequel we assume the reader to be familiar with tame and purely
wild extensions of valued fields as described in [KPR]. Their definitions and some basic
facts will be recalled at the beginning of section 7. We will now consider the behaviour
of the defect when a finite extension L|K of a henselian field K is shifted up through a
tame extension N |K. We will frequently use the (absolute) ramification field Kr of the
henselian field K, which by Proposition 4.1 of [KPR] is the unique maximal tame algebraic
extension of K; it is a normal separable extension of K. By Lemma 4.2 of [KPR], an
algebraic extension L|K is purely wild if and only if it is linearly disjoint from Kr|K.
If K is not henselian, then Kr is defined to be the ramification field of Kh; since Kh is
uniquely determined by working in a fixed valued universe, so is Kr. Moreover, we need
the following information on Kr:

Lemma 2.9 Let L|K be algebraic. Then Lr = L.Kr; consequently, if L ⊂ Kr, then
Lr = Kr. The separable closure Ksep of K is a p–extension of K for p = max{1, char(K)}.
Furthermore, L∩Kr|K is the maximal tame subextension of L|K, and L|L∩Kr is purely
wild.

Proof: For separable extensions, the first assertion follows from [END2], page 166,
(20.15) b) (where we put N = Ksep since we denote by ramification field the ramification
field of the separable extension Ksep|K ). Since a general algebraic extension can be viewed
as a purely inseparable extension of a separable extension, it remains to show the first
extension for a purely inseparable extension L|K. Here, it follows from the fact that
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Gal(K) ∼= Gal(L) and that by this isomorphism, the galois group of an intermediate field
K ′ of Ksep|K is isomorphic to the galois group of the intermediate field L.K ′ of Lsep|L.
The second assertion follows from [END2], p. 167, Theorem (20.18).

For the third assertion, the fact that Kr is the unique maximal tame extension of K
shows that L∩Kr|K is the maximal tame extension contained in L|K. It remains to show
that L|L∩Kr is purely wild. By what we have shown, (L∩Kr)r = Kr. Hence we have to
show that L|L ∩Kr is linearly disjoint from Kr|L ∩Kr. In view of the fact that Kr is a
normal extension of K and thus also of L∩Kr, the latter is equivalent to L∩Kr = L∩Kr

which is a triviality. 2

The next lemma will be needed at several instances in our work. It shows the invariance
of the defect under a lifting up through tame extensions.

Lemma 2.10 Let K be a henselian field and N an arbitrary tame algebraic extension of
K. If L|K is a finite extension, then

d(L|K) = d(L.N |N) .

In particular, L|K is defectless if and only if L.N |N is defectless. This implies: K is
a defectless field if and only if N is a defectless field, and the same holds for “separably
defectless” and “inseparably defectless” in the place of “defectless”.

Proof: We put L0 := L∩Kr where Kr denotes the ramification field of K. Since L0 and
N are subfields of Kr, we have Lr

0 = Kr, N r = Kr and (L0.N)r = Kr by Lemma 2.9. Again
by Lemma 2.9, L0|K is the maximal tame subextension of L|K, and L|L0 is purely wild.
Thus L|L0 is linearly disjoint from Kr|L0 which yields that L.N |L0.N is linearly disjoint
from Kr|L0.N . This shows that L.N |L0.N is purely wild and that consequently L0.N |N
is the maximal tame subextension of L.N |N (L0.N |N is tame since L0.N ⊂ Kr = N r).
Note that L0.N |L0 and L0.N |K are tame extensions because L0.N ⊂ Kr = Lr

0.
Both extensions L0|K and L0.N |N are defectless, since they are tame; hence

d(L|K) = d(L|L0) and d(L.N |N) = d(L.N |L0.N) .

It remains to show d(L|L0) = d(L.N |L0.N). Now L|L0 (being a purely wild extension) is
linearly disjoint from the tame subextension L0.N |L0 of Kr|L0. In view of L.N = L.(L0.N)
we thus find

[L.N : L0.N ] = [L : L0] . (6)

Since L|L0 is purely wild, v(L)/v(L0) is a p-group and L |L0 is purely inseparable. On the
other hand, since L0.N |L0 is tame, v(L0.N)/v(L0) has no elements of order divisible by p,
and L0.N |L0 is separable. This shows that

(v(L) + v(L0.N) : v(L0.N)) = (v(L) : v(L0))

[L . L0.N : L0.N ] = [L : L0]

Consequently, we find

(v(L.N) : v(L0.N)) ≥ (v(L) + v(L0.N) : v(L0.N)) = (v(L) : v(L0)) (7)

[L.N : L0.N ] ≥ [L . L0.N : L0.N ] = [L : L0] (8)

On the other hand, if “>” would hold in one of these inequalities, then v(L.N0) 6= v(L) +
v(N0) or L.N0 6= L . N0 would hold already for a finite tame subextension N0|L0 of L0.N |L0.
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But since v(N0) is linearly disjoint from v(L) over v(L0) (in the group theoretical sense)
and N0 is linearly disjoint from L over L0, we have

(v(L) + v(N0) : v(L)) = (v(N0) : v(L0))

[L . N0 : L] = [N0 : L0] .

Using this and the fact that N0|L0 is tame, hence defectless and linearly disjoint from L|L0,
we compute:

[L.N0 : L] ≥ (v(L.N0) : v(L)) · [L.N0 : L]

≥ (v(L) + v(N0) : v(L)) · [L . N0 : L]

= (v(N0) : v(L0)) · [N0 : L0]

= [N0 : L0] ≥ [L.N0 : L] ,

showing that “=” holds everywhere and that

v(L.N0) = v(L) + v(N0) , L.N0 = L . N0 .

We have shown that “=” holds in (7) and (8). From this and (6) we deduce

d(L.N |L0.N) =
[L.N : L0.N ]

(v(L.N) : v(L0.N)) · [L.N : L0.N ]

=
[L : L0]

(v(L) : v(L0)) · [L : L0]

= d(L|L0) .

It remains to show the second assertion. Assume that N is a defectless field and let L|K
be an arbitrary finite extension. Then by hypothesis, L.N |N is defectless; hence by what
we have shown, L|K is defectless. Since L|K was arbitrary, K is shown to be a defectless
field. Note that L.N |N is separable if L|K is separable, and L.N |N is purely inseparable
if L|K is.

Conversely, assume that K is a defectless field. Since any finite extension N ′|N is
contained in an extension L.N |N where L|K is a finite and, by hypothesis, defectless
extension, we see that by what we have shown, L.N |N and by virtue of Lemma 2.7 also its
subextension N ′|N are defectless. Note that L|K can be chosen to be separable if N ′|N is
separable, and to be purely inseparable if N ′|N is purely inseparable. This completes the
proof of our lemma. 2

Corollary 2.11 Let K be a henselian field and N an arbitrary tame algebraic extension
of K. If L|K is an immediate algebraic extension, then L.N |N is immediate too.

Proof: It suffices to show that any finite subextension of L.N |N is immediate. Since any
such extension is contained in an extension L′.N |N where L′|K is a finite subextension
of L|K (hence immediate), we may w.l.o.g. assume from the start that L|K is finite.
Since it is immediate and K is henselian, it must be purely wild. Consequently, it is
linearly disjoint from the tame extension N |K. This shows [L.N : N ] = [L : K]. From
the preceeding lemma we infer d(L.N |N) = d(L|K). Both equations together show that
L.N |N must be immediate. 2
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Moreover, Lemma 2.10 can be used to define a generalization of our notion of the
defect. Indeed, if L|K is an algebraic extension of valued fields such that the corresponding
extension Lr|Kr of their ramification fields is finite, then we define the defect of L|K to be

d(L|K) = d(Lr|Kr) . (9)

We have to show that this definition coincides with the original definition if L|K is h–
finite. The ramification field Kr of K contains the decomposition field of K which is just
the henselization Kh of K, and Kr is at the same time the ramification field of Kh. The
same holds for L. Since by definition, the defect of L|K is equal to the defect of Lh|Kh we
may thus replace K and L by their henselizations and assume from now on that L|K is an
extension of henselian fields. Now Lemma 2.10 shows

d(L|K) = d(L.Kr|Kr) .

From Lemma 2.9 we infer L.Kr = Lr, which shows

d(L|K) = d(Lr|Kr) ,

as desired.

In the next lemma, the relation between immediate and defectless extensions is consid-
ered.

Lemma 2.12 Let K be a valued field and F |K an arbitrary immediate extension. If L|K
is a finite defectless extension admitting a unique prolongation of the valuation, then F.L|F
is a finite defectless extension and F.L|L is immediate. Moreover,

[F.L : F ] = [L : K] ,

i.e. F is linearly disjoint from L over K.

Proof: v(F.L) includes v(L) and F.L includes L. On the other hand we have v(F ) =
v(K) and F = K by hypothesis. Hence

[F.L : F ] ≥ (v(F.L) : v(F )) · [F.L : F ]

≥ (v(L) : v(K)) · [L : K]

= [L : K] ≥ [F.L : F ] ,

hence “=” holds everywhere. This shows the asserted equation and that F.L|F is defect-
less. Furthermore it follows that v(F.L) = v(L) and F.L = L expressing the fact that
F.L|L is immediate. 2

As an immediate consequence we get:

Corollary 2.13 If K is an inseparably defectless field then every immediate extension is
separable. If K is a henselian defectless field then every immediate extension is regular.

Now we will consider composite valuations. Let us assume the following situation:

L|K an h–finite extension of valued fields,

v a valuation on L,
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P = Pv the associated place,

P = QQ a decomposition of P ,

where Q is a coarsening of P and Q is a place on the residue field LQ. If L|K is of finite
degree, then LQ|KQ is of finite degree too. Let “h” denote the henselization with respect
to P . To study the behaviour of the defect under such decompositions of the place, we
need the following lemmata about henselian valuations and henselizations:

Lemma 2.14 (K, P ) is henselian if and only if (K, Q) and (KQ, Q) are henselian.

Proof: For the proof of “and only if” see [RIB1], p. 210, Proposition 9. The other
implication is to be found in [RIB1], p. 211, Proposition 10. 2

Lemma 2.15 Let (K, P ) be a valued field, (Kh, P ) its henselization and P = QQ. If
(KQ, Q) is henselian, then Kh is equal to Kh(Q) where (Kh(Q), Q) is the henselization of
(K,Q). In general, (KhQ, Q) is the henselization of (KQ, Q), and (Kh, Q) is a tame
unramified extension of the henselization (Kh(Q), Q) of (K,Q).

If in addition (L, P )|(K,P ) is an h–finite extension, then

(LQ, Q)|(KQ, Q)

is an h–finite extension too and the extension (L, Q)r|(K, Q)r of the ramification fields is
finite.

Proof: The first assertion is seen as follows: Let (KQ, Q) be henselian. The hen-
selization (Kh(Q), Q) of (K, Q) has residue field Kh(Q)Q = KQ. Now (Kh(Q), Q) and
(Kh(Q)Q, Q) being henselian it follows that (Kh(Q), P ) is henselian too (cf. Lemma 2.14),
hence it includes the henselization (Kh, P ) of (K, P ). On the other hand (Kh, P ) being
henselian yields that (Kh, Q) is henselian (again by Lemma 2.14), hence it includes the
henselization (Kh(Q), Q) of (K, Q). This shows Kh = Kh(Q), as contended.

The second assertion can be deduced from the first assertion: Since (Kh, P ) is hen-
selian, (KhQ, Q) and (Kh, Q) are henselian too (again by Lemma 2.14), hence (KhQ, Q)

includes the henselization ((KQ)h(Q), Q) of (KQ, Q), and (Kh, Q) includes the henseliza-
tion (Kh(Q), Q) of (K, Q). By a straightforward construction an unramified subextension

K1|Kh(Q) of Kh|Kh(Q) may be found such that K1Q = (KQ)h(Q). Since (KQ)h(Q)|KQ is
a separable extension, K1 can be chosen such that (K1, Q)|(Kh(Q), Q) is a tame extension.
From the first assertion we conclude that the henselization Kh

1 = Kh must be equal to the

henselization K
h(Q)
1 whose residue field (K

h(Q)
1 Q, Q) is just the henselization of (KQ, Q).

If (L, P )|(K,P ) is h–finite then (L, P )h|(K,P )h is finite and so is the extension of the
residue fields (LhQ, Q)|(KhQ, Q). By what we have just proved, (LhQ, Q) = (LQ, Q)h

and (KhQ, Q) = (KQ, Q)h, hence (LQ, Q)|(KQ, Q) is an h–finite extension. Again by
what we have proved, (Lh(P ), Q)|(L,Q)h and (Kh(P ), Q)|(K,Q)h are tame extensions, hence
(L,Q)r = (Lh(P ), Q)r and (L,Q)r = (Lh(P ), Q)r and since Lh(P )|Kh(P ) is finite, so is
(L,Q)r|(K, Q)r. 2

Now we are able to prove:

Lemma 2.16 In the situation as described above, the following formula holds:

d((L, P )|(K, P )) = d((L,Q)|(K, Q)) · d((LQ, Q)|(KQ, Q)) . (10)
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In particular, (L, P )|(K, P ) is defectless if and only if (L,Q)|(K, Q) and (LQ, Q)|(KQ, Q)
are defectless. This yields: (K, P ) is a defectless field if and only if (K, Q) and (KQ, Q)
are defectless fields. Note that we have to use our most general definition of the defect
because (L,Q)|(K,Q) is r–finite but might not be h–finite.

Proof: From Lemma 2.15 we infer

(KhQ, Q) = (KQ, Q)h and (LhQ, Q) = (LQ, Q)h ,

whence
d((LhQ, Q)|(KhQ, Q)) = d((LQ, Q)|(KQ, Q)) .

Again from Lemma 2.15, we infer

(Kh, Q) ⊂ (K, Q)r and (Lh, Q) ⊂ (L,Q)r ,

whence by Lemma 2.9,

d((Lh, Q)|(Kh, Q)) = d((Lh, Q)r|(Kh, Q)r)

= d((L,Q)r|(K,Q)r)

= d((L,Q)|(K, Q)) .

Now we compute:

d((L, P )|(K, P )) = d((L, P )h|(K, P )h)

=
[Lh : Kh]

(v(Lh) : v(Kh)) · [Lh : Kh]

=
[Lh : Kh]

(vQ(Lh) : vQ(Kh)) · (vQ(LhQ) : vQ(KhQ)) · [LhQ : KhQ]

=
[Lh : Kh]

(vQ(Lh) : vQ(Kh)) · [LhQ : KhQ]

· [LhQ : KhQ]

(vQ(LhQ) : vQ(KhQ)) · [LhQ : KhQ]

= d((Lh, Q)|(Kh, Q)) · d((LhQ, Q)|(KhQ, Q))

= d((L,Q)|(K,Q)) · d((LQ, Q)|(KQ, Q)) .

From this it follows immediately that if (K,Q) and (KQ, Q) are defectless fields, then
(K,P ) is a defectless field too. Conversely, let (K, P ) be a defectless field. Given a finite
extension (L,Q)|(K, Q), then (L, P )|(K, P ) is defectless by hypothesis, and (L,Q)|(K, Q)
is defectless by what we have just shown. Hence (K, Q) is a defectless field. Given a
finite extension (k, Q)|(KQ, Q), a straightforward construction produces a finite extension
(L, P )|(K, P ) such that LQ = k. By hypothesis, (L, P )|(K,P ) is defectless. By what
we have shown it follows that (k, Q)|(KQ, Q) is defectless too. Hence also (KQ, Q) is a
defectless field. 2
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2.2 Some generalities about the transcendence defect and valu-
ation transcendence bases

Given an extension L|K of valued fields of finite transcendence degree, we define the trans-
cendence defect to be

trdef(L|K) = trdeg(L|K)− rr(v(L)/v(K))− trdeg(L|K)

where rr(v(L)/v(K)) denotes the rational rank of the abelian factor group v(L)/v(K), i.e.
the cardinality of any maximal set of rationally independent values of v(L) modulo v(K)
(such set we will call “a transcendence basis of v(L)|v(K)”). It follows from [BOU], chapter
VI, §10.3, Theorem 1, that the transcendence defect is always a nonnegative integer (see
also Lemma 2.19 below). If trdef(L|K) = 0 then we say that L|K has no transcendence
defect. If L|K has infinite transcendence degree, then we will say that L|K has no trans-
cendence defect if every finitely generated subextension F |K of L|K has no transcendence
defect.

Consider two extensions L|K and M |L, both extensions having finite transcendence
degree. Compared with the defect, the transcendence defect shows an analogous behaviour;
it satisfies the following formula:

trdef(M |K) = trdef(M |L) + trdef(L|K) . (11)

This follows immediately from the additivity of the transcendence degree and the rational
rank. We conclude:

Lemma 2.17 M |K has no transcendence defect if and only if both M |L and L|K have no
transcendence defect.

A subset T = {x1, . . . , xr, y1, . . . , ys} of a valued extension field L of K will be called
algebraically valuation–independent over K if the values v(x1), . . . , v(xr) are positive and
form a transcendence basis of v(L)|v(K), and y1, ..., ys are elements of O×

L whose residues
y1, . . . , ys form a transcendence basis of L|K. A transcendence basis T of L|K will be
called valuation transcendence basis, if it is algebraically valuation–independent over K.
Note that our definitions given here are not direct analogues to the definitions of “linearly
valuation–independent” and “valuation basis”. We could have had defined that T should
be called algebraically valuation–independent if the value of every polynomial f in K[T ]
is equal to the minimum of the values of the monomials in f ; indeed, every T which is
algebraically valuation–independent according to our definition, does also have this prop-
erty; but our definition is a bit more restrictive since this form serves our purposes better.
Nevertheless, it can be proved that whenever a set T satisfies the above condition on the
value of polynomials f ∈ K[T ], then there exists an algebraically valuation–independent
set T ⊂ L such that K(T ) = K(T ′).

We note:

Lemma 2.18 Let L|K be a valued field extension and T ⊂ L an algebraically valuation–
independent set over K. Then the value of every polynomial f in K[T ] is equal to the
minimum of the values of the monomials in f (we will always assume that in the repre-
sentation of f , two different monomials never differ just by a constant factor from K).
Consequently, the valuation on K(T ) is uniquely determined by its restriction to K and
the values of the elements of T . Furthermore, T is algebraically independent over K.
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Proof: Cf. [BOU], chapter VI, §10.3, Theorem 1. 2

The connection between the transcendence defect and valuation transcendence bases is
the following:

Lemma 2.19 Let L|K be a valued field extension of finite transcendence degree with val-
uation v and place P = Pv. If this extension admits a valuation transcendence basis

T = {x1, . . . , xr, y1, . . . , ys} where
the positive values v(x1), . . . , v(xr)

form a transcendence basis of v(L)|v(K)
the residues y1, . . . , ys

form a transcendence basis of L|K





(12)

then r = rr(v(L)/v(K)), s = trdeg(L|K) and trdeg(L|K) = r + s, hence the extension has
no transcendence defect. Moreover, the following holds:

v(K(T )) = v(K)⊕ ZZ v(x1)⊕ . . .⊕ ZZ v(xr) ,

K(T ) = K(y1, . . . , ys) = KP (T P ) ,

and if L is finitely generated over K then v(L) is finitely generated over v(K) and LP is
finitely generated over KP .

Conversely, if the extension L|K has no transcendence defect then it admits a valuation
transcendence basis.

Proof: The first part holds by definition and [BOU], chapter VI, §10.3, Theorem 1.
Note that xiP = 0 for 1 ≤ i ≤ r, hence T P \ {0} = {y1P, ..., ysP} = {y1, ..., ys}. If L
is finitely generated over K then L|K(T ) is a finite extension, which shows that v(L) is
finitely generated over v(K) since v(K(T )) is, and that L is finitely generated over K since
K(T ) is.

For the proof of the converse, we assume that the extension L|K has no transcendence
defect. We choose elements x1, . . . , xr, y1, . . . , ys in L such that v(x1), . . . , v(xr) form a
transcendence basis of v(L)|v(K) and y1, . . . , ys form a transcendence basis of L|K. Then
by Lemma 2.18, the system x1, . . . , xr, y1, . . . , ys is algebraically independent over K. On
the other hand, by hypothesis the transcendence degree of L|K is equal to r+s which shows
that the chosen elements form a transcendence basis, hence by construction a valuation
transcendence basis of L|K. 2

The following corollary treats the case of an infinite valuation transcendence basis T :

Corollary 2.20 Let L|K be a valued field extension and T a valuation transcendence basis
of L|K of the form

T = {xi, yj | i ∈ I, j ∈ J} where
the positive values v(xi), i ∈ I

form a transcendence basis of v(L)|v(K)
the residues yj, j ∈ J

form a transcendence basis of L|K





(13)

then L|K has no transcendence defect, and the following holds:

v(K(T )) = v(K)⊕⊕

i∈I

ZZ v(xi) ,

K(T ) = K(yj | j ∈ J) = KP (T P ) .
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Proof: The second part is immediately deduced from the foregoing lemma by means of
a transfinite induction over an enumeration of T . The first assertion is seen as follows. If
K ′|K is a finitely generated subextension of L|K, then there exist elements z1, ..., zn ∈ T
such that K ′(z1, ..., zn) is algebraic over K(z1, ..., zn). Thus z1, ..., zn is a valuation trans-
cendence basis of K ′(z1, ..., zn) over K. By Lemma 2.19, it follows that the extension
K ′(z1, ..., zn) has no transcendence defect. By the additivity of the transcendence defect,
we conclude that K ′|K has no transcendence defect. 2

Now we consider an extension L|K of finite transcendence degree and assume again
that the valuation v resp. its associated place P is composite:

P = QQ .

Then LQ|KQ has finite transcendence degree too, and the following formula holds:

trdef((L, P )|(K, P )) = trdef((L,Q)|(K, Q)) + trdef((LQ, Q)|(KQ, Q)) . (14)

(The proof is straightforward.) This yields:

Lemma 2.21 (L, P )|(K,P ) has no transcendence defect if and only if both extensions
(L,Q)|(K, Q) and (LQ, Q)|(KQ, Q) have no transcendence defect.

Now we will study the behaviour of valuation transcendence bases under decompositions
of the place.

Lemma 2.22 Let K(T )|K be an extension of finite transcendence degree with valuation
transcendence basis T = {x1, . . . , xr, y1, . . . , ys}, where the values v(x1), . . . , v(xr) form
a transcendence basis of v(K(T ))|v(K) and the residues y1, . . . , ys form a transcendence
basis of K(T ) |K. Then for every decomposition P = P1P2P3, there exists a valuation
transcendence basis

T ∗ = {x∗1, . . . , x∗r, y1, . . . , ys} ⊂ K(T )

of (K(T ), P )|(K, P ) which is also a valuation transcendence basis of the extensions (K(T ), P1)|(K, P1)
and of (K(T ), P1P2)|(K,P1P2), such that (K(T ), P )|(K(T ∗), P ) is defectless and T ∗ has
the following property:

T ′ := {x∗i P1, yjP1 | 1 ≤ i ≤ r, 1 ≤ j ≤ s, x∗i P1 6= 0}

is a valuation transcendence basis of (K(T )P1, P2)|(KP1, P2) and

K(T ∗)P1 = KP1(T ′) .

Here all elements yjP1 are residue–transcendental with respect to P2, and if P3 is trivial,
then all elements x∗i with x∗i P1 6= 0 are value–transcendental with respect to P2.

For any algebraic extension L|K, the valuation transcendence basis T ∗ will satisfy in
addition that (L(T ), P )|(L(T ∗), P ) is defectless and L(T ∗)P1 = LP1(T ′).

Proof: Given any decomposition P = P1P2P3, the elements y1, . . . , ys have algebraically
independent residues under P = P1P1P3, hence under P1P2 and P1 too, as we infer from
Lemma 2.18. Furthermore, the elements y1P1, . . . , ysP1 have algebraically independent
residues under P2P3 and hence under P2, and the elements y1P1P2, . . . , ysP1P2 have alge-
braically independent residues under P3. So we only have to consider the elements xi. We
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choose a transcendence basis α1, . . . , αλ of vP3(K(T )P1P2)|vP3(KP1P2) (where λ = 0 if P3

is trivial), a transcendence basis αλ+1, . . . , αµ of vP2(K(T )P1)|vP2(KP1) (where µ = λ if P2

is trivial), and a transcendence basis αµ+1, . . . , αν of vP1(K(T ))|vP1(K) (where ν = µ if P1

is trivial). All appearing values may be chosen to be positive. Let x∗1, . . . , x
∗
ν be monomials

in x1, . . . , xr over K such that

vP3(x
∗
i P1P2) = αi for 1 ≤ i ≤ λ

vP2(x
∗
i P1) = αi for λ < i ≤ µ

vP1(x
∗
i ) = αi for µ < i ≤ ν .

Now the values v(x∗1), . . . , v(x∗ν) form a transcendence basis of v(K(T ))|v(K), hence ν = r
and the elements x∗1, . . . , x

∗
r, y1, . . . , ys form a valuation transcendence basis of (K(T ), P )|(K,P )

which we will call T ∗.
By construction, the values vP3(x

∗
1P1P2), . . . , vP3(x

∗
λP1P2) form a transcendence basis of

vP3(K(T )P1P2)|vP3(KP1P2) and the P3–residues of the elements y1P1P2, . . . , ysP1P2 form
a transcendence basis of K(T ) |K. The extension (K(T )P1P2, P3)|(KP1P2, P3)) has no
transcendence defect (as we know from Lemma 2.21) which shows that

x∗1P1P2, . . . , x
∗
λP1P2, y1P1P2, . . . , ysP1P2

is a valuation transcendence basis of this extension. In particular, this shows that the
P2–residues of the elements x∗1P1, . . . , x

∗
λP1, y1P1, . . . , ysP1 form a transcendence basis of

K(T )P1P2|KP1P2. On the other hand, the values vP2(x
∗
λ+1P1), . . . , vP2(x

∗
µP1) form a tran-

scendence basis of vP2(K(T )P1)|vP2(KP1). Again from Lemma 2.21 we know that the
extension (K(T )P1, P2)|(KP1, P2)) has no transcendence defect which shows that

x∗1P1, . . . , x
∗
µP1, y1P1, . . . , ysP1

is a valuation transcendence basis of this extension. In particular, this shows that the P1–
residues of the elements x∗1, . . . , x

∗
µ, y1, . . . , ys form a transcendence basis of K(T )P1|KP1.

On the other hand, the values vP1(x
∗
µ+1),. . . , vP1(x

∗
ν) form a transcendence basis of vP1(K(T ))|vP1(K).

Again from Lemma 2.21 we know that the extension (K(T ), P1)|(K,P1)) has no transcen-
dence defect which shows that T ∗ is a valuation transcendence basis of this extension.
From Lemma 2.19 we infer

K(T ∗)P1 = K(x∗1P1, . . . , x
∗
µP1, y1P1, . . . , ysP1) ,

the latter being equal to K(T ′) because all elements x∗i , µ + 1 ≤ i ≤ ν have positive vP1–
values and consequently vanish under P1. Hence T ′ is equal to the valuation transcendence
basis of (K(T )P1, P2)|(KP1, P2)) that we have constructed above.

As we have shown, the P1P2–residues of x∗1, . . . , x
∗
λ, y1, . . . , ys form a transcendence basis

of K(T )P1P2|KP1P2. On the other hand, the vP1P2–values of the elements xλ+1, . . . , xr form
a transcendence basis of vP1P2(K(T ))|vP1P2(K) and since the extension (K(T ), P1P2)|(K,P1P2)
has no transcendence defect by virtue of Lemma 2.21, these facts prove that T ∗ is a valu-
ation transcendence basis of (K(T ), P1P2)|(K,P1P2).

If P3 is trivial, then λ = 0 and the nonzero P1–residues of T ∗ are just the elements x∗i ,
λ + 1 = 1 ≤ i ≤ µ which are all value–transcendental with respect to P2.

If L|K is algebraic, then T ∗ is also a valuation transcendence basis for L(T ∗)|L and
L(T ∗)P1 = LP1(T ′) can be derived as it was done for K in the place of L.

It remains to show that the extensions (K(T ), P )|(K(T ∗), P ) and (L(T ), P )|(L(T ∗), P )
are defectless. The valuation v induces a homomorphism from the multiplicative group G
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generated by K× and the elements x1, ..., xr (as a subgroup of the multiplicative group of
K(T )) onto v(K(T )) and an isomorphism from G/K× onto v(K(T ))/v(K). By construc-
tion (the elements x∗i were chosen to be monomials in x1, . . . , xr), the multiplicative group
H generated by K× and the elements x∗1, . . . , x

∗
r is a subgroup of G, and induced by v,

the subgroup H/K× of G/K× is isomorphic to v(K(T ∗))/v(K). Consequently, the index
(G : H) is equal to the index v(K(T ))/v(K(T ∗)). On the other hand, the index (G : H)
cannot be smaller than the degree of the field extension K(T )|K(T ∗) which is generated
by the elements x1, ..., xr. Moreover, the residue fields of K(T ) and K(T ∗) are both equal
to K(y1, . . . , ys). Hence

[K(T ) : K(T ∗)] ≤ (G : H) = (v(K(T )) : v(K(T ∗))) ≤ [K(T ) : K(T ∗)]

showing that “=” holds everywhere and that the extension K(T )|K(T ∗) is defectless, as
asserted. With the same arguments it can be shown that L(T )|L(T ∗) is defectless. This
completes the proof of our lemma. 2

Note that in general it is not possible to choose T ∗ such that K(T ∗) = K(T ). The
obstruction is that an element may be value–transcendental with respect to a composite
valuation v ◦w over a field K while its value with respect to v may lie in the divisible hull
of v(K) without lying in v(K) itself.

2.3 Approximation types and distances

Let (L, v) be a valued field and R a subgroup of the additive group of L. Then v(R) is
an ordered subset of v(L). (In many of our applications, R will be a field.) Note that we
always exclude ∞ = v(0) from v(R) and v(L). A map

A: v(R) ∪ {∞} −→ P(R)× P(R) , α 7→ (Aα,A◦
α)

from the value set of R into the product of the power set of R with itself, will be called
approximation type over R if it satisfies A◦

∞ = ∅ and the following conditions:

(at 0) A◦
α ⊂ Aα ⊂ R

(at 1) α > β =⇒ Aα ⊂ A◦
β

(at 2) a, b ∈ Aα =⇒ v(a− b) ≥ α
(at 2◦) a, b ∈ A◦

α =⇒ v(a− b) > α
(at 3) (v(a− b) ≥ α ∧ a ∈ Aα) =⇒ b ∈ Aα

(at 3◦) (v(a− b) > α ∧ a ∈ A◦
α) =⇒ b ∈ A◦

α

for all elements a, b ∈ R and all values α, β ∈ v(R) ∪ {∞}. As immediate consequences of
(at 0) and (at 1) we note:

(at 4) α ≥ β =⇒ Aα ⊂ Aβ

(at 4◦) α ≥ β =⇒ A◦
α ⊂ A◦

β

for all α, β ∈ v(R) ∪ {∞}. A will be called value–immediate approximation type, if it
satisfies in addition

(at 5v) ∀c ∈ R ∃α ∈ v(R) ∪ {∞} : c ∈ Aα \A◦
α ,

and residue–immediate approximation type, if it satisfies in addition

(at 5r) ∀α ∈ v(R) : Aα 6= ∅ =⇒ A◦
α 6= ∅ .

A will be called immediate approximation type, if it is value–immediate and residue–im-
mediate.
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If we write

Oα = {a ∈ R | v(a) ≥ α}
Mα = {a ∈ R | v(a) > α}

for every α ∈ v(R) ∪ {∞}, then every nonempty Aα may just be presented as the coset

Aα = cα +Oα

for an arbitrary cα ∈ Aα (this is the content of (at 2) and (at 3)), and every nonempty A◦
α

may be presented as the coset
A◦

α = c◦α +Mα

for an arbitrary c◦α ∈ A◦
α (this is the content of (at 2◦) and (at 3◦)).

Now let x ∈ L. Then the map

v(R) ∪ {∞} 3 α 7→ (appr(x,R)α, appr(x,R)◦α)

where

appr(x,R)α = {r ∈ R | v(x− r) ≥ α} ,

appr(x,R)◦α = {r ∈ R | v(x− r) > α} ,

will be called the approximation type of x over R and will be denoted by

appr(x, R) .

This map is indeed an approximation type in the already defined sense; the proof is straight-
forward and thus left to the reader.

Conversely, if A is an approximation type over R and there exists an element x ∈ L
such that A = appr(x,R), then we say that x realizes A (in (L, v)). Note that A is realized
by an element of R if and only if A∞ 6= ∅.

At this point, we should say some words about cuts in an ordered abelian group Γ. A
Dedekind cut (or simply cut) in Γ is a partition (Λ, Λ′) of Γ into two convex subsets Λ, Λ′

where Λ is empty or an initial segment of Γ, i.e. if α ∈ Λ and Γ 3 β ≤ α, then β ∈ Λ.
Similarly, if Λ′ is nonempty, then it is a final segment of Γ, i.e. if α ∈ Λ′ and Γ 3 β ≥ α,
then β ∈ Λ′.

We say that the cut (Λ, Λ′) is realized by the element δ ∈ Γ if Λ ≤ δ ≤ Λ′; here “δ ≥ Λ”
stands for “∀γ ∈ Λ : δ ≥ γ” (correspondingly we will use the other relations ≤, >,<). If
(Λ, Λ′) and (Λ1, Λ

′
1) are two cuts then

(Λ, Λ′) < (Λ1, Λ
′
1)

will indicate that Λ1 \Λ 6= ∅; if in this situation, (Λ, Λ′1) and (Λ1, Λ
′
1) are realized by δ ∈ Γ

and δ1 ∈ Γ respectively, then it will follow that δ < δ1. Note that every element γ ∈ Γ
may itself be interpreted as a cut by taking

Λ = {α | α ≤ γ} ;

hence the above rules also determine the order between an element of Γ and an arbitrary
cut.
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A subset Υ of Γ determines a cut (Λ, Λ′) of Γ by taking Λ to be the least initial segment
containing Υ, or equivalently,

Λ′ = {α ∈ Γ | α > Υ} .

This cut will also be called the supremum of Υ, denoted by sup Υ.
In a canonical way, the cut (Λ, Λ′) of Γ also induces a cut (Λ∆, Λ′∆) in every ordered

overgroup ∆ of Γ, where Λ∆ is taken to be the convex hull of Λ in ∆. In particular, the
cut (Λ, Λ′) of Γ determines a cut Λ̃, Λ̃′ in the divisible hull Γ̃ of the value group Γ. If this
cut is realized by an element δ of Γ̃, then (Λ, Λ′) is called a rational cut of Γ, and we will
identify it with the element δ. Also in general, we will use “δ” to denote a cut; since every
cut is realized in a suitable overgroup (e.g. if this overgroup is highly enough saturated),
we may always view δ as an element of such overgroup.

The cut δ = (Λ, Λ′) is called a positive cut, if 0 ∈ Λ, and a negative cut, if 0 ∈ Λ′.
Given an integer i and an element γ ∈ Γ, we let i · δ +γ be the cut determined by the least
initial segment of Γ containing i ·Λ + γ if i is nonnegative, resp. containing i ·Λ′ + γ if i is
negative. Note that δ is positive if and only if −δ = (−1) · δ is negative.

The set
Λ(A) = {α ∈ v(R) | Aα 6= ∅}

will be called the value set of A. Note that ∞ /∈ Λ(A) ⊆ v(R). It follows from (at 4) that
Λ(A) is an initial segment of v(R), if it is nonempty. The distance dist(A) of A is the
cut induced by (Λ(A), v(R) \ Λ(A)) in the divisible hull of the value group v(Quot(R)).
Note that Quot(R) is a subfield of L and that the divisible hull of Quot(R) is just the
value group of the algebraic closure of Quot(R). If this cut is realized by an element δ of
v(Quot(R)), then we will call dist(A) a rational distance, and we will identify it with the
element δ.

If A = appr(x,R), then we will write

dist(x,R)

in the place of “dist(A)”. We say that the distance is assumed by an element of R if
dist(A) ∈ v(R) ∪ {∞} and Aα 6= ∅ for α = dist(A). The distance is finitely assumed by
an element of R if ∞ > dist(A) ∈ v(R) and Aα 6= ∅ for α = dist(A). By writing

dist(x,R) ³ dist(y,R)

we will express that both distances are equal and that moreover appr(x,R) is immediate
if and only if appr(y,R) is immediate.

If M ⊂ R is an arbitrary subset, then the cut

sup{α ∈ v(R) | Aα ∩M 6= ∅}
will be denoted by

distR(x,M) ,

and we have
distR(x, M) ≤ dist(x, R) = distR(x,R) ≤ distL(x,R) .

Let F be a formula with one free variable z (not necessarily, but usually in the language
of valued fields with constants from R); if A is an approximation type over R, then both
expressions

c ↗ A =⇒ F(c)

∀z ↗ A : F(z)
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will denote the assertion

∃α ∈ v(R) , α < dist(A), ∀β ≥ α ∀z ∈ Aβ : F(z) .

In particular, this assertion includes the information that there exists an element z ∈ R
with F(z); this follows from the definition of the distance. If A = dist(x,R), then we will
also write

c ↗ x , ∀z ↗ x

in the place of “c ↗ A” and “∀x ↗ A”.

Let A be an approximation type over a valued field K. Given an arbitrary polynomial
f(X) ∈ K[X], we say that A fixes the value of f if v(f(c)) is independent of c ∈ K for
c ↗ A. A is said to be a transcendental approximation type (over K) if A fixes the value
of every polynomial f(X) ∈ K[X]. If f(X) is a normed polynomial of minimal degree
d such that A does not fix the value of f , then it will be called an associated minimal
polynomial for A, and A is said to be an algebraic approximation type of degree d (over
K). Note that if there exists any polynomial f ∈ K[X] whose value is not fixed by A,
then there exists also a normed polynomial of the same degree having the same property
(since this property is not lost by multiplication with nonzero constants from K). We
take the degree of a transcendental approximation type to be d = ∞. According to this
terminology, an approximation type over K of degree d fixes the value of every polynomial
f ∈ K[X] with deg(f) < d. Note that an associated minimal polynomial f for A is always
irreducible over K. Indeed, if g, h ∈ K[X] are having degree < deg(f), then A fixes the
value of g and h and thus also of g ·h. Since every polynomial g ∈ K[X] of degree d whose
value is not fixed by A, is just a multiple c · f of an associated minimal polynomial f for
A (with c ∈ K×), the irreducibility holds for every such polynomial too.

We will give a detailed outline of the basic properties of approximation types and
distances in the appendix.

æ
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3 Function fields without transcendence defect over

defectless ground fields.

In this chapter our main goal is the proof of

Theorem 3.1 Let F |K be a function field without transcendence defect. If K is a defect-
less field then F is a defectless field.

In view of Lemma 2.2, this is equivalent to:

Let F |K be a henselian function field without transcendence defect. If K is a defectless
field then F is a defectless field.

Once proved, this theorem has important consequences which we will describe now.
We start with structure theorems for henselian function fields over defectless fields. For a
function field F |K we will denote by degree of irrationality the minimal degree of F over
all possible transcendence bases T :

[F : K]irr = minT [F : K(T )] .

If in addition, F |K is separable then we will denote by degree of separable irrationality
the minimal degree of F over all possible separating transcendence bases T :

[F : K]sep = minT [F : K(T )] .

Theorem 3.2 Let K be a defectless field and F |K a henselian function field without trans-
cendence defect. Then F is a finite defectless extension of a henselian rational function
field F0 . Moreover, F0 can be chosen such that

[F : F0] = (v(F ) : v(K))tor · [F : K]irr (15)

where (v(L) : v(K))tor denotes the order of the torsion subgroup of v(F )/v(K) and [F :

K]irr denotes the degree of irrationality of the function field F |K. Moreover,

[F : F0] = minT [F : K(T )h] (16)

where the minimum runs over all valuation transcendence bases of F |K.

Proof: Let
v(F )/v(K) = Γ⊕ α1ZZ ⊕ ...⊕ αrZZ

where Γ denotes the torsion subgroup of v(F )/v(K) and r ≥ 0. Choose x1, ..., xr ∈ F such
that

αi = v(xi) + v(K) , 1 ≤ i ≤ r .

Furthermore, let T ⊂ F be a transcendence basis of F |K with

[F : K(T )] = [F : K]irr .

Choose y1, ..., ys ∈ O×
F (s ≥ 0) such that

T = {y1, ..., ys} .
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The set T = {x1, ..., xr, y1, ..., ys} ⊂ F is algebraically valuation independent by definition.
Its cardinality is

r + s = rr(v(F )/v(K)) + trdeg(F |K)

which is equal to trdeg(F |K) by our assumption that F |K has no transcendence defect.
Consequently, T is a valuation transcendence basis of F |K. By Theorem 3.1, K(T )h

is a defectless field since by assumption, K is a defectless field. Since F is henselian
finitely generated, it is a finite defectless extension of the henselian rational function field
F0 = K(T )h as asserted, and thus

[F : K(T )h] = (v(F ) : v(K(T )))[F : K(T )] . (17)

From Lemma 2.19 we infer

v(K(T )) = v(K)⊕ ZZv(x1)⊕ ...⊕ ZZv(xr) (18)

K(T ) = K(y1, ..., ys) = K(T ) (19)

whence v(F )/v(K(T )) ∼= Γ and

(v(F ) : v(K(T ))) = (v(F ) : v(K))tor
[F : K(T )] = [F : K]irr

which in view of (17) proves (15).
The last assertion of our theorem is seen as follows: For any valuation transcendence basis
T ′ = {x′1, ..., x′r, y′1, ..., y′s} of the form (12) of F |K we know by Lemma 2.19 that

v(K(T ′)) = v(K)⊕ ZZv(x′1)⊕ ...⊕ ZZv(x′r)

K(T ′) = K(y′1, ..., y′s)

where y′1, ..., y′s form a transcendence basis of F |K. Consequently, the factor group v(F )/v(K(T ′))
contains an isomorphic copy of the torsion subgroup of v(F )/v(K) and we have

(v(F ) : v(K(T ′))) ≥ (v(F ) : v(K))tor

[F : K(T ′)] ≥ [F : K]irr .

F being henselian finitely generated over K, the extension F |K(T ′)h is finite, and by
Theorem 3.1 it is defectless. Hence

[F : K(T ′)h] = (v(F ) : v(K(T ′)))[F : K(T ′)]

≥ (v(F ) : v(K))tor[F : K]irr
= [F : F0]

which proves (16) since by construction, F0 = K(T )h where T is a valuation transcendence
basis of F |K. 2

Suitable conditions on the extensions of the value groups and the residue fields yield
more structural information:

Theorem 3.3 The situation being as in Theorem 3.2, put p = char(K) and assume in
addition that p = 0 or that v(F )/v(K) has no torsion element of order p and F |K is
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separable. Then there exists a valuation transcendence basis T of F |K and an element
a ∈ F such that

F = K(T )h(a)

which is a tame extension of K(T )h satisfying

[F : K(T )h] = [K(T , a) : K(T )] = (v(F ) : v(K))tor · [F : K]sep . (20)

If v(K) is pure in v(F ) and F |K is regular then Kh is the exact constant field of F , i.e.

Kh = K̃ ∩ F .

Conversely, if Kh is the exact constant field of F then F |K is regular.

Proof: We choose elements x1, ..., xr ∈ F as in the proof of Theorem 3.2. Furthermore,
let T ⊂ F be a separating transcendence basis of F |K with

[F : K(T )] = [F : K]sep .

Choose y1, ..., ys ∈ O×
F such that

T = {y1, ..., ys} .

As in the proof of Theorem 3.2 it is shown that the set

T = {x1, ..., xr, y1, ..., ys} ⊂ F

is a valuation transcendence basis of F |K, that F |K(T )h is a finite defectless extension
and that (18) and (19) hold. The latter shows that

(v(F ) : v(K(T )))

is equal to the order of the torsion subgroup of v(F )/v(K) and thus by hypothesis prime
to p (if p > 0), and that F |K(T ) is separable. We conclude that F |K(T )h is a finite tame
extension satisfying

[F : K(T )h] = (v(F ) : v(K))tor · [F : K]sep . (21)

Since F |K(T ) is a finite separable extension, Hensel’s Lemma shows that there exists
a finite separable extension F1 of K(T ) within the henselian field F such that F1 = F
and [F1 : K(T )] = [F : K(T )]. Since v(F )/v(K(T )) is a finite group of order prime
to p (if p > 0) and moreover F1 = F , Hensel’s Lemma shows that there exists a finite
separable extension F2 of F1 within the henselian field F such that v(F2) = v(F ) and
[F2 : F1] = [v(F ) : v(K(T ))]. Since F2|K(T ) is a separable extension we may write
F2 = K(T , a) for a suitable element a ∈ F2, and we have

[K(T , a) : K(T )] = (v(F ) : v(K(T )))[F : K(T )] = [F : K(T )h]

which together with (21) proves (20). By construction, F |K(T )h(a) is an immediate ex-
tension, and it is defectless by Theorem 3.1. Hence it is a trivial extension; this proves
F = K(T )h(a).

The last two assertions of the theorem are seen as follows:
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Let L be the exact constant field of F . Since F is henselian, L includes Kh. Since L|Kh

is algebraic, v(L)/v(K) is a torsion group included in v(F )/v(K), and L|K is an algebraic
extension included in F |K. By our assumption that F |K is separable, Hensel’s Lemma
shows that L must be the exact constant field of F |K. Hence if Kh is the exact constant
field of F |K, then F |K is regular. Now assume that F |K is regular and that v(K) is pure
in v(F ). This yields L = K and v(L) = v(K). Since Kh is defectless by hypothesis, L|Kh

is a defectless extension and since it is immediate, it must be trivial. This completes the
proof of our theorem. 2

The following theorem is a version of Theorem 3.3 for stronger assumptions on the
value groups and residue fields. Note that these assumptions, even including regularity of
F |K, are always fulfilled if v(K) ≺∃ v(F ) and K ≺∃ F (cf. Lemma 6.3).

Theorem 3.4 The situation being as in Theorem 3.2, assume in addition that v(F )/v(K)
has no torsion and that F |K is separable. Then there exists a valuation transcendence
basis T of F |K and an element a ∈ F such that

F = K(T )h(a)

which is a tame unramified extension of K(T )h satisfying

[F : K(T )h] = [K(T , a) : K(T )] = [K(T )(a) : K(T )] = [F : K]sep .

Consequently, F is a henselian rational function field over K generated by a valuation
transcendence basis if and only if F is a rational function field over K. Moreover, F |K is
regular if and only if Kh is the exact constant field of F |K.

Proof: The theorem is an immediate consequence of Theorem 3.3 and its proof; we
only have to add the information that the element a ∈ F can be chosen as to satisfy
[K(T , a) : K(T )] = [K(T )(a) : K(T )]. This can be done using Hensel’s Lemma and the
fact that F |K(T ) is a separable and consequently simple extension. 2

A valued function field F having the properties as described in the last structure theorem
will be called henselian almost rational function field.

If on the other hand the ground field K is not defectless, then Theorem 3.1 may be
used to define a defect for the henselian function field F |K and to put this defect into
relation to the defect that appears in certain finite extensions of K. The details are given
in section 5.

To derive model theoretic results from Theorem 3.1 we will use an embedding lemma
whose algebraic part is the following:

Lemma 3.5 (Embedding Lemma I)
Let (K, v) be a defectless field (the valuation is allowed to be trivial), F |K a henselian
function field without transcendence defect and (K?, v?) a henselian extension of (K, v).
Assume that v(F )/v(K) is torsion free and that F |K is separable.
If ρ: v(F ) −→ v?(K?) is an embedding over v(K) and σ: F −→ K?/v? is an embedding
over K, then there exists an embedding ι: (F, v) −→ (K?, v?) over (K, v) that respects ρ
and σ, i.e. v?(ι(a)) = ρ(v(a)) and ι(a)/v? = σ(a) for all a ∈ F .
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Here, the embeddings of value group and residue field are understood to be monomorphisms
of groups resp. fields. On the other hand, the notation “ι: (F, v) −→ (K?, v?)” indicates
an embedding of valued fields, i.e. a valuation preserving monomorphism:

∀x ∈ F : x ∈ OF ⇐⇒ ιx ∈ OK? .

The embedding lemma which is based on the above lemma and the model theoretic result
derived from it are to be found in section 6. For the proof of Lemma 3.5, observe that in
view of Theorem 3.4, it is an immediate consequence of the following

Lemma 3.6 (Embedding Lemma I′)
Let F |K be a henselian function field admitting a valuation transcendence basis T such
that F |K(T )h is a finite tame unramified extension. Let the assumptions on (K?, v?) and
on the embeddings of v(F ) and F be as in the preceding Embedding Lemma I. Then there
exists an embedding ι: (F, v) −→ (K?, v?) over (K, v) that respects σ and τ .

Proof: First we will construct the embedding for K(T ) and then we will show how to
prolongate it to F .

Let the given valuation transcendence basis T be of the form (12). We choose elements
x′1, ..., x

′
r ∈ K? such that v?(x′i) = ρ(v(xi)), 1 ≤ i ≤ r. The values v?(x′1), ..., v

?(x′r) are
rationally independent over v(K) since the same holds for their foreimages v(x1), ..., v(xr)
and this property is preserved by any monomorphism over v(K). Next, we choose ele-
ments y′1, ..., y

′
s ∈ O×

K? such that y′j/v
? = σ(yj), 1 ≤ j ≤ s. The residues y′1/v

?, ..., y′s/v
? are

algebraically independent over K since the same holds for their foreimages y1, ..., ys and this
property is preserved by any monomorphism over K. Consequently, T ′ = {x′1, ..., x′r, y′1, ..., y′s} ⊂
K? is an algebraically valuation–independent set over K. Recall that for every polynomial
f in K[T ], the value of f is equal to the value of (exactly) one of the monomials appearing
in f (which is the unique monomial having the minimal value), cf. Lemma 2.18. The same
is true for all polynomials in K[T ′]. This shows that both sets T and T ′ are algebraically
independent over K, so that the assignment

xi 7→ x′i , yj 7→ y′j 1 ≤ i ≤ r , 1 ≤ j ≤ s

induces an isomorphism ι : K(T ) −→ K(T ′). Furthermore, it shows that this embedding
of K(T ) into K? respects the restriction of ρ to v(K(T )) and the restriction of σ to K(T ).

By the universal property of henselizations (cf. [RIB1], H 3), p. 176), ι extends to a
valuation preserving embedding of K(T )h into K? since by hypothesis, K? is henselian.
Since K(T )h|K(T ) is immediate, this embedding trivially also respects the above men-
tioned restrictions of ρ and σ. Through this embedding, we will from now on identify
K(T )h with its image in K?. To simplify notation, let us put L = K(T )h.

Now we have to prolongate ι (which by our identification has become the identity) to
an embedding of F into K? (over L) which respects ρ and σ. This is done as follows:
By hypothesis, F |L is finite, tame and unramified. Consequently, F |L is a finite separable
extension, generated by one element, say a. Let f ∈ OL[X] be monic such that its residue
polynomial f is the minimal polynomial of a over L; by hypothesis, f is separable. Hensel’s
Lemma shows that there exists exactly one root a of f in F having residue a, and exactly
one root a′ of f in the henselian field K? having residue σ(a). The assignment

a 7→ a′

induces an isomorphism ι : K(a) −→ K(a′) which is valuation preserving since L is hen-
selian. F |L being unramified, L(a)|L is unramified too. Thus ι respects ρ (which after the
above identification is the identity). We have to show that ι also respects σ.
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Let n = [L(a) : L]. Since the elements 1, a, ..., an−1 are linearly independent, the basis
1, a, ..., an−1 is a valuation basis of L(a)|L. Let g(a) ∈ L[a] where g ∈ L[X] is of degree
< n; if the value of g(a) is zero, then g ∈ OL[X] and thus which shows g(a) = g(a). In
this case,

ι(g(a)) = g(a′) = g(a′) = g(σa) = σ(g(a)) .

This proves that ι respects σ.
We have constructed an embedding of L(a) into K? which respects ρ and σ. But since F |L
is a finite tame and unramified extension, we have

[F : L] = [F : L] = [L(a) : L] = [L(a) : L]

which shows F = L(a), and ι is the required embedding. 2

We will now carry out a stepwise reduction of the proof of Theorem 3.1 in the subsections
3.1 to 3.6. After this reduction the proof will split into two parallel parts, one for fields
of characteristic p > 0 (subsection 3.7) and one for fields of characteristic 0 with residue
characteristic p > 0 (subsection 3.8). Note that in case of char(K) = 0, Theorem 3.1
is a trivial consequence of the Lemma of Ostrowski (Lemma 2.3). So we will
always assume in the following that

p = char(K) > 0 .

3.1 Reduction to henselian rational function fields of transcen-
dence degree 1.

To attack the problem of proving Theorem 3.1 we want to begin with the following reduc-
tion:

Lemma 3.7 To prove Theorem 3.1, it suffices to prove

(R) Any henselian rational function field of transcendence degree 1 without transcendence
defect over a defectless field is a defectless field.

Proof: Assume that F is a henselian function field without transcendence defect over
the defectless field K and that assertion (R) is true. Let n = trdeg(F |K).
If n = 0, then F is a finite extension of K and hence defectless by Lemma 2.8.
Let n ≥ 1, and assume that Theorem 3.1 was already shown to be true for every henselian
function field of transcendence degree < n. Choose any x ∈ F which is transcendent over
K. Let F0 be a henselization of K(x) inside the henselian field F . By Lemma 2.17, both
extensions

F |F0 and F0|K
have no transcendence defect. Since Theorem 3.1 is assumed to be true for henselian func-
tion fields of transcendence degree 1 and thus for F0|K, F0 is a defectless field. By the
induction hypothesis we know that Theorem 3.1 is true for every henselian function field
of transcendence degree n− 1, thus for F |F0 showing that F is a defectless field. 2

In the preceding proof, the transcendent element x may be chosen such that
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– either its residue x is transcendent over K,

– or its value v(x) is rationally independent over v(K).

This is possible since by hypothesis F |K has no transcendence defect which means that
F |K is transcendent or v(F )/v(K) has rational rank ≥ 1.
In the first case we call x residue–transcendental, in the second case value–transcendental
over K. If one of these cases holds for x, we call x valuation–transcendental. Hence we
can reformulate the lemma in the following way:

To prove Theorem 3.1, it suffices to prove:

(R1) Every henselian rational function field of transcendence degree 1 with a valuation–
transcendental generator over a defectless ground field is a defectless field.

In the residue–transcendental case, the valuation on K(x) is nothing else but the func-
tional valuation or Gauß valuation associated to x, i.e. for a polynomial

f(x) = c0 + c1x + . . . + cnx
n ∈ K[x]

we have
v(f(x)) = min

0≤i≤n
v(ci)

and consequently
v(F ) = v(K) and F = K(x) . (22)

In the value–transcendental case, the valuation on K(x) is uniquely determined by the

cut which is induced by v(x) in the divisible hull ˜v(K) = v(K̃) of the value group v(K)
(cf. subsection 2.4). Given a polynomial f(x) like above we have

v(f(x)) = min
0≤i≤n

(v(ci) + iv(x)) ,

and consequently
v(F ) = v(K)⊕ ZZv(x) and F = K . (23)

3.2 Reduction to algebraically closed ground fields.

Now we want to reduce further to the case where, in addition, K is algebraically closed.
Note that every algebraically closed valued field trivially is a defectless field.

Lemma 3.8 To prove (R1), it suffices to prove

(R2) Every henselian rational function field of transcendence degree 1 with a valuation–
transcendental generator over an algebraically closed ground field is a defectless field.

To prove this lemma, we assume K(x)h to be a henselian rational function field over
the defectless field K with a valuation–transcendental generator x as described in the last
section. The assumption of the lemma implies that the henselian rational function field
K̃(x)h, which is a henselization of the rational function field K̃(x), is a defectless field.
From this we have to deduce that K(x)h is a defectless field. This deduction will be done
now in a more general setting. For its description we need the following definition. Let
F |K be an extension of valued fields. We call F |K valuation–regular if

– the residue field extension F |K is regular

– the value factor group v(F )/v(K) is torsionfree.
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If K is a henselian defectless field then every valuation–regular extension F |K is regular.
This can be seen as follows. Since K is relatively algebraically closed in F and v(F )/v(K)
is torsionfree, the relative algebraic closure of K in F must be an immediate extension of
K. Hence it is equal to K since K is defectless and thus admits no nontrivial immediate
algebraic extensions. To show that F is linearly disjoint from K̃ over K, let L|K be a finite
extension. By assumption on K, L|K is defectless, i.e. [L : K] = [L : K] · (v(L) : v(K)).
Since F |K is regular and v(F )/v(K) is torsionfree, we have (for any fixed extension of the
valuation v from F to F.L):

[F.L : F ] ≥ [F.L : F ] = [L : K]

(v(F.L) : v(F )) ≥ (v(F ) + v(L) : v(F )) = (v(L) : v(K)) ,

hence

[F.L : F ] ≥ (v(F.L) : v(F )) · [F.L : F ]

≥ (v(L) : v(K)) · [L : K] = [L : K] ≥ [F.L : F ]

showing that in all these inequalities, “=” holds everywhere and that there exists only one
extension of the valuation v from F to F.L . In particular, we get

v(F.L) = v(F ) + v(L) and F.L = F .L .

This will also hold if L|K is an infinite extension since for every α ∈ v(F.L) there is already
a finite extension L0|K such that α ∈ v(F.L0), and a similar argument works for the residue
fields. We have proved:

Lemma 3.9 Let K be a henselian defectless field and F |K a valuation–regular extension.
Then the following holds: for every finite extension L|K there exists a unique valuation
v on F.L extending the valuation v of F , and F.L|F is defectless. Furthermore, every
algebraic extension L|K satisfies:

v(F.L) = v(F ) + v(L) and F.L = F .L . (24)

On the other hand, it proves that F is linearly disjoint from every finite extension L
over K. This yields the following

Lemma 3.10 If K is a henselian defectless field and F |K is a valuation–regular extension,
then F |K is regular.

From (22) and (23) we see that K(x)h|K is valuation–regular if x is valuation–transcenden-
tal over K. Thus our Reduction Lemma 3.8 will follow from

Lemma 3.11 Let F be a valuation–regular extension of the defectless field K. If F.K̃ is
a defectless field, then F is also a defectless field.

Proof: Assume that F.K̃ is a defectless field. To prove that F is a defectless field we may
assume by Lemma 2.2 that F is henselian; indeed, F |K is valuation–regular if and only if
F h|K is valuation–regular, and F.K̃ is a defectless field if and only F h.K̃ is a defectless
field (this follows from Lemma 2.2 and (F.K̃)h = (F h.K̃)h). We may also assume that K
is henselian since in view of the fact that the henselization of K is an immediate extension
of K, we may replace K by its henselization in F h. Given a finite extension E|F , we want
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to show that E|F is defectless. By our assumption on F.K̃ we know that E.K̃|F.K̃ is
defectless, i.e.

[E.K̃ : F.K̃] = (v(E.K̃) : v(F.K̃)) · [E.K̃ : F.K̃]

since F and thus also F.K̃ is henselian. Now we choose a finite extension L of K as large
as to guarantee

[E.L : F.L] = [E.K̃ : F.K̃] ;

this equation then will also hold for every algebraic extension of L in the place of L. After
a suitable finite enlargement of L, also the following equations will be satisfied:

v(E.L) + v(F.K̃) = v(E.K̃)

E.L . F.K̃ = E.K̃ ;

this is true because the extensions

v(E.K̃) ⊃ v(F.K̃) and E.K̃ |F.K̃

are finite and thus generated by the values resp. residues of finitely many elements from
E.K̃.

Using the preceding equations, we deduce

[E.L : F.L] ≥ (v(E.L) : v(F.L)) · [E.L : F.L]

≥ (v(E.L) + v(F.K̃) : v(F.L) + v(F.K̃))

·[E.L.F.K̃ : F.L.F.K̃]

= (v(E.K̃) : v(F.K̃)) · [E.K̃ : F.K̃]

= [E.K̃ : F.K̃] = [E.L : F.L] ,

hence “=” holds everywhere showing that E.L|F.L is a defectless extension. On the other
hand, we know by Lemma 3.9 that F.L|F is defectless. Consequently, E.L|F and its
subextension E|F are defectless. This proves our lemma, thereby completing the proof of
Lemma 3.8. 2

3.3 Reduction to finite rank.

In this section we want to show that for the proof of (R2) we may assume in addition
that the ground field K has finite rank. Again, we prove a more general lemma. For
its formulation, we need a definition that generalizes the definition of “valuation–regular”
given in the previous section. Two extensions L|K and N |K are called valuation–disjoint
if

(a) L is linearly disjoint from N over K,
(b) v(L) is linearly disjoint from v(N) over v(K) (in the group–theoretical sense).

Note that an extension F |K is valuation–regular if and only if it is valuation–disjoint from
K̃|K.

Lemma 3.12 Let K be a valued field and E1|F1 an extension of valued fields such that
K.E1|K.F1 is h–finite. Assume further that there exists a subfield k of F1 and K such that
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1. k.E1|k.F1 is defectless,

2. k.E1|k.F1 is valuation–disjoint from K.F1|k.F1.

Then these properties remain true if k is replaced by an arbitrary subfield K ′ of K con-
taining k. In particular, K.E1|K.F1 is defectless, and

[(k.E1)
h : (k.F1)

h] = [(K ′.E1)
h : (K ′.F1)

h] = [(K.E1)
h : (K.F1)

h] .

Proof: Since v(k.E1) is linearly disjoint from v(K.F1) over v(k.F1) and k.E1 is linearly
disjoint from K.F1 over k.F1, we find for every subfield K ′ of K which contains k:

(v(K ′.E1) : v(K ′.F1)) ≥ (v(k.E1) + v(K ′.F1) : v(K ′.F1))

= (v(k.E1) : v(k.F1))

[K ′.E1 : K ′.F1] ≥ [k.E1.K ′.F1 : K ′.F1]

= [k.E1 : k.F1] .

Using this and the hypothesis that k.E1|k.F1 is defectless, we deduce

[(k.E1)
h : (k.F1)

h] ≥ [(K ′.E1)
h : (K ′.F1)

h]

≥ (v(K ′.E1) : v(K ′.F1)) · [K ′.E1 : K ′.F1]

≥ (v(k.E1) : v(k.F1)) · [k.E1 : k.F1]

= [(k.E1)
h : (k.F1)

h]

showing that “=” holds everywhere. This proves that K ′.E1|K ′.F1 is defectless and that
[(K ′.E1)

h : (K ′.F1)
h] = [(k.E1)

h : (k.F1)
h]. Moreover, it yields

v(K ′.E1) = v(k.E1) + v(K ′.F1)

K ′.E1 = k.E1 . K ′.F1 .

On the other hand, v(k.E1) + v(K ′.F1) is linearly disjoint from v(K.F1) over v(K ′.F1) as
well as k.E1 . K ′.F1 is linearly disjoint from K.F1 over K ′.F1. This proves that K ′.E1 is
valuation–disjoint from K.F1 over K ′.F1. 2

With the help of this lemma, we achieve the next reduction step:

Corollary 3.13 To prove (R2), it suffices to prove

(R3) Every henselian rational function field of transcendence degree 1 with a valuation–
transcendental generator over an algebraically closed ground field of finite rank is a defect-
less field.

Proof: Let F = K(x)h be a henselian rational function field with a valuation–trans-
cendental generator x over the algebraically closed field K. Let E be a finite extension of
F . Assuming (R3) we want to show that E|F is defectless. Let k′ be a finitely generated
field and E1 a finite extension of k′(x) such that

1. (K.E1)
h = E,

2. [Eh
1 : k′(x)h] = [E : K(x)h].
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The second property will remain true for every subfield of K containing k′, hence in par-
ticular for the algebraic closure k of k′ that is contained in the algebraically closed field K.
(k, v) has finite rank since k has finite transcendence degree over its prime field. By hy-
pothesis (R3) and Lemma 2.2, the extension k.E1|k(x) is defectless. If we are able to show
that k.E1 is valuation–disjoint from K(x) over k(x), then it will follow from the previous
lemma that the extension K.E1|K(x) is defectless. Since (K.E1)

h = E and K(x)h = F ,
this yields that E|F is defectless, as desired.

It remains now to prove that k.E1 is valuation–disjoint from K(x) over k(x). We
consider the following two cases:

case 1: x is value–transcendental over K. Then v(k(x)) = v(k)⊕ZZv(x), v(K(x)) = v(K)⊕
ZZv(x) and v(k.E1) = v(k)⊕ ZZ 1

n
v(x) for a suitable integer n since v(k) is divisible. This

shows that v(k.E1) is linearly disjoint from v(K(x)) over v(k(x)) since v(x) is rationally
independent over v(K). Furthermore, k(x) = k = k.E1 since k is algebraically closed,
showing that k.E1 is linearly disjoint from K(x) = K over k(x).

case 2: x is residue–transcendental over K. Then k(x) = k(x) where k is algebraically
closed, showing that k.E1 being an algebraic extension of k(x) is linearly disjoint from
K(x) = K(x) over k(x) since x is transcendental over K. Furthermore, v(k(x)) = v(k),
v(K(x)) = v(K) and v(k.E1) = v(k) since v(k) is divisible. This shows that v(k.E1) is
linearly disjoint from v(K(x)) over v(k(x)).

This completes the proof of our corollary. 2

3.4 Reduction to rank 1.

In the previous subsection, we have reduced the problem of proving Theorem 3.1 to the
proof of the following assertion:

(R3) Every henselian rational function field F of transcendence degree 1 with a valua-
tion–transcendental generator over an algebraically closed ground field K of finite rank is
a defectless field.
Note that in this case we have rk(K) ≤ rk(F ) ≤ rk(K) + 1. Now we want to reduce
further to the case where the rank of F is 1.

Lemma 3.14 To prove (R3), it suffices to prove

(R4) Every henselian rational function field of transcendence degree 1 and rank 1 with a
valuation–transcendental generator over an algebraically closed ground field is a defectless
field.

Proof: Let F = K(x)h satisfy the assumptions of (R3). The assertion of (R3) is trivial
in the case where rk(F ) is zero since every trivially valued field is automatically a defectless
field.
Assuming (R4) we want to show now that (R3) is true whenever ∞ > rk(F ) ≥ 1. This
will be done by induction on rk(F ), the case rk(F ) = 1 being covered by our hypothesis
that (R4) is true. We assume now n > 1 and that (R3) is true whenever rk(F ) < n. If
rk(F ) = n, then the place P = Pv associated to v on F allows a decomposition

P = QQ

where Q and Q are both places of rank < n.
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By Lemma 2.2, it suffices to prove that K(x) is a defectless field. Consequently, we will
consider the fields (K(x), Q) and (K(x)Q, Q). To begin with, we note that by hypothesis
K and thus also KQ are algebraically closed fields. Now we will consider the following
three cases:

case 1: x is residue–transcendental over K. It follows that also xQ is residue–trans-
cendental over KQ, and in particular, it must be transcendental over KQ (according to
Lemma 2.18). Hence x is a residue–transcendental generator of the rational function field
(K(x), Q) over (K, Q). Lemma 2.19 shows that xQ is a generator of the rational function
field (K(x)Q, Q) = (KQ(xQ), Q) over the algebraically closed field KQ. By our induction
hypothesis and Lemma 2.2, we know that (K(x), Q) and (K(x)Q, Q) are defectless fields.

case 2: x is value–transcendental over K, but vQ(x) is not rationally independent over
vQ(K). Then there is an element c ∈ K such that vQ(cx) = 0; this is true since vQ(K),
being the value group of an algebraically closed field, is divisible. As x is value–transcen-
dental over (K,P ), so is cx. Consequently, w.l.o.g. we may assume from the start that
c = 1. It follows that xQ must be value–transcendental over (KQ, Q), and in particular,
it must be transcendental over KQ (according to 2.18). As in case 1 it is now shown that
(K(x), Q) and (K(x)Q, Q) = (KQ(xQ), Q) are defectless fields.

case 3: x is value–transcendental over K and vQ(x) is rationally independent over vQ(K).
This yields that x is a value–transcendental generator of (K(x), Q) over (K, Q), and from
our induction hypothesis we obtain that (K(x), Q) is a defectless field. Furthermore it fol-
lows by (23) that K(x)Q equals the algebraically closed field KQ. In this case, (K(x)Q, Q)
is trivially a defectless field.

We have obtained in every case that (K(x), Q) and (K(x)Q, Q) are defectless fields. By
virtue of Lemma 2.16 this implies that (K(x), P ) is a defectless field, proving our lemma
and (R3) for rk(F ) = n. 2

Note that if rk(F ) = 1 then K may very well be trivially valued. But this can only appear
in the case where x is value–transcendental over K.

3.5 Reduction to extensions of degree p (= char(K) > 0).

To prove (R4), we have to prove that any finite extension E|F of a henselian rational func-
tion field F = K(x)h satisfying the assumptions of (R4), is defectless. But the structure of
such extensions cannot be easily determined. Hence we would like to reduce this problem
to the investigation of classes of extensions which are more easily describable. The key to
this reduction is the following Lemma together with Lemma 3.17 that we will prove below.
Recall that by our general assumption for the reduction steps, p = char(K) > 0.

Lemma 3.15 For any finite extension L|K, the extension L.Kr|Kr is a tower of normal
extensions of degree p, the separable ones being Galois extensions. For any finite extension
L|K, there is already a finite tame extension N of Kh such that L.N |N is such a tower.

Proof: We know from Lemma 2.9 that Ksep|Kr is a p–extension. Then for every
intermediate fields L1, L2 with [L1 : L2] = p, it follows that L1|L2 is normal since in
general the degree of the normal hull of L1 over L2 must be a divisor of p!, whereas in our
case it can only be equal to a power of p; this shows that it must be equal to p. The finite
tame extension N of Kh is obtained by letting it be generated by all the finitely many
elements of Kr that are necessary for the defining relations of the extensions forming the
tower L.Kr|Kr. 2

47



The lemma shows for our present case, that E.K(x)r|K(x)r is a tower of normal ex-
tensions of degree p, the separable ones being Galois extensions and thus having the form
of Artin–Schreier–extensions if char(K) = p > 0. These two classes, the purely insepara-
ble extensions of degree p and the Galois extensions of degree p, are the classes that we
looked for. And indeed, in view of Lemma 2.10 it suffices to prove that E.K(x)r|K(x)r is
defectless. But unfortunately K(x)r is not any more of the form K(x)h to which we had
reduced because it is so easy to handle. This problem is solved by the observation that
given a finite extension E|F , it suffices already to take a finite tame extension N |K(x)h to
achieve that E.N |N decomposes into a tower as described above. And Lemma 3.17 will
show that N is again (almost) of the form K(x)h. The next problem appearing is the fact
that we are dealing with a tower of extensions of degree p, not only with a single one. So
we will use induction, but for that we have to know that the nice form of the field N that
we will describe in Lemma 3.17 is maintained in every step of the induction, i.e. that the
given extensions of degree p inherit this form. This will be shown in Lemma 3.19.

To begin with, we want to fix exactly what we meant by “(almost) of the form K(x)h ”.
In the sequel we have to deal with the following special form of henselian almost rational
function fields:

F = K(x, y)h where





K is algebraically closed
x is valuation–transcendental over K
F |K(x)h is finite, tame and unramified
y = 0 if x is value–transcendental;
otherwise F = K(x, y) and
[K(x, y) : K(x)] = [K(x, y) : K(x)] .





(25)

Altogether, the following considerations will show

Lemma 3.16 To prove (R4), it suffices to prove

(R5): Let F be of rank 1 and of the form (25). Then every Galois extension of degree p
and every purely inseparable extension of degree p is defectless.

We begin with the proof of the fact that finite tame extensions preserve the form (25).

Lemma 3.17 Let K be an algebraically closed valued field.
a) Let F = K(x)h be a henselian rational function field with a value–transcendental
generator x over K. If N |F is a tame extension of degree n, then N is a henselian rational
function field K(x′)h with a value–transcendental generator x′ over K satisfying (x′)n = x.
b) Let F = K(x, y)h be a henselian almost rational function field of the form (25) where
x is residue–transcendental over K. If N |F is a tame extension of degree n, then N is a
henselian almost rational function field K(x, y′)h for a suitable y′ ∈ N with

[K(x, y′) : K(x)] = [K(x, y′) : K(x)] = n · [K(x, y) : K(x)] . (26)

Proof: a) Since N |F is tame, hence defectless, and since K(x) = K is algebraically
closed, being the residue field of an algebraically closed field, we have N = K(x) and

n = (v(N) : v(K(x))) · [N : K(x)] = (v(N) : v(K(x))) .

In particular, this shows (p, n) = 1. Since v(K) is divisible, being the value group of an

algebraically closed field, this yields v(N) = v(K)⊕ZZ v(x)
n

. Knowing that v(x)
n
∈ v(N) and
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that N = K(x), we deduce from Hensel’s Lemma that there exists an element x′ in the

henselian field N such that (x′)n = x, hence v(x′) = v(x)
n

. Now

n = [N : K(x)h] ≥ [K(x′)h : K(x)h] ≥ (v(K(x′)) : v(K(x))) = n

shows N = K(x′)h. By construction, x′ is value–transcendental over K.

b) Since v(K(x)) = v(K) is divisible, we have v(N) = v(K) = v(K(x, y)). N |F is tame
by assumption, hence defectless, whence

n = (v(N) : v(K(x, y))) · [N : K(x, y)] = [N : K(x, y)]

where N |K(x, y) is separable. Since by hypothesis K(x, y)|K(x) is also separable, the
extension N |K(x) is separable and thus admits a primitive element which we will call η.
Knowing that η ∈ N and that η is separable over K(x), we deduce from Hensel’s Lemma
that there exists an element y′ in the henselian field N such that y′ = η. Since it is possible
to choose a normed polynomial over K(x) whose reduction is the minimal polynomial of η
over K(x), we can even achieve that

[K(x, y′) : K(x)] = [N : K(x)] , (27)

hence

[K(x, y′) : K(x)] = [N : K(x, y)] · [K(x, y) : K(x)]

= n · [K(x, y) : K(x)] . (28)

Now K(x, y′) ⊃ K(x, η) = N , and

n = [N : K(x, y)h] ≥ [K(x, y′)h : K(x, y)h]

≥ [K(x, y′) : K(x, y)]

≥ [N : K(x, y)] = n

shows that N = K(x, y′)h and N = K(x, y′). Together with (27) and (28) this yields also
equation (26). 2

Corollary 3.18 Assume that (R5) is true and let F be of rank 1 and of the form (25).
Then F does not admit any nontrivial immediate algebraic extension.

Proof: It suffices to prove that F does not admit any nontrivial finite immediate
extension. Let E|F be an arbitrary nontrivial extension. If it is tame and thus defectless,
there is nothing to show. Otherwise we may choose by Lemma 3.15 a finite tame extension
N |F such that E.N |N is a (nonempty) tower of normal extensions of degree p and hence
possesses a normal subextension E ′|N of degree p. By the preceeding lemma, N is again
of the form (25), and it has also rank 1 since it is an algebraic extension of F . From our
hypothesis that (R5) is true it follows that E ′|N is defectless. Hence E.N |N cannot be
an immediate extension and in view of Corollary 2.11 this yields that E|F cannot be an
immediate extension. This proves our assertion. 2

The next lemma shows how finite defectless purely wild extensions preserve the form
(25). The foregoing corollary is a main ingredient of its proof.
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Lemma 3.19 Let K be an algebraically closed field and assume that (R5) is true.
a) Let F = K(x)h be a henselian rational function field with a value–transcendental
generator x over K. If F ′|F is a defectless extension of degree p, then it must be purely
wild and F ′ is a henselian rational function field K(x′)h of the same rank as F with a
value–transcendental generator x′ over K satisfying p · v(x′) = v(x).
b) Let F = K(x, y)h be a henselian almost rational function field of the form (25) where x
is residue–transcendental over K. If F ′|F is a purely wild defectless extension of degree p,
then F ′ is a henselian almost rational function field K(x′, y′)h of the same rank as F with
x′ residue–transcendental over K and

[K(x′, y′) : K(x′)] = [K(x′, y′) : K(x′)] = [K(x, y) : K(x)]

and
F ′ = K(x′, y′) = K(x′, y′) = K(x, y)1/p

with x′ = x1/p and y′ = y1/p. Hence F ′ is a tame unramified extension of K(x′)h and thus
also of the form (25).

Note that the version of b) where F ′|F is tame, is already contained in part b) of Lemma 3.17.

Proof: a) Since F ′|F is defectless, and since K(x) = K is algebraically closed (being
the residue field of an algebraically closed field), we have F ′ = K(x) and thus

p = (v(F ′) : v(K(x))) · [F ′ : K(x)] = (v(F ′) : v(K(x))) .

Since v(K) is divisible (being the value group of an algebraically closed field), this yields

v(F ′) = v(K)⊕ ZZ v(x)
p

. We choose an element x′ ∈ F ′ such that p · v(x′) = v(x), hence

v(K(x′)) = v(K)⊕ ZZ
v(x)

p
= v(F ′) .

On the other hand, K(x′) = K = F ′. Now the henselian field F ′ contains the henselization
K(x′)h, and we have just shown that F ′|K(x′)h is an immediate extension. But K(x′)h

satisfies the conditions of Corollary 3.18, and consequently it does not admit any proper
immediate algebraic extension. This yields F ′ = K(x′)h. By construction, x′ is value–
transcendental over K.

b) Since F ′|F is defectless and since v(K(x)) = v(K) is divisible, we have v(F ′) =
v(K(x)) = v(K(x, y)) and

p = (v(F ′) : v(K(x, y))) · [F ′ : K(x, y)] = [F ′ : K(x, y)]

where F ′ |K(x, y) is purely inseparable since F ′|F is purely wild by assumption. K being
algebraically closed, K(x, y) = K(x, y) has p–degree 1 and hence we have

F ′ = K(x, y)1/p = K(x1/p, y1/p) .

We choose elements x′, y′ ∈ F ′ such that x′ = x1/p and y′ = y1/p, hence K(x′, y′) = F ′.
On the other hand, v(K(x′, y′)) = v(K) = v(F ′). Now the henselian field F ′ contains
the henselization K(x′, y′)h, and we have just shown that F ′|K(x′, y′)h is an immediate
extension. But K(x′, y′)h satisfies the conditions of Corollary 3.18, and consequently it
does not admit any proper immediate algebraic extension. This yields F ′ = K(x′, y′)h.
From x′ = x1/p and y′ = y1/p it follows that [K(x′, y′) : K(x′)] = [K(x, y) : K(x)].

50



By assumption, K(x, y)h is a tame extension of K(x)h, thus the extension K(x, y)|K(x)
is separable. Consequently, K(x1/p, y1/p)|K(x1/p) is separable too. This shows that by
Hensel’s Lemma we may actually choose y′ in the henselian field F ′ such that

[K(x′, y′) : K(x′)] = [K(x′, y′) : K(x′)] .

Moreover, v(F ′) = v(K) = v(K(x′)) shows that F ′|K(x′)h is unramified, and it is a tame
extension since F ′ |K(x′) is separable, as we had just shown. Altogether, we have proved
that F ′ is again of the form (25). 2

Now we are ready for the

Proof of Lemma 3.16:
Let F satisfy the conditions of (R4). Given an arbitrary finite extension E|F , we have to
show that it is defectless. As explained already, by Lemma 2.10 it suffices to prove that
E.N |N is defectless, where N |F is a finite tame extension such that E.N |N is a tower of
normal extensions of degree p. By Lemma 3.17, N satisfies the conditions of (R5) (note
that N is of rank 1 because it is an algebraic extension of F ). The proof that E.N |N is
defectless is now done by induction on the number of extensions appearing in the tower. If
this number is zero, the assertion is trivial. Otherwise there exists a normal subextension
E ′|N of E.N |N of degree p. From (R5) it follows that this extension is defectless, and
from Lemma 3.19 we infer that E ′ again satisfies the conditions of (R5) (again, its rank
is 1 since it is an algebraic extension of N). By the induction hypothesis, E.N |E ′ is also
defectless since it has a smaller degree than E.N |N . Hence by Lemma 2.7, E.N |N is
defectless. 2

3.6 Inseparably defectless fields. Reduction to Galois extensions
of degree p.

We will now treat the case of a purely inseparable extension. We will do this under more
general conditions than that of (R5).

Lemma 3.20 Let F be a subhenselian function field with valuation transcendence basis T
over K and assume that F h|K(T )h is a tame extension. If K is an inseparably defectless
field of characteristic p > 0, then F is an inseparably defectless field too.

Proof: In view of Lemma 2.2 and Lemma 2.10, it suffices to show that K(T ) is an
inseparably defectless field. Let T be of the form (12), cf. page 29.
Every finite purely inseparable extension L of K(T ) is contained in an extension E =
K ′(T 1/pe

) = K ′(t1/pe | t ∈ T ) for a suitable e ∈ IN and some finite purely inseparable
extension K ′ of K. Since K ′|K is algebraic, T 1/pe

will again be a valuation transcendence
basis over K ′ which shows that

v
(
K ′(T 1/pe

)
)

= v(K ′)⊕ ZZv(x
1/pe

1 )⊕ . . .⊕ ZZv(x1/pe

r )

= v(K ′)⊕ ZZ
v(x1)

pe
⊕ . . .⊕ ZZ

v(xr)

pe
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and

K ′(T 1/pe
) = K ′(y1/pe

1 , . . . , y
1/pe

s )

= K ′(y1
1/pe

, . . . , ys
1/pe

) ,

whence

[E : K(T )] = [K ′ : K] · pe(r+s) = (v(K ′) : v(K)) · per · [K ′ : K] · pes

= (v(E) : v(K(T ))) ·
[
E : K(T )

]

since by hypothesis K ′|K is defectless. This equation shows that E|K(T ) and thus also its
subextension L|K(T ) is defectless. (Note that every purely inseparable algebraic extension
admits a unique prolongation of the valuation.) Since L|K(T ) was an arbitrary finite purely
inseparable extension, we have shown that K(T ) is an inseparably defectless field. 2

Having proved this theorem, we don’t have to consider inseparable extensions any
longer. Namely, we get the following reduction:

Corollary 3.21 To prove (R5), it suffices to prove

(R6): Let F be of rank 1 and of the form (25). Then every Galois extension of degree p
is defectless.

The proof of (R6) will now be split into two different cases. First we will consider the
case of K having the same characteristic p > 0 as its residue field K. In this case a Galois
extension of degree p is nothing else but an Artin–Schreier–extension. The second case will
be the case of “mixed characteristic” where the field K has characteristic 0 whereas K has
characteristic p > 0. The case char(K) = 0 = char(K) doesn’t appear here since in that
case by the Lemma of Ostrowski, every field is a defectless field and therefore Theorem 3.1
is trivially true.

3.7 Galois extensions of degree p in characteristic p.

We want to prove (R6) in the case char(K) = char(K) = p > 0. In this case, every Galois
extension E|F of degree p is an Artin–Schreier–extension:

E = F (ϑ), ℘(ϑ) = ϑp − ϑ = a ∈ F . (29)

For c ∈ F we have

E = F (ϑ + c), ℘(ϑ + c) = ϑp + cp − ϑ− c = a + ℘(c) ∈ F (30)

showing that all elements of the class a + ℘(F ) determine the same Artin–Schreier–ex-
tension. We will choose a suitable representative from which we are able to read off
immediately that the extension is defectless. The following lemma shows that in the
present case, OF ⊂ ℘(F ):

Lemma 3.22 Assume F is a henselian field of arbitrary characteristic and F (ϑ)|F is an
extension with ϑp − ϑ = a ∈ F . Then MF ⊂ ℘(F ) and consequently, F (ϑ)|F is trivial if
v(a) > 0. If in addition F is closed under Artin–Schreier–extensions, then OF ⊂ ℘(F );
hence in this case F (ϑ)|F is trivial if v(a) ≥ 0.
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Proof: If a ∈MF , then the (separable) polynomial Y p−Y −a = Y p−Y always admits
0 as a simple root over F . If a ∈ OF , then the (separable) polynomial Y p − Y − a admits
a simple root over F if F is closed under Artin–Schreier–extensions. By Hensel’s Lemma,
this shows a ∈ ℘(F ) in either case. 2

Corollary 3.23 Assume F is a henselian field of characteristic p > 0 and F (ϑ)|F is
a nontrivial purely wild extension with ϑp − ϑ = a ∈ F . Then dist(ϑ, F ) ≤ 0 and if
dist(ϑ, F ) = 0, then this distance is not assumed by an element of F .

Proof: If dist(ϑ, F ) > 0 or if if dist(ϑ, F ) = 0 is assumed by an element of F then
there exists an element c ∈ F such that v(ϑ − c) ≥ 0 and consequently v(a − cp + c) =
v((ϑ−c)p−(ϑ−c)) ≥ 0. Then by the foregoing lemma, either ϑ−c ∈ F , or v(ϑ−c) = 0 and
F (ϑ− c)|F is a separable Artin–Schreier–extension of degree p. In both cases, it follows
that the extension F (ϑ)|F is tame since it is equally generated by the element ϑ− c. 2

3.7.A We will first discuss the ramified case:

F = K(x)h is of rank 1 and K is algebraically closed
char(F ) = p > 0
x is value–transcendental over K.





(31)

In this case, F = K (cf. (23) on page 42) and consequently, F is algebraically closed.

We will consider the ring
R = K[x, x−1] (32)

which consists of all finite Laurent series of the form

ϕ(x) =
∑

i∈I

cix
i , ci ∈ K , (33)

i.e. the index set I ⊂ ZZ is finite.

Lemma 3.24 If F = K(x)h has arbitrary characteristic and is of rank 1 with value–
transcendental generator x, the following holds:

F = R +OF ,

i.e. R is dense in F . If in addition K is Artin–Schreier–closed, the following holds:

F = R + ℘(F ) .

(“Artin–Schreier–closed” shall indicate that every polynomial of the form Xp−X−a admits
a zero, where p is the characteristic of the field).

Proof: From the hypothesis that F is of rank 1 we deduce that K(x) is dense in its
henselization K(x)h. Consequently,

F = K(x) +OF

and it suffices to prove that
K(x) ⊂ R +OF , (34)
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i.e. R is dense in its quotient field K(x), or in other words: every element of K(x) has
distance ∞ from R. For this it is enough to show for any 0 6= ϕ(x) ∈ R:

distK(x)(
1

ϕ(x)
, R) = ∞ .

Using the notation of (33) we have

v(ϕ(x)) = min
i∈I

v(cix
i) = v(ckx

k) (35)

for a unique k ∈ I since x is value–transcendental over K. We write

1

ϕ(x)
=

c−1
k x−k

1− ψ(x)

bearing in mind that ckx
k is a unit in R which yields

ψ(x) = 1− c−1
k x−kϕ(x) ∈ R

with v(ψ(x)) > 0. The latter shows that (1 − ψ)−1 is a limit of the sequence of partial
sums

µ∑

ν=0

ψν ∈ R (µ ∈ IN)

of the geometrical series. Our hypothesis that the rank of F is 1 implies

distF (
1

1− ψ
,R) ≥ sup

ν∈IN
v(ψν) = ∞

which shows that distF ( 1
ϕ
, R) = ∞, as asserted. 2

According to this lemma, under the assumptions of (31) all Artin–Schreier–extensions
of K(x)h are already determined by elements from R. But we can do more:

Lemma 3.25 If F = K(x)h is of rank 1 with value–transcendental generator x over a
perfect Artin–Schreier–closed field K of characteristic p > 0, then for any a ∈ F there
exists a finite Laurent–series ϕ(x) ∈ R such that

a ≡ ϕ(x) mod ℘(F ) (36)

and, using the notation of (33),

∀i ∈ I : i ≡ 0 mod p ⇒ ci = 0 .

Proof: If K is Artin–Schreier–closed, then the same holds for the residue field K.
Thus the first assertion follows directly from the previous lemma. To prove the second
assertion, we will show how to replace a summand cjpx

jp of ϕ(x) by a summand c′jx
j.

Then it is possible by a finite repetition of this procedure to replace a given finite Laurent
series ϕ(x) ∈ a + ℘(F ) by a finite Laurent series in a + ℘(F ) that satisfies also the second
assertion.

Firstly, c0 may be omitted since c0 ∈ ℘(F ) by our assumption that K is Artin–Schreier–
closed. Secondly, let ci 6= 0 for some i = jp ∈ I, 0 6= j ∈ ZZ. Since K is assumed to be
perfect, we have c

1/p
i ∈ K and thus

(cix
i)1/p = c

1/p
i xj ∈ R .
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Consequently,
ϕ(x) ≡ ϕ(x)− cix

i + c
1/p
i xj mod ℘(R)

the latter being a Laurent series with i-th coefficient equal to zero. This is the required
replacement procedure. 2

Now we deduce the following normal form:

Lemma 3.26 If F satisfies the assumptions of (31) then every Galois extension E|F of
degree p has the following form:

E = F (ϑ), ϑp − ϑ = a =
∑

i∈I

cix
i

with finite index set I ⊂ ZZ \ pZZ and

∀i ∈ I : v(cix
i) < 0.

In particular, v(
∑

i∈I cix
i) = mini∈I v(cix

i) < 0 is not divisible by p in v(F ).

Proof: We know already that E|F is of the form (29). Since K and thus also K are
algebraically closed by hypothesis (31), we may assume in view of (30) that a is a finite
Laurent series ϕ(x) satisfying the assertions of the previous lemma. We write

ϕ(x) =
∑

i∈I

cix
i

where I ⊂ ZZ \ pZZ is finite and ci ∈ K. By Lemma 3.22 we know that OF ⊂ ℘(F ) since
F = K is algebraically closed, and in view of (30) we may thus assume that every monomial
cix

i appearing in ϕ(x) has value < 0. Since the extension is assumed to be nontrivial, there
must at least be one nonzero monomial. The last assertion holds by (35) and the fact that
v(cix

i) is divisible by p in v(F ) = v(K)⊕ ZZv(x) if and only if i is divisible by p. 2

Corollary 3.27 If F satisfies the assumptions of (31) then every Galois extension E|F
of degree p is purely wild and defectless. This proves (R6) in the ramified case (31).

Proof: We assume that E|F has the form as described in the foregoing lemma. Since
v(a) < 0, from a = ϑp − ϑ it follows v(ϑ) < 0 and

pv(ϑ) = v(℘(ϑ)) = v(a)

Consequently,
v(ϑ) = v(a)/p /∈ v(F ) .

Since p is prime, this is only possible if

(v(E) : v(F )) = p = [E : F ]

showing that E|F is purely wild and defectless, as asserted. 2

Note that for an extension E|F which is already of the form (29) with a satisfying (36),
the proof that E|F is defectless does not require any more a condition on the rank of F .
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3.7.B Now we will discuss the unramified case:

F = K(x, y)h is of rank 1 and of the form (25)
char(F ) = p > 0
x is residue–transcendental over K.





(37)

In this case, v(F ) = v(K) (cf. (22) on page 42) and consequently, v(F ) is p–divisible.

We recall the crucial properties of the ring R as defined in (32), which enabled us to
prove (R6) in the ramified case (31).

(I) R contains K and its quotient field Quot(R) is dense in F .

(II.A) R admits a valuation basis B = {uj | j ∈ J} over K, containing the element 1,
such that the values v(uj), j ∈ J , form a basis of v(F ) over v(K).

(III) The basis B is closed under p–th powers (p = char(K)), i.e. for every element
uj ∈ B, the p–th power up

j is also contained in B.

If the characteristic of K is p then a K–basis B having the property (III) will be called
Frobenius–closed.

For the unramified case we have to replace property (II.A) by the following property:

(II.B) R admits a valuation basis B = {uj | j ∈ J} over K, containing the element 1,
such that the residues uj, j ∈ J , form a basis of F |K.

Note that the important property of R to be dense in its quotient field follows from
K ⊂ R and property (II.A) resp. (II.B) if F has rank 1 and is of the form (25):

Lemma 3.28 Let F be of rank 1, of the form (25) and of arbitrary characteristic. Then
the properties (I) and (II.A) resp. (II.B) of R imply that R is dense in F . Under our
assumption (37), this implies

F = R + ℘(F )

and consequently, every Artin–Schreier–extension E|F is of the form

E = F (ϑ) with ϑp − ϑ = a ∈ R . (38)

Proof: The proof is an analogue to the proof of Lemma 3.24; we have to show that R
is dense in its quotient field for which it suffices to show that distF (r−1, R) = ∞. Assume
that there exists an element s ∈ R× with v(rs− 1) > 0 and write

1

r
=

s

1− (1− rs)
.

Note that 1 − rs ∈ R and proceed as in the proof of Lemma 3.24. It remains to show
the existence of s. Now the condition K ⊂ R which is part of property (I) together with
property (II.A) resp. (II.B) implies that v(R) = v(F ) and R = F which shows that v(r)
has an inverse in v(R), say v(s1) for suitable s1 ∈ R, and it shows that the residue of the
element rs1 ∈ R ∩ O×

F has an inverse in R, say s2 for suitable s2 ∈ R. Then the element
s = s1s2 has the desired property since v(rs1s2) = v(rs1) = 0 and rs1s2 = 1. 2

From this lemma we derive the following normal form:
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Lemma 3.29 If F satisfies the assumptions of (37) and R has properties (I) and (II.B)
then every Galois extension E|F can be written in the form (38) with

a =
∑

i∈I

ciui , ci ∈ K, ui ∈ B

where I ⊂ J is a finite index set, no element ui is a p–th power in B if ci 6= 0, and

∀i ∈ I : v(ciui) = v(ci) ≤ 0 .

Consequently,
v(a) = min

i∈I
v(ci) ≤ 0 ,

E|F being tame if v(a) = 0. Moreover, if E|F is tame then a may be chosen such that
v(a) = 0.

Proof: We know already that every Galois extension E|F of degree p is of the form
(29). According to Lemma 3.28 we assume that E|F is of the form (38) and we write

a =
∑

i∈I

ciui , ci ∈ K, ui ∈ B

where I ⊂ J is a finite index set. Note that

v(a) = min
i∈I

v(ciui) = min
i∈I

v(ci) (39)

since property (II.B) says that the elements ui, i ∈ I, form a valuation basis of R over K,
and that all of them have value 0.

We may assume that no element ui is a p–th power of another element in B since
otherwise we could use a replacement procedure similar to the one used in the proof of
Lemma 3.25, to produce a sum that satisfies this condition and is equivalent to a modulo
℘(F ); note that if ui 6= 1 then ui ∈ F \ K which shows that there exists an integer
ν = ν(ui) such that ui /∈ F pν

, and thus also an integer µ = µ(ui) ≤ ν such that ui /∈ Bpµ

.
If ui = 1, then ciui = ci ∈ K may be omitted since ci ∈ ℘(F ) by our hypothesis that K is
algebraically closed.

Furthermore, we know from Lemma 3.22 that MF ⊂ ℘(F ), and in view of (30) we may
thus assume that every monomial appearing in a has value ≤ 0. Consequently, we have:

v(a) = min
i∈I

v(ciui) ≤ 0 .

If v(a) = 0 then the residue polynomial Xp−X−a which is an Artin–Schreier polynomial,
does not admit a zero in F since otherwise E|F would be trivial by Hensel’s Lemma,
contrary to our assumption that its degree is p. Hence in this case, E|F is a separable
extension of the same degree p as E|F . This shows that E|F is tame if v(a) = 0. On the
other hand, if E|F is a tame Galois extension then E|F must be separable by definition, and
since v(F ) = v(K) is divisible by our assumption (37) it follows that [E : F ] = [E : F ] = p.
Consequently, E|F is a Galois extension of degree p and thus an Artin–Schreier–extension
generated by an Artin–Schreier–root of a for a suitable element a ∈ O×

F . By Hensel’s
Lemma, E is then generated by an Artin–Schreier–root of a. This shows that we may
choose a with v(a) = 0 if E|F is a tame extension. 2

As a further preparation we need the following two lemmata:
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Lemma 3.30 Independently of the characteristic of K, (II.B) and (III) imply that the
basis B of F |K consisting of all uj, j ∈ J , is also Frobenius–closed. If um = un

p then
um = up

n.

Proof: Since B is Frobenius–closed, every up
j is an element of B. Hence uj

p = up
j ∈ B

which shows that B is Frobenius–closed. If um = un
p then v(um − up

n) > 0 = v(um) which
is only possible if um = up

n since B is assumed to be a valuation basis. 2

Lemma 3.31 Every Frobenius–closed basis zj, j ∈ J , of an extension k2|k1 of fields of
characteristic p > 0 has the following property: if the sum

s =
∑

i∈I

dizi , di ∈ k1 , I ⊂ J finite

is a p–th power, then for every i ∈ I with di 6= 0, the basis element zi is a p–th power of
another basis element.

Proof: Assume that
s = (

∑

j∈J0

dj
′zj)

p , dj
′ ∈ k1

where J0 ⊂ J is a finite index set. Then

∑

i∈I

dizi = s =
∑

j∈J0

(dj
′)pzp

j

where the elements zp
j are also basis elements by hypothesis which shows that every zi

which appears on the left hand side (i.e. di 6= 0) equals a p–th power zp
j appearing on the

right hand side. 2

Now we are ready to prove:

Lemma 3.32 If in the unramified case (37) there exists a subring R ⊂ F satisfying prop-
erties (I), (II.B) and (III) then every Galois extension E|F of degree p is defectless.

Proof: By Lemma 3.29 we may assume that E|F has the form (38) and that a satifies the
assertions as described in that lemma. Since tame extensions are defectless (by definition),
we only have to deal with the case where E|F is not tame; by Lemma 3.29 we may thus
assume that

v(a) = min
i∈I

v(ci) = v(ck) < 0

for a suitable k ∈ I. This shows v(ϑ) < 0, which yields

pv(ϑ) = v(℘(ϑ)) = v(a) .

We put b = a/ck and di = ci/ck so that v(b) = 0 and v(di) ≥ 0 with dk = 1. The element

η = ϑ/c
1/p
k satisfies v(η) = 0 and

ηp − c
(1−p)/p
k η = b .

We have

v(c
(1−p)/p
k η) =

1− p

p
v(ck) > 0 = v(ηp)
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and consequently
ηp = b =

∑

i∈J

diui . (40)

According to Lemma 3.30, the basis B of F |K is also Frobenius–closed, hence by virtue
of Lemma 3.31 the assumption η ∈ F together with (40) would imply that every basis
element appearing in the sum is a p–th power of another basis element. In particular,
this would be the case for uk since dk = 1 makes sure that uk appears in the sum. But
according to Lemma 3.30 this would imply that also uk is the p–th power of another basis
element, contrary to our assumption. This shows

η /∈ F

whence
[E : F ] = p = [E : F ]

which proves that E|F is defectless. We note that under the assumption v(a) < 0,

E = F (η) = F
1/p

which is purely inseparable of degree p over F . 2

In the sequel we will show the existence of such a ring R in F . Since K and thus also
K are algebraically closed, there exists a Frobenius–closed basis of F over K, as we will
show in subsection 3.9. We have to lift this basis to a Frobenius–closed basis of F over K.

Since K is algebraically closed, it contains a field of representatives for the residue field
K which we identify with K so that we may write

K ⊂ K . (41)

Then the residue map on K induces the identity on K. The embedding (41) can be
prolongated to an embedding of F into F as follows:
By hypothesis (25) we have F = K(x, y)h with

[K(x, y) : K(x)] = [K(x, y) : K(x)] (42)

where K(x, y)|K(x) is a separable extension. Let

f(x, y) = 0

be the irreducible equation for x, y over K, normed such that f has integral coefficients
with f(X, Y ) 6= 0. Condition (42) means that f(X, Y ) and f(X, Y ) have the same degree
in Y ; moreover we have

∂f(x, y)

∂y
6= 0 (43)

because x is a separating transcendent element for F |K. By (41) we may view the polyno-
mial f(x, Y ) as a polynomial over K(x) ⊂ F ; from (43) it follows by Hensel’s Lemma that
this polynomial has exactly one zero y′ ∈ F with y′ = y. We have K(x, y′)h ⊂ K(x, y)h.
Again from (43) it follows that the polynomial f(x, Y ) has exactly one root in K(x, y′)h

whose residue is equal to y′ = y. This root must be y, hence y ∈ K(x, y′)h and we have
shown

K(x, y′)h = K(x, y)h = F . (44)
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The residue map induces on K the identity and an isomorphism

K(x) −→ K(x)

since both x and x are transcendental over K. It leaves the coefficients of the irreducible
polynomial f(X, Y ) fixed and sends the zero (x, y′) of f(X, Y ) to the zero (x, y), hence it
induces an isomorphism

K(x, y′) −→ K(x, y) = F .

By this isomorphism we identify
x = x , y′ = y

such that
F ⊂ F , F = (K.F )h , (45)

the latter being a consequence of (44).

By construction, K and F are linearly disjoint over K. We form the subring generated
by both fields in F :

R = K ⊗
K

F ⊂ F .

From (45) it follows that F is the henselization of the quotient field of R. Since the rank
of F is 1, the field Quot(R) is dense in its henselization, hence R satisfies property (I).
Every K–basis of F is at the same time a K–basis of R; in view of the fact that the residue
map induces the identity on F this yields that this basis is a valuation basis and that R
satisfies (II.B) . If we choose, as we indicated above, a Frobenius–closed basis of F |K then
R together with this basis satisfies also property (III).

We summarize what we have proved:

Lemma 3.33 In the unramified case (37) there exists an embedding of the residue field F
into F respecting the residue map such that K = K ∩F , that K is linearly disjoint from F
over K and that F = (K.F )h. The ring R = K ⊗K F ⊂ F satisfies properties (I), (II.B)
and (III).

An application of Lemma 3.32 now proves

Corollary 3.34 If F satisfies the assumptions of (37) then every Galois extension E|F
of degree p is defectless. This proves (R6) in the unramified case (37).

Note that for an extension E|F which is already of the form (38), the proof that E|F is
defectless does not require any more a condition on the rank of F .

3.8 Galois extensions of degree p in characteristic 0.

We want to prove (R6) in the case where char(K) = 0. Any field having residue characteris-
tic 0 is a defectless field by the Lemma of Ostrowski (cf. Lemma 2.3). Hence it only remains
to prove our assertion under the additional assumption that F has residue characteristic
p > 0. Recall that we assume F to be of rank 1 and of the form (25).

Since the algebraically closed field K contains all p–th roots of unity, Kummer theory
shows that every Galois extension E of F of degree p is of the form

E = F (ϑ), ϑp = b ∈ F . (46)
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For every d ∈ F× we have

E = F (dϑ), (dϑ)p = dpϑp = dpb ∈ F (47)

showing that all elements of the class a · (F×)p determine the same extension (46). Now
we distinguish three cases:

case 1: v(b) /∈ pv(F ).
Then (v(E) : v(F )) = p = [E : F ] and the extension E|F is purely wild and defectless;

case 2: v(b) ∈ pv(F ).
Then there exists an element d ∈ F× such that v(dpb) = 0 and E = F (dϑ);

case 2.1: dpb /∈ F
p
.

Then [E : F ] = p = [E : F ], E|F is purely inseparable and the extension E|F is purely
wild and defectless;

case 2.2: dpb ∈ F
p
.

Then there exists an element d1 ∈ O×
F such that dp

1d
pa = 1 and E = F (d1dϑ).

Consequently, for our proof that E|F is defectless we may from now on assume v(b) = 0
and b = 1, thus b = 1 + a with a ∈MF , hence E|F is of the form

E = F (ϑ), ϑp = 1 + a ∈ F with a ∈MF . (48)

Note that this implies v(ϑ) = 0.

The algebraically closed field K contains an element c which satisfies the equation

cp−1 = −p .

(Let us mention that such c is a generator of the minimal extension of QI p containing all
p–th roots of unity.) Note that

cp = −pc

and

v(c) =
1

p− 1
v(p) > 0 ,

hence c ∈MF .
If we substitute cη + 1 for ϑ in (48), we get

0 = ϑp − 1− a = (cη + 1)p − 1− a

= cpηp + pc




p−1∑

i=2

ci−1 1

p

(
p
i

)
ηi


 + pcη − a

≡ cpηp + pcη − a mod pcMF

because all coefficients ci−1 1
p

(
p
i

)
for 2 ≤ i ≤ p − 1 are elements of cOF ⊂ MF since

(
p
i

)
is divisible by p for such i. Dividing by cp, we obtain

ηp − η − a

cp
∈MF .

We conclude that v(a/cp) ≤ 0 since otherwise Hensel’s Lemma would show that η is an
element of the henselian field F , contradicting our hypothesis that F (ϑ)|F is of degree p.
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If v(a/cp) = 0, we conclude that F (η)|F is an Artin–Schreier–extension (of degree p),
since if it were a trivial extension, Hensel’s Lemma would again yield a contradiction. In
this case, E|F is a tame defectless extension with

[E : F ] = p = [E : F ] .

Note that this case is only possible if F is not algebraically closed.
If v(a/cp) < 0, then v(η) < 0 and v(ηp) = pv(η) < v(η). Hence

v(ηp − a

cp
) = v(η) > v(ηp) ,

whence
v(ηp) = v(

a

cp
)

and consequently, the extension E|F has the form

E = F (cη), v((cη)p − a) > v(a) . (49)

If we are now able to derive normal forms for a which are similar to those that we have
obtained in the case of equal characteristic char(K) = p = char(K), then we will im-
mediately know from (49) that

pv(cη) ∈ v(F ) \ pv(F ) in the ramified case, or

c′cη p ∈ F \ F
p

in the unramified case,

for a suitable element c′ ∈ F with v(c′) = −v(cη). This would prove for both cases that
the extension E|F is defectless.

In the sequel, we will derive such normal forms for a. Since in the case of fields of
characteristic 0, we do not have the additivity of x 7→ xp which we used in the case of F
having characteristic p > 0 (in particular for the replacement procedure in the proof of
Lemma 3.25), we have to use here the following general lemmata:

Lemma 3.35 If
a = 1 + y +

∑

j∈J

zp
j

with y, zj ∈MF and a finite index set J , and if

d = (1 +
∑

j∈J

zj)
−1 ,

then
d ≡ 1 mod MF and dpa ≡ 1 + dpy mod pMF .

Proof: Since all zj are elements of MF we have

a ≡ (1 +
∑

j∈J

zj)
p + y mod pMF

which implies the assertion by virtue of d ∈ OF and

d = 1 +
∑

j∈J

zj

−1
= 1−1 = 1 .

2
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Lemma 3.36 Let F be any henselian field of characteristic 0 with residue characteristic
p > 0, and let y, z, z̃ ∈MF . Assume that F contains an element c with cp−1 = −p. Then

1 + y − pz̃ ∈ (1 + y + z) · (F×)p

if the following conditions hold:

1. v(z̃p − z) > p
p−1

v(p),

2. 2v(z̃) > 1
p−1

v(p),

3. v(z + pz̃) + v(y − pz̃) > p
p−1

v(p).

Proof: We compute

1 + y + z

1 + y − pz̃
= 1 +

z + pz̃

1 + y − pz̃
= 1 + z + pz̃ + A

where A ∈ F with v(A) ≥ v(z + pz̃) + v(y − pz̃). Let

f(X) = Xp − (1 + z + pz̃ + A) .

Putting X = Y + 1 + z̃, we get

f(X) = (Y + 1 + z̃)p − (1 + z + pz̃ + A)

= (Y + 1)p + z̃p + p(Y + 1)p−1z̃ + pz̃2B − (1 + z + pz̃ + A)

= Y p + 1 + pY + pY 2D + z̃p + pz̃ + pz̃Y C + pz̃2B

−(1 + z + pz̃ + A)

= Y p + pY + pY 2D + z̃p − z + pz̃Y C + pz̃2B − A

where B, C, D ∈ OF [Y ]. Putting Y = cZ and

g(Z) :=
1

cp
f(X) =

1

cp
f(cZ + 1 + z̃) ,

and using cp−1 = −p, we get

g(Z) =
1

cp
(cpZp − cpZ − cp+1Z2D + z̃p − z

−cpz̃ZC − cp−1z̃2B − A)

= Zp − Z − cZ2D + c−p(z̃p − z)− z̃ZC − c−1z̃2B − c−pA

with B, C, D ∈ OF [Z]. The polynomial g(Z) has integral coefficients and residue Z
p − Z,

if the following conditions hold:

v(c) > 0 , v(z̃p − z) > pv(c) , v(z̃) > 0 ,

2v(z̃) > v(c) , v(z + pz̃) + v(y − pz̃) > pv(c) .

In view of v(c) = v(p)/(p− 1) > 0, these conditions hold if and only if conditions 1., 2., 3.
hold. Note that v(p) > 0 since by hypothesis, char(F ) = p 6= 0 = char(F ). 2

Putting z̃ = 0 or z = z̃p respectively, one deduces from this lemma both parts of the
following well known corollary:
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Corollary 3.37 Let the assumptions be as in Lemma 3.36. Then:

a) 1 + y ∈ (1 + y + z) · (F×)p if v(z) > p
p−1

v(p).

b) 1 + y − pz̃ ∈ (1 + y + z̃p) · (F×)p if v(y) ≥ v(p) and v(z̃p) > v(p).

Corollary 3.38 Let the assumptions be as in Lemma 3.36. Then:

1 + y ∈ (1 + y + z) · (F×)p if 1 + z ∈ (F×)p and v(yz) > p
p−1

v(p).

Proof: 1 + y ∈ (1 + y + z)(F×)p is true if the following quotient is an element of (F×)p:

1 + y + z

1 + y
= 1 +

z

1 + y
= 1 + z + A

where A ∈ OF with v(A) = v(yz), since y, z ∈MF . By hypothesis,

v(A) = v(yz) >
p

p− 1
v(p) .

Thus by part a) of Corollary 3.37 and by our assumption on 1 + z,

1 + z + A ∈ (1 + z) · (F×)p = (F×)p ,

as desired. 2

3.8.A We will first discuss the ramified case:

F = K(x)h is of rank 1 and K is algebraically closed
char(F ) = 0 , char(F ) = p > 0
x is value–transcendental over K.





(50)

In this case, F = K (cf. (23) on page 42) and consequently, F is algebraically closed.

As in 3.7. A we will consider the subring

R = K[x, x−1]

of F . Recall that every element of this ring is a finite sum of monomials, all of them having
different values, whose minimum represents the value of the sum (cf. (35) on page 54). From
Lemma 3.24 we know that R is dense in F . In view of assumption (48) and part a) of
Corollary 3.37, we may thus assume from now on that

E = F (ϑ) , ϑp = 1 + a = 1 +
∑

i∈I

cix
i ∈ R (51)

with cix
i ∈MF and I ⊂ ZZ finite.

Note that since K is assumed to be algebraically closed, a monomial cix
i is a p–th power

in F if and only if i ∈ pZZ; indeed, if i /∈ pZZ, then v(cix
i) /∈ v(K) ⊕ pZZv(x) = pv(F ).

Now we apply Lemma 3.35 to 1+a, taking the elements zj to be all monomials cjpx
jp with

jp ∈ I and j ∈ ZZ. We find that we may replace a by dpy + A with A ∈ pMF , where y
contains all monomials appearing in a that are not p–th powers, and d is chosen as in the
lemma. Since d− 1 ∈MF and R is dense in F , we may write

d ≡ 1 +
∑

i∈Ĩ

c̃ix
i mod pMF
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where all monomials c̃ix
i are elements of MF . Consequently,

dp ≡ 1 +
∑

i∈Ĩ

c̃p
i x

ip mod pMF .

Since by our choice, y contains no monomials which are p–th powers, we may write

dpy + A =
∑

i∈I′
c′ix

i + A′

where A′ ∈ pMF and I ′ ⊂ ZZ \pZZ is a finite index set. Since R is dense in F , by virtue of
part a) of Corollary 3.37 we may replace A′ by a suitable element from R which is a finite
sum of monomials which in view of (35) must have value > v(p). We have found that from
now on we may assume:

E = F (ϑ), ϑp = 1 + a = 1 +
∑

i∈I

cix
i

with





finite I ⊂ ZZ ,
cix

i ∈MF ,
cix

i ∈ pMF if i ∈ pZZ .





(52)

Let us assume for the following that there are no summands cix
i having value ≤ v(p).

Then part b) of Corollary 3.37 shows that we may replace any monomial of the form cix
i

with i ∈ pZZ by the monomial −pc̃ix
i/p where c̃i is any element of K with c̃p

i = ci. After
an iterated application we may assume that I contains no multiples of p different from 0.
To get rid of c0, we use Corollary 3.38, where we put

z = c0 and y =
∑

06=i∈I

cix
i .

Since K is algebraically closed, 1 + z = 1 + c0 is a p–th power in K and thus in F . By our
assumption that all summands cix

i have value > v(p), we know that v(y) > v(p) and that
v(z) = v(c0) > v(p), hence v(yz) > 2v(p) ≥ p

p−1
v(p). Now Corollary 3.38 shows that

1 +
∑

06=i∈I

cix
i ∈ (1 +

∑

i∈I

cix
i) · (F×)p .

Hence we may assume I ∩ pZZ = ∅.
Finally, since we know by part a) of Corollary 3.37 that we may omit every monomial

cix
i with value > p

p−1
v(p) appearing in a, we have derived the following normal form for

the case 2.2:

Lemma 3.39 Assume that F satisfies (50) and E|F is of the form (48). Then there exists
ϑ ∈ F such that

E = F (ϑ), ϑp = 1 +
∑

i∈I

cix
i

with finite index set I ⊂ ZZ and

∀i ∈ I : 0 < v(cix
i) ≤ p

p− 1
v(p) ∧ (v(cix

i) ≤ v(p) =⇒ i /∈ pZZ) .

If there exists no i ∈ I with v(cix
i) ≤ v(p), then it may in addition be assumed that

I ∩ pZZ = ∅. In any case, v(
∑

i∈I cix
i) = mini∈I v(cix

i) is not divisible by p in v(F ).
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Corollary 3.40 If F satisfies the assumptions of (50), then every Galois extension of
degree p is purely wild and defectless. This proves (R6) in the case (50).

Proof: As we have discussed in the beginning, we may assume that the extension is
given in the form (46). Furthermore the assertion was immediately proved in the cases
1 and 2.1 (actually, the latter cannot appear if F satisfies (50)). For the following we
may thus assume case 2.2, i.e. E|F is of the form (48). Consequently, we may assume
that E|F has the form as described in the preceding Lemma. From the discussion at the
beginning of this subsection, we know that the extension E|F must have the form (49),
and in particular, v(a)/p ∈ v(E). On the other hand, we know from the preceding lemma
that the value of a is not divisible by p in v(F ). This yields

(v(E) : v(F )) = p = [E : F ]

showing that E|F is purely wild and defectless. 2

3.8.B Now we will discuss the unramified case:

F = K(x, y)h is of rank 1 and of the form (25)
char(F ) = 0 , char(F ) = p > 0
x is residue–transcendental over K.





(53)

In this case, v(F ) = v(K) (cf. (22) on page 42) and consequently, v(F ) is p–divisible.

Using Lemma 3.28, we derive the following normal form:

Lemma 3.41 If F satisfies (53) and R has properties (I) and (II.B), then for every Galois
extension E|F of the form (48), we may assume in addition:

a = rp
∑

i∈I

ciui + r′ ∈ R , r, r′ ∈ R, ci ∈ K, ui ∈ B

where r ∈ R has value 0, r′ ∈ pMF , I ⊂ J is a finite index set, no element ui is a p–th
power in B, and

∀i ∈ I : 0 < v(rpciui) = v(ci) ≤ p

p− 1
v(p) .

If there exists no i ∈ I with v(ci) ≤ v(p), then it may in addition be assumed that r = 1
and r′ = 0. In any case,

v(a) = v(
∑

i∈I

ciui) = min
i∈I

v(ciui) = min
i∈I

v(ci) ≤ p

p− 1
v(p) (54)

and if v(ck) = v(a) for k ∈ I then uk /∈ Bp. E|F is tame if v(a) = p
p−1

v(p) holds.

Conversely, if E|F is tame then a may be chosen such that v(a) = p
p−1

v(p).

Proof: Let E|F be given in the form (48). In view of Lemma 3.28 and part a) of
Lemma 3.37, we may assume that a ∈ R and we write

a =
∑

i∈I′
c′iui , c′i ∈ K, ui ∈ B

where I ′ ⊂ J is a finite index set. Since a ∈ MF and B is a valuation basis of R over K,
all monomials c′iui must be elements of MF (cf. equation (39) on page 57).
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First, we apply Lemma 3.35 to 1 + a, taking the elements zj to be all monomials c′juj

with uj ∈ Bp. We find that we may replace a by dpy + A, where y contains all monomials
c′juj with uj /∈ Bp and d is chosen as in the lemma. We put r′ := A ∈ pMF . Let d0 ∈ K
be such that v(d0) = v(d) and put r = d/d0 ∈ R; consequently, v(r) = 0. From now on we
may assume

a = dpy + A = rp
∑

i∈I

ciui + r′

where no element ui is a p–th power in B. Moreover, we may assume that every ci has
value ≤ p

p−1
v(p) since otherwise, the summand may be omitted according to part a) of

Corollary 3.37. On the other hand, every ci satisfies v(ci) ≥ v(
∑

ciui) since B is a valuation
basis of R over K by (II B), and this shows that v(ci) ≥ v(a) > 0; moreover, it proves (54).

For the case that there exists no i ∈ I with v(ci) ≤ v(p), the further assertions on the
monomials ciui are derived like in the ramified case (50) (cf. page 64).

Now assume that v(a) = p
p−1

v(p). Then the substitution X = cZ + 1 where c is chosen

as in Lemma 3.36, transforms the polynomial Xp − (1 + a) into a polynomial in Z with
residue polynomial Zp−Z−a/cp where v(a/cp) = 0 (cf. the proof of Lemma 3.36). This is
an Artin–Schreier polynomial which does not admit a zero in F since otherwise E|F would
be trivial by Hensel’s Lemma, contrary to our assumption that its degree is p. Hence in
this case, E|F is a separable extension of the same degree p as E|F . This shows that E|F
is tame if v(a) = p

p−1
v(p).

Assume now that E|F is a tame Galois extension. Then E|F must be separable by
definition, and since v(F ) = v(K) is divisible by our assumption (53), it follows that
[E : F ] = [E : F ] = p. Consequently, E|F is a Galois extension of degree p and thus an
Artin–Schreier–extension generated by an Artin–Schreier-root of y for a suitable element
y ∈ O×

F . Now choose c as above and let f(Z) ∈ F [Z] be the polynomial that satisfies

(cZ + 1)p = cpZp + cpf(Z)− cpZ + 1

(note that cp = −pc); it follows that cpf(Z) ∈ pc2OF [Z] = cp+1OF [Z], hence

f(Z) ∈MF [Z] .

By Hensel’s Lemma, E is then generated over F by a root of

Zp + f(Z)− Z − y .

Multiplying by cp and transforming with X = cZ + 1 we get a polynomial

Xp − (1 + cpy)

admitting a root in E which generates the extension E|F . Moreover, v(y) = 0 and v(cpy) =
p

p−1
v(p). This shows that we may choose a = cpy with v(a) = p

p−1
v(p) if E|F is a tame

extension. 2

On the basis of this lemma, we prove:

Lemma 3.42 If in the unramified case (53) there exists a subring R ⊂ F satisfying prop-
erties (I), (II.B) and (III), then every Galois extension E|F of degree p is defectless.
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Proof: As we have discussed in the beginning, we may assume that the extension is
given in the form (46). Furthermore the assertion was immediately proved in the cases 1
and 2.1 (actually, the former cannot appear if F satisfies (50)). For the following we may
thus assume case 2.2, i.e. E|F is of the form (48). Furthermore, we may assume that a
satifies the assertions as described in Lemma 3.41. Since tame extensions are defectless
(by definition), we only have to deal with the case where E|F is not tame; by Lemma 3.41
we may thus assume that

v(a) = min
i∈I

v(ci) = v(ck) <
p

p− 1
v(p) (55)

for a suitable k ∈ I, i.e. v(a/cp) < 0. The discussion at the beginning of this subsection has

shown that in this case, the extension E|F is of the form (49). Now c
1/p
k ∈ K since K is

algebraically closed by assumption, and pv(c
−1/p
k cη) = v(a)−v(ck) = 0, i.e. v(c

−1/p
k cη) = 0.

Moreover, we infer from (49) that

c
−1/p
k cη

p

= a/ck =
∑

i∈I

diui

where di = ci/ck so that v(
∑

i∈I diui) = 0 and v(di) ≥ 0 with dk = 1. As in the proof of
Lemma 3.32 it is now shown that

η /∈ F ,

whence
[E : F ] = p = [E : F ]

which proves that E|F is defectless and that

E = F (η) = F
1/p

which is purely inseparable of degree p over F . Note that Lemma 3.30 and Lemma 3.31
which are used for the proof, are independent of the characteristic of F . 2

Now we will show the existence of a ring R in F that has properties (I), (II.B) and
(III). Since K and thus also K are algebraically closed, there exists a Frobenius–closed
basis B of F over K, as we will show in subsection 3.9. We have to lift this basis B to a
Frobenius–closed basis of F over K.

By assumption, the characteristic of K is zero and the characteristic of K is p > 0.
Consequently, K contains QI and its valuation induces the p–adic valuation vp on QI . Since
K is algebraically closed, it contains a valued overfield (K0, v) of (QI , v) such that K0 = K
and v(K0) = vp(QI ) = ZZv(p); this field can be constructed as follows:
Take T to be a set of foreimages for a transcendence basis T of K|IFp; then T is a valuation–
independent set and we have QI (T ) = IFp(T ) and v(QI (T )) = v(QI ) by Lemma 2.20. Now
K |QI (T ) is an algebraic extension which can be viewed as a transfinite tower of algebraic
extensions, every successor being a finite extension of the predecessor and the index set of
this tower being well–ordered. By induction on this well–ordering one can lift succesively
all these finite extensions preserving the degree; this is possible since we are working in
the algebraically closed field K. By this construction, we get a tower of finite extensions,
starting from the field QI (T ), and since all these have the same degree as the corresponding
extension of their residue fields, all these extensions will have the same value group as
QI (T ) which is ZZv(p). The union over this tower is the desired field K0.
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Now by Lemma 2.19,
K0(x) = K0(x) = K(x) . (56)

By hypothesis (53), we have F = K(x, y)h with

[K(x, y) : K(x)] = [K(x, y) : K(x)] (57)

where K(x, y)|K(x) is a separable extension. Let

f(x, y) = 0

be the irreducible equation for x, y over K, normed such that f has integral coefficients
with f(X, Y ) 6= 0. Condition (57) implies that f(X, Y ) and f(X,Y ) have the same degree
in Y ; moreover we have

∂f(x, y)

∂y
6= 0 (58)

because x is a separating transcendent element for F |K. By (56), we may choose a
polynomial g(X, Y ) ∈ K0[X, Y ] with integral coefficients such that g has the same degree
in Y as f and

g(X,Y ) = f(X, Y ) .

From (58) it follows by Hensel’s Lemma that g(x, Y ) has exactly one zero y′ ∈ F with
y′ = y. We have K(x, y′)h ⊂ K(x, y)h. Again from (58) it follows that the polynomial
f(x, Y ) has exactly one root in K(x, y′)h whose residue is equal to y′ = y. This root must
be y, hence y ∈ K(x, y′)h and we have shown

K(x, y′)h = K(x, y)h = F .

Hence we assume from now on that y is algebraic over K0(x) with

[K0(x, y) : K0(x)] = [K0(x, y) : K0(x)]

= [K(x, y) : K(x)]

= [K(x, y) : K(x)] .

In particular, this shows that the function field F0 = K0(x, y) is linearly disjoint from K
over K0. Moreover, we have

F0 = K0(x, y) = F

and
F = (K.K0(x, y))h = (K.F0)

h (59)

Now we lift the Frobenius–closed K–basis B of F to F0 in the following way:
First we observe that every basis element u in B which is not equal to 1, is an element of

F \K which implies that there exists an integer ν = ν(u) such that u /∈ F
pν

. This shows
that

B = {1, upn | n ∈ IN and u ∈ B \ F
p} .

For every u ∈ B \F
p

we choose an element u ∈ F0 with residue u. Let B′ be the collection
of all these elements u. Then

B = {1, upn | n ∈ IN and u ∈ B′}
is a linearly valuation–independent set and a set of representatives for B. Let

R0 = K0[B]
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be the subring of F0 generated over K0 by the elements from B. Since

v(R0) = vp(QI ) = v(F0) and R0 = F = F0

and since the value group vp(QI ) is isomorphic to ZZ, we conclude that R0 is dense in F0.

Recall that K and F0 are linearly disjoint over K0. We form the subring generated by
K and R0 in F :

R = K ⊗K0 R0 ⊂ F .

Since R0 is dense in F0 and K is of rank 1 by our assumption (53), the ring R is dense in
the ring

R′ = K ⊗K0 F0 ⊂ F .

From (59) it follows that F is the henselization of the quotient field of R′. Since the rank
of F is 1, the field Quot(R′) is dense in its henselization, and the fact that R is dense in
R′ implies that Quot(R) is dense in Quot(R′); hence R satisfies property (I).
By construction, B is a valuation basis of R over K containing 1, closed under p–th powers
and such that B is a Frobenius–closed K–basis of F ; hence R satisfies properties (II.B)
and (III).

We summarize what we have proved:

Lemma 3.43 In the unramified case (53) there exists a subfield K0 of K and a function
field F0 linearly disjoint from K over K0 such that v(F0) = v(K0) is discrete, K0 = K and
F0 = F . O×

F0
contains a linearly valuation–independent set B including 1 and closed under

p–th powers such that B is a Frobenius–closed valuation basis of F over K. The ring R0

generated by B over K0 is dense in F0, and the ring R = K⊗K0 R0 ⊂ F satisfies properties
(I), (II.B) and (III).

An application of Lemma 3.42 now proves

Corollary 3.44 If F satisfies the assumptions of (53), then every Galois extension E|F
of degree p is defectless. This proves (R6) in the unramified case (53).

3.9 Frobenius–closed bases of algebraic function fields.

Let F |K be an algebraic function field in one variable with constant field K of characteristic
p > 0. Recall that a K–basis B of F |K is called Frobenius–closed if Bp ⊂ B. Here Bp

denotes the set of all p-th powers tp with t ∈ B.

Lemma 3.45 If F is an algebraic function field over an algebraically closed field K of
arbitrary characteristic and q is an arbitrary natural number > 1, then there exists a basis
of F |K which is closed under q–th powers.

Proof: If F = K(x) is a rational function field, our lemma follows from the theorem on
the partial fraction decomposition: every element f ∈ F has a unique representation

f = c +
∑

n>0

cnx
n +

∑

a∈K

∑

n>0

ca,n
1

(x− a)n

where only finitely many of the coefficients c, cn, ca,n ∈ K are nonzero. If we put

ta =
1

x− a
, t∞ = x
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it follows that the elements

1, tna with a ∈ K ∪ {∞}, n ∈ IN

form a K–basis of F ; this basis has the property that every power of a basis element is
again a basis element.

For general function fields the theorem on the partial fraction decomposition remains
true in the following modified form (according to Hasse). Let P∞ be a fixed place of F |K
and R∞ the ring of functions which are holomorphic in every P 6= P∞. It is well known
that R∞ is a Dedekind domain with F as its quotient field, and that the prime ideals of R∞

correspond to the places P 6= P∞ of F |K. Hence by virtue of the approximation theorem
for Dedekind domains (cf. [BOU], chapter VII, §2.4, proposition 2), there exists for every
P 6= P∞ a function tP ∈ F such that

vP (tP ) = −1

vQ(tP ) ≥ 0 for Q 6= P, P∞ .

By construction, every tP is the inverse of a uniformizing parameter for P . Every function
f ∈ F can be expanded P–adically with respect to such a uniformizing parameter, and the
principal part that appears in this expansion has the form

hP (f) =
∑

n>0

cP,ntnP ,

where only finitely many of the coefficients cP,n ∈ K are nonzero, namely n ≤ −vP (f).
By construction, tP has only a single pole 6= P∞ and this pole is P ; the same holds for
hP (f) (if hP (f) 6= 0). Consequently, the function

h = f − ∑

P 6=P∞

hP (f)

has no pole other than P∞ and is thus an element of R∞. We have shown that f has a
unique representation

f = h +
∑

P 6=P∞

∑

n>0

cP,ntnP

with coefficients cP,n ∈ K and an element h ∈ R∞. This shows that the functions

tnP with P 6= P∞, n ∈ IN

form a K–basis of F modulo R∞ which has the property that every power of a basis element
is again a basis element.

Now it remains to show that R∞ admits a basis which is closed under q–th powers. An
integer n ∈ IN is called pole number of P∞ if there exists a function f ∈ R∞ such that
vP∞(f) = −n. If we choose for every pole number n of P∞ such a function tn ∈ R∞, we
get a K–basis

1, tn with n ∈ IN

of R∞. To get a basis which is closed under q–th powers, we have to carry out our choice
as follows:

Let H∞ ⊆ IN be the set of all pole numbers. H∞ is closed under addition; in particular

qH∞ ⊂ H∞ .
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For every m ∈ H∞ \ qH∞ we choose an arbitrary element tm ∈ R∞ with vP∞(tm) = −m.
Any n ∈ H∞ can uniquely be written as

n = qνm where ν ≥ 0 and m ∈ H∞ \ qH∞ .

Accordingly we put
tn = tq

ν

m

which implies
vP∞(tn) = qν · vP∞(tm) = −qνm = −n .

This construction produces a K–basis

1, tq
ν

m with m ∈ H∞ \ qH∞, ν ≥ 0

of R∞ which is closed under q–th powers. 2

For the generalization of this lemma to perfect ground fields of characteristic p > 0 we
have to choose q = p :

Lemma 3.46 If F is an algebraic function field over a perfect field K of characteristic
p > 0 then there exists a Frobenius–closed basis for F |K.

Proof: If K is not algebraically closed, we have to modify the proof of the previous
lemma since not every place P of K has degree 1. (Such a modification is also necessary
for the theorem on the partial fraction decomposition in K(x) if K is not algebraically
closed.) The modification reads as follows:

For every place P of F |K, let

dP = [FP : K]

be the degree of P . For every P 6= P∞ we choose elements uP,i ∈ R∞, 1 ≤ i ≤ dP , such
that their residues uP,1P, ..., uP,dP

P form a K–basis of FP . We note that for every ν ≥ 0,
the pν-th powers upν

P,i of these elements have the same property: their P–residues also form
a K–basis of FP since K is perfect.
We write every n ∈ IN in the form

n = pνm with m ∈ IN, (p,m) = 1, ν ≥ 0

and observe that the elements

upν

P,i t
n
P with P 6= P∞, n ∈ IN, 1 ≤ i ≤ dP

form a Frobenius–closed K–basis of F modulo R∞.

It remains to construct a Frobenius–closed K–basis of R∞. This is done as follows:
We consider the vector spaces of the multiples of the divisors nP∞ in the sense of the

Riemann–Roch Theorem:

Ln = L(nP∞) = {x ∈ F | vP∞(x) ≥ −n and vP (x) ≥ 0 for P 6= P∞} .

We have L0 = K and
R∞ =

⋃

n∈IN

Ln .
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For
d∞,n = dim Ln/Ln−1

we have d∞,n ≥ 0 and
d∞,n ≤ [FP∞ : K] = d∞ .

(By the Riemann – Roch Theorem, equality holds for large enough n.)
Now for n = 1, 2, ... we will choose succesively basis elements tn,i ∈ Ln modulo Ln−1. Then
the elements

1, tn,i with n ∈ IN, 1 ≤ i ≤ d∞,n

form a K–basis of R∞. To obtain that this basis is Frobenius–closed, we organize our
choice as follows:

If n = pm, the p–th powers tpm,i ∈ Ln are linearly independent modulo Lp(m−1) and
even modulo Lpm−1 = Ln−1. This fact follows from our hypothesis that K is perfect: the

existence of nonzero elements ci ∈ K with
∑

cit
p
m,i ∈ Lp(m−1) would yield

∑
c
1/p
i tm,i ∈ Lk

for some k < m, a contradiction. In our choice of the elements tn,i we are thus free to
take all the elements tpm,i and to extend this set to a basis of Ln modulo Ln−1 by arbitrary
further elements, if necessary (for n large enough, the elements tpm,i will already form such
a basis). This procedure guarantees that the p–th power of any basis element tm,i is again
a basis element, namely equal to tpm,j for suitable j. Hence a basis constructed in this way
will be Frobenius–closed. 2

æ
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4 The relation of immediate Artin–Schreier–extensions

and immediate purely inseparable extensions in char-

acteristic p > 0.

In this section, we want to classify immediate Artin–Schreier–extensions according to the
question whether they are in some sense similar to immediate purely inseparable extensions
or not. We study the relation between such immediate extensions, and the results will
enable us to break up the property “defectless field” into similar properties which only
deal with more special classes of extensions (such as “separably defectless field”). At
the end of the first subsection, we will derive some persistence results which show that
the considered properties are inherited by certain algebraic extensions. By an application
to an earlier result which was proved in section 3, we obtain Theorem 4.16 which is an
analogue of Theorem 3.1 for inseparably defectless fields.

In the second subsection, we will use these results to establish two important charac-
terizations of algebraically complete fields whose applications are to be found in section 5
and section 11.

4.1 Classification and general results.

We will consider the following situation:

L|K an immediate Artin–Schreier–extension of henselian fields of characteristic p > 0

ϑ an Artin–Schreier–generator of L|K
a = ℘(ϑ) = ϑp − ϑ ∈ K

δ = dist(ϑ,K) the distance of ϑ from K.

Since L|K is immediate, we know by Theorem 12.26 that δ > v(ϑ). ϑ′ is another Artin–
Schreier–generator of L|K if and only if

ϑ′ = nϑ + u with u ∈ K and 1 ≤ n ≤ p− 1. (60)

As a consequence, the distance δ does not depend on the choice of the Artin–Schreier–
generator and is thus an invariant of the extension L|K. Assume that there exists an
Artin–Schreier–generator ϑ′ = ϑ− c with v(℘(ϑ′)) = v(ϑ′) ≥ 0; if in this case, there exists
an Artin–Schreier–root ℘−1(℘(ϑ′)) in K, then K(ϑ′) = K by Hensel’s Lemma; otherwise
K(ϑ′) is an Artin–Schreier–extension of K implying that L|K is a tame extension and
thus defectless. Since we assume L|K to be nontrivial and immediate, we deduce from
Corollary 3.23 that

∀c ∈ K : v(ϑ− c) < 0 (61)

which shows that δ is a negative cut.

We will now distinguish two types of immediate Artin–Schreier–extensions. To this
end, we consider δ as a cut in the value group v(K̃) which is equal to the divisible hull
˜v(K) of the value group v(K). This is done in the way as described in section 2.3, page 34:

if δ = (Λ, Λ′) in v(K̃), then Λ is the convex hull of

Λ(appr(ϑ,K)) = {v(ϑ− c) | c ∈ K}
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in v(K̃). Note that Λ admits no maximal element since L|K is assumed to be immediate,
hence by virtue of Theorem 12.26 it follows that appr(ϑ,K) is immediate. We consider the
following interval in v(K̃):

Uδ = {α ∈ v(K̃) | δ ≤ α ≤ −δ} .

Here −δ denotes the cut (−Λ′,−Λ) derived from δ = (Λ, Λ′), where −Λ = {−α | α ∈ Λ}.
If Uδ is a group (hence a convex subgroup of v(K)), we call the immediate Artin–Schrei-
er–extension L|K independent. If Uδ is not a group, we call L|K dependent. Note that
the associated ideal

Iδ = {c ∈ K | v(c) > −δ}
is a prime ideal of OK if and only if Uδ is a convex subgroup of v(K). If Iδ is a prime ideal,
there exists a coarsening vδ of v such that vδ(K̃) ∼= v(K̃)/Uδ. Furthermore, Lemma 12.58
shows that Uδ is a group if and only if |δ| is a distinguished cut and Uδ coincides with the
invariance subgroup I(δ, v(K)) (cf. chapter 12 for definitions and further details). Note
that for the following it will be crucial that we took the cut δ as a cut in the divisible hull
˜v(K) = v(K̃) of the value group v(K); indeed, the interval [δ,−δ] in v(K) may be a group

whereas as an interval in v(K̃) it may not.

To start with, we observe the following

Lemma 4.1 Uδ is a group if and only if

∀α ∈ v(K̃) : α < δ ⇔ pα < δ

which fact we express in short terms by writing

δ = pδ .

Note that α < δ ⇒ pα < δ follows already from δ ≤ 0.

Proof: Let Uδ be a group. Then α ≥ δ, i.e. α ∈ Uδ implies pα ∈ Uδ, i.e. pα ≥ δ. For
the converse, assume that Uδ is not a group. Then there exist elements α, β ∈ Uδ such that

δ ≤ α ≤ β < 0 and α + β < δ.

This yields
pα ≤ 2α ≤ α + β < δ

whereas α ≥ δ. 2

We have chosen the name “dependent” since dependent immediate Artin–Schreier–ex-
tensions depend on immediate purely inseparable extensions in a way that we will describe
in the following lemma.

Lemma 4.2 Assume that L|K is dependent, hence in particular δ < 0. Then there exists
an immediate purely inseparable extension K(ϑ∗)|K of degree p; moreover we can choose
ϑ∗ such that it satisfies the same approximation type as ϑ− u over K for some u ∈ K and
has the same distance as ϑ− u and ϑ from K:

appr(ϑ∗, K) = appr(ϑ− u,K)

dist(ϑ∗, K) ³ dist(ϑ− u,K) ³ dist(ϑ,K) .
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Proof: For u ∈ K, we consider the Artin–Schreier–generator ϑ− u and put

au = ℘(ϑ− u) = a− ℘(u) ∈ K.

We try to find u such that

ϑ∗ = (au)
1
p

satisfies the same approximation type as ϑ− u, i.e.

∀c ∈ K : v(ϑ∗ − c) = v(ϑ− u− c). (62)

If this is true then we see that ϑ∗ /∈ K since otherwise we would get a contradiction by
putting c = ϑ∗, hence K(ϑ∗) is of degree p over K; on the other hand, we conclude that

dist(ϑ∗, K) ³ dist(ϑ− u,K) ³ dist(ϑ, K) = δ

and in view of Lemma 12.68, that L∗|K is an immediate extension.
According to the definition of ϑ, we have:

ϑ∗ − c = (au)
1
p − c

= ℘(ϑ− u)
1
p − c

= ϑ− u− c − (ϑ− u)
1
p .

Hence (62) will be satisfied if

v(ϑ− u− c) < v((ϑ− u)
1
p ) =

v(ϑ− u)

p

for all c ∈ K, which is equivalent to

δ ≤ v(ϑ− u)

p
. (63)

By definition of δ we have v(ϑ − u) < δ. To show the existence of u ∈ K satisfying (63)
we use that Uδ by hypothesis is not a group. In view of Lemma 4.1 we choose an element
α ∈ v(K̃) such that

pα < δ ≤ α . (64)

Then, by definition of δ, there exists u ∈ K with pα < v(ϑ− u) < δ, and dividing by p we
deduce (63). 2

Corollary 4.3 If K admits no proper immediate purely inseparable extensions, then K
admits no immediate dependent Artin–Schreier–extensions.

The converse of this corollary is not true: every separable–algebraically closed valued
field K of characteristic p > 0 which is not algebraically closed is a counterexample,
since its value group is divisible and its residue field is algebraically closed and hence the
proper purely inseparable extension K̃|K is immediate. But a closer look shows that the
irreversibility stems only from immediate purely inseparable extensions which lie in the
completion of K:
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Lemma 4.4 Assume that K admits an immediate purely inseparable extension K(ϑ∗)|K
of degree p such that

δ∗ = dist(ϑ∗, K) < ∞
(which means that there exists an element v(K) which is an upper bound for v(ϑ∗ − c),
c ∈ K). Then K admits an immediate dependent Artin–Schreier–extension K(ϑ̃)|K. More
precisely, given any β ∈ v(K) such that

p− 1

p
β +

1

p
v(ϑ∗) ≥ δ∗,

and if b ∈ K has value v(b) = β, then the Artin–Schreier–generator ϑ̃ can be chosen as to
satisfy

v(ϑ̃) = v(ϑ∗)− β

appr(ϑ̃,K) = appr(ϑ∗/b,K)

dist(ϑ̃,K) ³ dist(ϑ∗, K)− β.

All immediate Artin–Schreier–extensions obtained in this way are dependent.

Proof: Let Θ be a root of the polynomial

Y p − bp−1Y − ϑ∗p ∈ K[Y ].

By Corollary 12.43 we know that

appr(Θ, K) = appr(ϑ∗, K) ,

and in view of Lemma 12.68 we conclude that K(Θ)|K is a nontrivial immediate extension.
Putting Y = bZ we find that ϑ̃ = Θ/b is a root of

Zp − Z − (
ϑ∗

b
)p (65)

and hence an Artin–Schreier–generator of K(Θ)|K. By hypothesis we have

p− 1

p
β +

1

p
v(ϑ∗) ≥ δ∗ > v(ϑ∗) (66)

from which we deduce
β > v(ϑ∗)

showing that

v

((
ϑ∗

b

)p)
< 0

and hence that

v(ϑ̃) = v(
ϑ∗

b
) = v(ϑ∗)− β

since ϑ̃ is a root of the polynomial (65). As an immediate consequence we get

dist(ϑ̃, K) ³ dist(ϑ∗, K)− β.
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It remains to show that the cut δ̃ = dist(ϑ∗, K) − β cannot induce a convex subgroup Uδ̃

of v(K). To see this, we rewrite (66) in the form

1
p
(v(ϑ∗)− β) ≥ δ∗ − β

p · 1
p
(v(ϑ∗)− β) = v(ϑ∗)− β < δ∗ − β

which shows that Uδ is not a group. 2

For the proof of the preceding Lemma, we have transformed an immediate purely insep-
arable extension which was not contained in the completion, into an immediate separable
extension. On the other hand, an immediate purely inseparable extension with a generator
ϑ∗ in the completion of K, i.e.

dist(ϑ∗, K) = ∞ , (67)

cannot be transformed into any immediate separable extension with a generator of the
same approximation type since the above equation implies that any element having the
same approximation type over K as ϑ∗ can be mapped to ϑ∗ by a valuation preserving
isomorphism over K. Moreover it is well known that K is separable–algebraically closed
in its completion since K is assumed to be henselian.

If K admits any immediate purely inseparable extension that does not lie in the comple-
tion of K, then K satisfies the hypothesis of the preceding lemma. Indeed, if η ∈ √K \Kc

such that K(η)|K is an immediate extension, we may assume that ηp ∈ Kc (otherwise
replace η by a suitable pν–th power). We have dist(η,K) < ∞, hence

distK(ηp, Kp) < ∞ = dist(ηp, K)

which shows that there is some d ∈ K with v(η − d1/p) > dist(η, K). By Lemma 12.25,
this implies

appr(d1/p, K) = appr(η, K) ,

hence by Lemma 12.43, K(d1/p)|K is an immediate extension not contained in Kc. This
yields:

Corollary 4.5 Assume K does not admit any immediate dependent Artin–Schreier–ex-
tension. Then every immediate purely inseparable extension lies in the completion of K.
If K is Artin–Schreier–closed, then the perfect hull of K lies in the completion of K. In
particular, if K is separable–algebraically closed, then K̃ lies in the completion of K.

The following lemma shows that the condition of the preceeding corollary is inherited
by the completion of K:

Lemma 4.6 If Kc admits an immediate dependent Artin–Schreier–extension, then K ad-
mits an immediate dependent Artin–Schreier–extension with an Artin–Schreier–generator
of the same distance.

Proof: Let Y p − Y − a be the minimal polynomial of a dependent Artin–Schreier–ex-
tension of Kc and let ϑ be a root of it. Since dist(ϑ,Kc) < ∞, we may choose an element
a∗ ∈ K such that v(a − a∗) > p · dist(ϑ,Kc). Then by Lemma 12.68, Y p − Y − a∗ is the
minimal polynomial of an immediate Artin–Schreier–extension and if ϑ∗ is a root of it, then
dist(ϑ∗, K) ³ dist(ϑ,Kc). In particular, the extension K(ϑ∗)|K is also dependent. 2

An immediate consequence of this lemma is:
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Corollary 4.7 If K does not admit any immediate dependent Artin–Schreier–extension,
then Kc does not admit any immediate purely inseparable extension. In particular, this
holds if K is separable–algebraically maximal.

None of the Artin–Schreier–extensions constructed in the last lemma can be indepen-
dent. This follows from a more general fact that at the same time justifies our choice of
the notion “independent”:

Lemma 4.8 If L|K is an independent Artin–Schreier–extension, then there exists no im-
mediate purely inseparable extension K(ϑ∗)|K such that

appr(ϑ,K) = appr(ϑ∗, K) . (68)

This can be expressed by writing

dist(ϑ,K) = dist(ϑ,
√

K) .

Proof: To deduce a contradiction, assume the contrary and choose ν ≥ 1 such that
ϑ∗p

ν ∈ K. From appr(ϑ,K) = appr(ϑ∗, K) we deduce

v(ϑ− ϑ∗) ≥ dist(ϑ,K) =: δ .

By hypothesis we know that Uδ is a group, hence

δ = pδ

in view of Lemma 4.1. From ϑp = ϑ + a we compute

ϑpν

= ϑ + a′ where a′ = a + . . . + apν−1 ∈ K .

Putting all these equations together we get

δ = dist(ϑ,K)

> v(ϑ− (ϑ∗p
ν − a′)) = v(ϑpν − ϑ∗p

ν

)

= pνv(ϑ− ϑ∗) ≥ pνδ = δ ,

the desired contradiction. 2

For later use, we need the following

Lemma 4.9 If K0 ⊂ K1 ⊂ K2 is an extension of henselian fields of characteristic p > 0
such that K1|K0 is finite and purely inseparable and K2|K1 is an independent immediate
Artin–Schreier–extension, then there exists an Artin–Schreier–extension L|K0 such that
K2 = K1.L, and every such extension L|K0 is an independent immediate Artin–Schreier–
extension.

Proof: Let η be an Artin–Schreier–generator of K2|K1 and choose ν ≥ 1 such that

Kpν

1 ⊂ K0 .

Then
℘(ηpν

) = (℘(η))pν ∈ K0 ,
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hence
K0(η

pν

)|K0

is an Artin–Schreier–extension: it is nontrivial since K0(η)|K0 is not purely inseparable.
Computing degrees we see that K2 = K1.K0(η

pν
).

Now let L|K0 be any such Artin–Schreier–extension. Let ϑ be an Artin–Schreier–gene-
rator of L|K0 and hence of K2|K1 too. We choose ν as above and compute:

dist(ϑpν

, K1) = dist(ϑ,K1)

since ϑpν
is also an Artin–Schreier–generator of K2|K1;

dist(ϑ, K1) = δ = pδ = dist(ϑpν

, Kpν

1 )

in view of Lemma 4.1 since Uδ is a group by hypothesis;

dist(ϑpν

, Kpν

1 ) ≤ dist(ϑpν

, K0) ≤ dist(ϑpν

, K1)

because Kpν

1 ⊂ K0 ⊂ K1. Putting these three equations together, we deduce

dist(ϑpν

, K0) = dist(ϑpν

, K1) = dist(ϑ,K1)

showing that L|K0 is an independent immediate Artin–Schreier–extension like K2|K1. 2

Another property of independent immediate Artin–Schreier–extensions is their persis-
tence under maximal immediate extensions, in the following sense:

Lemma 4.10 If K admits an immediate Artin–Schreier–extension L|K with Artin–Schrei-
er–generator ϑ of distance δ = 0, then every algebraically maximal immediate extension
(and in particular every maximal immediate extension) M of K contains also an im-
mediate Artin–Schreier–extension with an Artin–Schreier–generator ϑ∗ of distance 0 and
of the same approximation type appr(ϑ∗, K) = appr(ϑ, K).

Proof: If L ⊂ M , there is nothing to show. Assume the contrary. Then L.M |M is also
an Artin–Schreier–extension with Artin–Schreier–generator ϑ. Since M is algebraically
maximal, the extension L.M |M is defectless and thus admits a valuation basis, according
to Lemma 2.6. From Lemma 12.7 we infer the existence of an element u ∈ M satisfying

v(ϑ− u) ≥ dist(ϑ,M) .

On the other hand, K ⊂ M implies

dist(ϑ,M) ≥ dist(ϑ,K) = δ

showing that v(ϑ− u) ≥ 0. We put

au = ℘(ϑ− u) = a− ℘(u) ∈ M

and note that v(au) ≥ 0. Since M |K is immediate, there exists b ∈ K having the same
residue class as au:

b = au .
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We consider the Artin–Schreier–polynomial ℘(X) − b ∈ K[X]. By construction, after
reduction to M [X] we have:

℘(X)− b = ℘(X)− au .

Since ℘(X)−au has the zero ϑ−u in the henselian field L.M , by Hensel’s Lemma it follows
that also ℘(X)− b has a zero η ∈ L.M and that we may assume

η = ϑ− u . (69)

We put
ϑ∗ = ϑ− η .

To show that ϑ∗ ∈ M we consider the automorphism σ of L|K defined by

σ(ϑ)− ϑ = 1

which generates the Galois group of L|K and admits a unique prolongation to a generating
automorphism of L.M |M . u ∈ M implies

σ(ϑ− u)− (ϑ− u) = σ(ϑ)− ϑ = 1 .

By construction, also η satisfies an Artin – Schreier – equation over M , thus σ(η)− η = n
for a unique n ∈ ZZ/p. Equation (69) shows

σ(η)− η = σ(ϑ− u)− (ϑ− u) = 1 .

This yields
σ(ϑ∗)− ϑ∗ = σ(ϑ)− ϑ− (σ(η)− η) = 0, hence ϑ∗ ∈ M .

Moreover, since v(η) ≥ 0 we have for every c ∈ K:

v(ϑ∗ − c) = v(ϑ− c− η)

= min(v(ϑ− c) , v(η))

= v(ϑ− c) < 0

proving that appr(ϑ∗, K) = appr(ϑ,K). In particular, this shows that ϑ∗ /∈ K so that
K(ϑ∗)|K is a proper immediate Artin–Schreier–extension. 2

From this lemma, we deduce the following

Corollary 4.11 If there exists a maximal immediate extension in which K is separable–
algebraically closed, then K admits no independent immediate Artin–Schreier–extension
with distance δ = 0.

The converse of this corollary is not true. For example, let k be an algebraically closed
valued field of rank 1 and k(x) an immediate extension of k, and let K be a henselization
of k(x); note that k(x) is dense in K, i.e. K = k(x) +MK and in view of MK ⊂ ℘(K)
(cf. Lemma 3.22), we have K = k(x) + ℘(K). To show that K admits no independent
immediate Artin–Schreier–extensions, let L be any Artin–Schreier–extension of K; since
v(K) = v(k) is divisible and K = k is algebraically closed, L|K must be immediate. We
have shown above that K = k(x) + ℘(K), thus L|K admits an Artin–Schreier–generator
ϑ such that ℘(ϑ) ∈ k(x). Again from Lemma 3.22, we know that v(℘(ϑ)) < 0. Since for
every element a in k(x)\k, there is a ν ≥ 1 such that a /∈ k(x)pν

, we may moreover assume
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that a = ℘(ϑ) ∈ k(x)\k(x)p; otherwise we could replace ϑ by the Artin–Schreier–generator

ϑ− a
1
p which satisfies

(ϑ− a
1
p )p − (ϑ− a

1
p ) = a

1
p ) .

Now we consider the element ϑ− a
1
p in K̃. We compute

v((ϑ− a
1
p )p − (ϑ− a

1
p )) = v(a

1
p ) =

1

p
v(a) = v(ϑ) < 0 ,

hence

v(ϑ− a
1
p ) =

1

p
v(ϑ) > v(ϑ)

which is only possible if

appr(ϑ,K) = appr(a
1
p , K)

showing that L|K is dependent.
We have proved that K does not admit independent Artin–Schreier–extensions. On the

other hand, it admits proper Artin–Schreier–extensions, and any of these is immediate. But
all of them are included in every maximal immediate extension of K. This is true because
the fact that K is algebraically closed and v(K) is divisible implies that every maximal
immediate extension of K is algebraically closed and therefore contains K̃. We have shown
that K is not separable–algebraically closed in any of its maximal immediate extensions
whereas it doesn’t admit independent immediate Artin–Schreier–extensions.

In this connection, note that every Artin–Schreier–extension of a valued field K, whether
immediate or not, becomes an independent immediate extension over the perfect hull

√
K

of K.

In the sequel we will consider independent immediate Artin–Schreier–extensions L|K
with distance δ < 0. In this case, Uδ is a proper subgroup of v(K̃), and we let vδ denote
the coarsening of v with

vδ(K̃) ∼= v(K̃)/Uδ .

By definition of δ and Uδ, we see that

∀c ∈ K : vδ(ϑ− c) < 0 ,

sup
c∈K

vδ(ϑ− c) = 0 .

This means that also (L, vδ)|(K, vδ) is an immediate extension and that the vδ–distance
distvδ

(ϑ,K) is 0. Hence (L, vδ)|(K, vδ) is covered by the case that was treated in Lemma 4.10.
From this it follows

Lemma 4.12 Assume that for every coarsening w of v, there exists an immediate algebra-
ically complete extension (Mw, w) of (K, w) such that K is separable–algebraically closed
in Mw. Then K admits no independent immediate Artin–Schreier–extensions.

Lemma 4.13 The condition of Lemma 4.12 is satisfied if K is a finite extension of a
separable–algebraically maximal field K0 such that K|K0 is defectless.

Proof: Let w be any coarsening of v. Since (K0, v) is separable–algebraically maxi-
mal, the same is true for (K0, w) since every finite separable immediate extension of (K0, w)
would also be immediate for the finer valuation v. Now let (Nw, w) be a maximal immediate
extension of (K0, w). (K0, w) being separable–algebraically maximal, K0 is separable–
algebraically closed in Nw. Hence K0 itself satisfies the condition of Lemma 4.12. By this,
our lemma becomes a consequence of the following more general lemma. 2
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Lemma 4.14 Assume that for every coarsening w of v, K0 admits an immediate alge-
braically complete extension (Nw, w)|(K0, w) such that K0 is relatively algebraically closed
(resp. separable–algebraically closed) in Nw. If K|K0 is finite and defectless, then for every
coarsening w of v, (Mw, w) = (Nw.K,w) is an immediate algebraically complete extension
of (K, w) such that K is relatively algebraically closed (resp. separable–algebraically closed)
in Mw.

Proof: Since (K, v)|(K0, v) is defectless by hypothesis, the same is true for (K, w)|(K0, w)
by Lemma 2.16. We note that (K0, w) is henselian since it is assumed to be separable–
algebraically closed in the henselian field (Nw, w). So we may apply Lemma 2.12: since
(Nw, w)|(K0, w) is immediate and (K, w)|(K0, w) is defectless, (Nw.K,w)|(K, w) is im-
mediate and Nw is linearly disjoint from K over K0. The latter shows that K is relatively
algebraically closed (resp. separable–algebraically closed) in Nw. On the other hand,
(Mw, w) = (Nw.K, w) is algebraically complete being a finite extension of an algebraically
complete field. 2

A property that is shifted through every finite extension (even if it is not defectless), is
the property of being inseparably defectless:

Lemma 4.15 Every finite extension K of an inseparably defectless field K0 of character-
istic p > 0 is inseparably defectless too.

Proof: From Corollary 2.8 it follows that every finite purely inseparable extension of
an inseparably defectless field is again an inseparably defectless field. Thus it remains to
show the lemma in case K|K0 is separable. We fix a prolongation of v to K̃ and consider
the ramification fields Kr

0 and Kr of K0 and K with respect to that prolongation. By
Lemma 2.10, we know that K0 is inseparably defectless if and only if Kr

0 is inseparably
defectless, and the same holds for K. By Lemma 2.9, we have Kr = K.Kr

0 . The same
lemma shows that Ksep

0 |Kr
0 is a p–extension, hence Kr|Kr

0 can be viewed as a tower of
Artin–Schreier–extensions (cf. Lemma 3.15). Replacing K0 and K by their ramification
fields we may assume from the start that they are henselian and that K|K0 is a tower of
Artin–Schreier–extensions. Let L|K0 be an Artin–Schreier–extension contained in K|K0.
We want to show that L is inseparably defectless since then by induction, it follows that
K is inseparably defectless. Since

√
L = L.

√
K0, it suffices to show for every finite purely

inseparable extension K1|K0 (which itself is defectless by hypothesis), that K2 = K1.L is
a defectless extension of L. This follows immediately if K2|K1 and thus K2|K0 are defect-
less. Now assume that K2|K1 is immediate. K1 is an inseparably defectless field being a
finite purely inseparable extension of the inseparably defectless field K0. In particular, this
yields that K1 admits no immediate purely inseparable extension and hence by virtue of
Lemma 4.2, no dependent immediate Artin–Schreier–extension. K2|K1 is thus an indepen-
dent immediate Artin–Schreier–extension. An application of Lemma 4.9 shows that L|K0

is immediate. Since L and K1 are linearly disjoint over K0, we have

[K2 : L] = [K1.L : L] = [K1 : K0] ,

and we compute

d(K2|K0) = d(K2|K1) · d(K1|K0) = [K2|K1] · 1
=

[K2 : K0]

[K1 : K0]
=

[K2 : K0]

[K2 : L]

=
[K2 : L] · [L : K0]

[K2 : L]
= [L : K0]

= d(L : K0)
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whence

d(K2|L) =
d(K2|K0)

d(L : K0)
= 1

showing that K2|L is defectless, as desired. 2

As a corollary to this lemma and Lemma 3.20, we get:

Theorem 4.16 Let F |K be a henselian function field without transcendence defect. If K
is inseparably defectless then F is inseparably defectless.

4.2 Characterizations of defectless fields.

Our results on immediate Artin–Schreier–extensions enable us to prove the following useful
characterization of the property “defectless field”:

Theorem 4.17 Let K be a separable–algebraically maximal field of characteristic p > 0.
If in addition K is inseparably defectless, then K is algebraically complete.

Proof: We note that K is henselian since it is separable–algebraically maximal. Let L|K
be a finite extension. We want to show that L|K is defectless. Since any subextension of
a defectless extension is defectless too, we may assume w.l.o.g. that L|K is normal. Hence
there exists an intermediate field K1 such that L|K1 is separable and K1|K is purely
inseparable. By hypothesis, we know that K1|K is defectless. It remains to prove that
L|K1 is defectless.

Let K ′ be a finite tame extension of K1 such that L.K ′|K ′ is a tower of Artin–Schrei-
er–extensions, and put L′ = L.K ′. By Lemma 2.10, L|K1 is defectless if and only if
L′|K ′ is defectless. Since K1|K is defectless and K ′|K1 is tame and hence defectless, both
extensions being finite, K ′|K is finite and defectless. Using Lemma 4.15 we conclude that
K ′ is inseparably defectless too and therefore does not admit immediate purely inseparable
extensions, showing by virtue of Lemma 4.2 that every immediate Artin–Schreier–exten-
sion of K ′ must be independent. Moreover, from Lemma 4.13 we infer that K ′ satisfies the
hypothesis of Lemma 4.12 which shows that K ′ admits no independent immediate Artin–
Schreier–extensions. Consequently, given an Artin–Schreier–extension K ′′|K ′ contained
in L′|K ′, this extension must be defectless. In view of Lemma 4.15, Lemma 4.14 and
Lemma 4.12, K ′′ will again be inseparably defectless and will not admit any independent
immediate Artin–Schreier–extension. By induction, we conclude that all Artin–Schreier–
extensions that L′|K ′ consists of are defectless, hence L′|K ′ and thus L|K1 and L|K are
defectless, as asserted. 2

Conversely, every defectless field is immediately seen to be separable–algebraically maxi-
mal and inseparably defectless. Note that, if [K : K

p
] and (v(K) : pv(K)) are finite (and

charK = p > 0), we can replace “inseparably defectless” by “every immediate extension is
separable” or by

[K : Kp] = [K : K
p
] · (v(K) : pv(K))

since it was proved by Delon that in this case, all the three properties are equivalent (see
[DEL1], Proposition 1.43).
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The reader may have noticed that one could use Theorem 4.17 to organize our reduction
steps in section 3 in quite a different way; in particular, one could dispense with Lemma 3.19
showing that the structure of a henselian almost rational function field is preserved under
defectless extensions of degree p. But since Theorem 4.17 works only in the case char(K) =
p > 0 and since we wanted to prove the case of “mixed characteristic” simultaneously
together with the case of “equal characteristic”, we had to choose the way as developped
in the previous section.

Now we will give a second characterization for algebraically complete fields. For this
we need the following lemma.

Lemma 4.18 Let L|K be a finite defectless purely inseparable extension and let a1, ..., am

be elements of L. Then for every value α ∈ v(K), there exists a defectless separable
extension L′|K having the same degree as L|K such that v(L′) = v(L), L′ = L and L
contains elements a′1, ..., a

′
m with v(ai − a′i) > α, 1 ≤ i ≤ m.

If among the elements ai there is a valuation basis of L|K, say a1, ..., an, and if α is chosen
to be greater than max1≤i≤n(v(ai)), then the elements a′1, ..., a

′
n will form a valuation basis

of L′|K.

Proof: The extension L|K is a tower of purely inseparable defectless extensions of degree
p. According to this we may choose a special valuation basis of L|K as follows:

Si := {1, si, s
2
i , ..., s

p−1
i }

is a valuation basis of the i–th extension such that

— either v(si) > 0 and 0, v(si), ..., (p− 1)v(si) is a basis
of v(K(s1, ..., si))|v(K(s1, ..., si−1)),

— or v(si) = 0 and 1, si, ..., si
p−1 is a basis

of K(s1, ..., si)|K(s1, ..., si−1).

If we are given m elements a1, ..., am in K(s1) and a value α ∈ v(K), then we may write

ai =
p−1∑

j=0

sj
1cij with cij ∈ K .

We put
γ1 := max

i,j
(v(s1), α− v(cij)) .

If we choose r1 to be a root of the polynomial

Y p − d1Y − sp
1

where we choose d1 ∈ K with value v(d1) as large as to guarantee

v(s1 − r1) > γ1 ,

whence v(r1) = v(s1) ≥ 0 and

∀j, 0 < j < p : v(sj
1 − rj

1) > γ1 ,

then every

a′i :=
p−1∑

j=0

rj
1cij
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satisfies v(ai − a′i) > β and moreover, 1, r1, ..., r
p−1
1 is a valuation basis for K(r1)|K since

the rj
1 have the same values resp. residues as the sj

1. By construction, [K(r1) : K] = p and
v(K(r1)) = v(K(s1)), K(r1) = K(s1).

Now we have to use induction. Assume that whenever given m elements a1, ..., am

in K(s1, ..., sk−1) and a value α ∈ v(K), then we can find r1, ..., rk−1 ∈ K̃ and ele-
ments a′1, ..., a

′
m ∈ K(r1, ..., rk−1) such that ∀i : v(ai − a′i) > α and that the extension

K(r1, ..., rk)|K is separable and defectless. Now let m elements a1, ..., am in K(s1, ..., sk)
and a value α ∈ v(K) be given. We may write

ai =
p−1∑

j=0

sj
kcij with cij ∈ K(s1, ..., sk−1) .

We put
γk := max

i,j
(v(sk), α− v(cij))

(where 1 ≤ i ≤ m and 0 ≤ j ≤ p − 1). Let us now choose a suitable separable defectless
extension K(r1, ..., rk−1) of K and elements c′ij, r̃k ∈ K(r1, ..., rk−1) with

v(cij − c′ij) > max
i,j

(α, v(ci,j))

and
v(sp

k − r̃k) > p · γk .

Such extension and elements exist by our induction hypothesis. Note that by our choice,
v(c′i,j) = v(ci,j) for all i, j. If we choose rk to be a root of the polynomial

Y p − dkY − r̃k

where we choose dk ∈ K with value v(dk) as large as to guarantee

v(rp
k − r̃k) > p · γk ,

then we will have

v(sk − rk) ≥ 1

p
min(v(sp

k − r̃k), v(rp
k − r̃k)) > γk

and consequently, v(rk) = v(sk) ≥ 0 and

∀j, 0 < j < p : v(sj
k − rj

k) > γk ,

which shows firstly that 1, rk, ..., r
p−1
k is a valuation basis for

K(r1, ..., rk)|K(r1, ..., rk−1) .

Secondly, every

a′i :=
p−1∑

j=0

rj
kc
′
ij

satisfies

v(ai − a′i) = v




p−1∑

j=0

sj
kcij −

p−1∑

j=0

rj
kc
′
ij




≥ min


v




p−1∑

j=0

sj
k(cij − c′i,j)


 , v




p−1∑

j=0

(rj
k − sj

k)c
′
ij







> α .
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By construction,
[K(r1, ..., rk) : K(r1, ..., rk−1)] = p

and
v(K(r1, ..., rk)) = v(K(s1, ..., sk)) , K(r1, ..., rk) = K(s1, ..., sk) .

By induction, this completes the proof of the first part of our lemma.

Assume now that a1, ..., an is a valuation basis of L|K and that

α ≥ max
1≤i≤n

(v(ai)) .

This implies
∀i : v(a′i − ai) > v(ai) = v(a′i)

and consequently, for every c1, ..., cn ∈ K:

v(a′1c1 + ... + a′ncn) = v(a1c1 + ... + ancn +
n∑

j=1

(a′j − aj)cj)

= min
1≤i≤n

(v(aici), v(
n∑

j=1

(a′j − aj)cj))

= min
1≤i≤n

(v(aici))

= min
1≤i≤n

(v(a′ici))

which shows that the elements a′1, ..., a
′
n ∈ L′ are valuation–independent over K, and since

[L′ : K] = [L : K] = n, this yields that they form a valuation basis of L′|K. 2

Now we are ready to prove

Theorem 4.19 Let K be a separable–algebraically complete field of characteristic p > 0.
If in addition Kc|K is separable, then K is algebraically complete.

Proof: According to Theorem 4.17, it suffices to show that K is inseparably defectless.
Assume that this is not the case. Since every purely inseparable extension is a tower of
extensions of degree p, it follows that there exists a finite defectless purely inseparable
extension L|K and elements a, b ∈ √

K such that bp = a ∈ L and the extension L(b)|L
is immediate. Let t1, ..., tn be a valuation basis of L|K. By our hypothesis that Kc|K is
separable, we know that

[Kc.L(b) : Kc.L] = p .

Since L|K is finite, thus Kc.L = Lc, this shows that the distance of b from Lc is not ∞:

δ := dist(b, L) < ∞ . (70)

Note that L = t1K ⊕ ...⊕ tnK. We show: if t′1, ..., t
′
n ∈ K̃ are other valuation–independent

elements over K such that

∀i : v(ti − t′i) ≥ δ − v(b) + v(ti) (71)

then
dist(b, L) = distL(b, t1K ⊕ ...⊕ tnK) = distL(b, t′1K ⊕ ...⊕ t′nK) . (72)
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Indeed, for any c1, ..., cn ∈ K such that ∀i : v(tici) ≥ v(b), we have

v(b−
n∑

i=1

t′ici) = v(b−
n∑

i=1

tici +
n∑

i=1

(ti − t′i)ci)

= min(v(b−
n∑

i=1

tici), v(
n∑

i=1

(ti − t′i)ci))

= v(b−
n∑

i=1

tici)) < δ

since ∀i : v((ti − t′i)ci) ≥ δ − v(b) + v(ti) + v(b)− v(ti) = δ. This yields (72).
If we take α > maxi(pδ, δ − v(b) + v(ti)), the previous lemma shows the existence of

a defectless separable extension L′|K which admits a valuation basis t′1, ..., t
′
n satisfying

condition (71), and that in addition there is an element a′ ∈ L′ such that v(a − a′) ≥ pδ.
The latter condition yields

v(b− (a′)1/p) ≥ δ

which by Lemma 12.25 implies

δ = dist(b, L) = dist(b, L′) = dist((a′)1/p, L′)

by virtue of (72) and
L′ = t′1K ⊕ ...⊕ t′nK .

If we now take b′ to be a root of the polynomial

Y p − dY − a′

where we choose d with value v(d) as large as to satisfy

v(b′ − (a′)1/p) ≥ δ ,

then we get an immediate separable extension L′(b′)|L′ with

dist(b′, L′) = dist((a′)1/p, L′) = δ .

Altogether, we have constructed a finite separable extension L′(b′)|K which is not defect-
less in contradiction to our assumption on K. Hence we have shown K to be inseparably
defectless and thus algebraically complete, as asserted. 2

Corollary 4.20 Let K be a henselian field of characteristic p > 0. If K is a separable–al-
gebraically complete field, then Kc is an algebraically complete field, and vice versa.

Proof: Kc is henselian like K; cf. the proof of Lemma 5.12. By virtue of the preceding
Theorem, Kc is separable–algebraically complete if and only if it is algebraically complete.
Thus it suffices to prove that Kc is separable–algebraically complete if and only if K is
separable–algebraically complete.

Assume that Kc is separable–algebraically complete. Let L|K be an arbitrary finite
separable extension. By Lemma 12.55, the henselian field K is separable–algebraically
closed in Kc. Consequently, every finite separable extension of K is linearly disjoint from
Kc over K which shows that [L.Kc : Kc] = [L : K]. By hypothesis, L.Kc|Kc is defectless.
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On the other hand, L.Kc = Lc is the completion of L and thus an immediate extension of
L. Consequently,

[L : K] = [Lc : Kc] = (v(Lc) : v(Kc)) · [Lc : Kc]

= (v(L) : v(K)) · [L : K]

showing that L|K is defectless. Since L|K was an arbitrary finite separable extension we
have shown that K is separable–algebraically complete.

Now assume that Kc is not separable–algebraically complete. Then there exists a finite
separable extension L1|Kc with nontrivial defect. By Lemma 3.15, there exists a finite tame
extension of N |Kc such that N.L1|N is a tower of Galois extensions of degree p which are
Artin–Schreier–extensions. Since d(N.L1|N) = d(L1|Kc) > 1, at least one of them must
be immediate. Hence putting N and some suitable defectless Artin–Schreier–extensions of
the tower together, we obtain a finite separable defectless extension L|Kc and the existence
of an element a ∈ L such that the Artin–Schreier–extension with Artin–Schreier–generator
ϑ satisfying ϑp − ϑ = a, is immediate. By Lemma 3.22,

dist(ϑ, L) ≤ 0 < ∞ and v(a) < 0 .

Let t1, ..., tn be a valuation basis of L|Kc. Let L = K(b) and let f(X) ∈ Kc[X] be the
minimal polynomial of b over Kc. We write

a = g(b)/h(b) and ti = gi(b)/hi(b)

with g(X), h(X), gi(X), hi(X) ∈ Kc[X] .

Replacing the coefficients of f, g, h, gi, hi by sufficiently close elements from K, we get
polynomials f ∗, g∗, h∗, g∗i , h

∗
i , and taking b∗ to be a root of f ∗ we get a∗ := g∗(b∗)/h∗(b∗) ∈

K(b∗) and t∗i := g∗i (b
∗)/h∗i (b

∗) ∈ K(b∗), and we may assume

v(a− a∗) ≥ 0 , v(ti − t∗i ) ≥ v(ti)− v(ϑ) > v(ti) ,

and that K(b∗)|K is separable of the same degree as Kc(b)|Kc. In particular, this yields
that the elements t∗1, ..., t

∗
n form a valuation basis of K(b∗)|K. Now we take ϑ∗ to be a root

of the polynomial
Y p − Y − a∗ .

Since v(a− a∗) ≥ 0 and (ϑ− ϑ∗)p − (ϑ− ϑ∗) = a− a∗, we have v(ϑ− ϑ∗) ≥ 0 ≥ dist(ϑ, L)
which by Lemma 12.25 implies

0 ≥ dist(ϑ, L) = dist(ϑ∗, L) .

Now L = t1K
c ⊕ ...⊕ tnKc, and as in the proof of the last lemma one can show that

dist(ϑ∗, L) = distL(ϑ∗, t1Kc ⊕ ...⊕ tnKc)

= distL(ϑ∗, t∗1K
c ⊕ ...⊕ t∗nKc) .

Furthermore, we have

0 ≥ distL(ϑ∗, t∗1K
c ⊕ ...⊕ t∗nKc)

≥ distL(ϑ∗, t∗1K ⊕ ...⊕ t∗nK)

= dist(ϑ∗, K(b∗)) .
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We will show equality here. Indeed, for every choice of elements c1, ..., cn ∈ Kc, we can
find elements c∗1, ..., c

∗
n ∈ K with v(t∗i (ci − c∗i )) > 0 which consequently satisfy

v(ϑ∗ −∑

i

t∗i c
∗
i ) = v(ϑ∗ −∑

i

t∗i ci +
∑

i

(t∗i (ci − c∗i )) = v(ϑ∗ −∑

i

t∗i ci) < 0 .

This gives the asserted equality. We have now proved that the extension K(b∗, ϑ∗)|K(b∗) is
immediate and thus the whole separable extension K(b∗, ϑ∗)|K is not defectless. Hence K
is not separable–algebraically complete if Kc is not separable–algebraically complete. 2

æ

90



5 Defects of function fields without transcendence de-

fect over arbitrary ground fields.

In this section we will consider function fields without transcendence defect over their
ground fields, i.e. function fields F |K admitting a valuation transcendence basis. Using
Theorem 3.1 we will define the defect for such function fields and show how this defect
corresponds to extensions of the ground field and their defect. Furthermore, we will define
and investigate two other notions of “defect” which are not as strong as the ordinary one
but nevertheless can carry specific information. We will define a completion defect for
finite extensions as well as for function fields without transcendence defect. In particular,
we will use it to give a characterization of separably defectless fields.

5.1 Definition and basic properties of the defect of subhenselian
function fields without transcendence defect.

Our results on function fields without transcendence defect over defectless fields enable
us to give also a simple definition for the defect of function fields without transcendence
defect over arbitrary ground fields. We are considering the following situation:

K a valued field,
F a subhenselian function field over K, i.e. F h is the henselization

of a valued function field over K,
v the valuation of K and F .

For every transcendence basis T of F over K, we consider

d(F |K(T )) .

We define
d(F |K) := sup

T
d(F |K(T ))

and we will show in the following that this supremum is a finite number whenever F |K
has no transcendence defect, in which case it is equal to d(F |K(T )) for every valuation
transcendence basis T of F |K.

Lemma 5.1 For every (not necessarily finite) valuation transcendence basis T over K,
K(T )|K and K(T )h|Kh are regular and valuation–regular extensions.

Proof: As a purely transcendental extension, K(T )|K is regular. Corollary 2.20 shows
that K(T )|K is valuation–regular. From this, the same follows for K(T )h|Kh since Kh|K
and K(T )h|K(T ) are immediate extensions. Finally, by Lemma 3.9 it now follows that
K(T )h|Kh is regular. 2

Lemma 5.2 For every h–finite extension L|K and every valuation transcendence basis T ,

d(L(T )|K(T )) = d(L|K) .

Proof: Let T = {x1, ..., xm, y1, ..., yn} where x1, ..., xm are algebraically independent over
K and v(y1), ..., v(yn) are rationally independent over v(K). Then by Lemma 2.19,

K(T ) = K (x1, ..., xm) ,

L(T ) = L (x1, ..., xm) ,

v(K(T )) = v(K)⊕ ZZv(y1)⊕ . . .⊕ ZZv(yn),

v(L(T )) = v(L)⊕ ZZv(y1)⊕ . . .⊕ ZZv(yn) .
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This shows
[
L(T ) : K(T )

]
=

[
L : K

]

(v(L(T )) : v(K(T )) = (v(L) : v(K))

and thus, in view of

[L(T )h : K(T )h] = [Lh.K(T )h : K(T )h] = [Lh : Kh] ,

which is a consequence of the foregoing lemma, we have

d(L(T )|K(T )) = d(L|K)

as contended. 2

Lemma 5.3 For every valuation transcendence basis of F |K there exists a finite extension
KT of K such that for every algebraic extension L of K containing KT the following holds:

1. the extension L.F |L(T ) is defectless

2. d(L.F |K(T )) = d(L(T )|K(T )) = d(L|K).

If K is henselian then KT may be chosen to be a finite purely wild extension of K. If
char(K) = p > 0, then KT may be chosen to be a finite immediate separable extension of
a finite purely inseparable extension of K.

Proof: For any finite extension L of K for which L.F |L(T ) is defectless we compute

d(L.F |K(T )) = d(L.F |L(T )) · d(L(T )|K(T ))

= d(L(T )|K(T )) = d(L|K)

where the last equation holds by Lemma 5.2. Hence we may restrict our attention to the
fulfillment of assertion 1.

Furthermore, we will show that w.l.o.g. we may replace F and K by their henselizations.
Indeed, by definition we have for every valuation transcendence basis T :

d(F |K(T )) = d(F h|(K(T ))h)

= d((F h)h|(Kh(T ))h)

= d(F h|Kh(T )) .

Now if KT is a finite purely wild extension of Kh such that L.F h|L(T ) is defectless for
any finite extension L of KT , then we may choose a finite extension K ′T of K such that

(K ′T )h = K ′T .Kh = KT and hence for every finite extension L′ of K ′T we get:

d(L′.F |L′(T )) = d((L′.F )h|(L′(T ))h)

= d((L′ h.F h)h|(L′ h(T ))h)

= d(L′ h.F h|L′ h(T )) = 1

since L′ h is a finite extension of (K ′T )h = KT . Thus we may assume from the start that
F and K are henselian.

The extension K̃.F |K̃(T )h is defectless by Theorem 3.1. We will show now that there
exists a finite extension KT such that for every finite extension L of K containing KT the
following holds:
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1. [L.F : (L(T ))h] =
[
K̃.F : (K̃(T ))h

]
,

2. (v(L.F ) : v(L(T ))) = (v(K̃.F ) : v(K̃(T ))),

3.
[
L.F : L(T )

]
=

[
K̃.F : K̃(T )

]
.

K̃.F |K̃(T )h being defectless, these three conditions yield immediately that L.F |L(T )h is
defectless too. To prove the existence of KT , we observe first that there is a finite extension
K1 of K such that

[K1.F : (K1(T ))h] = [K1.F : K1.(K(T ))h]

= [K̃.F : K̃.(K(T ))h]

= [K̃.F : (K̃(T ))h] ,

and this remains true if we replace K1 by any algebraic extension since such a replacement
cannot increase the degree.

Secondly, we note that v(K̃) is trivially pure in v(K̃.F ). Since K̃.F is a henselian
function field without transcendence defect over K̃, we deduce

v(K̃.F ) = v(K̃)⊕ ZZv(z1)⊕ . . .⊕ ZZv(zr)

v(K̃(T )) = v(K̃)⊕ ZZn1v(z1)⊕ . . .⊕ ZZnrv(zr)

for suitable elements z1, . . . , zr ∈ K̃.F . Let K2 be a finite extension of K1 such that
z1, . . . , zr ∈ K2.F . For any algebraic extension L of K containing K2 this implies

v(L.F ) ⊇ v(L)⊕ ZZv(z1)⊕ . . .⊕ ZZv(zr)

v(L(T )) = v(L)⊕ ZZn1v(z1)⊕ . . .⊕ ZZnrv(zr)

showing that

(v(L.F ) : v(L(T ))) ≥ n1 · . . . · nr = (v(K̃.F ) : v(K̃(T ))) . (73)

Furthermore, we observe that K̃.F is a finite extension of K̃(T ) which in turn equals the
rational function field

K̃ (y1, . . . , ys) , y1, . . . , ys ∈ T .

Hence
K̃.F = K̃ (y1, . . . , ys, a1, . . . , am)

for suitable elements a1, . . . , am ∈ K̃.F . Let f1(X), . . . , fm(X) be the minimal polynomials
of a1, . . . , am over K̃(T )h and take the elements c1, . . . , ck ∈ K̃(T )h to be their coefficients.
Let KT be a finite extension of K2 such that a1, . . . , am ∈ F.KT and c1, . . . , ck ∈ KT (T ).
Then for every algebraic extension L of K containing KT ,

[
L.F : L(T )

]
≥

[
L.F : L(y1, . . . , ys)

]
=

[
K̃.F : K̃(T )

]
. (74)

Putting equations (73) and (74) together, we get
[
K̃.F : K̃(T )h

]
= [L.F : L(T )h]

≥
[
L.F : L(T )

]
· (v(L.F ) : v(L(T )))

≥ [K̃.F : K̃(T )] · (v(K̃.F ) : v(K̃(T )))

= [K̃.F : K̃(T )h] ,
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hence “=” must hold here as well as in inequalities (73) and (74) for every algebraic
extension L of KT .

It remains to show that KT may be chosen satisfying the additional conditions stated
at the end of the lemma. Assume K to be henselian. Since we may replace KT by a
finite extension of KT , we may assume w.l.o.g. that there exists an intermediate field K ′

of KT |K such that KT |K ′ is a tame and K ′|K is a purely wild extension. We want to
show that we may replace KT by K ′. To this end we only have to show that L′.F |L′(T )
is defectless for every algebraic extension L′ of K ′. By what we have shown already,

d((KT . L′).F |(KT . L′)(T )) = 1 (75)

since KT . L′ is an algebraic extension of KT . On the other hand, the extension KT . L′|L′
is finite and tame like KT |K ′, hence it is defectless. Using Lemma 5.2 we deduce

d((KT . L′)(T )|L′(T )) = d(KT . L′|L′) = 1 . (76)

Putting equations (75) and (76) together we see that (KT . L′).F |L′(T ) is defectless. Thus
the same holds for the subextension L′.F |L′(T ), as asserted.

We have shown that if K is henselian then KT may be chosen to be a purely wild
extension of K. Now any maximal algebraic purely wild extension contains the perfect
hull

√
K of K, and if char(K) = p > 0 then it is just a maximal immediate algebraic

extension of
√

K. In the general case, in view of what we have shown at the beginning of
our proof, we may choose KT such that KT .Kh is a finite purely wild extension of Kh,

hence contained in a maximal immediate algebraic extension of
√

Kh =
√

K h. Since
√

K h

is an immediate extension of
√

K we may express this by saying that KT is contained in

a maximal immediate algebraic extension of
√

K. This completes our proof. 2

After this preparation, we are able to prove the finiteness of d(F |K) and its indepen-
dence of the choice of the valuation transcendence basis T :

Theorem 5.4 Let F |K be a subhenselian function field without transcendence defect.
Then for every valuation transcendence basis T of F |K,

d(F |K) = d(F |K(T )) < ∞ . (77)

Moreover, there exists a finite extension K ′ of K such that for every algebraic extension L
of K containing K ′ we have

1. for every valuation transcendence basis T of F |K, the extension L.F |L(T ) is defect-
less,

2. d(F |K) =
d(L|K)

d(L.F |F )
= max

N |K finite

d(N |K)

d(N.F |F )
.

If K is henselian then K ′ may be chosen to be a finite purely wild extension of K. If
char(K) = p > 0, then K ′ may be chosen to be a finite immediate separable extension of a
finite purely inseparable extension of K.

Proof: Let T 0 be any transcendence basis of F |K. Then by additivity of the trans-
cendence defect, the transcendence defect of K(T 0)|K is zero. Hence K(T 0) admits a
valuation transcendence basis T over K. We compute

d(F |K(T 0)) ≤ d(F |K(T 0)) · d(K(T 0)|K(T )) = d(F |K(T ))

94



showing that
d(F |K) = sup

T
d(F |K(T ))

where T runs over valuation transcendence bases only. Since F is a subhenselian function
field, every d(F |K(T )) is a finite number. It remains to show that for any two valuation
transcendence bases T 1 and T 2,

d(F |K(T 1)) = d(F |K(T 2)) .

We choose finite extensions KT 1
and KT 2

according to Lemma 5.3. Putting L0 =
KT 1

. KT 2
we get by Lemma 5.3:

d(L0.F |K(T 1)) = d(L0|K) = d(L0.F |K(T 2))

and from this we deduce

d(F |K(T 1)) =
d(L0.F |K(T 1))

d(L0.F |F )
=

d(L0.F |K(T 2))

d(L0.F |F )
= d(F |K(T 2)) .

This proves (77).
Furthermore, using Lemma 5.2, for any finite extension L of K containing KT 1

we
observe the following:

d(L(T 2)|K(T 2)) = d(L|K) = d(L.F |K(T 1))

= d(L.F |F ) · d(F |K(T 1))

= d(L.F |F ) · d(F |K(T 2))

= d(L.F |K(T 2))

showing that
d(L.F |L(T 2)) = d(L.F |K(T 2))/d(L(T 2)|K(T 2)) = 1 .

Hence every algebraic extension L of KT 1
satisfies assertion 1 and also the first part of

assertion 2, because

d(F |K) = d(F |K(T )) =
d(L.F |K(T ))

d(L.F |F )
=

d(L|K)

d(L.F |F )

where the last equation holds by Lemma 5.3. The second part of assertion 2 follows from

d(N |K) = d(N(T )|K(T ))

≤ d(N.F |N(T )) · d(N(T )|K(T )) = d(N.F |K(T ))

= d(N.F |F ) · d(F |K(T )) = d(N.F |F ) · d(F |K) .

We have actually shown that K ′ may be taken to be equal to the field KT arising from
Lemma 5.3 for any valuation transcendence basis T . This shows that K ′ may be chosen
as to satisfy the same additional conditions, as asserted in the theorem. 2

Corollary 5.5 Let E and F be subhenselian function fields over K. If E|F is algebraic
and F |K has no transcendence defect, then E|F is h–finite and the following multiplicativity
holds for the defect:

d(E|K) = d(E|F ) · d(F |K) .
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Proof: Taking any valuation transcendence basis T of F |K (which is also a valuation
transcendence basis of E|K since E|F is algebraic), we compute

d(E|K) = d(E|K(T )) = d(E|F ) · d(F |K(T ))

= d(E|F ) · d(F |K)

using Theorem 5.4. 2

Corollary 5.6 For every subhenselian function field F without transcendence defect over
K there exists a finite extension K ′ of K such that

d(K ′. F |K) = d(K ′|K) .

Proof: Choosing K ′ according to Theorem 5.4, applying assertion 2. of Theorem 5.4 for
L = K ′ and using the preceding corollary, we get

d(K ′|K) = d(K ′.F |F ) · d(F |K) = d(K ′.F |K) .

2

The following theorem is an immediate consequence of the two preceding corollaries:

Theorem 5.7 If K is a defectless field then for any subhenselian function field F without
transcendence defect over K, d(F |K) is trivial.

On the other hand we know by Theorem 3.1 that any subhenselian function field F without
transcendence defect over a defectless field K is itself a defectless field. Note that the
foregoing theorem can also be proved by an application of Theorem 3.1 to K(T ) which
shows that d(F |K(T ) = 1 for every valuation transcendence basis T of F |K.

As further consequences of Theorem 5.4 we get the following corollary for function
fields:

Corollary 5.8 Let F be a valued function field without transcendence defect over K and
let P be the place associated to v. Assume that P = QQ. Then FQ is also a function field
without transcendence defect over KQ, and the following holds:

d((F, P )|(K, P )) = d((F,Q)|(K, Q)) · d((FQ, Q)|(KQ, Q)) .

Proof: According to Lemma 2.22 we may choose a valuation transcendence basis T
of (F, P )|(K,P ) such that it is also a valuation transcendence basis for (F, Q)|(K, Q) and
that the nonzero elements of the set {tQ|t ∈ T } form a valuation transcendence basis
T ′ of (FQ, Q)|(KQ, Q). Hence (F, Q) has no transcendence defect over (K,Q), and by
Lemma 2.19, FQ is finitely generated over KQ. Hence (FQ, Q) is a valued function field
without transcendence defect over (KQ, Q). Now using Theorem 5.4 and Lemma 2.16 we
compute:

d((F, P )|(K,P ))

= d((F, P )|(K(T ), P ))

= d((F, Q)|(K(T ), Q)) · d((FQ, Q)|(K(T )Q, Q))

= d((F, Q)|(K(T ), Q)) · d((FQ, Q)|(KQ(T ′), Q))

= d((F, Q)|(K,Q)) · d((FQ, Q)|(KQ, Q)) .

2

For the next corollary we need an additional lemma:
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Lemma 5.9 Let K be a valued field and E|F an extension of valued fields such that
K.E|K.F is h–finite. Then there exists a finitely generated subfield k of K such that
for every subfield K0 of K containing k, the following holds:

1. [(K0.E)h : (K0.F )h] = [(K.E)h : (K.F )h],

2. (v(K0.E) : v(K0.F )) ≥ (v(K.E) : v(K.F )),

3.
[
K0.E : K0.F

]
≥

[
K.E : K.F

]
,

4. d(K0.E|K0.F ) ≤ d(K.E|K.F ).

Proof: Since [(K.E)h : (K.F )h] is finite, (v(K.E) : v(K.F )) and
[
K.E : K.F

]
are finite

too. Hence there exist β1, . . . , βr ∈ v(K.E) such that

v(K.E) = v(K.F ) + ZZβ1 + . . . + ZZβr ,

and there exist b1, . . . , bs ∈ K.E such that

K.E = K.F (b1, . . . , bs) .

Whenever K0 is such that
β1, . . . , βr ∈ v(K0.E) (78)

and
b1, . . . , bs ∈ K0.F , (79)

then

(v(K0.E) : v(K0.F )) ≥ (v(K.E) : v(K.F )) (80)[
K0.E : K0.F

]
≥

[
K.E : K.F

]
, (81)

the left sides not necessarily being finite.
Now we choose a finitely generated subfield k of K such that every subfield K0 of K

containing k satisfies

[(K0.E)h : (K0.F )h] = [(K.E)h : (K.F )h] (82)

as well as (78) and (79), hence also (80) and (81), where the left sides now have to be
finite. Then by (80), (81) and (82),

d(K0.E|K0.F ) =
[(K0.E)h : (K0.F )h]

(v(K0.E) : v(K0.F )) ·
[
K0.E : K0.F

]

≤ [(K.E)h : (K.F )h]

(v(K.E) : v(K.F )) ·
[
K.E : K.F

]

= d(K.E|K.F ) .

2

Corollary 5.10 Let E be a valued function field without transcendence defect over K.
Then there exists a finitely generated field K0 and a function field E0 without transcen-
dence defect over K0 such that
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1. E = K.E0,

2. d(E|K) ≥ d(E0|K0)

3. if Econst and Econst
0 are the exact constant fields of E resp. E0, then Econst = K.Econst

0

and [Econst : K] = [Econst
0 : K0].

Given a valuation transcendence basis T of E|K, E0|K0 may be chosen to have the same
valuation transcendence basis T and to satisfy

1. [Eh : K(T )h] = [Eh
0 : K0(T )h],

2. (v(E0) : v(K0(T ))) ≥ (v(E) : v(K(T ))),

3.
[
E0 : K0(T )

]
≥

[
E : K(T )

]
.

Proof: Let T be a valuation transcendence basis of E|K and a1, . . . , an be elements of
E such that E = K(T , a1, . . . , an). Let K1 be a finitely generated subfield of K such that

K1(T , a1, . . . , an)|K1(T )

is algebraic and hence finite. Put

F1 = K1(T ) and E1 = K1(T , a1 . . . , an) .

Then K.F1 = K(T ) and K.E1 = E. In addition, we may choose K1 as large as to satisfy
Econst = K.Econst

1 and [Econst : K] = [Econst
1 : K1], where Econst

1 denotes the exact constant
field of E1 over K1, and that in addition E1|Econst

1 is linearly disjoint from K.Econst
1 |Econst

1 .
Now we choose a finitely generated subfield k of K according to Lemma 5.9. Let K0 be an
arbitrary finitely generated subfield K containing k and K1. Then

[(K0.E1)
h : (K0.F1)

h] = [(K.E1)
h : (K.F1)

h]

(v(K0.E1) : v(K0.F1)) ≥ (v(K.E1) : v(K.F1))[
K0.E1 : K0.F1

]
≥

[
K.E1 : K.F1

]

d(K0.E1|K0.F1) ≤ d(K.E1|K.F1) .

Putting E0 = K0.E1 and F0 = K0.F1 = K0(T ) we see that T is a valuation transcendence
basis of E0|K0 and F0|K0, and the following holds:

E = K.E1 = K.E0 ,

[Eh
0 : K0(T )h] = [(K0.E1)

h : (K0.F1)
h]

= [(K.E1)
h : (K.F1)

h] = [Eh : K(T )h] ,

(v(E0) : v(K0(T ))) ≥ (v(K.E1) : v(K.F1)) = (v(E) : v(K(T ))) ,[
E0 : K0(T )

]
≥

[
K.E1 : K.F1

]
=

[
E : K(T )

]
.

and in view of Theorem 5.4:

d(E0|K0) = d(E0|K0(T )) = d(K0.E1|K0.F1)

≤ d(K.E1|K.F1) = d(E|K(T )) = d(E|K) .
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Moreover K0.E
const
1 is algebraically closed in E0 = K0.E1 since Econst

1 is algebraically closed
in E1 and the extension E1|Econst

1 was assumed to be linearly disjoint from K.Econst
1 |Econst

1

and thus from K0.E
const
1 |Econst

1 . Hence Econst
0 = K0.E

const
1 ; together with

[Econst
1 : K1] ≤ [K0.E

const
0 : K0] ≤ [K.Econst

0 : K]

= [Econst : K] = [Econst
1 : K1]

it yields
Econst = K.Econst

0 and [Econst : K] = [Econst
0 : K0] .

This completes the proof of our corollary. 2

5.2 Definition and properties of completion defect and defect
quotient, and their relation to the ordinary defect.

In this subsection, we will define and investigate the completion defect and the defect quo-
tient, the quotient of henselian defect and completion defect. For every h–finite extension
L|K we define the completion defect by

dc (L|K) := d((Lh)c|(Kh)c)

and the defect quotient by

dq (L|K) :=
d(L|K)

dc (L|K)
,

hence by definition
d(L|K) = dc (L|K) · dq (L|K) . (83)

An h–finite extension L|K is called c–defectless if dc (L|K) = 1, and it is called q–defectless
if dq (L|K) = 1. Accordingly, a valued field K is called c–defectless if every h–finite (or
equivalently, every finite) extension L|K is c–defectless, and q–defectless if every h–finite
(or equivalently, every finite) extension L|K is q–defectless. Thus for h–finite extensions
of q–defectless fields, the completion defect equals the ordinary defect.
For subhenselian function fields F without transcendence defect over K we define the
completion defect and the defect quotient by

dc (F |K) = sup
T

dc (F |K(T ))

dq (F |K) = sup
T

dq (F |K(T ))

where the supremum is taken over all transcendence bases of F |K.

The following observation is immediate:

Lemma 5.11 Every h–finite extension L|K satisfies:

dc (L|K) = dc (Lh|Kh)

dq (L|K) = dq (Lh|Kh) .

Hence K is an c–defectless resp. q–defectless field if and only if its henselization Kh is an
c–defectless resp. q–defectless field.
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A similar assertion for subhenselian function fields over K will be shown later. To shorten
our formulas, we define for any valued field K:

Khc := (Kh)c .

The correspondence K 7→ (Kh)c = Khc may look a bit weird, but at least it has the nice
property to be idempotent:

Lemma 5.12 The completion of a henselian field is henselian too. Consequently,

(Khc)hc = Khc .

Proof: Since for any field L we know that (Lc)c = Lc, it suffices to show that (Khc)h =
Khc or equivalently, that the completion of any henselian field is again henselian. This
can be shown using the fact that the zeros of a polynomial depend continuously on the
coefficients of that polynomial, cf. Theorem 4.5 of [PZ], p. 329. Let f ∈ OKhc [X] a
polynomial satisfying the hypothesis of Hensel’s Lemma, i.e. f should admit a simple zero
a. For every α ∈ v(K), we may choose a polynomial fα ∈ Kh[X] such that all coefficients
of f − fα all have value ≥ α, i.e. the greater α is chosen, the better the coefficients of f are
approximated by the coefficients of fα. For every α > 0, the polynomial fα will admit a as
a simple zero and will thus have a root aα in the henselian field Kh with residue aα = a.
Now for α →∞, these roots will converge to a root of f also having residue a. 2

completion defect and defect quotient have the following properties:

Lemma 5.13 Let L|K be an h–finite extension. Then

d(L|K) ≥ dc (L|K) and d(L|K) ≥ dq (L|K) , (84)

and dc (L|K), dq (L|K) are integers dividing d(L|K) and hence are powers of p.
The completion defect and the defect quotient are multiplicative: if M is an h–finite exten-
sion of L, then

dc (M |K) = dc (M |L) · dc (L|K)

dq (M |K) = dq (M |L) · dq (L|K) .

Any h–finite separable extension L|K is q–defectless. A finite purely inseparable extension
L|K satisfies

dc (L|K) = d(Lc|Kc) (85)

dq (L|K) =
[L : K]

[Lc : Kc]
(86)

and it is q–defectless if and only if it is linearly disjoint from the completion of K.

Proof: Since finite extensions of complete resp. henselian fields are again complete
resp. henselian, for every finite extension L|K we get Lc = L.Kc, and for every h–finite
extension L|K we get Lh = L.Kh, and Lhc = L.Khc. From this and the multiplicativity
of extension degree, ramification index and inertia degree we obtain the multiplicativity of
the completion defect and the defect quotient. Furthermore Khc contains the henselization
Kh of K and Lhc contains the henselization Lh of L. In view of

v(Khc) = v(Kh) = v(K) , v(Lhc) = v(Lh) = v(L) ,

Khc = Kh = K , Lhc = Lh = L
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and the fact that [Lhc : Khc] = [L.Khc : Khc] ≤ [L.Kh : Kh] = [Lh : Kh] , we deduce

dc (L|K) = d(Lhc|Khc)

=
[Lhc : Khc]

(v(Lhc)) : v(Khc) ·
[
Lhc : Khc

]

≤ [Lh : Kh]

v(Lh) : v(Kh)) ·
[
Lh : Kh

]

= d(Lh|Kh) = d(L|K) .

Since on the other hand, dc (L|K) is the ordinary defect of the extension Lhc|Khc, it is a
power of p and consequently a divisor of d(L|K). This yields that

dq (L|K) =
d(L|K)

dc (L|K)

is also an integer dividing d(L|K) and a power of p. In the above inequality, equality holds
if and only if

[L.Khc : Khc] = [L.Kh : Kh] (87)

expressing the property of L.Kh to be linearly disjoint from Khc over Kh. Since the hen-
selian field Kh is relatively separable–algebraically closed in its completion, for every finite
separable extension L|K equation (87) holds, proving the fact that every such extension is
q–defectless.

Now let L|K be a finite purely inseparable extension. Assume that we are able to show

[L.Khc : Khc] = [L.Kc : Kc] . (88)

Then it follows by virtue of Lc = L.Kc:

dc (L|K) = d(L.Khc|Khc) = d(Lc|Kc) ,

which proves (85). Using this and the fact that [Lh : Kh] = [L.Kh : Kh] = [L : K] (since
Kh|K is separable), we deduce

dq (L|K) = d(L|K)/dc (L|K)

= [Lh : Kh]/[Lc : Kc]

= [L : K]/[Lc : Kc] ,

which proves (86). Hence L|K is c–defectless if and only if

[L : K] = [Lc : Kc]

which expresses the property of L to be linearly disjoint from Kc over K. This will prove
the last assertion.

It remains to show equation (88) which claims that L.Kc is linearly disjoint from Khc

over Kc. Assume that this does not hold. Then there exists an intermediate field N
between L and K and an element a ∈ L \N , ap ∈ N , such that

a /∈ N.Kc but a ∈ N.Khc .
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Since a /∈ N.Kc = N c, the distance dist(a,N) of a to N must be finite. Since a ∈ N.Khc =
(N.Kh)c = (Nh)c = Nhc, there exists an element b ∈ Nh such that v(a − b) > dist(a,N),
hence appr(a,N) = appr(b,N). a being an element of Ñ , Lemma 12.77 proves that this is
contradictory, which completes our proof. 2

Corollary 5.14 Let L|K be a finite extension. Then

dq (L|K) =
[L : K]insep

[Lc : Kc]insep

.

In particular, if L|K is c–defectless and immediate, then L|K is purely inseparable and L
is included in the completion of K.

Proof: Let Ls|K be the maximal separable subextension of L|K; then L|Ls is purely
inseparable. By Lemma 5.13, dq (Ls|K) = 1 and

dq (L|K) = dq (L|Ls) · dq (Ls|K) = dq (L|Ls)

=
[L : Ls]

[Lc : Lc
s]

.

On the other hand, [L : Ls] = [L : K]insep. Furthermore, Lc = L.Kc and Lc
s = Ls.K

c shows
that Lc|Lc

s is purely inseparable and Lc
s|Kc is separable and consequently, [Lc : Lc

s] = [Lc :
Kc]insep. This proves the first assertion of our lemma.

Now let L|K be c–defectless and immediate, i.e. dc (L|K) = 1 which in view of (83)
yields

[L : K] = d(L|K) = dq (L|K) .

By what we have proved above, this implies

[L : K] =
[L : K]insep

[Lc : Kc]insep

.

This shows [L : K] = [L : K]insep, i.e. L|K is purely inseparable. Moreover, it shows that
[Lc : Kc] = 1, i.e. Lc = Kc which is only possible if L is included in the completion of K,
as contended. 2

Using Lemma 5.13, we obtain the following important characterization:

Lemma 5.15 K is q–defectless if and only if its completion is a separable extension. In
particular, every complete field is q–defectless.

Proof: K is q–defectless if and only if every finite extension L|K is q–defectless. In
view of the multiplicativity of the defect quotient and the fact that every finite extension
is contained in a finite normal extension, it follows that K is q–defectless if and only if
every finite normal extension L|K is q–defectless. Again by multiplicativity, and by the
fact that a normal extension L|K admits an intermediate field N such that N |K is purely
inseparable and L|N is separable and thus q–defectless, it follows that K is q–defectless
if and only if every finite purely inseparable extension L|K is q–defectless. This in turn
is the case if and only if every finite purely inseparable extension L|K is linearly disjoint
from Kc, or in other words: if and only if Kc|K is separable. 2

From the multiplicativity of the defect quotient and the completion defect as stated in
Lemma 5.13, one derives:
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Lemma 5.16 Let L|K be an h–finite extension. Then K is a q–defectless field if and
only if L|K is q–defectless and L is a q–defectless field. The same holds for “c–defectless”
instead of “q–defectless”.

From equation (86) of Lemma 5.13 one derives:

Lemma 5.17 Let (L, P )|(K, P ) be a finite extension and P = QQ a decomposition of P
with nontrivial Q. Then

dq ((L, P )|(K, P )) = dq ((L,Q)|(K, Q)) (89)

dc ((L, P )|(K,P )) =

= dc ((L, Q)|(K, Q)) · d((LQ, Q)|(KQ, Q)) . (90)

Proof: To prove the equation for the defect quotient we use the assertion of Lemma 5.13
that every separable h–finite extension is q–defectless. Consequently, by the multiplicativ-
ity of the defect quotient, we may assume that L|K is a finite purely inseparable extension
and we may use equation (86) to compute:

dq ((L, P )|(K,P )) = [L : K]/[Lc(P ) : Kc(P )]

= [L : K]/[Lc(Q) : Kc(Q)]

= dq ((L,Q)|(K, Q)) ,

using the hypothesis that Q is nontrivial which yields the equality of the completion under
P and Q: Lc(P ) = Lc(Q) and Kc(P ) = Kc(Q). This proves equation (89). Using this result,
we get

dc ((L, P )|(K, P )) =
d((L, P )|(K,P ))

dq ((L, P )|(K, P ))

=
d((L,Q)|(K, Q)) · d((LQ, Q)|(KQ, Q))

dq ((L,Q)|(K,Q))

= dc ((L, Q)|(K, Q)) · d((LQ, Q)|(KQ, Q))

proving equation (90). 2

Another important property of completion defect and defect quotient is the following:

Lemma 5.18 Let L|K be a finite extension of henselian fields and assume that the rank
of (K, P ) has no last element (i.e. v admits no nontrivial coarsest coarsening). Then there
is a decomposition P = QQ with nontrivial Q and nontrivial Q such that

dq ((L, P )|(K,P )) = dq ((L,Q)|(K, Q)) = d((L,Q)|(K, Q)) (91)

dc ((L, P )|(K, P )) = d((LQ, Q)|(KQ, Q)) (92)

For a separable extension L|K this means

d((L, P )|(K,P )) = d((LQ, Q)|(KQ, Q)) . (93)

Proof: Firstly we note that equation (92) follows from equation (91) by virtue of
equation (83) and Lemma 2.16. So we will only consider equation (91) in the sequel.
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Moreover, the first equation of (91) is already stated in Lemma 5.17. Secondly, we prove:
if K1 is an intermediate field of L|K and there are places Q1 and Q2 such that

dq ((K1, P )|(K, P )) = dq ((K1, Q1)|(K,Q1)) = d((K1, Q1)|(K, Q1))

dq ((L, P )|(K1, P )) = dq ((L,Q2)|(K1, Q2)) = d((L,Q2)|(K1, Q2))

then equation (91) holds if we choose Q to be the coarser one of the places Q1 and Q2.
But this becomes an immediate consequence of the multiplicativity of the defects if only
we can show: if equations of the type (91) hold for a place Q, then they also hold for
any nontrivial coarsening Q′ of Q. For the first “=” in equation (91) this follows from
equation (89) of Lemma 5.17. Having proved

d((L, Q)|(K, Q)) = dq ((L, Q)|(K, Q)) = dq ((L,Q′)|(K, Q′))

≤ d((L,Q′)|(K,Q′)) ≤ d((L,Q)|(K,Q)) ,

one derives
d((L,Q)|(K, Q)) = d((L,Q′)|(K,Q′))

showing that the whole equation (91) holds for Q′ too.

By what we have shown, it suffices now to prove our Lemma in the following two cases:

Case 1: L = K(a) is a separable extension of K. Let f(X) ∈ K[X] be the minimal
polynomial of a over K and let ci, 0 ≤ i ≤ n be the coefficients of f . Then by our
hypothesis on the rank of P there exists a nontrivial coarsening Q of P such that Q is
trivial on k(c0, . . . , cn) where k denotes the prime field of K. This shows that fQ is a
separable polynomial over KQ of the same degree as f ; moreover it is irreducible since if
it were then the same would follow for f by Hensels Lemma ((K, Q) being henselian by
our hypothesis on (K, P ) and Lemma 2.14). Hence in this case, [L : K] = [LQ : KQ] and
consequently d((L,Q)|(K, Q)) = 1 which proves equation (93). This implies equations (91)
and (92) since by Lemma 5.13, every separable extension is q–defectless.

Case 2: L = K(a) is a purely inseparable extension of degree p.
If d((L, P )|(K,P )) = dq ((L, P )|(K, P )) = p, then for any coarsening Q of P , equation (91)
is fulfilled since by equation (89) of Lemma 5.17 we have

dq ((L, Q)|(K, Q)) = dq ((L, P )|(K,P )) = p

and consequently,
d((L,Q)|(K,Q)) = p = dq ((L,Q)|(K,Q))

since d((L,Q)|(K, Q)) is greater or equal to dq ((L,Q)|(K,Q)) but can’t exceed [L : K] = p.
The existence of a nontrivial coarsening of P is guaranteed by the hypothesis on the rank
of P .
If on the other hand, dq ((L,Q)|(K, Q)) = 1, then a cannot be an element of Kc and thus
there is an element α ∈ vP (K) such that ∀b ∈ K : vP (a − b) < α. By our hypothesis on
the rank of P there exists a coarsening Q of P such that vQ(a − b) = 0, hence aQ 6= bQ
for all b ∈ K (this is satisfied if the coarsening corresponds to a convex subgroup of vP (K)
which includes α). This shows aQ /∈ KQ and thus [LQ : KQ] = p which yields that
d((L,Q)|(K, Q)) = 1 = dq ((L,Q)|(K, Q)). This completes the proof of our Lemma. 2

Now we turn to the investigation of these defects for function fields. For the proof of
the next theorem, we need the following auxiliary result:
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Lemma 5.19 Let K(T )|K be an extension of valued fields with valuation transcendence
basis T . Then for every element b ∈ K(T ) \K, there exist elements c1, c2 ∈ K such that
c1b− c2 is valuation–transcendental.

Proof: Let b = f/g with f, g ∈ K[T ]. By Lemma 2.18, the value of the polynomials f, g
is equal to the minimum of the values of the monomials in f resp. g, and these monomials
are uniquely determined; we will call them f0 and g0. If f0 differs from g0 just by a constant
factor from K which we will call c2, then we put h = f−c2g and observe that the monomial
h0 of least value in h will not any more differ from g0 by a constant from K. If f0 /∈ Kg0,
then we put c2 = 0, h = f and h0 = f0. Note that h 6= 0 and thus h0 6= 0 since by
hypothesis, f/g /∈ K. We have

b− c2 =
f

g
− c2 =

h

g
with v(

h

g
) = v(

h0

g0

) ,

and we know that in the quotient h0/g0, at least one element of T appears with a
nonzero (integer) exponent. If at least one of these appearing elements from T is value–
transcendental, then h0/g0 and thus also b − c2 is value–transcendental over K. In the
remaining case, we write

h0

g0

= c · ye1
1 · ... · yes

s , e1, ..., es ∈ ZZ ,

where c ∈ K, and y1, ..., ys are different residue–transcendental elements from T . Since the
residues y1, ..., ys are algebraically independent over K, this shows that h0/cg0 and thus
also h/cg are residue–transcendental over K. Putting c1 = c−1 and replacing c2 by c2/c,
we obtain that c1b− c2 is residue–transcendental over K. 2

Theorem 5.20 Let F be a subhenselian function field without transcendence defect over
K. Assume that K is a q–defectless field or that v(K) is not cofinal in v(F ). In both cases,
F is a q–defectless field.

Proof: Let T be a valuation transcendence basis of F |K. In view of Lemma 5.16 we
have only to show that K(T ) is a q–defectless field (hence we may assume F = K(T )).
For this we have to show that the completion of F is a separable extension.

In the first case, let us assume that K is a q–defectless field and that v(K) is cofinal in
v(F ). Then the completion F c of F contains the completion Kc of K. By our hypothesis
on K and Lemma 5.15,

√
K is linearly disjoint from Kc over K. We want to show now

that
√

K is even linearly disjoint from F c over K for which fact we still have to prove that√
K.Kc is linearly disjoint from F c over Kc.
Assume the contrary. Then there exist two finite purely inseparable extensions N ⊂ L

of K and an element a ∈ L \ N such that a ∈ N.F c \ N.Kc. Since a /∈ N.Kc = N c, the
distance dist(a,N) of a to N must be finite. Now N.F c = (N.F )c, hence there exists an
element b ∈ N.F = N(T ) such that v(a− b) > dist(a, N). But according to the preceding
Lemma, for every element b ∈ N(T ) there exist elements c1, c2 ∈ N such that c1b − c2 is
valuation–transcendental. a being algebraic over N , this yields

v((c1a− c2)− (c1b− c2)) = min(v(c1a− c2), v(c1b− c2))

≤ v(c1a− c2)
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and consequently

v(a− b) = v(c1a− c1b)− v(c1)

= v((c1a− c2)− (c1b− c2))− v(c1)

≤ v(c1a− c2)− v(c1) = v(a− c2/c1)

≤ dist(a,N) ,

a contradiction. We have shown that
√

K is linearly disjoint from F c over K. Conse-

F

F c F.
√

K

F c.
√

K
√

F

√
K(T )c

@
@

@
@
@

@
@

@
@
@

@
@

@
@
@

¡
¡

¡
¡
¡

¡
¡

¡
¡
¡

¡
¡

¡
¡
¡

imm.

imm.

=
√

K(T )

= F.
√

K
√

IFp(T )

quently, F.
√

K is linearly disjoint from F c over F . On the other hand,
√

F =
√

K(T ) =

F.
√

K.
√

IFp(T ) is linearly disjoint from F c.
√

K over F.
√

K since any finite extension of

F.
√

K =
√

K(T ) within F.
√

K.
√

IFp(T ) is defectless by Lemma 3.20, whereas the exten-

sion F c.
√

K|F.
√

K is immediate since F c.
√

K is included in
√

K(T )c. Putting both results
together, we see that

√
F is linearly disjoint from F c over F . Hence by Lemma 5.15, F is

q–defectless. This completes our proof in the first case.

In the remaining case, v(K) is not cofinal in v(F ), i.e. the convex hull of v(K) in v(F )
is a proper convex subgroup of v(F ). Consequently, there exists a nontrivial coarsening w
of the valuation v on F which is trivial on K. Trivially, (K,w) is a defectless field, and
so is (F, w) according to Theorem 3.1 since by Lemma 2.21 it is a function field without
transcendence defect over (K, w). Thus any finite purely inseparable extension is defectless
and thereby linearly disjoint from the w–completion F c(w) of F since this is an immediate
extension of F . On the other hand, the topology induced by v equals the topology induced
by any nontrivial coarsening of v, whence F c(w) = F c. Consequently,

√
F is linearly disjoint

from F c. By virtue of Lemma 5.15, this completes our proof. 2

On the basis of this theorem we are able to prove the following lemma:

Lemma 5.21 Let K(T )|K be an extension of valued fields with valuation transcendence
basis T . Let L be a finite extension of K. If v(K) is cofinal in v(K(T )), then

dc (L(T )|K(T )) = dc (L|K)

dq (L(T )|K(T )) = dq (L|K) .
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If v(K) is not cofinal in v(K(T )), then

dc (L(T )|K(T )) = d(L(T )|K(T )) = d(L|K)

dq (L(T )|K(T )) = 1 .

Proof: If v(K) is not cofinal in v(K(T )), the assertion follows from Theorem 5.20,
Lemma 5.2 and equation (83). Let us assume now that v(K) is cofinal in v(K(T )). In
view of Lemma 5.2 and equation (83), it suffices to prove the first equality.

K

Khc

Khc(T )

K(T )hc

L

Lhc

Lhc(T )

L(T )hc

³³³³³³

³³³³³³

³³³³

³³³³

(Khc(T ))hc =

= L.K(T )hc = (Lhc(T ))hc

= L.Khc(T )

= L.Khc

By definition,
dc (L|K) = d(Lhc|Khc) . (94)

Using Lhc(T ) = (L.Khc)(T ) = L.(Khc(T )), from Lemma 5.2 we infer

d(Lhc|Khc) = d(Lhc(T )|Khc(T )) . (95)

The complete field Khc is q–defectless by Lemma 5.15, hence by the preceding theorem,
Khc(T ) is q–defectless too. Consequently,

d(Lhc(T )|Khc(T )) = dc (Lhc(T )|Khc(T )) . (96)

By definition,
dc (Lhc(T )|Khc(T )) = d((Lhc(T ))hc|(Khc(T ))hc) . (97)

From Lemma 5.12 we infer

(Lhc(T ))hc = L(T )hc and (Khc(T ))hc = K(T )hc .

This yields
d((Lhc(T ))hc|(Khc(T ))hc) = d(L(T )hc|K(T )hc) . (98)

Again by definition,
d(L(T )hc|K(T )hc) = dc (L(T )|K(T )) . (99)

Putting equations (94) – (99) together we obtain

dc (L|K) = dc (L(T )|K(T )) ,

as asserted. 2

With the help of this lemma one proves the following theorem which is the analogue of
Theorem 5.4 for completion defect and defect quotient.
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Theorem 5.22 Let F be a subhenselian function field without transcendence defect over
K. Then for every valuation transcendence basis T of F |K,

dc (F |K) = dc (F |K(T )) < ∞ (100)

dq (F |K) = dq (F |K(T )) < ∞ . (101)

This yields
d(F |K) = dc (F |K) · dq (F |K) . (102)

Moreover, assume that v(K) is cofinal in v(F ). Then there exists a finite extension K ′ of
K such that for every finite extension L of K containing K ′ we have

dc (F |K) = dc (L|K)/dc (L.F |F ) (103)

= max
N |K finite

dc (N |K)/dc (N.F |F ) (104)

dq (F |K) = dq (L|K)/dq (L.F |F ) (105)

= max
N |K finite

dq (N |K)/dq (N.F |F ) . (106)

K ′ may be chosen as to satisfy the additional conditions stated in Theorem 5.4.

Proof: As it was done for the defect in the proof of Theorem 5.4, one shows that

dc (F |K) = sup
T

dc (F |K(T ))

dq (F |K) = sup
T

dq (F |K(T ))

where the supremum is only taken over all valuation transcendence bases of F |K. For the
proof of equation (100) it suffices now to show that dc (F |K(T )) is equal to a certain fixed
number for any valuation transcendence basis T , and for the proof of equation (101) we
will show the same for the defect quotient.

If v(K) is not cofinal in v(F ), then by virtue of Theorem 5.20, K(T ) is q–defectless
and thus

dc (F |K(T )) = d(F |K(T )) = d(F |K)

dq (F |K(T )) = 1 .

If v(K) is cofinal in v(F ), then K(T )hc contains Khc. From this we deduce, using the
fact that Khc(T ) is q–defectless by Theorem 5.20:

dc (F |K(T )) = d(F hc|K(T )hc) = d((F.Khc)hc|(Khc(T ))hc)

= dc (F.Khc|Khc(T )) = d(F.Khc|Khc(T ))

= d(F.Khc|Khc) .

For the defect quotient, this implies

dq (F |K(T )) =
d(F |K(T ))

dc (F |K(T ))
=

d(F |K)

d(F.Khc|Khc)
.

This completes the proof of equations (100) and (101). Now equation (102) follows from
equation (77) of Theorem 5.4 together with equations (83), (100) and (101).

For the remainder of the proof, we will assume that v(K) is cofinal in v(F ). Let K ′

be as in Theorem 5.4 (hence it can be choosen as to satisfy the conditions stated there)
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and let L be a finite extension of K containing K ′. Choosing any valuation transcendence
basis T of F |K, by Theorem 5.4 we know that

d(L.F |L(T )) = 1 ,

whence
dc (L.F |L(T )) = 1 . (107)

Using this equation and (100) as well as the multiplicativity of the completion defect, we
deduce

dc (L.F |F ) · dc (F |K) = dc (L.F |F ) · dc (F |K(T ))

= dc (L.F |K(T ))

= dc (L.F |L(T )) · dc (L(T )|K(T ))

= dc (L(T )|K(T )) .

In view of Lemma 5.21, v(K) being cofinal in v(F ) by assumption, this yields equation
(103). With regard to (102) and (83), equation (105) follows from equation (103) and the
corresponding equation for the defect given in Theorem 5.4.

Equations (104) and (106) are shown as it was done for the defect in the proof of
Theorem 5.4. 2

As immediate consequences we get:

Corollary 5.23 Assume F to be a subhenselian function field without transcendence defect
over a q–defectless field K. Then dq (F |K) is trivial.

Proof: Let T be a valuation transcendence basis of F |K. From Theorem 5.20 we infer
that K(T ) is a q–defectless field, hence in view of Theorem 5.22,

dq (F |K) = dq (F |K(T )) = 1 .

2

Corollary 5.24 Every subhenselian function field F without transcendence defect over K
satisfies

dc (F |K) = dc (F h|K) = dc (F h|Kh)

dq (F |K) = dq (F h|K) = dq (F h|Kh) .

Proof: Any valuation transcendence basis T of F |K is also a valuation transcendence
basis of F h|K and of F h|Kh. Hence with regard to Lemma 5.11,

dc (F |K) = dc (F |K(T )) = dc (F h|K(T )h)

= dc (F h|(Kh(T ))h) = dc ((F h)h|(Kh(T ))h)

= dc (F h|Kh(T )) = dc (F h|Kh)

and

dc (F h|K(T )h) = dc ((F h)h|K(T )h) = dc (F h|K(T ))

= dc (F h|K) .

The assertions for the defect quotient are shown similarly. 2
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Corollary 5.25 Let E and F be subhenselian function fields over K. If E|F is algebraic
and F |K has no transcendence defect, then E|F is h–finite and the following multiplicativity
holds for the completion defect and defect quotient:

dc (E|K) = dc (E|F ) · dc (F |K)

dq (E|K) = dq (E|F ) · dq (F |K) .

Proof: First, we prove that E|F is h–finite. E and F being subhenselian function fields,
Eh and F h are the henselizations of valued function fields E0 and F0 over K. Since E|F is
algebraic, also Eh|F h and E0.F0|F0 are algebraic. As E0.F0 is also a function field over K,
E0.F0|F0 is finite and the same holds for (E0.F0)

h|F h
0 . But Eh = Eh

0 contains F and thus
also F0, whence (E0.F0)

h = Eh. By our choice of F0 we have F h
0 = F h, and thus we have

proved that Eh|F h is finite. Taking any valuation transcendence basis T of F |K (which is
also a valuation transcendence basis of E|K since E|F is algebraic), we compute

dc (E|K) = dc (E|K(T )) = dc (E|F ) · dc (F |K(T ))

= dc (E|F ) · dc (F |K)

using Theorem 5.22 and the multiplicativity of the completion defect. The proof for the
defect quotient is similar. 2

Corollary 5.26 Let F be a subhenselian function field without transcendence defect over
K. If v(K) is cofinal in v(F ) then there exists a finite extension K ′ of K such that

dc (K ′.F |K) = dc (K ′|K)

dq (K ′.F |K) = dq (K ′|K) .

Proof: We take K ′ as in Theorem 5.22 and apply Corollary 5.25 to equation (103) and
equation (105), where we set L = K ′. 2

The following theorem is a consequence of the two preceeding corollaries. It is the
counterpart of Corollary 5.23.

Theorem 5.27 Let F be a subhenselian function field without transcendence defect over
K and let v(K) be cofinal in v(F ). If K is an c–defectless field then dc (F |K) is trivial
and F is an c–defectless field.

Proof: Let K be c–defectless and K ′ according to Corollary 5.26 such that

dc (K ′.F |K) = dc (K ′|K) = 1 .

By Corollary 5.25, putting E = K ′.F we get dc (F |K) = 1. On the other hand, if F ′ is an
arbitrary finite extension of F , then it is also a subhenselian function field without transcen-
dence defect over K and consequently, like F it satisfies dc (F ′|K) = 1. By Corollary 5.25,
we conclude

dc (F ′|F ) = 1 .

This shows that F is an c–defectless field. 2

The following theorem identifies the class of c–defectless fields with the class of separably
defectless fields:
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Theorem 5.28 A valued field K is an c–defectless field if and only if it is a separably
defectless field.

Proof: Let K be an c–defectless field. By Lemma 5.13, we know that every h–finite
separable extension of K is q–defectless, i.e. its completion defect equals the ordinary
defect. Thus every finite separable extension of K is defectless and consequently, K is a
separably defectless field.

For the converse, assume that K is separably defectless. Then by Lemma 2.2, also
its henselization is separably defectless, i.e. it is separable–algebraically complete. Now
Corollary 4.20 shows that Khc is algebraically complete. By virtue of the definition of the
completion defect, this shows K to be c–defectless. 2

The following theorem is a corollary to the preceding theorem and Theorem 5.27:

Theorem 5.29 Let F |K be a subhenselian function field without transcendence defect. If
K is separably defectless and v(K) is cofinal in v(F ) then F is separably defectless.

From this theorem we derive the following structure theorems:

Theorem 5.30 Let K be a separably defectless field and F |K a subhenselian function field
without transcendence defect. Assume that v(K) is cofinal in v(F ). Then F is a finite c–
defectless extension of a henselian rational function field F0 . Moreover, F0 can be chosen
such that

[F : F0]sep = (v(L) : v(K))tor · [F : K]irr .

Proof: The valuation transcendence basis T is constructed as in the proof of The-
orem 3.2. By Theorem 5.28, K is an c–defectless field and by Theorem 5.27, K(T ) is
an c–defectless field. Hence F is a finite c–defectless extension of the henselian rational
function field K(T )h. 2

Theorem 5.31 The situation being as in Theorem 5.30, assume in addition that v(L)/v(K)
has no torsion element of order p and that L|K is separable. Then there exists a valuation
transcendence basis T of F |K and an element a ∈ F such that F lies in the completion of
K(T )h(a) which is a tame extension of K(T )h satisfying

[K(T )h(a) : K(T )h] = [K(T )(a) : K(T )]

= (v(F ) : v(K))tor · [F : K]sep .

Proof: The valuation transcendence basis T and the extension field F2 = K(T , a)
of K(T ) are constructed as in the proof of Theorem 3.3. Consequently, the extension
K(T , a)h|K(T )h has the same properties. As in the proof of Theorem 5.30 it is shown that
K(T ) is an c–defectless field. Hence F is a finite c–defectless extension of the henselian
rational function field K(T )h and thus also of K(T , a)h. But by the construction of the
latter field, the extension F |K(T , a)h is immediate. But according to Corollary 5.14, an
c–defectless immediate extension of a field must lie in its completion. 2

Theorem 5.32 The situation being as in Theorem 5.30, assume in addition that v(L)/v(K)
has no torsion and that L|K is regular. Then there exists a valuation transcendence basis
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T of F |K and an element a ∈ F such that F lies in the completion of K(T )h(a) which is
a tame unramified extension of K(T )h satisfying

[K(T )h(a) : K(T )h] = [K(T )(a) : K(T )]

= [K(T )(a) : K(T )]

= [F : K]sep .

Consequently, F lies in the completion of a henselian rational function field generated by a
valuation transcendence basis over K if and only if F is a rational function field over K.

Proof: The theorem can be easily deduced from Theorem 5.31; cf. the proof of Theo-
rem 3.4. 2

For the remainder of this chapter, we will consider the question to which extent Corol-
lary 5.8 and Corollary 5.10 carry over to the completion defect.

Corollary 5.33 Let F be a valued function field without transcendence defect over K and
let P be the place associated to v. Assume that P = QQ such that Q is nontrivial on F .
Then the following holds:

dq ((F, P )|(K, P )) = dq ((F, Q)|(K,Q)) , (108)

dc ((F, P )|(K, P )) =

dc ((F, Q)|(K, Q)) · d((FQ, Q)|(KQ, Q)) . (109)

In particular, if dc ((F, P )|(K, P )) is trivial, then
dc ((F,Q)|(K, Q)), d((FQ, Q)|(KQ, Q)) and
dc ((FQ, Q)|(KQ, Q)) are trivial too.

Proof: According to Lemma 2.22, we choose a valuation transcendence basis T of
(F, P )|(K, P ) that is at the same time a valuation transcendence basis of (F, Q)|(K, Q).
Since Q is assumed to be nontrivial, we may apply equation (89) of Lemma 5.17 to compute

dq ((F, P )|(K,P )) = dq ((F, P )|(K(T ), P ))

= dq ((F,Q)|(K(T ), Q))

= dq ((F,Q)|(K, Q)) .

This proves assertion (108). Using this result, we get

dc ((F, P )|(K, P )) =
d((F, P )|(K,P ))

dq ((F, P )|(K, P ))

=
d((F,Q)|(K, Q)) · d((FQ, Q)|(KQ, Q))

dq ((F,Q)|(K, Q))

= dc ((F, Q)|(K, Q)) · d((FQ, Q)|(KQ, Q))

by virtue of equation (102) of Theorem 5.22 and Corollary 5.8. 2

This corollary shows clearly that the ground field K may be c–defectless while even a
rational function field F = K(x) may not. But this case can only arise if v(K) is not
cofinal in v(F ).
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Corollary 5.34 Let E be a valued function field without transcendence defect over K.
Then there exists a finitely generated field K0 and a function field E0 without transcen-
dence defect over K0 satisfying all conditions of Corollary 5.10 and in addition:

dc (E|K) ≥ dc (E0|K0) .

Proof: Choose K0 and E0 according to Corollary 5.10. Assume that v(E0) is not cofinal
in v(E). Then the place P associated to v can be decomposed P = QQ such that Q is
nontrivial on E but trivial on E0. We identify E0 with E0Q. Applying Corollary 5.10 to
EQ and KQ instead of E and K, we see that K0 and E0 (with Q trivial on K0 and F0)
can actually be chosen as large as to satisfy not only the required conditions, but also

d((EQ, Q)|(KQ, Q)) ≥ d((E0Q, Q)|(K0Q, Q))

= d((E0, P )|(K0, P )) ,

whence

dc ((E,P )|(K, P )) ≥ d((EQ, Q)|(KQ, Q))

≥ d((E0, P )|(K0, P ))

≥ dc ((E0, P )|(K0, P ))

by virtue of Corollary 5.33.
Now assume that v(E0) is cofinal in v(E). Then for a given valuation transcendence

basis T , the fields E0 and K0 may be replaced by larger fields that not only satisfy the
conditions of Corollary 5.10 but also

[E : K(T )]insep = [E0 : K0(T )]insep

[Ec : K(T )c]insep = [Ec
0 : K0(T )c]insep .

In view of Lemma 5.14 and equation (101) of Theorem 5.22, this yields

dq (E|K) = dq (E|K(T )) =
[E : K(T )]insep

[Ec : K(T )c]insep

=
[E0 : K0(T )]insep

[Ec
0 : K0(T )c]insep

= dq (E0|K0(T )) = dq (E0|K0) .

Hence

dc (E|K) =
d(E|K)

dq (E|K)
≥ d(E0|K0)

dq (E0|K0)
= dc (E0|K0) .

2

æ
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6 The Ax–Kochen–Ershov–principle for extensions with-

out transcendence defect of algebraically complete

fields.

In this section, we turn to model theoretic investigations about valued fields. We will
use the ordinary language L0 = {0, 1, +, ·} for the residue fields and the language L =
{0, 1, +, ·, V } for valued fields (K, v), where V is either a unitary predicate O(x) denoting
the assertion that x ∈ OK , or a binary predicate v(x, y) denoting that v(x) ≤ v(y). Which
of these predicates is chosen, does actually not influence our results. Also, adding the
inverse function to L0 and L is optional and does not influence our results.

Since we want to prove model theoretic results by embedding lemmas we need the fol-
lowing preparation which gives a precise description of the constructed embedding relative
to given embeddings of the value group and the residue field:

Lemma 6.1 (Embedding Lemma II)
Let (K, v) be a defectless field (the valuation is allowed to be trivial), (L, v)|(K, v) an
extension without transcendence defect and (K?, v?) a |L|+– saturated henselian extension
of (K, v). Assume that v(L)/v(K) is torsion free and that L|K is separable. If

ρ: v(L) −→ v?(K?)

is an embedding over v(K) and
σ: L −→ K?/v?

is an embedding over K, then there exists an embedding

ι: (L, v) −→ (K?, v?)

over (K, v) that respects ρ and σ (in the sense of Lemma 3.5).

Proof: By our Embedding Lemma I (Lemma 3.5) we know that every finitely generated
subextension of L|K can be embedded over (K, v) into (K?, v?) respecting both embeddings
ρ and σ. Using the saturation property of (K?, v?) we have to deduce from this the assertion
of our Embedding Lemma II. To do so we will work in an enlarged language L′ consisting
of the ordinary language L of valued fields enriched by predicates

Pδ(X) , δ ∈ ρ(v(L))

Qd(X) , d ∈ σ(L)

which are interpreted in (K?, v?) such that

Pδ(a) ⇐⇒ v?(a) = δ

Qd(a) ⇐⇒ a/v? = d

for all a ∈ K? and in (L, v) such that

Pδ(b) ⇐⇒ ρ(v(b)) = δ

Qd(b) ⇐⇒ σ(b) = d

for all b ∈ L. Note that these interpretations coincide on K.
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We show that (K?, v?) remains |L|+–saturated in the enriched language L′. To this
end, we choose a subset ∆ ⊂ K? of all values δ in ρ(v(L)) and a subset D ⊂ K? of
representatives for all residues d in σ(L). We compute

|∆| = |ρ(v(L))| = |v(L)| ≤ |L| < |L|+ ,

|D| = |σ(L)| = |L| ≤ |L| < |L|+ ,

hence |∆ ∪D| < |L|+. Consequently, if we add the elements from ∆ ∪D as constants to
the language L we get a language L? which satisfies

||L?|| < |L|+ .

The new constants are interpreted in K? by the corresponding elements from ∆∪D ⊂ K?.
From [CHK], Proposition 5.1.1 (iii), p. 215, we deduce that (K?, v?) remains |L|+–saturated
in this new language L?. Now the predicates Pδ and Qd become definable in the language
L?, and this shows that (K?, v?) is also |L|+–saturated in the language L′, as asserted.

An embedding ι respects the predicates Pδ and Qd if and only if it satisfies

ρ(v(b)) = δ ⇐⇒ Pδ(b) ⇐⇒ Pδ(ιb) ⇐⇒ v?(ιb) = δ ,

σ(b) = d ⇐⇒ Qd(b) ⇐⇒ Qd(ιb) ⇐⇒ ιb/v? = d ,

which expresses the property of ι to respect the embeddings ρ and σ.
By Lemma 3.5 we know that for every finitely generated subextension of L|K (and even for
its henselization) there exists such an embedding ι over (K, v) into (K?, v?) which respects
the predicates Pδ and Qd. The saturation property of (K?, v?) now yields an embedding of
(L, v) into (K?, v?) which respects the predicates and thus the embeddings ρ and σ. This
completes the proof of our lemma. 2

Now we turn to the model theoretic application of this embedding lemma. We use the
following notation. By “v(K) ≺∃ v(L)” we will always mean that v(K) is existentially
closed in v(L) with respect to the language of ordered groups. Analogously, “K ≺∃ L”
means that K is existentially closed in L with respect to the language of fields. In contrast
to this, “(K, v) ≺∃ (L, v)” means that the valued field (K, v) is existentially closed in the
valued field extension (L, v) with respect to the language of valued fields. The same shall
hold for elementary embeddings, denoted by “≺”, and first order equivalence, denoted by
“≡”.

The notion “≺∃” is connected with embeddings by the following well known model
theoretic lemma:

Lemma 6.2 Let L be a first order language and let A,B be L–structures with A ⊆ B.
Then A ≺∃ B if and only if B is embeddable over A into every |B|+–saturated elementary
extension of A.

Proof: Cf. [PRE], Korollar 2.19, p. 130. 2

Before applying Embedding Lemma II, we want to state that the conditions “v(L)/v(K)
is torsion free” and “L|K is separable” do in particular hold if v(K) ≺∃ v(L) and K ≺∃ L:

Lemma 6.3 Let Γ ⊂ ∆ be an extension of ordered abelian groups and k2|k1 an extension
of fields. If Γ ≺∃ ∆, then Γ is pure in ∆, i.e. ∆/Γ is torsion free. If k1 ≺∃ k2, then the
extension k2|k1 is regular.
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Proof: Cf. Proposition (2.3) of [VDD], p. 23, for the regularity. The easy proof of the
assertion for ordered abelian groups is left to the reader. 2

Now we are able to prove the following Ax–Kochen–Ershov–principle for extensions
without transcendence defect:

Theorem 6.4 If (L, v) is an extension without transcendence defect of the algebraically
complete field (K, v), then the “side conditions”

v(K) ≺∃ v(L) and K ≺∃ L (110)

imply
(K, v) ≺∃ (L, v) .

Proof: We choose (K∗, v∗) to be an |L|+–saturated elementary extension of (K, v). Then
K∗/v∗ is a |L|+–saturated elementary extension of K and v∗(K∗) is a |v(L)|+–saturated
elementary extension of v(K). Since “algebraically complete” is elementarily definable
by a scheme of first order axioms (cf. [DEL1], p. 21), (K∗, v∗) is algebraically complete
like (K, v) and thus henselian. By our hypothesis (110) and by Lemma 6.2, there exist
embeddings

ρ: v(L) −→ v∗(K∗)

over v(K) and
σ: L −→ K∗/v∗

over K. By the preceding Embedding Lemma II, there exists an embedding

ι: (L, v) −→ (K∗, v∗)

over (K, v) that respects ρ and σ. By Lemma 6.2, this shows that (K, v) is existentially
closed in (F, v). 2

Note that it is not in general true that under the conditions of the above theorem, the
strengthened side conditions

v(K) ≺ v(L) , K ≺ L

would imply (K, v) ≺ (L, v). A counterexample is given in section 11 (cf. page 150).
æ
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7 Tame fields.

In this section we will state some important properties of tame fields that we will use in
the two subsequent sections.

Let K be a valued field with p = char(K) (p = 1 if char(K) = 0). We will call K a tame
field if it is henselian and K̃|K is a tame extension, i.e. the algebraic closure K̃ is equal to
the ramification field Kr which is the maximal tame algebraic extension of K. Recall that
an algebraic extension of a henselian field is called tame if every finite subextension L|K
satisfies

(a) the ramification index (v(L) : v(K)) is relatively prime to p,
(b) the residue field extension L|K is separable,
(c) the extension L|K is defectless.

An arbitrary extension L|K is called purely wild if

(a’) (v(L) : v(K)) is a p–torsion–group,
(b’) L|K is purely inseparable algebraic.

(Cf. the definitions on p. 46 of [KPR].)

Let us furthermore recall the following facts stated in [KPR]:

Every subextension of a purely wild extension is purely wild. Every purely inseparable
extension is purely wild. (Cf. the remarks on p. 47 in [KPR].)
An algebraic extension of K is purely wild if and only if it is K–linearly disjoint from Kr.
(Cf. Lemma 4.2 on p. 47 in [KPR].)

If char(K) = 0 then Kr = K̃. On the other hand, in [PAN1], [PAN2] M. Pank proved
the following important theorem:

Theorem 7.1 (M. Pank)
Let K be a henselian field with residue characteristic p > 0. There exist algebraic field
complements W of Kr over K, i.e. Kr.W = K̃ and W is linearly disjoint from Kr over
K. These complements W can be characterized as the maximal algebraic purely wild ex-
tensions of K. They are unique up to K–isomorphism if there does not exist any finite
tame extension of K whose degree is divisible by p. Moreover, v(W ) is the p–divisible hull
of v(K), and W is the perfect hull of K.

For the proof and further information on purely wild extensions, cf. [KPR].

Tame fields can be characterized as follows:

Lemma 7.2 The following assertions are equivalent:
1) K is tame
2) Every algebraic purely wild extension of K is trivial
3) K is algebraically maximal and closed under every purely wild extension by p–th roots
4) K is algebraically maximal, v(K) is p–divisible and K is perfect.

In particular, a valued field K of characteristic p > 0 is tame if and only if it is algebraically
maximal and perfect. Consequently, given a valued field (K, v) of positive characteristic p,
any maximal immediate algebraic extension (W, v) of (

√
K, v) is a tame field having the

p–divisible hull of v(K) as value group and the perfect hull of K as residue field.

Proof: Let K be a tame field, i.e. Kr = K̃. Then by Pank’s Theorem, every maximal
algebraic purely wild extension of K is trivial. This proves 1) =⇒ 2).
If K has no algebraic purely wild extension then in particular it has no purely wild extension
by p–th roots. Since moreover every finite tame extension is defectless (by definition), K
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is a defectless field and since it is assumed to be henselian, it is algebraically maximal (it
is even algebraically complete). This proves 2) =⇒ 3).
Assume now that K is an algebraically maximal field closed under purely wild extensions
by p–th roots. Let a be an arbitrary element of K. Assume that v(a) is not divisible by p
in v(K); then the extension K(b)|K generated by an element b ∈ K̃ with bp = a satisfies
(v(K(b) : v(K))) = p = [K(b) : K] and is thus purely wild contrary to our assumption on
K. Assume that v(a) = 0 and that a has no p–th root in K; then the extension K(b)|K
generated as above satisfies [K(b) : K] = p = [K(b) : K] and is again purely wild contrary
to our assumption. By this, we have shown that v(K) is p–divisible and K is perfect. This
proves 3) =⇒ 4).
Assume now that K is an algebraically maximal (and thus henselian) field such that v(K) is
p–divisible and K is perfect. The latter condition yields (by definition) that every algebraic
purely wild extension of K is immediate. But since K is assumed to be algebraically maxi-
mal every such extension must be trivial. This shows that K has no nontrivial algebraic
purely wild extension at all and thus it follows from Pank’s Theorem that K̃ = Kr. This
proves 4) =⇒ 1).
The second part of our lemma follows from the first part since if K has positive character-
istic then every extension by p–th roots is purely inseparable and thus purely wild. 2

For the model theory of tame fields, the following corollary gives a basic information:

Corollary 7.3 The property of being a tame field of fixed residue characteristic is recur-
sively first order axiomatizable.

Proof: If the residue characteristic is fixed to 0 then “tame” is equivalent to “henselian”
which is recursively first order definable by an axiom scheme that just expresses Hensel’s
Lemma. If the residue characteristic is fixed to be a positive prime then the assertion is
seen as follows:
By the foregoing lemma, a valued field of positive residue characteristic is tame if and only
if it is an algebraically maximal field having p–divisible value group and perfect residue
field. A valued field K has p–divisible value group if and only if it satisfies the following
first order axiom:

∀x ∈ K ∃y ∈ K : v(xyp) = 0 .

Furthermore, K has perfect residue field if and only if it satisfies the following first order
axiom:

∀x ∈ K ∃y ∈ K : (v(x) = 0 =⇒ v(xyp − 1) > 0) .

Finally, the property of being algebraically maximal is axiomatizable by a recursive scheme
of first order axioms as it is shown in [DEL1], p. 15, Proposition 1.17, and p. 16, Corol-
laire 1.18. 2

Let be given an abelian group Γ and a field k of positive characteristic p which are
elementarily equivalent to the value group resp. the residue field of some tame field of
positive characteristic (hence by Lemma 7.2, Γ is p–divisible and k is perfect). The next
corollary will show that it is rather easy to construct tame fields with value group Γ and
residue field k which moreover satisfy that its cardinality does not exceed the maximum of
the cardinalities of value group and residue field.
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Corollary 7.4 Let p be a prime number, Γ a p–divisible ordered abelian group and k a
perfect field of characteristic p. Then there exists a tame field K of characteristic p having
Γ as its value group and k as its residue field such that K|IFp admits a valuation transcen-
dence basis and the cardinality of K is equal to the maximum of the cardinalities of Γ and
k.

Proof: Given Γ and k both of cardinality at most κ, we proceed as follows:
Take αi, i ∈ I to be a maximal set of rationally independent values in Γ, and zj, j ∈ J

to be a transcendence basis of k|IFp. Let T = {xi, yj | i ∈ I , j ∈ J} be a set of algebraically
independent elements over IFp and let K0 = IFp(T ) be valued such that

∀i ∈ I : v(xi) = αi and ∀j ∈ J : yj = zj .

Note that by Lemma 2.18, the valuation v is uniquely determined by the above assign-
ments. Now take (K1, v) to be a maximal immediate algebraic extension of the perfect hull
(
√

K0, v). By Lemma 7.2, (K1, v) is a tame field with the p–divisible hull of v(K0) as value
group and the perfect hull of K0 as residue field. But since by hypothesis, Γ is p–divisible
which shows v(K1) ⊂ Γ. Similarly, k is perfect by hypothesis which shows K1 ⊂ k. Now
Γ/v(K1) is a torsion group without p–torsion, and k|K1 is a separable–algebraic extension.
Hence there exists a tame algebraic extension (K, v) of (K1, v) having value group Γ and
residue field k. We have Kr = Kr

1 = K̃1 = K̃ which shows that (K, v) is a tame field like
(K1, v). By construction, K|IFp has T as valuation transcendence basis.

Finally, note that the cardinality of T does not exceed the cardinality of Γ and k; this
shows

|K| = max{ℵ0, |T |} ≤ max{|Γ|, |k|}
since K is an infinite subfield of the algebraic closure of IFp(T ). The inequality on the
right hand side holds since at least |Γ| is infinite. On the other hand, the cardinality of a
valued field cannot be smaller than the cardinalities of its value group and its residue field
which shows that the above inequality is indeed an equality. 2

Note that Lemma 7.2 also yields that every tame field is perfect and that for a perfect
field of positive characteristic the properties “algebraically maximal” and “algebraically
complete” are equivalent. This is true since every such field is tame and thus defectless
if it is algebraically maximal. Since it is also henselian if it is algebraically maximal, this
implies that it is algebraically complete if it is algebraically maximal.

Every valued field (K, v) admits algebraic extensions which are tame fields and minimal
in the sense that no proper subextensions are tame fields. These are exactly the maximal
purely wild algebraic extensions of K, as one concludes from Lemma 7.2 together with
Theorem 7.1. They have the p–divisible hull of v(K) as value group and the perfect hull
of K as residue field. Note that in general they are not unique up to isomorphism; cf.
the appendix of [KPR]. Here it remains to note an additional property of these extensions
concerning the “side conditions” as they appear in the hypothesis of Ax–Kochen–Ershov–
principles:

Lemma 7.5 If (K, v) is a tame field and (L, v)|(K, v) an extension with v(K) ≺∃ v(L)
and K ≺∃ L, then every maximal purely wild algebraic extension (W, v) of (L, v) is a tame
field satisfying v(K) ≺∃ v(W ) and K ≺∃ W .

Proof: As mentioned above, v(W ) is the p–divisible hull 1
p∞v(L) of v(L) and W is

the perfect hull
√

L of L. So we only have to prove that v(K) (which is itself p–divisible
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by Lemma 7.2) is existentially closed in 1
p∞v(L) and that K (which is itself perfect by

Lemma 7.2) is existentially closed in the perfect hull
√

L of L.
By Lemma 6.2, the hypothesis v(K) ≺∃ v(L) implies that v(L) is embeddable over v(K)

into every |v(L)|+–saturated elementary extension of v(K). Such an elementary extension
is p–divisible like v(K), hence the embedding can be extended to an embedding of 1

p∞v(L)

which by Lemma 6.2 shows v(K) ≺∃ 1
p∞v(L).

Again by Lemma 6.2, the hypothesis K ≺∃ L implies that L is embeddable over K into
every |L|+–saturated elementary extension of K. Such an elementary extension is perfect

like K, hence the embedding can be extended to an embedding of
√

L which by Lemma 6.2
shows K ≺∃

√
L. 2

Now we will prove an important lemma on tame fields that we will need in several
instances.

Lemma 7.6 Let L be a tame field and K ⊂ L a relatively algebraically closed subfield. If
in addition L|K is an algebraic extension, then K is also a tame field and moreover, v(K)
is pure in v(L) and K = L.

Proof: The following short and elegant version of the proof was given by F. Pop. Since
L is tame, it is henselian and perfect and since K is relatively algebraically closed in L, it
is henselian and perfect too. Assume that K1|K is a finite purely wild extension; in view
of Lemma 7.2, we have to show that it is trivial. The degree [K1 : K] is a power of p, say
pm. Since K is perfect, L|K and K1|K are separable extensions and since K is relatively
algebraically closed in L, we know that L and K1 are linearly disjoint over K, thus K1 is
relatively algebraically closed in K1.L and

[K1.L : L] = [K1 : K] = pm .

Since L is assumed to be a tame field, the extension K1.L|L must be tame and this can
only be the case if

K1.L |L
is a separable extension of degree pm. On the other hand, K1.L |K1 is an algebraic extension
since by hypothesis, L |K and thus also K1.L |K are algebraic extensions. Furthermore,
K1.L being a henselian field and K1 being relatively algebraically closed in K1.L, Hensel’s
Lemma shows that

K1.L |K1

must be purely inseparable. This yields that

pm = [K1.L : L]sep ≤ [K1.L : K]sep

= [K1.L : K1]sep · [K1 : K]sep

= [K1 : K]sep ≤ [K1 : K]

≤ [K1 : K] = pm ,

showing that
K1 |K

is separable of degree pm. Since K1|K was assumed to be purely wild, we have pm = 1 and
the extension K1|K is trivial.
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We have now shown that K is a tame field; hence by Lemma 7.2, v(K) is p–divisible
and K is perfect. Since L|K is assumed to be algebraic, it must be separable–algebraic.
But L being henselian, the hypothesis that K is relatively algebraically closed in L yields
by Hensel’s Lemma that L = K. Furthermore, v(L)/v(K) has no p–torsion; thus in view
of L = K and Hensel’s Lemma, the hypothesis that K is relatively algebraically closed in
L yields that v(L)/v(K) has no torsion at all. 2

(The same lemma holds for separably tame fields, i.e. henselian fields whose only purely
wild algebraic extensions are purely inseparable.)

The following corollaries will show some nice properties of the class of tame fields.

Corollary 7.7 For every valued function field F with given transcendence basis T over a
tame field K, there exists a tame subfield K0 of K of finite rank with K0 = K and v(K0)
pure in v(K), and furthermore a function field F0 with transcendence basis T over K0 such
that

F = K.F0 (111)

and
[F0 : K0(T )] = [F : K(T )] . (112)

Proof: It is well known that there exists a finitely generated subfield K1 of K admitting
a finite extension F1 of K1(T ) such that (111) and (112) hold for K1 and F1 in the place
of K0 and F0. As a finitely generated field, K1 has finite rank. Now let yj, j ∈ J , be a
system of elements in K such that the residues yj, j ∈ J , form a transcendence basis of K
over K1. According to Lemma 2.20, the field K1(yj|j ∈ J) has residue field K1(yj|j ∈ J)
and the same value group as K1, hence it is again a field of finite rank. Let K0 be the
relative closure of this field within K. Since by construction, K|K1(yj|j ∈ J) and thus
also K|K0 are algebraic, we may infer from the preceding lemma that K0 is a tame field
with K0 = K and v(K0) pure in v(K). As an algebraic extension of a field of finite rank
it is itself of finite rank. Finally, the function field F0 = K0.F1 over K0 satisfies assertions
(111) and (112). 2

Corollary 7.8 For every extension L|K of tame fields, there exists a tame intermediate
field L0 such that the extension L0|K has no transcendence defect and the extension L|L0

is immediate.

Proof: Take T to be a maximal set of valuation–independent elements in L. With this
choice, v(L)/v(K(T )) is a torsion group and L|K(T ) is algebraic. Let L0 be the relative
algebraic closure of K(T ) within L. Then by Lemma 7.6, we have that L = L0 and that
v(L0) is pure in v(L) and thus v(L0) = v(L) which shows that the extension L|L0 is im-
mediate. On the other hand, T is a valuation transcendence basis of L0|K by construction
which shows that according to Lemma 2.20, this extension has no transcendence defect. 2

Now we will state two lemmata which we will actually not use further since we will
deduce a general embedding lemma in section 9 that will serve us to prove our model
theoretic results on tame fields. Nevertheless, in view of the fact that section 9 will only
cover the case of tame fields of positive characteristic, the case of tame fields of characteristic
0 needing a different approach which we have to postpone to a subsequent paper, it is
certainly interesting to see how far we can use the above presented results.
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Lemma 7.9 Let K be an elementary class of tame fields given by the axiom
1) “(K, v) is a tame field”
and optional axioms
2) on the characteristic of K,
3) on the value group of K,
4) on the residue field of K.
Then every extension L of a field K ∈ K such that v(K) ≺∃ v(L) and K ≺∃ L, admits an
extension L′ ∈ K such that v(K) ≺ v(L′) and K ≺ L′.

Proof: Since v(K) ≺∃ v(L), in view of Lemma 6.2 we may embed v(L) into a |v(L)|+–
saturated elementary extension v(K)∗ of v(K). Since K ≺∃ L, in view of Lemma 6.2 we
may embed L into a |L|+–saturated elementary extension K

∗
of K. Let (L′′, v) be an

arbitrary extension of (L, v) having value group v(K)∗ and residue field K
∗
. Furthermore,

we take L′ to be a maximal immediate algebraic extension of L′′. Then v(L′) = v(L′′) =
v(K)∗ is a p–divisible group like v(K), and L′ = L′′ = K

∗
is a perfect field like K. Thus by

Lemma 7.2, L′ is a tame field because it is algebraically maximal by construction. Since
char(L′) = char(K), K ≺ K

∗
= L′, v(K) ≺ v(K)∗ = v(L′) and K ∈ K, we have L′ ∈ K by

the special form of our axioms for K. 2

The notion of Ax–Kochen–Ershov–class which is used in the following corollary, will be
introduced in section 9.

Corollary 7.10 Let K be an elementary class of tame fields as in the preceding lemma.
If every field in this class is existentially closed in every immediate function field of tran-
scendence degree 1, then K is an Ax–Kochen–Ershov–class.

Proof: Let L be an extension of the tame field K such that K ≺∃ L and v(K) ≺∃ v(L).
We have to show (K, v) ≺∃ (L, v). By virtue of the preceding corollary we may w.l.o.g.
assume from the start that L ∈ K and thus that L is also tame.

Let L0 be the tame intermediate field of the extension L|K which is described in
corollary 7.8. Then L0 ∈ K since char(L0) = char(L), v(L0) = v(L), L0 = L and L ∈ K.
By Theorem 6.4, v(K) ≺∃ v(L) = v(L0) and K ≺∃ L = L0 implies (K, v) ≺∃ (L0, v).

It remains to show (L0, v) ≺∃ (L, v). For this we only have to show that (L0, v) is
existentially closed in every finitely generated subextension (F, v) ⊂ (L, v). Let {x1, ..., xn}
be a transcendence basis of F |K and Li be the relative algebraic closure of L0(x1, ..., xi)
within L. Note that L|L0 and thus every extension L|Li is immediate. By Lemma 7.6, this
shows that every Li is a tame field and since L ∈ K, that every Li is a member of K. Ln

contains F , so if we are able to show that (L0, v) ≺∃ (Ln, v), our lemma will be proved.
Now the transcendence degree of every extension Li+1|Li, 0 ≤ i < n, is equal to 1.

Hence it remains to show that for every immediate extension L|K of transcendence degree
1 of fields K,L ∈ K, we have (K, v) ≺∃ (L, v). This is true if (K, v) is existentially closed in
every finitely generated subextension (F, v) ⊂ (L, v). But F being an immediate function
field of transcendence degree 1 over K, this follows from the hypothesis that (K, v) is
existentially closed in every such function field. 2

æ
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8 Immediate henselian function fields over defectless

perfect fields of positive characteristic.

In this section we will show that every immediate henselian function field F h of transcen-
dence degree 1 over a tame field K of positive characteristic is henselian rational. If x ∈ F h

is transcendental over K, then the finite extension F h|K(x)h is immediate and thus purely
wild. Consequently, for the proof of our assertion it suffices to consider minimal purely wild
algebraic extensions of immediate henselian rational function fields K(x)h, i.e. purely wild
algebraic extensions which do not admit proper nontrivial subextensions. Such extensions
have the following special structure:

Lemma 8.1 (F. Pop)
Let L be a valued field of positive characteristic. Every minimal purely wild algebraic
extension of Lh is generated by a root of a minimal polynomial

A(Y )− a

where A(Y ) ∈ L[Y ] is an additive polynomial and a ∈ Lh. If moreover L is an immediate
extension of a valued field K, then we may even assume A(Y ) ∈ K[Y ].

Proof: A proof is given in [POP]. 2

In order to determine a suitable normal form for the minimal polynomial A(Y )− a, let
us first look at the additive polynomial A.

Lemma 8.2 Let A′ ∈ K[Y ] be a separable additive polynomial of degree pe. Then there
are elements c1, c2 ∈ K such that the additive polynomial A(Y ) = c1 · A′(c2 · Y ) is of the
form

A(Y ) = keY
pe

+ ke−1Y
pe−1

+ ... + k1Y
p + Y ∈MK [Y p] + Y . (113)

If c is an element of a henselian overfield L of K with v(c) ≥ 0, then the polynomial

A(Y )− c ∈ OL

has a zero in L with residue c by Hensel’s Lemma; in other words,

OL ⊂ A(L) .

Proof: Let k′0 be the coefficient of Y in A′; it is nonzero by our hypothesis on A′. We
put c1 = (k′0c2)

−1. Any choice of c2 with a high enough value will now yield the asserted
form of A.
If v(c) ≥ 0, then A(Y )− c = Y − c has c ∈ L as a simple zero. By Hensel’s Lemma this
shows that A(Y )− c admits a zero over the henselian field L having residue c. 2

As a consequence of the two preceding lemmata we get:

Corollary 8.3 Let L|K be an immediate extension of valued fields and let L′ be a nontrivial
minimal purely wild algebraic extension of Lh. Then L′ is generated over Lh by a root of
a minimal polynomial of the form A(Y ) − a where A(Y ) is an additive polynomial of the
form (113), pe = deg(A) = [L′ : Lh], and where

a ∈ Lh with v(a) < 0 . (114)
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For any element
a′ ∈ a +A(Lh) +OLh = a +A(Lh)

there is a root of the polynomial
A(Y )− a′

which also generates L′ over Lh.

The last assertion follows by OLh ⊂ A(Lh) and the additivity of the polynomial A(Y ); it
yields the question whether there are also normal forms for the element a which suit our
purposes well. We will answer this question in the special case L = K(x). First we need:

Lemma 8.4 If the rank of K is 1 and K(x)|K is immediate, then K[x] is dense in K(x)h.

Proof: Since any valued field of rank 1 is dense in its henselization, it suffices to show
that K[x] is dense in K(x). For this we only have to show that for every f(x) ∈ K[x] and
every α ∈ v(K) there exists an element g(x) ∈ K[x] such that v(g(x)−1/f(x)) > α. Since
K(x)|K is immediate there is an element c ∈ K satisfying v(c − f(x)) > v(f(x)) = v(c)
which yields v(1−f(x)/c) > 0. By our hypothesis on the rank which actually says that the
value group v(K) is archimedian, there exists j ∈ IN such that j ·v(1−f(x)/c) > α+v(c).
Now we put h = 1− f(x)/c ∈ K[x] and compute

v


 1

f(x)
− c−1

j−1∑

i=0

hi


 = v


 1

c(1− h)
− c−1

j−1∑

i=0

hi




= v(c−1hj)

= j · v(1− f(x)/c)− v(c) > α .

The sum being an element of K[x], this proves our lemma. 2

As an immediate consequence we have:

Corollary 8.5 If A(Y ) is an additive polynomial of the form (113) and if a ∈ K(x)h

where K has rank 1 and K(x)|K is an immediate extension, then there exists a polynomial

f(x) ∈ K[x] ∩ (a +OK(x)h) ⊂ K[x] ∩ (a +A(K(x)h)) .

Any extension of K(x)h generated by a root of the polynomial A(Y ) − a will then also be
generated by a root of the polynomial

A(Y )− f(x) .

Adding another hypothesis we will now derive a stronger normal form for f(x):

Lemma 8.6 Let K(x) be an immediate extension of the algebraically maximal field K of
arbitrary rank, a and A as above and degA = pe. If K[x]∩ (a+A(K(x)h)) 6= ∅, then there
is a finite purely inseparable extension K ′|K and a polynomial

h∗(x) ∈ K ′[x] ∩ (a +A(K ′(x)h)) (115)

satisfying

h∗(x) = h(z) = anzn + ... + a1z + a0 ∈ K ′[x] where
z = (x− c)/d , with v(z) = 0 , c ∈ K and 0 6= d ∈ K
∃m ∈ IN , 0 ≤ m < e , ∀i > 0 :

( i 6= pm ∧ ai 6= 0 ) =⇒ v(apm) < v(ai) < 0 .





(116)
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Proof: By hypothesis there exists a polynomial

f(x) ∈ K[x] ∩ (a +A(K(x)h)) .

Let A(Y ) be given in the form (113) and deg(f) = n. We consider the Taylor expansion
for an arbitrary x0:

f(x) =
n∑

i=0

fi(x0)(x− x0)
i

where fi denotes the i–th formal derivative of f . For any i which is divisible by pe, say
i = per, the summand fi(x0)(x− x0)

i in f(x) is equivalent to

−
e−1∑

j=0

kj(k
−1
e fi(x0))

pj−e

(x− x0)
pjr

modulo A(K1[x]), where

K1 = K
(

(k−1
e fi(x0))

p−e
)

.

By a repeated application of this procedure we find that modulo A(K ′[x]) where K ′|K is
a finite purely inseparable extension, f(x) is equivalent to the polynomial

f(x0) +
∑

i

′
e−1∑

µ=0

(∑
ν

(i)kµ,νfipν (x0)
pµ−ν

)
(x− x0)

ipµ

(117)

where:

1.
∑

i

′ denotes the sum over all i ≤ n with (p, i) = 1,

2.
∑
ν

(i) denotes the sum over all ν ≥ e with ipν ≤ n,

3. kµ,ν ∈ K ′ are determined by the coefficients ki of A.

For big enough λ ∈ IN , every term

(∑
ν

(i)kµ,νfipν (x0)
pµ−ν

)pλ

(118)

is a polynomial in K[x0]. K being an algebraically maximal field, by virtue of Corol-
lary 12.50 we may choose

α0 ∈ {v(x− x0)|x0 ∈ K}
such that for all x0 ∈ K with v(x− x0) > α0 the values of (118) are fixed for every i and
µ and thus we also have for all x0 ∈ K, v(x− x0) > α0:

v

(∑
ν

(i)kµ,νfipν (x0)
pµ−ν

)
= βi,µ (119)

where βi,µ are elements of the p–divisible hull of v(K). Since the set {v(x − x0)|x0 ∈ K}
has no greatest element (K(x)|K being an immediate extension by hypothesis), we may
choose x0 with v(x− x0) > α0 such that all values

βi,µ + i · pµ · v(x− x0)
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are different. Having chosen x0, we choose d1 ∈ K such that v(d1) = v(x− x0) and put

y =
x− x0

d1

,

hence v(y) = 0. We write (117) as a polynomial in y:

g(y) = f(x0) +
∑

i

′
e−1∑

µ=0

(
dipµ

1 ·∑
ν

(i)kµ,νfipν (x0)
pµ−ν

)
yipµ

. (120)

In this polynomial all the coefficients of yipm
are equal to zero for m ≥ e. We consider the

Taylor expansion

g(y) = g(y0) +
n∑

i=1

gi(y0)(y − y0)
i .

By virtue of Lemma 12.52 there exists an element

β0 ∈ {v(y − y0)|y0 ∈ K} , β0 ≥ 0

and an integer m ≥ 0 such that for all y0 ∈ K with v(y − y0) > β0 the following holds for
every i ≥ 1 with n ≥ i 6= pm:

v(gpm(y0)(y − y0)
pm

) < v(gi(y0)(y − y0)
i) . (121)

By virtue of v(y) = 0, Corollary 12.34 shows

m < e .

Now we choose an element y0 ∈ K such that v(y − y0) > β0 and an element d2 ∈ K with
v(d2) = v(y − y0), and we put

z =
y − y0

d2

=
x− x0 − d1y0

d1d2

so that v(z) = 0. Moreover we may choose y0 such that

v(gi(y0)d
i
2) 6= 0

for 1 ≤ i ≤ n. If v(gi(y0)d
i
2) > 0 for a certain i, then gi(y0)(y − y0)

i ∈ A(K ′[y]). Conse-
quently, modulo A(K ′[y]), g(y) and thus also f(x) is equivalent to a polynomial

h(z) = anzn + ... + a0 ∈ K ′[x]

where

ai =

{
gi(y0)d

i
2 if v(gi(y0)d

i
2) < 0

0 otherwise

for 1 ≤ i ≤ n. We put

c = x0 + d1y0 ∈ K and d = d1d2 ∈ K

so that z = (x− c)/d.

To show the remaining assertion of our lemma, let us assume that h(z) /∈ K ′ since
otherwise it is trivially fulfilled. Now for the integer m with m < e that we have determined
above, h(z) /∈ K ′ implies apm 6= 0 by virtue of (121), and by the definition of the coefficients
ai we have:

∀i > 0 : i 6= pm ∧ ai 6= 0 =⇒ v(apm) < v(ai) < 0 .

2

We note the following immediate consequence of our lemma:
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Corollary 8.7 The situation being as in the preceding lemma, let in addition K be perfect.
Then K ′ = K and

h∗(x) ∈ K[x] ∩ (a +A(K(x)h)) .

This corollary together with Lemma 8.3 yields:

Corollary 8.8 If K(x) is an immediate extension of the tame field K of rank 1 and of
characteristic p > 0, then every minimal purely wild separable–algebraic extension of K(x)h

is generated by a root of a minimal polynomial

A(Y )− h∗(x)

where the additive polynomial A(Y ) is of the form (113) and h∗(x) ∈ K[x] has the properties
(115) and (116) stated in Lemma 8.6.

The normal form that we have derived for h∗(x) = h(z) allows us to prove the following
first assertion on the structure of henselian function fields over defectless fields of positive
characteristic:

Lemma 8.9 Let K be a defectless field of positive characteristic and F an immediate
function field of transcendence degree 1 over K. Assume that its rank is 1. Then for
a suitable finite purely inseparable extension K ′ of K, (F.K ′)h = F h.K ′ is a henselian
rational function field over K ′h.

Proof: Any finite purely inseparable extension K ′|K is defectless by our hypothesis on
K, hence F h|Kh being an immediate extension the extension F h.K ′|K ′h is also immediate;
this follows from Lemma 2.12 since K ′h = Kh.K ′. Moreover, as an immediate extension of
a defectless field, F h|Kh is linearly disjoint from K̃|Kh by virtue of Corollary 2.13. This
yields that also F h.K ′|K ′h is linearly disjoint from K̃|K ′h. In particular, it shows that
F h.K ′|K ′h is separable.
Let us choose K ′ and a separating element x of F h.K ′|K ′h such that the degree [F h.K ′ :
K ′(x)h] is minimal. We will show that [F h.K ′ : K ′(x)h] = 1 which yields the assertion of
our lemma.

Assume the contrary. Then the extension F h.K ′|K ′(x)h which is a separable finite ex-
tension and purely wild since it is immediate, contains a separable minimal purely wild
extension L|K ′(x)h. According to Corollary 8.3 and Corollary 8.5 this extension is gener-
ated by a root of a minimal polynomial A(Y )− f(x) where A(Y ) is of the form (113) and
f(x) ∈ K[x]. The field K ′ being a finite extension of the defectless field K is itself a defect-
less field by virtue of Corollary 2.8. Consequently, K ′h is algebraically maximal. Hence
we may apply Lemma 8.6 to deduce the existence of a finite purely inseparable extension
K ′′ of K ′ and of a polynomial h(z) = h∗(x) ∈ K ′′h[x] having the properties mentioned in
Lemma 8.6 and satisfying

h∗(x) ∈ f(x) +A(K ′′(x)h) .

By Corollary 8.3 the extension L.K ′′|K ′′(x)h is then generated not only by a root of the
polynomial A(Y ) − f(x) but also by a root b of the polynomial A(Y ) − h(z). Note that
h(z) = A(b) ∈ K(b) since A(Y ) ∈ K[Y ].
Let us consider the polynomial

H(Z) =
1

apm

(h(Z)− h(z)) ∈ OK(h(z))[Z] .
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We find
H(Z) = Z

pm − zpm

.

Using a “strong” version of Hensel’s Lemma (cf. [RIB1], Théorème 4, version 3, on p. 186)
we deduce that there is a factorization

H(Z) = G(Z)F (Z)

over K(h(z))h = K(h∗(x))h with

G(Z) = Z
pm − zpm

and
deg G(Z) = deg G(Z) = pm .

Every zero of H(Z) that has residue z cannot be a zero of F (Z) since F (Z) = 1, hence it
must appear as a zero of G(Z); in particular, G(z) = 0. Since G(Z) ∈ K(h(z))h[Z] and

deg G(Z) = pm < pe = degA(Y ) = [L : K ′(x)h] ,

this shows that

[L.K ′′ : K ′′(b)h] = [K ′′(z, b)h : K ′′(b)h]

≤ [K ′′(z)h : K ′′(h(z))h] ≤ pm

< [L : K ′(x)h] = [L.K ′′ : K ′′(x)h]

where the last equation holds since F h.K ′|K ′(x)h and thus also L|K ′(x)h are separable by
our choice of x. Now the extension F h.K ′′|K ′′(b)h may not be separable. But replacing
K ′′ by a suitable finite purely inseparable extension of K ′′ and b by its pµ–th root for a
suitable µ ∈ IN we will obtain a separable extension F h.K ′′|K ′′(b)h still satisfying

[L.K ′′ : K ′′(b)h] < [L.K ′′ : K ′′(x)h] .

This inequality implies

[F h.K ′′ : K ′′(b)h] = [F h.K ′′ : L.K ′′] · [L.K ′′ : K ′′(b)h]

< [F h.K ′′ : L.K ′′] · [L.K ′′ : K ′′(x)h]

= [F h.K ′′ : K ′′(x)h]

which is a contradiction to the minimum assumption on K ′ and x. This completes the
proof of our lemma. 2

The next step towards the desired structure theorem is the following

Lemma 8.10 Let K be a defectless field of positive characteristic and F an immediate
function field of transcendence degree 1 over K. Assume that its rank is finite. Then for
a suitable finite purely inseparable extension K ′ of K, (F.K ′)h = F h.K ′ is a henselian
rational function field over K ′h.
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Proof: Let P be the place that is associated to the valuation on F h. Since F has finite
rank and F |K is an immediate extension of transcendence degree 1, there exist places P1,
P2, P3 where P1 and P3 may be trivial and P2 has rank 1, such that P = P1P2P3 and

trdeg(F hP1|KhP1) = 1 ,

trdeg(F hP1P2|KhP1P2) = 0 .

Since (F h, P )|(Kh, P ) is immediate, the same holds for the extension (F hP1P2, P3)|(KhP1P2, P3);
consequently, this extension must be trivial since by Lemma 2.14 and Lemma 2.16 the fact
that (Kh, P ) is a henselian defectless field yields that also (KhP1P2, P3) is a henselian
defectless field. This yields that also

(F hP1, P2)|(KhP1, P2)

is an immediate extension. This extension has transcendence degree 1, and

(F.KhP1, P2)|(KhP1, P2)

is finitely generated by Lemma 2.19. According to Lemma 2.14 and Lemma 2.16, (KhP1, P2)
is a henselian defectless field. Since the field (KhP1P2, P3) is already henselian, it follows
by virtue of Lemma 2.15 that (F hP1, P2) is the henselization of (F.KhP1, P2). We have
shown that (F hP1, P2) is an immediate henselian function field of rank 1 and of transcen-
dence degree 1 over the henselian defectless field (KhP1, P2). By Lemma 8.9 there is a
finite purely inseparable extension k of KhP1 such that F hP1.k is a henselian rational
function field over k; we may write F hP1.k = k(xP1)

h(P2) for a suitable x ∈ F h which
is consequently transcendental over K. We choose a finite purely inseparable extension
K ′ of Kh such that K ′P1 = k and [K ′ : Kh] = [k : KhP1] from which it follows that
(F h.K ′)P1 = F hP1.k . Furthermore, K ′(x)P1 = K ′P1(xP1) = k(xP1), and again from
Lemma 2.15 we get k(xP1)

h(P2) = K ′(x)hP1. Altogether, we have

(F h.K ′)P1 = K ′(x)hP1 .

On the other hand, the extension (F h.K ′, P )|(Kh.K ′, P ) is immediate by virtue of Lemma 2.12
since the extension (F h, P )|(Kh, P ) is immediate and the extension (K ′, P )|(Kh, P ) is
defectless. We deduce that also (F h.K ′, P )|(K ′(x)h, P ) is immediate, hence

vP (F h.K ′) = vP (K ′(x)h)

and consequently
vP1(F

h.K ′) = vP1(K
′(x)h) .

We have shown that (F h.K ′, P1)|(K ′(x)h, P1) is an immediate extension. Moreover we
know that it is algebraic and that (K ′(x)h, P1) is henselian like (K ′(x)h, P ), by virtue of
Lemma 2.14. If we are able to show that (K ′(x)h, P1) is a defectless field then it will follow
that F h.K ′|K ′(x)h must be trivial, or in other words that F h.K ′ is a henselian rational
function field over K ′ proving our lemma.

As a finite extension of (K,P ), the field (K ′, P ) is also defectless, by virtue of Corol-
lary 2.8. The same holds for (K ′, P1) by Lemma 2.16. Since xP1 is transcendental over
K ′P1, the field (K ′(x), P1)

h is defectless by Theorem 3.1. By Lemma 2.15, the exten-
sion (K ′(x)h, P1)|(K ′(x), P1)

h is tame. By virtue of Lemma 2.10 it follows that the field
(K ′(x)h, P1) is a defectless field, as desired. 2

Now we are able to prove our structure theorem on immediate henselian function fields
over defectless perfect fields of positive characteristic:
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Theorem 8.11 Let K be a defectless perfect field of positive characteristic and F an im-
mediate function field over K. If its transcendence degree over K is 1, then F h is a
henselian rational function field over Kh. In the general case of transcendence degree ≥ 1,
given any immediate extension N of F which is a tame field (such an extension does always
exist), there is a finite immediate extension F1 of F within N such that F h

1 is a henselian
rational function field over Kh.

Proof: Let us first consider the case trdeg(F |K) = 1. F.Kh is an immediate function
field over the tame field Kh. According to Corollary 7.7 there exists a tame subfield K0 of
Kh of finite rank and a function field F0 of transcendence degree 1 over K0 with K0 = K
and v(K0) pure in v(K) such that F = F0.K

h. If we are able to show

F h
0 = K0(x)h (122)

for some x ∈ F h
0 then it will follow

F h = (F0.K
h)h = (F h

0 .Kh)h = (K0(x)h.Kh)h = K(x)h

and the first assertion of our theorem will be proved.

We distinguish the following two cases:

Case 1: F0|K0 is not immediate. Since

K0 = K = F ⊇ F0 ⊇ K0 ,

equality holds everywhere; in particular we have K0 = F0 and thus v(K0) 6= v(F0). Since
v(K0) is pure in v(F0) and F0 is finitely generated of transcendence degree 1 over K0, it
follows

v(F0) = v(K0)⊕ ZZv(x) = v(K0(x))

for a suitable x ∈ F0. (K0(x), v) is defectless by Theorem 3.1. Hence the immediate
extension F h

0 |K0(x)h must be trivial which proves our assertion (122) in the first case.

Case 2: F0|K0 is immediate. Then (122) follows from Lemma 8.10 and the fact that K0

is perfect.

The second assertion of our theorem follows from the first by induction on the tran-
scendence degree of F |K. Assume n ≥ 1 and that the assertion is proved for every
transcendence degree ≤ n. Let {t1, ..., tn, t} be a transcendence basis of F |K.
We show that there is always an immediate extension of F which is tame:
Let N be a maximal immediate algebraic extension of F . Since K is perfect by hypothesis
and F |K is immediate, the value group v(F ) = v(K) is p–divisible and the residue field
F = K is perfect. By virtue of Lemma 7.2 it follows that N is a tame field.
Assume that there is given an immediate extension N of F which is a tame field, N |F not
necessarily being algebraic. We denote by N ′ the relative algebraic closure of F within N .
By Lemma 7.6, N ′ is also a tame field, and it is an immediate algebraic extension of F .
Now we take L to be the relative algebraic closure of K(t1, ..., tn) within N ′. Since N ′|K
and thus N ′|K(t1, ..., tn) are immediate, it follows from Lemma 7.6 that L is also a tame
field and that F.L is an immediate function field of transcendence degree 1 over L. By
the first assertion of our theorem, (F.L)h = L(x)h for some x ∈ (F.L)h. But there exists a
subfield L0 ⊂ L finitely generated over K such that x ∈ (F.L0)

h and (F.L0)
h = L0(x)h and

the same will be true for every overfield of L0 within L. L0 being an immediate function
field of transcendence degree n over K, it admits by hypothesis a finite extension L1 within
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L such that Lh
1 = K(x1, ..., xn)h for suitable elements x1, ..., xn ∈ Lh

1 . For F1 = F.L1 it
follows

F h
1 = (F.L1)

h = L1(x)h = (Lh
1(x))h

= (K(x1, ..., xn)h(x))h = K(x1, ..., xn)h

which shows that F h
1 is a henselian rational function field over K. On the other hand,

F1|F is a finitely generated subextension of the immediate algebraic extension N ′|F , hence
F1|F is finite and immediate. Finally, F1 is also a subfield of N . This completes the proof
of our theorem. 2

æ
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9 The model theory of tame fields of positive charac-

teristic.

In this section we will treat the model theory of tame fields of characteristic p > 0. We
apply the Structure Theorem 8.11 of the foregoing section and the auxiliary results of
section 7. We have already shown in Lemma 7.2 that in positive characteristic, the class
of tame fields coincides with the class of algebraically maximal perfect fields.

The following auxiliary embedding lemma is put into a rather general form. Note that
by Corollary 12.50, the condition “appr(x, K) is transcendental” does automatically hold
if K is algebraically maximal.

Lemma 9.1 (Embedding Lemma III)
Let (K(x), v)|(K, v) be a nontrivial immediate extension of valued fields. If appr(x,K)
is transcendental, then (K(x), v)h can be embedded over (K, v) into every |K|+–saturated
henselian extension (K, v)? of (K, v).

Proof: Since (K, v)? is |K|+–saturated, Lemma 12.12 shows that appr(x,K) is realized
by an element x′ in (K, v)?. By Theorem 12.48, the homomorphism induced by x 7→ x′

is an embedding of (K(x), v) over (K, v) into (K, v)? since appr(x,K) is transcendental.
By the universal property of the henselization, this embedding can be prolongated to an
embedding of (K(x), v)h over (K, v) into (K, v)? which is henselian by hypothesis. 2

Note that the lemma becomes false if the condition on the approximation type of x
over K is omitted, even if we require in addition that K is henselian. It is known that
there exist henselian fields K which admit nontrivial algebraic immediate extensions (cf.
the examples of F. K. Schmidt and of Ostrowski in [RIB1], Exemple 1, page 244, and
Exemple 2, page 246). Hence there exist also nontrivial finite simple immediate extensions
(K(x), v)|(K, v). On the other hand, K? may be a regular extension of K (e.g., this is
always the case if (K, v)? is an elementary extension of (K, v)), in which case K(x) is
certainly not embeddable into K? over K.

The model theoretic application of Embedding Lemma III is:

Corollary 9.2 An algebraically maximal field (K, v) is existentially closed in every im-
mediate henselian rational function field (K(x), v)h.

Proof: Apply Embedding Lemma III with (K, v)? a |K|+–saturated elementary extension
of (K, v). 2

Using this corollary and infering our Structure Theorem 8.11, we deduce:

Corollary 9.3 A tame field K of positive characteristic is existentially closed in every
immediate extension L of transcendence degree 1.

Proof: It suffices to prove the assertion for every finitely generated subextension F0|K
of L|K. For this, it suffices to show it for the henselization F = F h

0 . F is an immediate
henselian function field over K. By Theorem 8.11, F = K(x)h for a suitable element
x ∈ F . Now Corollary 9.2 shows that (K, v) is existentially closed in (F, v). 2

As a consequence of Embedding Lemma II, Theorem 8.11 and Embedding Lemma III,
we will now derive our main embedding lemma and our main theorem on tame fields of
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positive characteristic. Note that instead of the following embedding lemma, we could
also use the previous corollary together with Corollary 7.10 to deduce Theorem 9.5 below.
Nevertheless, it seems worthwile to state the embedding lemma for tame fields of positive
characteristic in the most general form.

Lemma 9.4 (Embedding Lemma IV)
Let (K, v) be a defectless perfect field of positive characteristic (the valuation is allowed to
be trivial), (L, v) an extension of (K, v) and (K?, v?) a tame |L|+– saturated extension field
of (K, v). Assume that v(L)/v(K) is torsion free and L|K is separable.
If ρ: v(L) −→ v?(K?) is an embedding over v(K) and σ: L −→ K?/v? is an embedding
over K, then there exists an embedding ι: (L, v) −→ (K?, v?) over (K, v) that respects ρ
and σ (in the sense of Lemma 3.5). Note that by virtue of Lemma 6.3, our conditions on
v(L)/v(K) and L|K are always satisfied if K ≺∃ L and v(K) ≺∃ v(L).

Proof: We may assume from the start that L is henselian. Indeed, if we are able to
show the existence of an embedding ι for Lh which has the required properties then the
restriction of ι to L is the desired embedding of L. Here, we note once and for all that
for the existence of the desired embedding, it always suffices to show its existence for a
suitably enlarged field. Furthermore, we may assume that K is henselian. This is seen as
follows:
Since we assume L to be henselian, L includes the henselization Kh of K. By the universal
property of the henselization (cf. property H3 of the definition given in [RIB1] on page 175),
Kh admits an embedding over K into the field K? which is henselian by assumption. Since
Kh|K is immediate, this embedding trivially respects ρ and σ. Through this embedding we
identify Kh with its image in K?. Hence we may from now on assume that K is henselian.
Consequently, K is algebraically maximal and by Lemma 7.2, it is a tame field.

In view of what we have said above and by Lemma 7.5 we may now assume that L is a
tame field too. By an application of Lemma 7.8, we obtain an intermediate field L0 of L|K
which is a tame field such that L|L0 is an immediate extension and L0|K is an extension
without transcendence defect. In this situation, Embedding Lemma II (Lemma 6.1) yields
an embedding of L0 over K into K? which respects ρ and σ. Through this embedding, we
identify L0 with its image in K? and consequently, we may replace K by L0 and assume
from now on that L|K is immediate.

Note that in this situation, we may forget about ρ and σ; since L|K is immediate,
every valuation preserving embedding of any intermediate field over K into K? will respect
ρ and σ. Let L1 be a maximal tame intermediate field admitting a valuation preserving
embedding over K into K?; it exists by Zorn’s Lemma. Assume that there exists an
element y ∈ L\L1. Let L2 be the relative algebraic closure of L1(y) in the tame field L; by
Lemma 7.6, L2 is a tame field too; note for the application of Lemma 7.6 that L = L1(y)
since L|K and thus also L|L1(y) are immediate extensions. By showing that the embedding
of L1 can be extended to an embedding of L2, we want to deduce a contradiction to the
maximality property of L1 which will show L = L1, thereby completing the proof of our
lemma.

Through the valuation preserving embedding of L1 over K into K?, we identify L1

with its image in K? and we may w.l.o.g. assume L1 = K. Since K? is |L|+–saturated
by assumption, it suffices to show the existence of a valuation preserving embedding for
every finitely generated subextension F |K of L2|K. Again, by an enlargement of F we
may assume that F is henselian. Then F is an immediate henselian function field of
transcendence degree 1 over the tame field K which has positive characteristic. Hence by
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Theorem 8.11, it is a henselian rational function field, i.e. there exists an element x ∈ F
such that F = K(x)h. Since by Lemma 7.2, the tame field K is in particular algebraically
maximal, Embedding Lemma III shows the existence of a valuation preserving embedding
of F over K into K?. By this, we have proved the existence of the desired embedding of
L2 and deduced the contradiction which completes the proof of our lemma. 2

Before applying Embedding Lemma IV, we want to introduce some model theoretic
notions. Given a valued field extension L|K, we will say that L|K satisfies the Ax–Kochen–
Ershov–principle if

v(K) ≺∃ v(L) ∧K ≺∃ L =⇒ (K, v) ≺∃ (L, v) .

Let us use the abbreviation AKE for “Ax–Kochen–Ershov”. A valued field K will be called
AKE–field if every valued field extension L|K satisfies the AKE–principle. An elementary
class of valued fields will be called AKE–class if every field contained in this class is an
AKE–field.

The following is our main model theoretic result on tame fields of positive characteristic:

Theorem 9.5 Every tame field of positive characteristic is an AKE–field.

Proof: Any trivially valued field is an AKE–field. Now let (K, v) be a nontrivially valued
tame field of positive characteristic and (L, v)|(K, v) an extension with v(K) ≺∃ v(L) and
K ≺∃ L. If we take (K, v)∗ to be an elementary |L|+–saturated extension of (K, v),
then (K, v)∗ is henselian like (K, v). v∗(K∗) is |L|+–saturated and thus also |v(L)|+–
saturated, and K∗/v∗ is |L|+–saturated and thus also |L|+–saturated. Hence the “side
conditions” v(K) ≺∃ v(L) and K ≺∃ L together with Lemma 6.2 imply the existence of
embeddings ρ: v(L) −→ v∗(K∗) over v(K) and σ: L −→ K∗/v∗ over K. By Embedding
Lemma IV we can now embed (L, v) over (K, v) into (K, v)∗. By virtue of Lemma 6.2, we
get (K, v) ≺∃ (L, v). 2

In view of algebraic applications, the foregoing theorem is somewhat the kernel of our
model theoretic results. Nevertheless, we want to give a precise description of the main
results that can be derived from Embedding Lemma IV. To do this in a rather general way,
we need the following notations. Given two models M1, M2 of a theory with language L, a
substructure S of M1 and an embedding ι of S in M2. Then we write

M1 ≡ M2 over ι: S −→ ιS

if (M1, a)a∈S ≡ (M2, ιa)a∈S which means that M1 and M2 are elementarily equivalent in
the language which is obtained from L by adding constants for every element in S, these
constants being interpreted in M1 by the corresponding element a ∈ S and in M2 by the
element ιa. If the above situation holds for a substructure S which is a substructure of
both M1 and M2, ι being the identity, then we will simply write

M1 ≡S M2 .

Theorem 9.6 Let (K, v) be a tame field of positive characteristic and let (K1, v1) and
(K2, v2) be two tame extension fields of (K, v). Assume that v1(K1)/v(K) is torsion free
and (K1/v1)|(K/v) is separable. Then the conditions

v1(K1) ≡v(K) v2(K2) and K1/v1 ≡K/v K2/v2 (123)
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imply
(K1, v1) ≡(K,v) (K2, v2) .

Proof: Let us first assume that (K1, v1) is trivially valued. Then in particular, (K, v) is
trivially valued and by v1(K1) ≡v(K) v2(K2) it follows that also (K2, v2) is trivially valued.
In this case, the assertion follows readily from the assumption K1/v1 ≡K/v K2/v2. A
symmetric argument works if (K2, v2) is trivially valued.

We assume from now on that (K1, v1) and (K2, v2) are not trivially valued; in particular,
they will not be finite models. Let κ > max{ℵ0, |K|} be a cardinal and let (Ki, vi)

∗ =
(K∗

i , v
∗
i ) be κ+–saturated elementary extensions of (Ki, vi) for i = 1, 2. Since (Ki, vi)

∗ ≡(K,v)

(Ki, vi), it suffices to show (K1, v1)
∗ ≡(K,v) (K2, v2)

∗. Note that also v∗i (K
∗
i ) ≡v(K) vi(Ki)

and K∗
i /v

∗
i ≡K/v Ki/vi (i = 1, 2), which shows that the hypothesis v1(K1) ≡v(K) v2(K2) and

K1/v1 ≡K/v K2/v2 implies v∗1(K
∗
1) ≡v(K) v∗2(K

∗
2) and K∗

1/v
∗
1 ≡K/v K∗

2/v
∗
2. Consequently, we

may assume from the start that both (K1, v1) and (K2, v2) are κ+–saturated. If we are able
to show that there exist submodels (Li, vi) ≺ (Ki, vi) (i = 1, 2), both containing (K, v),
such that (L1, v1) ∼= (L2, v2) over (K, v), then we are done since by (Ki, vi) ≡(K,v) (Li, vi)
this would imply (K1, v1) ≡(K,v) (K2, v2).

We construct the fields Li and the isomorphism by induction using a “back and forth”
procedure. Let ι0 be the identity ι0: (K, v) −→ (K, v) and put L0

i := K (i = 1, 2). Assume
that we have constructed subfields (Ln

i , vi) ⊂ (Ki, vi) (i = 1, 2) of cardinality κ and an
isomorphism ιn: (Ln

1 , v1) −→ (Ln
2 , v2) over (K, v) for n ∈ IN , such that

v1(K1) ≡ v2(K2) over ρn: v1(L
n
1 ) −→ v2(L

n
2 ) ,

K1/v1 ≡ K2/v2 over σn: Ln
1/v1 −→ Ln

2/v2

where ρn and σn are the isomorphisms of the value groups and the residue fields which are
induced by ιn. Assume further that the already constructed fields (Lµ

1 , v1), 1 ≤ µ ∈ 2IN +1,
resp. (Lν

2, v2), 2 ≤ ν ∈ 2IN , form elementary chains of elementary submodels of (K1, v1)
resp. (K2, v2). Then we proceed as follows:
Assume that n ∈ 2IN . We choose an arbitrary element an ∈ K1\Ln

1 . Using a strong version
of the downward Löwenheim–Skolem Theorem (cf. Theorem 3.1.6, page 109 in [CHK]), we
find that there exists an elementary submodel (Ln+1

1 , v1) ≺ (K1, v1) of cardinality κ and
containing Ln

1 (an). If n ≥ 2, then (Ln−1
1 , v1) ≺ (K1, v1), and we may view (K1, v1) as a

model of
Th(K1, v1) ∪ elementary Diagram(Ln−1

1 , v1)

with respect to the language Ln which is obtained from L by adding a constant symbol for
every element of Ln−1

1 . In this way, the model (Ln+1
1 , v1) that we obtain by application of

the downward Löwenheim–Skolem Theorem, will satisfy in addition:

(Ln−1
1 , v1) ≺ (Ln+1

1 , v1) .

Note that the condition on the cardinality of the language as required in the downward
Löwenheim–Skolem Theorem, is fulfilled since the language of valued fields is countable
which yields that

||Ln|| = |Ln−1
1 | = κ .

Now we have to prolongate ιn to an embedding of (Ln+1
1 , v1) into (K2, v2); the isomorphic

image of Ln+1
1 will be defined to be Ln+1

2 . We have

v1(L
n+1
1 ) ≡v1(Ln+1

1 ) v1(K1) and Ln+1
1 /v1 ≡Ln+1

1 /v1
K1/v1 ,
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and in view of our induction hypothesis, this yields that

v1(L
n+1
1 ) ≡ v2(K2) over ρn: v1(L

n
1 ) −→ v2(L

n
2 ) , (124)

Ln+1
1 /v1 ≡ K2/v2 over σn: Ln

1/v1 −→ Ln
2/v2 . (125)

We note that since (K2, v2) is κ+–saturated with κ = |Ln
2 |, it remains κ+–saturated when

we add the elements of Ln
2 as constants to the language L of valued fields; the same holds

analogously for v2(K2) and K2/v2 : we may add the elements of v2(L
n
2 ) resp. Ln

2/v2 to
the language of ordered groups resp. fields without loosing the κ+–saturatedness. Conse-
quently, all the three models are κ+–universal (cf. [CHK], Theorem 5.1.14, page 221). In
view of (124) and (125) this shows the existence of embeddings ρn+1: v1(L

n+1
1 ) −→ v2(K2)

prolongating ρn and σn+1: L
n+1
1 /v1 −→ K2/v2 prolongating σn. Note that the embeddings

ρn+1 and σn+1 can be chosen such that

v1(K1) ≡ v2(K2) over ρn+1: v1(L
n+1
1 ) −→ v2(K

n+1
2 ) ,

K1/v1 ≡ K2/v2 over σn+1: L
n+1
1 /v1 −→ Kn+1

2 /v2 ;

this is actually a consequence of Lemma 5.1.10 of [CHK], page 219.
At this point, let us identify Ln

1 with Ln
2 through the isomorphism ιn. In view of

Lemma 6.3, we may now apply Embedding Lemma IV which yields the existence of an
embedding ιn+1: (L

n+1
1 , v1) −→ (K2, v2) prolongating ιn = idLn

1
and inducing ρn+1 and

σn+1. This completes our induction step in the case n ∈ 2IN . For n ∈ 2IN + 1 we just
reverse the direction of the embeddings, i.e. we interchange the indices 1 and 2.

Having constructed the subfields Ln
i of Ki (i = 1, 2) for all natural numbers n, where

each (L2m−1
1 , v1) is an elementary submodel of (K1, v1) and (L2m+1

1 , v1), and every (L2m
2 , v2)

is an elementary submodel of (K2, v2) and (L2m+2
2 , v2), for all m ∈ IN , m ≥ 1, we set

L1 =
⋃

m≥1

L2m−1
1 and L2 =

⋃

m≥1

L2m
2 .

Since the union of an elementary chain of elementary submodels is again an elementary
submodel, we have

(Li, vi) ≺ (Ki, vi) (i = 1, 2) .

Furthermore, the union of the partial isomorphisms ιn yields an isomorphism

ι: (L1, v1) −→ (L2, v2)

over (K, v). This completes the proof of our theorem. 2

From this theorem we derive the following two corollaries:

Corollary 9.7 If (L, v)|(K, v) is an extension of tame fields of positive characteristic with
v(K) ≺ v(L) and K ≺ L, then (K, v) ≺ (L, v).

Proof: This is an immediate consequence of Theorem 9.6 where we set (K1, v1) = (L, v)
and (K2, v2) = (K, v). Note that in view of Lemma 6.3, the condition “v1(K1)/v(K)
torsion free” and the condition “(K1/v1)|(K/v) separable” of Theorem 9.6 are fulfilled by
our hypothesis. 2

Corollary 9.8 If (K1, v1) and (K2, v2) are tame fields of positive characteristic with v1(K1) ≡ v2(K2)
and K1/v1 ≡ K2/v2, then

(K1, v1) ≡ (K2, v2) .
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Proof: By hypothesis, char(Ki) = char(Ki/vi), i = 1, 2. Furthermore, K1/v1 ≡ K2/v2

yields char(K1/v1) = char(K2/v2). Hence char(K1) = char(K2). To apply Theorem 9.6,
we set K equal to IFp which is a subfield of both K1 and K2. Note that IFp together
with the trivial valuation is a tame field. The restrictions of v1 and of v2 to IFp are both
trivial. This shows that they coincide on IFp, i.e. v1(IFp) = {0} and IFp/v1 = IFp. Con-
sequently, v1(K1)/v1(IFp) is torsion free and (K1/v1)|(IFp/v1) is separable and moreover,
our hypothesis v1(K1) ≡ v2(K2) and K1/v1 ≡ K2/v2 implies v1(K1) ≡v1(IFp)

v2(K2) and

K1/v1 ≡IFp/v1
K2/v2. Now the assertion of our corollary follows from Theorem 9.6. 2

In view of Lemma 7.3, as an immediate consequence of the preceding corollary we get
the following criterion for decidability:

Corollary 9.9 Let (K, v) be a tame field of positive characteristic and let T be its theory.
If the theories v(T) of its value group v(K) and T of its residue field K both admit recursive
first order axiomatizations then so does T and is thus decidable.

The following corollary is a consequence of Corollary 9.7 and Corollary 9.8:

Corollary 9.10 Let T be an elementary theory of perfect fields of positive characteristic,
given by the axiom
1) “K is a perfect valued field of characteristic p > 0”
and optional axioms
2) on the value group of K,
3) on the residue field of K.
Let K be the elementary class defined by T and assume that v(K) and K are model complete
elementary classes. Then the theory T∗ of algebraically maximal valued fields satisfying T
is the model companion of T.

Proof: It follows from Corollary 9.7 that T∗ is model complete. For every model K
of T, any maximal immediate algebraic extension is a model of T∗ (by Lemma 7.2); note
that it is an extension of K having the same value group and residue field. 2

If we work in a three–sorted language and use the notion of “K∗–model completion” in
the sense of Ziegler [ZIE] (cf. his introduction) then we can state what we have proved as
follows: the theory T∗ of all algebraically maximal perfect fields of positive characteristic is
the model companion of the theory T of all perfect valued fields of positive characteristic.
Note that it is not a model completion since there exist perfect valued fields of positive
characteristic which admit two nonisomorphic maximal immediate algebraic extension,
both being models of the model companion.

Elementary classes of tame fields of positive characteristic admit prime models relative
to prime models of the elementary classes of their value groups and their residue fields:

Theorem 9.11 Elementary classes K of tame fields of positive characteristic admit prime
models in the following sense:
If there exists a cardinal κ, a model Γ ∈ v(K) and a model k ∈ K, both of cardinality at
most κ, such that Γ is elementarily embeddable into every κ+–saturated model in v(K) and
k is elementarily embeddable into every κ+–saturated model in K, then there exists a model
(K, v) of K of cardinality at most κ, having value group Γ and residue field k, such that
(K, v) is elementarily embeddable into every κ+–saturated model of K. Moreover, we may
assume that (K, v) admits a valuation transcendence basis over its prime field.
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Proof: By Lemma 7.4, there exists a tame field (K, v) of cardinality at most κ having
value group Γ and residue field k and admitting a valuation transcendence basis over
its prime field. If (K?, v?) is a κ+–saturated model of K then v?(K?) and K?/v? are
κ+–saturated models of v(K) and K respectively. Hence by hypothesis, there exists an
elementary embedding of Γ into v?(K?) (over the group {0}), and an elementary embedding
of k into K?/v? (over the prime field IFp). The valuation v is trivial on the prime field
IFp of K, so v(IFp) = {0} and IFp = IFp which shows that v(K)/v(IFp) is torsion free and
K|IFp is separable. Now Embedding Lemma IV shows the existence of an embedding of
(K, v) into (K?, v?) (over the trivially valued field IFp). By virtue of Theorem 9.7, this
embedding is elementary. This shows that (K, v) is elementarily embeddable into every
κ+–saturated model of K and this in turn shows that (K, v) is a model of K. 2

The prime models that we have constructed in the foregoing proof have the special
property that they admit a valuation transcendence basis over their prime field. The
following Corollary confirms the representative role that is played by models which have
this property.

Corollary 9.12 For every tame field (K, v) of positive characteristic, there exists a subfield
(L, v) ≺ (K, v) such that (L, v) admits a valuation transcendence basis over its prime field
and (K, v)|(L, v) is immediate.

Proof: According to Lemma 7.8, for every tame field (K, v) of positive characteristic
there exists a subfield (L, v) of (K, v) admitting a valuation transcendence basis over its
prime field, such that (K, v)|(L, v) is immediate. In view of Corollary 9.7, the latter fact
shows (L, v) ≺ (K, v). 2

As a final example, we want to treat here the theory of tame fields of positive charac-
teristic with divisible value groups and fixed finite residue field:

Corollary 9.13 The theory Tq of tame fields of positive characteristic with divisible value
group and fixed residue field IFq (q = pr) is model complete, complete and decidable. More-
over, it possesses a model having transcendence degree 1 over IFq which admits an elemen-
tary embedding into every ℵ1–saturated model.

Proof: Since the theory of divisible ordered abelian groups is model complete, complete
and decidable, and since the same holds trivially for the theory of the finite field IFq

which has only IFq as a model, model completeness and completeness follow readily from
Corollary 9.7, Corollary 9.8 and Corollary 9.9. The prime model is constructed as follows:

Let IFq(t) be valued such that v(t) = 1.
√

IFq(t) admits a unique prolongation v of this
valuation, and its residue field must be a purely inseparable algebraic extension of IFq,
hence it is equal to IFq. Now we take (K0, v) to be a maximal algebraic extension of

(
√

IFq(t), v) still having residue field IFq. In particular, (K0, v) will have divisible value

group (which consequently is equal to QI ) and will be algebraically maximal. Then by
Lemma 7.2, (K0, v) is a tame field; moreover it admits {t} as a valuation transcendence
basis. Note that |K0| = ℵ0. Now it can be proved as in the proof of Theorem 9.11 that
(K0, v) admits an elementary embedding into every ℵ1–saturated model of Tq. 2

æ
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10 An application: places of algebraic function fields

over perfect fields.

In this section we want to give an application of Theorem 9.5. The fact that tame fields of
positive characteristic are AKE–fields will serve to deduce a generalization of two results
that are proved in [KP] by means of the AKE–principle for henselian fields of residue
characteristic 0.
The following theorem generalizes the Main Theorem of [KP]:

Theorem 10.1 Let F |k be a function field in n variables with perfect ground field k. Let
Q be a place of F |k and

x1, ..., xm, xm+1, ..., xm+s ∈ F .

Then there exists a place P of F |k with a finitely generated residue field over k such that

xiQ = xiP for 1 ≤ i ≤ m ,
vQ(xi) = vP (xi) for m + 1 ≤ i ≤ m + s .

Moreover, if r1 and d1 are natural numbers satisfying

dim(Q) ≤ d1 ≤ n− 1 , rr(Q) ≤ r1 ≤ n− d1 ,

then P may be chosen to satisfy in addition:

(1) dim(P ) = d1 and FP is a subfield of a purely transcendental extension of the
perfect hull of FQ, finitely generated over k,

(2) rr(P ) = r1 and vP (F ) is a finitely generated subgroup of a discrete lexicographic
extension of the p–divisible hull of vQ(F ), where p = char(k) > 0 or p = 1 if char(k) = 0.

Proof: The case char(k) = 0 is proved in [KP]. Hence we will assume char(k) = p > 0
throughout this proof. We use the notation of [KP].
Let d = dim(Q). We choose u1, ..., ud ∈ F such that u1, ..., ud form a transcendence basis
of FQ|k. Let r = rr(Q). We choose z1, ..., zr ∈ F such that the values vQ(z1), ..., vQ(zr)
form a maximal set of rationally independent elements in vQ(F ). According Lemma 2.18,
the elements

u1, ..., ud, z1, ..., zr

are algebraically independent over k.
Now let (

√
F ,Q) be the perfect hull of (F, Q) and let (L,Q) be a maximal immediate

algebraic extension of (F, Q). By virtue of Lemma 7.2, (L,Q) is a tame field. vQ(L) is the
p–divisible hull of vQ(F ), and LQ is the perfect hull of FQ.
Let K ′ be the relative algebraic closure of k(u1, ..., ud, z1, ..., zr) in L, and let Q′ be the
restriction of Q to K ′. According to Lemma 7.2, (K ′, Q′) is a tame field with

K ′Q′ = LQ and vQ′(K
′) = vQ(L) .

Hence (K ′, Q′) is existentially closed in (L,Q) by Theorem 9.5.
We write K ′.F = K ′(t1, ..., tn′ , y), where n′ = n − (d + r) and t1, ..., tn′ are algebraically
independent over K ′ (since K ′ is perfect, K ′.F is separably generated over K ′, hence it suf-
fices to take one element y which is algebraic over K ′(t1, ..., tn′) ). Let f ∈ K ′[T1, ..., Tn′ , Y ]
be irreducible and normed in Y such that f(t, y) = 0. We choose x′1, ..., x

′
m+s ∈ K ′ such

that
x′iQ = xiQ for 1 ≤ i ≤ m ,

vQ(x′i) = vQ(xi) for m + 1 ≤ i ≤ m + s .
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We write the elements xi as follows:

xi =
gi(t, y)

hi(t)
for 1 ≤ i ≤ m + s ,

where gi and hi are polynomials over K ′. Since (K ′, Q′) is existentially closed in (L, Q),
there exist elements

t′1, ..., t
′
n′ , y

′ ∈ K ′

such that

(1) f(t′, y′) = 0 and ∂f
∂Y (t′, y′) 6= 0 ,

(2) hi(t
′) 6= 0 for 1 ≤ i ≤ m + s ,

(3)
gi(t

′, y′)
hi(t

′)
Q = x′iQ for 1 ≤ i ≤ m ,

(4) vQ

(
gi(t

′, y′)
hi(t

′)

)
= vQ(x′i) for m + 1 ≤ i ≤ m + s ,

since these assertions are true in L for t, y in the place of t′, y′.

Now let K1 be the subfield of K ′ which is generated over k by the following elements:
— u1, ..., ud, z1, ..., zr ,
— x′1, ..., x

′
m+s, t

′
1, ..., t

′
n′ , y

′ ,
— the coefficients of f , gi and hi for 1 ≤ i ≤ m + s.
K1 is a finite extension of k(u1, ..., ud, z1, ..., zr). Hence according to Lemma 2.19, vQ(K1)
is a finitely generated subgroup of vQ(L) of rational rank r, and K1Q is a subfield of LQ
and finitely generated of transcendence degree d over k. Let P1 be the restriction of Q to
K1.
As in [KP] one constructs now a suitable extension (K, P ) of (K1, P1): the extensions
(K2, P2), (K3, P3) and (K4, P4) are constructed like in [KP]; furthermore, it suffices also
here to take (K, P ) equal to the henselization of (K4, P4) since in the sequel only the
Implicit Function Theorem is required which holds in every henselian field according to
[PZ]. The remainder of the proof is like in [KP]. 2

We have seen that the proof for the case of positive characteristic differs from the proof
for characteristic 0 only in so far as we have to extend (F, Q) by passing to a maximal
immediate algebraic extension of the perfect hull of F ; we are doing nothing else in the
case of characteristic 0, but in the case of positive characteristic this procedure may enlarge
value group and residue field. This leads to the revised formulation of the Main Theorem
which nevertheless comprises the Main Lemma of [KP] as a special case and seems to be
the “natural” generalization of the theorem in view of the fact that nonperfect algebrai-
cally complete fields are not in general AKE–fields, as we will show in the next section.
Moreover it cannot be expected that Lemma 7.6 which we have used at a crucial point in
our proof, remains true for suitable classes of nonperfect AKE–fields. Furthermore it is
also a nontrivial problem whether for such fields algebraically complete algebraic extension
exist which are not “too large”, i.e. which do not extend value group and residue field too
much. Probably it is not possible to dispense with the enlargement of value group and
residue field that we took into the bargain here.

Our following supplement to Theorem 3 of [KP] shows again the consequences of this
enlargement. Instead of giving the obvious reformulation of this Theorem here which would
assume (l, q) = 1 and (l, p) = 1 and which would thus comprise the original Theorem as
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the special case where p = 1, it is more convenient to formulate the following supplement
since in the case of positive characteristic p > 0 it suffices to choose always q = p.

Theorem 10.2 Let Q be a place of F |k and let x ∈ F be nonzero. Then there exists a
place P of F |k with vP (F ) = ZZ and FP being a subfield of the perfect hull of FQ, finitely
generated over k, such that for every integer l the following holds: if l is prime to p and
does not divide vQ(x) in vQ(F ), then l does also not divide vP (x) in vP (F ).

Proof: Let m = dim(Q). We choose u1, ..., um like in the foregoing proof and put

x1 = u1, . . . , xm = um, xm+1 = x .

We proceed now like in the modification on p. 188 in [KP]. If vQ(x) 6= 0 we put z1 = x,
otherwise we choose an arbitrary z1 ∈ F with vQ(z1) 6= 0. As in the foregoing proof we
choose the tame field (L,Q) to be a maximal immediate algebraic extension of the perfect
hull (

√
F, Q) of (F,Q). Let K ′ be the relative algebraic closure of k(u1, ..., ud, z1) in L; by

virtue of Lemma 7.6, K ′ is a tame field with K ′Q = LQ and vQ(K ′) pure in vQ(L). Note
that vQ(K ′) is a subgroup of QI v(z1) and thus archimedean. On the other hand, vQ(K ′)
is dense since it is p–divisible. It follows that vQ(K ′) is dense regular. By Corollary 3 of
[WEI5], this and the fact that vQ(K ′) is pure in vQ(L) implies that vQ(K ′) is existentially
closed in vQ(L). From Theorem 9.5 we infer that (K ′, Q) is existentially closed in (L,Q).

We proceed like in the foregoing proof. Firstly it follows that vQ(K1) is a finitely
generated subgroup of vQ(K ′), hence isomorphic to ZZ. In the sequel we put r1 = 1, so we
do not enlarge the value group. K1Q is a subfield of LQ =

√
FQ =

√
FQ, finitely generated

of transcendence degree d = trdeg(FQ|k) over k. We also do not enlarge the residue field,
i.e. we put d1 = dim(Q). Hence we obtain a place P of F such that FP ⊆ K1Q and
vP (F ) ⊆ vQ(K1) have the same properties as K1Q and vQ(K1). Now if l divides vP (x)
in vP (F ), it also divides it in vQ(K1) and henceforth in vQ(L). Thus if (p, l) = 1, it also
divides vQ(x) in vQ(F ). 2
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11 Beyond perfect fields.

In this section we will show the existence of algebraically complete fields of positive charac-
teristic which are not AKE–fields and even admit an immediate function field of transcen-
dence degree 1 in which they are not existentially closed. This shows that Corollary 9.3
does not hold any more if the condition “tame” is replaced by “algebraically complete”.
In view of Corollary 9.2, this yields that Theorem 8.11 does not remain true if we omit
the condition that the ground field K is perfect, not even in the case of a function field of
rank 1. However, this does not prove that a good structure theory for immediate henselian
function fields like the one given in Theorem 8.11, is really necessary for a field to satisfy
the AKE–principle.

Before proving negative results, we want to state at least one positive result which covers
also the case of nonperfect defectless fields of positive characteristic. It is a consequence of
what we have shown in section 8.

Lemma 11.1 Let K be a defectless field of positive characteristic and F an immediate
function field of transcendence degree 1 over K. Assume that its rank is finite. Then F h

is a finite immediate separable extension of a suitable henselian rational function field over
K and a finite immediate simple purely inseparable extension of another suitable henselian
rational function field over K.

Proof: By Corollary 2.13, F admits a separating transcendence basis {z} over the defect-
less field K. Thus F |K(z) and also F h|K(z)h are finite immediate separable extensions.
This proves the first part of our assertion.

From Lemma 8.10 we infer that (F.K1/pν
)h is a henselian rational function field K1/pν

(x)h

for a suitable ν ∈ IN . This implies that (F pν
.K)h is equal to the henselian rational function

field K(xpν
)h. Now for the separating transcendent element z of F |K we know that

F = F pν

.K(z) .

This implies
F h = (F pν

.K(z))h = K(xpν

)h(z)

showing that F is a simple purely inseparable extension of the henselian rational function
field K(xpν

)h of degree pν . Since F h|K is immediate, this extension must be immediate
too. 2

At this point, we want to use the occasion to put our considerations in a more general
setting. We define the following six basic properties of a valued field (K, v), three of them
being of algebraic nature and elementarily definable (cf. [DEL1]), the other three being of
model theoretic nature:

• (Alg 1): (K, v) is henselian

• (Alg 2): (K, v) is algebraically maximal

• (Alg 3): (K, v) is algebraically complete

• (Mod 1): there exists at least one maximal immediate extension (M, v) of (K, v)
such that (K, v) ≺∃ (M, v)

• (Mod 2): (K, v) is existentially closed in every immediate extension
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• (Mod 3): (K, v) is an AKE–field

There is the following general connection between these properties:

Lemma 11.2 For any valued field K, the following holds:

(Mod 3) =⇒ (Mod 2) =⇒ (Mod 1) =⇒
=⇒ (Alg 3) =⇒ (Alg 2) =⇒ (Alg 1) .

Proof: First we consider the well known and trivial implications:

(Mod 3) =⇒ (Mod 2): If L|K is an immediate extension then v(L) = v(K) and L = K,
so the conditions of the AKE–principle are trivially fulfilled.

(Mod 2) =⇒ (Mod 1): Take any maximal immediate extension of K.

(Alg 3) =⇒ (Alg 2): A finite immediate extension is defectless only if it is trivial.

(Alg 2) =⇒ (Alg 1): The henselization of a field is an immediate algebraic extension.

The only new and nontrivial part of the lemma is the implication (Mod 1) =⇒ (Alg 3).
But note that (Mod 2) =⇒ (Alg 3) was already shown by Delon in [DEL1]. Let us now
assume that (M, v) is a maximal immediate extension of (K, v) and (K, v) is existentially
closed in (M, v). Let (L, v)|(K, v) be an arbitrary finite extension. We take

(L∗, v∗)|(K∗, v∗)

to be a κ–saturated elementary extension of (L, v)|(K, v), i.e. we equip (L, v) with an
additional predicate for the subfield K, take (L∗, v∗) to be a κ–saturated elementary ex-
tension of it w.r.t. the enlarged language, and we denote by (K∗, v∗) the subfield of (L∗, v∗)
indicated by the new predicate. Then (L∗, v∗) and (K∗, v∗) are κ–saturated elementary ex-
tensions of (L, v) resp. (K, v). We choose κ such that κ ≥ |M |+. Since by assumption
(K, v) is existentially closed in (M, v), according to Lemma 6.2 we may embed (M, v) over
(K, v) into (K∗, v∗), and we identify it with its image in (K∗, v∗). Since (L∗, v∗)|(K∗, v∗) is
an elementary extension of (L, v)|(K, v) and n = [L : K] < ∞ we have [L∗ : K∗] = n and
thus also [L.M : M ] = n.
The extension (M, v)|(K, v) is immediate, and we will prove the same for (L.M, v∗)|(L, v).
Since L.M |M is algebraic and v(M) = v(K) we know that v∗(L.M)/v(K) is a torsion
group, and hence also v∗(L.M)/v(L). For the same reason M = K yields that L.M |K
is algebraic, and hence also L.M |L. On the other hand, since (L∗, v∗) is an elementary
extension of (L, v) we know by Lemma 6.3 that v(L) is pure in v∗(L∗) and that L is
relatively algebraically closed in L∗. Combining these facts we get

v∗(L.M) = v(L) and L.M = L

showing that (L.M, v∗)|(L, v) is immediate, as contended.
Now (M, v) is maximally valued and thus a defectless field. Consequently,

[L : K] = n = [L.M : M ] = [L.M : M ] · (v∗(L.M) : v(M))

= [L : K] · (v(L) : v(K))

which shows that (L, v)|(K, v) is defectless and that the prolongation of the valuation v
from K to L is unique. Since (L, v) was an arbitrary finite extension of (K, v), this shows
that (K, v) is a henselian defectless field or in other words, (K, v) is an algebraically com-
plete field. 2
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On the other hand, the theorems of Ax – Kochen, Ershov and Ziegler show that

a) For every valued field K with residue characteristic 0 and for every finitely ramified field
K the implication

(Alg 1) =⇒ (Mod 3)

holds, hence all stated properties are equivalent for such fields.

b) For every Kaplansky–field K, the implication

(Alg 2) =⇒ (Mod 3)

holds, hence all stated properties with the exception of (Alg 1) are equivalent for Kap-
lansky–fields.

Moreover, our investigations have shown

c) For every perfect field K of positive characteristic, the implication

(Alg 2) =⇒ (Mod 3)

holds, hence all stated properties with the exception of (Alg 1) are equivalent for such
fields.

But we will show in this section that the implication

(Alg 3) =⇒ (Mod1)

does not hold in general. To this end we will consider fields K such that K|Kp has the
valuation basis 1, t, ..., tp−1, and we will deal with the following property:

∀x∃y∃x0, ..., xp−1 : (x0 = 0 ∨ v(x0) = 0) ∧
∧x = yp − y + x0 + txp

1 + ... + tp−1xp
p−1 (126)

(which is elementary and contains but one element t ∈ K). In other words, a valued field
K satisfies (126) if and only if

K = ℘(K) + (O×
K ∪ {0}) + tKp + ... + tp−1Kp . (127)

In the sequel, we will always work with henselian fields (K, v). For such fields, MK ⊂ ℘(K)
by Lemma 3.22, and (127) is equivalent to

K = ℘(K) +OK + tKp + ... + tp−1Kp . (128)

If the residue field K is closed under Artin–Schreier–extensions, then Lemma 3.22 yields
that (128) in turn is equivalent to

K = ℘(K) + tKp + ... + tp−1Kp (129)

by virtue of Hensel’s Lemma. Note that if K = Kp is perfect then t ∈ K, thus K = tKp

and (126), (127), (128) and (129) are trivially fulfilled.

There are important fields having property (126):
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Lemma 11.3 a) Every maximally valued field M of characteristic p > 0 has property
(126) if {1, t, ..., tp−1} is a valuation basis of M |Mp. Hence in particular, the power series
field IFp((t)) has the property (126).
b) If IFp(t) is valued such that v(t) = 1 then (IFp(t), v)h has the property (126). More
generally, every henselian field K of characteristic p > 0 with value group ZZ has property
(126) if {1, t, ..., tp−1} is a valuation basis of K|Kp.

Proof: a) Let x ∈ M . We have to show that there exist y, x1, ..., xp−1 ∈ M such that

x− (yp − y)− txp
1 − ...− tp−1xp

p−1 ∈ OM

or equivalently that

δ = distM(x, ℘(M) + tMp + ... + tp−1Mp) ≥ 0 . (130)

The lemma that will follow this proof will tell us that this distance is assumed, i.e. there
are elements y, x1, ..., xp−1 ∈ M such that

v(x′) = δ

for
x′ = x− (yp − y)− txp

1 − ...− tp−1xp
p−1 .

For any such x′, we carry through the following procedure if v(x′) < 0. We write

x′ = (x′0)
p + t(x′1)

p + ... + tp−1(x′p−1)
p

and we note that
v(x′) = min

i
v(tixp

i ) ≤ pv(x′0) (131)

since {1, t, ..., tp−1} is a valuation basis. From v(x′) < 0, it follows

v(x′) < v(x′0) (132)

and thus

v
(
x′ − ((x′0)

p − x′0)− t(x′1)
p − ...− tp−1(x′p−1)

p
)

= v(x′0) > v(x′)

which yields

v( x− ((x′0 + y)p − (x′0 + y))− t(x′1 + x1)
p − . . .

. . .− tp−1(x′p−1 + xp−1)
p ) > v(x′) .

But in our present case where v(x′) = δ, the result of this procedure would be a contradic-
tion to the definition of δ. Thus δ = v(x′) ≥ 0 which proves part a) of our lemma.

b) Since the value group of K is ZZ, a finite repetition of the procedure described in
the proof of a) will provide for any element x ∈ K suitable elements y, x1, ...xp−1 ∈ K such
that

x− (yp − y)− txp
1 − ...− tp−1xp

p−1 ∈ OK .

2
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Lemma 11.4 Let M be any maximally valued field of characteristic p > 0. We consider
an additive function

F(X1, ..., Xn) = t1F1(X1) + ... + tnFn(Xn)

where t1, ..., tn are different elements chosen from a fixed valuation basis of an arbitrary
finite subextension of M |Mp, and the functions Fi(Xi) are either equal to Xp

i or to Xp
i −Xi.

Then for every x ∈ M , the value

δ := sup
x∈Mn

v(x−F(x))

is assumed by a suitable x = (x1, ..., xn) ∈ Mn.

Proof: First we prove:
Assume that for given elements t, y ∈ M and z ∈ OM ,

v(y − t(zp − z)) > v(y) (133)

Then there exists z̃ ∈ M such that

y − t(z̃p − z̃) = 0 .

Indeed, inequality (133) implies that

v(y/t− (zp − z)) > v(y/t) (134)

and thus
v(y/t) = v(zp − z) ≥ 0 . (135)

As a maximally valued field, M is henselian; hence by Lemma 3.22, (134) and (135) yield
the existence of an element z̃ ∈ M satisfying z̃p − z̃ − y/t = 0, which proves our assertion.

Now let the situation be as described in the hypothesis of our lemma, and let us assume
that there is no x ∈ Mn such that x = F(x) since otherwise δ = ∞ is assumed by x and
our lemma is proved. Then for every x ∈ Mn, every i such that Fi(Xi) = Xp

i − Xi and
every z ∈ OM we have

v (x−F(x)) = v (x− (F(x) + tiFi(z))) . (136)

This is seen as follows:
If “<” would hold in (136) we could put y = x− F(x) and t = ti and would get by what
we have shown in the beginning, that there is an element z̃ such that y − tiFi(z̃) = 0 and
hence x = F(x̃) for x̃ = (x1, ..., xi−1, xi + z̃, xi+1, ..., xn) contrary to our assumption.
If “>” would hold in (136) we could put y = x− (F(x) + tiFi(z)) and t = −ti, and could
derive a contradiction in the same way.

Now let λ be an ordinal number and {x(ρ) = (x
(ρ)
1 , ..., x(ρ)

n ) ∈ Mn}ρ<λ a sequence such
that

{δρ = v(x−F(x(ρ)))}ρ<λ

is a monotonically increasing sequence of values δρ with supremum δ. (If λ is not a limit
ordinal, then there is nothing more to show.) For every i such that Fi(Xi) = Xp

i −Xi, we

may assume that x
(ρ)
i = x

(σ)
i , whenever ρ < σ < λ and v(x

(ρ)
i −x

(σ)
i ) ≥ 0. Indeed, otherwise
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x
(σ)
i may be replaced by x

(ρ)
i because from (136) where we put z = −x

(σ)
i + x

(ρ)
i , we deduce

that
v

(
x− (F(x(σ))− tiFi(x

(σ)
i ) + tiFi(x

(ρ)
i ))

)
= v

(
x−F(x(σ))

)
.

Consequently, if x
(ρ)
i 6= x

(σ)
i then we may assume v(x

(ρ)
i − x

(σ)
i ) < 0 and thus

v
(
Fi(x

(ρ)
i )−Fi(x

(σ)
i )

)
= v

(
(x

(ρ)
i − x

(σ)
i )p

)
< v

(
x

(ρ)
i − x

(σ)
i

)
< 0 . (137)

Now we compute for ρ < σ < λ:

δρ = min(δσ, δρ)

= v
(
(x−F(x(σ)))− (x−F(x(ρ)))

)

= v
(
F(x(ρ))−F(x(σ))

)

= min
i

(
v(ti(Fi(x

(ρ)
i )−Fi(x

(σ)
i ))

)

= min
i

(
v(ti(x

(ρ)
i − x

(σ)
i )p)

)
,

using that the ti are different elements from a fixed valuation basis of M |Mp; the last
equation holds by virtue of (137). Hence for every i,

δρ ≤ v(ti(x
(σ)
i − x

(ρ)
i )p) .

This shows that for every i and ρ < σ < λ:

v(x
(σ)
i − x

(ρ)
i ) ≥ (δρ − v(ti))/p =: γρ,i . (138)

For the model theoretic notions that we will use in the sequel, see subsection 12.1. For
every i, let Si be the set of all sentences

“v(X − x
(ρ)
i ) ≥ γρ,i” , (ρ < λ) . (139)

in the language L(M, X). This set is finitely satisfiable in M : given a finite subset S′i ⊂ Si,
let

µ := max{ρ | “v(X − x
(ρ)
i ) ≥ γρ,i” ∈ S′i} .

Now the element x
(µ)
i realizes S′i in M since v(x

(µ)
i −x

(µ)
i ) = v(0) = ∞ and by (138), v(x

(µ)
i −

x
(ρ)
i ) ≥ γρ,i for all ρ < µ. From Lemma 12.19 we now infer the existence of immediate

approximation types Ai such that Si ⊂ S≥(Ai) for every i. Since M is maximally valued,
there exist elements xi such that xi realizes Ai, for every i, according to Corollary 12.51.
Putting

x = (x1, ..., xn)

we get v(xi − x
(ρ)
i ) ≥ γρ,i for all ρ < λ and thus in view of (138):

v(F(x(ρ))−F(x)) = min
i

(v(ti(x
(ρ)
i − xi)

p)) ≥ δρ

for all ρ < λ and thereby

v(x−F(x)) = v(x−F(x(ρ)) + F(x(ρ))−F(x))

≥ min(v(x−F(x(ρ))), v(F(x(ρ))−F(x))) = δρ
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for all ρ < λ, hence
v(x−F(x)) ≥ sup

ρ
(δρ) = δ

and thus
v(x−F(x)) = δ

by the definition of δ. This completes the proof of our lemma. 2

Now we will construct a rather simple algebraically complete field which does not have
the property (126).

Lemma 11.5 There exists an algebraically complete extension (K, v) of (IFp(t), vt)
h of

transcendence degree 1 without transcendence defect such that ZZ = vt(IFp(t)) ≺∃ v(K) =
QI × ZZ and IFp(t) = K and:
K|Kp has valuation basis {1, t, ..., tp−1} but (K, v) does not satisfy property (126).

Proof: We put k = IFp(t)
h. Let x be transcendental over k and let v be the extension of

vt to k(x) given by v(x−1) À vt(k); hence v(k(x)) = ZZv(x−1) × ZZv(t), lexicographically
ordered. Note that v(x) ¿ vt(k). Let (K1, v) be any maximal tame extension of (k(x), v)h

still admitting a coarsening of v with residue field (k, vt)
h. Then v(K1)/vt(k) is divisible

by every prime but p. Thus we may choose elements ci ∈ K1 such that for all i ≥ 1:

v(x)/pi < v(tcp
i ) ¿ vt(k) and v(ci−1) < v(ci) . (140)

We will now construct a purely inseparable algebraic extension (K2, v) of (K1, v) having
p–basis {t}. We define recursively

ξ1 = x1/p and ξi+1 = (ξi − tcp
i )

1/p (141)

and note that by virtue of (140),

∀i ∈ IN : v(ξi) = v(x)/pi < v(tcp
i ) ¿ vt(k) . (142)

We put
(K2, v) = (K1(ξi | i ∈ IN), v)

where the prolongation of v from K1 to K2 is unique since the extension is purely insepa-
rable. To prove that the p–basis of K2 is {t}, let a ∈ K2. Then a ∈ K1(ξ1, ..., ξj) = K1(ξj)
for a suitable j ∈ IN . Now one deduces by induction that {t, ξj} is a p–basis for K(ξj) and
that

ξj = (ξj+1)
p + tcp

j ∈ (K1(ξj+1))
p + t(K1(ξj+1))

p

which shows
a ∈ Kp

2 + tKp
2 + ... + tp−1Kp

2 .

Hence {t} is a p–basis of K2 and K2 has p–degree 1. On the other hand, every extension
K1(ξi)|K1 is purely ramified of degree pi, the value group of K1(ξi) being

v(K1(ξi)) = v(K1) + ZZ(v(x)/pi)

which shows that the valuation v on K2 still admits a coarsening with residue field (k, vt)
and that v(K2)/vt(k) is p–divisible and hence divisible (since v(K1) was already divisible
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by every prime but p). Consequently, v(K2) is a ZZ–group and vt(k) ≺∃ v(K2). On the
other hand, the residue field of (K2, v) is equal to k/vt = IFp. The equality

[K2 : Kp
2 ] = p = 1 · p = [K2 : K2

p
] · (v(K2) : pv(K2)) (143)

implies by Proposition 1.43 of [DEL1], p. 25, that (K2, v) is inseparably defectless.
Now we choose (K, v) to be a maximal immediate algebraic extension of (K2, v). Then

by what we have just shown, K|K2 is separable. Consequently, residue field and value
group being unchanged, equation (143) holds also for K in the place of K2 showing that
K is inseparably defectless. Since K is a maximal immediate algebraic extension, it is also
algebraically maximal and Theorem 4.17 now shows that K is an algebraically complete
field. Moreover, vt(IFp(t)) ≺∃ v(K2) = v(K) and IFp(t) = K2 = K.
It remains to show that K does not satisfy property (126) for a suitable choice of the
elements ci. Let us choose ci ∈ K1 such that the partial sums

sµ =
µ∑

i=1

ci (144)

determine an immediate transcendental approximation type A over K1 (in the sense of
Lemma 12.19). For instance, we may choose ci to be an element having value v(x)/qi

where qi denotes the first prime integer such that (140) holds. Assume now that

x = yp − y + x0 + txp
1 + ... + tp−1xp

p−1

with y, x0, x1, ..., xp−1 ∈ K. We will deduce from this a contradiction already under the
assumption

∃c ∈ k : v(c) < v(x0) (145)

or equivalently
w(x0) ≥ 0 (146)

for the coarsening w of v which has rank 1 on K. This condition on x0 is weaker than the
condition used in (126).

Since x1 ∈ K is algebraic over K1, we know that there exists a µ0 ∈ IN such that for
all µ ≥ µ0:

v(x1 − sµ) ≤ v(cµ0) , (147)

because otherwise the approximation type of x over K1 would be equal to A which is
impossible since A is transcendental. On the other hand, we may choose µ as large as to
guarantee not only (147), but also

v(cµ0) <
−v(x)

pµ+1
= v(ξµ+1) . (148)

Putting

ỹ = y −
µ+1∑

i=1

ξi and x̃1 = x1 − sµ ,

we have, according to (147) and (148):

v(x̃1) ≤ v(cµ0) < v(ξµ+1) (149)
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and we compute

ỹp − ỹ = yp − y + (−
µ+1∑

i=1

ξi)
p +

µ+1∑

i=1

ξi

= yp − y − ξp
1 −

µ∑

i=1

(ξp
i+1 − ξi) + ξµ+1

= yp − y − x +
µ∑

i=1

tcp
i + ξµ+1

= ξµ+1 − x0 − (tx̃p
1 + t2xp

2 + ... + tp−1xp
p−1) . (150)

We note that by (142) and (145),

v(ξµ+1) ¿ v(t) and v(ξµ+1) ¿ v(x0)

and thus

0 > v(ξµ+1 − x0) = v(ξµ+1) > v(t) + pv(ξµ+1) > v(t) + pv(x̃1) = v(tx̃p
1) ;

here the last inequality follows from (149). Since the elements t, ..., tp−1 are value–independent
over Kp, it follows that the value of (150) is ≤ v(tx̃p

1) and thus negative; this yields v(ỹ) < 0.
Consequently,

pv(ỹ) = v(ỹp − ỹ)

= v(tx̃p
1 + t2xp

2 + ... + tp−1xp
p−1)

= min(v(t) + pv(x̃1), 2v(t) + pv(x2), . . .

. . . , (p− 1)v(t) + pv(xp−1)) /∈ pv(K) .

We have deduced a contradiction since by construction, ỹ is an element of K. This proves
that K cannot satisfy property (126) if the elements ci are chosen as above. 2

The foregoing example instantly produces a second interesting example. Taking w to be
the coarsening of v which is of rank 1, we have actually deduced in the foregoing proof that
the assumption that (K, w) satisfies the property (126) leads to a contradiction. Indeed,
we have only used the assumption (146) on the element x0 instead of an assumption which
uses the valuation v. Since moreover the field (K,w) is algebraically complete like (K, v)
by virtue of Lemma 2.14 and Lemma 2.16, we have proved:

Lemma 11.6 There exists an algebraically complete field (K, w) of transcendence degree 1
over its embedded residue field, having value group v(K) = QI , and an element t ∈ K such
that the residue field K/w has p–basis {t/w} and K|Kp has valuation basis {1, t, ..., tp−1},
but (K,w) does not satisfy property (126).

Note that these examples also show that a field which is relatively algebraically closed in
an algebraically complete field that satisfies (126) does itself not necessarily satisfy (126),
even if the extension is immediate. Indeed, every maximal immediate extension of our
examples (K, v) or (K,w) is a maximally valued field and thus satisfies (126) according to
Lemma 11.3, and K is relatively algebraically closed in every such extension since (K, v)
and (K,w) are algebraically complete. This contrasts the behaviour of tame fields as
described in section 7.

The model theoretic consequences of these examples are:
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Corollary 11.7 The algebraically complete fields (K, v) and (K, w) as constructed above
do not satisfy (Mod 1). Hence

(Alg 3) 6=⇒ (Mod 1) .

In particular, there exist algebraically complete fields that are not AKE–fields. Moreover,
there are algebraically complete fields (K, v) such that the theory

{(K, v) is algebraically complete} ∪ {char(K) = p}∪
∪Th(v(K)) ∪ Th(K) (151)

(with respect to the language L of valued fields) is not complete. In particular, the theory

{(K, v) is algebraically complete} ∪ {char(K) = p}∪
∪{v(K) ≡ ZZ} ∪ {K = IFp}

which is satisfied by the valued power series field IFp((t)), is not complete.
Furthermore, the example (K, v) together with (k, v) = (IFp(t), vt)

h shows that if (K, v)|(k, v)
is an extension of algebraically complete fields then the fact that v(k) ⊂ v(K) and K|k are
elementary extensions does in general not imply that (K, v)|(k, v) is an elementary ex-
tension, even if it has no transcendence defect. This contrasts our result for “≺∃” (cf.
Theorem 6.4).

Proof: Let (K, v) be one of the examples given above. If Mv is an arbitrary maximal im-
mediate extension of (K, v), then by Lemma 11.3 it satisfies the elementary property (126),
whereas (K, v) does not. This shows that for this field (K, v), the theory (151) with respect
to the language L({t}) is not complete since K and Mv have the same characteristic, value
group and residue field and Mv is algebraically complete. In order to eliminate the constant
t, we note that by Lemma 11.3, assertion (126) holds in Mv for every valuation basis
{1, t, . . . , tp−1 of Mv|Mp

v . But for any valued field (L, v), the condition that {1, t, . . . , tp−1 is
a valuation basis of L|Lp, can be expressed over (L, v) by the conjunction of the following
two first order sentences:

∀z∃z0, . . . , zp−1 : z = zp
0 + . . . + zp

p−1t
p−1

∀z0, . . . , zp−1 : v
(
zp
0 + . . . + zp

p−1t
p−1

)
= v(zp

0) ∨ . . .

. . . ∨ v
(
zp
0 + . . . + zp

p−1t
p−1

)
= v(zp

p−1t
p−1) .

Consequently,

∀t : {1, t, . . . , tp−1} valuation basis for (L, v) =⇒ (L, v) satisfies (126)

is a first order sentence in L (without constants) which is satisfied by (L, v) = (Mv, v), but
not by (L, v) = (K, v).

Furthermore, (K, v) cannot be existentially closed in Mv. This is seen as follows: For
x as above there are no elements y, x0, x1, ..., xp−1 in K satisfying the assertion of (126).
But according to Lemma 11.3 there must exist such elements in Mv. Hence the existential
formula (with constants x, t)

∃y∃x0, ..., xp−1 :

(x0 = 0 ∨ v(x0) = 0) ∧ x = yp − y + x0 + txp
1 + ... + tp−1xp

p−1 (152)
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holds in Mv but not in (K, v). Since Mv was chosen to be an arbitrary maximal immediate
extension of (K, v) we have shown that (K, v) does not satisfy (Mod 1) which implies by
virtue of Lemma 11.2 that it is not an AKE–field.
For the last assertion of our corollary, we only have to note that (k, v) = (IFp(t), vt)

h

satisfies property (126) by Lemma 11.3, part b), whereas (K, v) does not. 2

With the examples that we have constructed, we can even show a sharper result:

Lemma 11.8 If (K, v) is one of the examples as constructed above, then there exists an
immediate function field (F, v) of transcendence degree 1 generated by two elements over
K such that (K, v) is not existentially closed in (F, v) and thus also not existentially closed
in the henselian function field (F, v)h. This shows that Corollary 9.3 is not true in general
if the condition “K is tame” is replaced by “K is algebraically complete”.

Proof: Let us return to the old notation (K, v) and (K, w) for our examples and let
Mv and Mw be maximal immediate extensions of (K, v) and (K, w) respectively. We use
the notation of the proof of Lemma 11.5 and choose the elements ci such that the partial
sums (144) define an immediate transcendental approximation type Av over (K, v) as well
as an immediate transcendental approximation type Aw over (K, w) (the choice suggested
in the proof of 11.5 satisfies both conditions). Now let z be an element of Mv or Mw having
approximation type Av or Aw resp. (Indeed, it can be shown that for a suitable choice of
Mv and Mw we may view z as a common element of both.)

We will show that the existential formula (152) for x holds already in an immediate
function field

(K(y, z), v)|(K, v) resp. (K(y, z), w)|(K, w)

where K(y, z)|K(z) is an immediate Artin–Schreier–extension. This implies the assertion
of our lemma.
Let Ãv and Ãw be the immediate approximation types determined by the partial sums

k∑

i=1

ξi (153)

over (K(z), v) resp. (K(z), w) (again in the sense of Lemma 12.19). Now we compute for
all k ∈ IN , using (141) and (142):

v

(
(

k∑

i=1

ξi)
p −

k∑

i=1

ξi − (x− tzp)

)

= v

(
ξp
1 +

k−1∑

i=1

(ξp
i+1 − ξi)− ξk − (x− tzp)

)

= v

(
x− t(

k−1∑

i=1

ci)
p − ξk − (x− tzp)

)

= v

(
t(z −

k−1∑

i=1

ci)
p − ξk

)

= min

(
v(t(z −

k−1∑

i=1

ci)
p), v(ξk)

)

= min (v(tcp
k), v(ξk))

= v(ξk) = v(x)/pk
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which holds for w in the place of v as well. It shows that Ãv and Ãw are approximation
types which do not fix the value of the polynomial

Y p − Y − (x− tzp) . (154)

We will now show that (154) is an associated minimal polynomial for both approximation
types. In view of the fact that the degree of an immediate approximation type A over a
henselian field K is always a power of p (cf. Corollary 12.67) and that the degree is 1 if and
only if A is realized by an element in K (cf. Lemma 12.38), we just have to show that there
exists no element in (K(z), v) having approximation type Ãv over (K, v) and no element
in (K(z), w) having approximation type Ãw over (K, w). To show this, it suffices to prove
that S≥(Ãw) is not realized in (K, w), since this set of sentences is a logical consequence
of the set S≥(Ãv); indeed, v(X − c) ≥ v(d) implies w(X − c) ≥ w(d) because w is a
coarsening of v. To deduce a contradiction, let us assume that there exists an element
y ∈ K(z) realizing the approximation type S≥(Ãw) in (K,w). Consequently, we would
have

∀k ∈ IN : w(yp − y − (x− tzp)) > w(x)/pk ,

whence
w(yp − y − (x− tzp)) ≥ 0 .

Choosing x0 ∈ K(z) such that

w(yp − y − (x− tzp) + x0) > 0

with w(x0) = 0 or x0 = 0, we find by Hensel’s Lemma that there exists y∗ in (K(z), w)h

such that
(y∗)p − y∗ = yp − y − (x− tzp) + x0 ,

whence
x = (y − y∗)p − (y − y∗) + x0 + tzp

showing that the existential formula (152) would hold in (K(z), w)h. But from Corollary 9.2
we know that (K, w) is existentially closed in the immediate henselian rational function field
(K(z), w)h. Thus (152) would also hold in (K, w) contrary to what we have already proved
about (K, w). This contradiction shows that (154) is an associated minimal polynomial
for both approximation types Ãv and Ãw, as asserted. Hence by virtue of Theorem 12.49,
there are immediate extensions of the valuations v and w from (K(z), v) resp. (K(z), w)
to the Artin–Schreier–extension K(y, z) where y is taken to be any root of the polynomial
(154). Now (152) is satisfied in both function fields (K(y, z), v) and (K(y, z), w). This
completes the proof of our lemma. 2

After this preparation we are able to show that also the Structure Theorem 8.11 for
immediate function fields of transcendence degree 1 over perfect algebraically complete
fields fails if the condition “perfect” is omitted. Note that this result is not immediate
from Lemma 11.7 and we really need the more precise result given in the foregoing lemma.

Corollary 11.9 If (K, v) is one of the examples as constructed above, then there exists
an immediate function field (F, v) of transcendence degree 1 generated by two elements
over (K, v) such that (F, v)h is not a henselian rational function field. This shows that
Theorem 8.11 is not true in general if the condition “K is perfect” is omitted.
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Proof: Let F = K(y, z) be as in the foregoing lemma. Then (F, v)h cannot be a henselian
rational function field since otherwise (K, v) ≺∃ (F, v) according to Corollary 9.2. 2

The function field F that we have constructed shows the following symmetry between
a generating Artin–Schreier–extension and a generating purely inseparable extension of
degree p: on the one hand, we have the immediate Artin–Schreier–extension

K(y, z)|K(z)

given by
yp − y = x− tzp , (155)

which shows that F |K is regular. On the other hand we have the immediate purely
inseparable extension

K(y, z)|K(y)

given by

zp =
1

t
(−yp + y + x) .

From equation (155) it is immediately clear that the function field K(y, z) becomes rational
after constant field extension with t1/p, namely

F (t1/p) = K(t1/p)(y + t1/pz) .

This shows that the ground field K, not being existentially closed in the function field
F , may become existentially closed in the function field after a finite purely inseparable
constant extension though this extension is linearly disjoint from the function field over
K. The fact that a henselian function field may become rational after a constant field
extension, corresponds in the above example to the fact that the degree of irrationality of
a function field may be reduced by a constant field extension, but it is not immediately
clear from such a correspondence that there exists a valuation under which the function
field is an immediate extension of the (algebraically complete) ground field.

In our above example there exists also a separable constant extension K ′|K of degree
p such that (F.K ′)h is henselian rational. To show this, we take a constant d ∈ K and an

element s ∈ K̃(t) satisfying
t = sp − ds ,

and we put K ′ = K(s). If we choose d with a sufficiently high value, then we will have
v(sp) = v(t) and v(dszp) > 0. The former guarantees that K ′|K is defectless and hence
linearly disjoint from F |K. From the latter we deduce by Hensel’s Lemma that there is an
element y? ∈ K ′(z)h such that (y?)p − y? = −dszp. If we put ỹ = y + sz + y? ∈ K(y, z)h,
we get

ỹp − ỹ = x− tzp + spzp − sz − dszp = x− sz + (sp − ds− t)zp = x− sz

which shows
z ∈ K ′(ỹ) .

This in turn yields y? ∈ K ′(ỹ)h and consequently

y = ỹ − sz − y? ∈ K ′(ỹ)h .
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Altogether we have proved that

K ′(y, z)h = K ′(ỹ)h

is henselian rational.

It can be shown that extension (155) could not be immediate if (K, v) resp. (K, w) would
satisfy property (126). This generates some hope that the structure theorem 8.11 could be
reestablished for henselian function fields over nonperfect fields which as a compensation
satisfy axioms of the type that is indicated by (126) and which are fulfilled in every perfect
field. Certainly it is to be expected that in general an infinite scheme of axioms is necessary
since an equation like (155) is only a special case and additive polynomials in y of higher
degree than p may play an important role. But the consideration of this role has to be
postponed to a subsequent investigation.

æ
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12 Appendix: Basic properties of approximation types

and distances.

In this appendix we will outline the theory of approximation types and distances. To begin
with, we want to state some very basic properties of approximation types.

Lemma 12.1 Let A be an approximation type over the valued field (K, v) and Υ ⊆ Λ(A).
Let ΛΥ denote the minimal initial segment of Λ(A) which contains Υ. Assume cΥ ∈ K
is an element of Aα for all α ∈ Υ. Then cΥ ∈ Aα for all α ∈ ΛΥ, and cΥ ∈ A◦

α for all
α < sup Υ. Furthermore, for every c ∈ K and every β ∈ v(K) we have:

β ∈ ΛΥ =⇒ (c ∈ Aβ ⇐⇒ v(cΥ − c) ≥ β) ,

β < sup Υ =⇒ (c ∈ A◦
β ⇐⇒ v(cΥ − c) > β) ,

β < sup Υ =⇒ (c ∈ Aβ \A◦
β ⇐⇒ v(cΥ − c) = β) .

If cΥ ∈ A◦
α for all α ∈ Υ, then the second and third implication will hold for all β ∈ ΛΥ.

Proof: The assertion that cΥ ∈ Aα for all α ∈ ΛΥ follows from (at 4), and the assertion
that cΥ ∈ A◦

α for all α < sup Υ follows from (at 1) and the definition of the supremum
(if α < sup Υ, then there exists β ∈ Υ such that β > α and thus cΥ ∈ Aβ ⊂ A◦

α by
(at 1) ). Let c ∈ K and β ∈ ΛΥ. Then cΥ ∈ Aβ; hence v(cΥ − c) ≥ β =⇒ c ∈ Aβ by (at
3) and c ∈ Aβ =⇒ v(cΥ − c) ≥ β by (at 2). Now assume in addition that the condition
“ cΥ ∈ A◦

α for all α ∈ Υ” holds or that β < sup Υ. Then in either case, cΥ ∈ A◦
β; hence

v(cΥ − c) > β =⇒ c ∈ A◦
β by (at 3◦), and c ∈ A◦

β =⇒ v(cΥ − c) > β by (at 2◦); similarly,
v(cΥ − c) = β =⇒ c ∈ Aβ \A◦

β by (at 3) and (at 2◦), and c ∈ Aβ \A◦
β =⇒ v(cΥ − c) = β

by (at 2) and (at 3◦). 2

A trivial but helpful observation is the following:

Lemma 12.2 Let A be an approximation type over the valued field (K, v) and α ∈ v(K).
If Aα 6= ∅, then Aα \A◦

α 6= ∅. In particular,

Λ(appr(x,K)) = {v(x− c) ∈ v(K) | c ∈ K} .

Proof: Assume Aα 6= ∅. If A◦
α = ∅, then the assertion is clearly true. If A◦

α 6= ∅, let
c ∈ A◦

α and choose any element c′ ∈ K with v(c′) = α. By (at 0), c ∈ Aα, and by (at 3),
c + c′ ∈ Aα since v(c− (c + c′)) = α. The latter shows by (at 2◦) that c + c′ /∈ A◦

α, hence

c + c′ ∈ Aα \A◦
α .

This yields the first assertion, and in view of the definition of appr(x,K), it also proves
the second assertion of the corollary. 2

Lemma 12.3 Let A be an approximation type over the valued field (K, v) with A∞ = ∅.
Then:

a) There is at most one element c0 ∈ K which is contained in every Aα, α ∈ v(K).
If such element c0 exists, then A is residue–immediate, but not value–immediate, and
Λ(A) = v(K).
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b) If Λ(A) has no greatest element (i.e. if dist(A) is not assumed), then A is residue–im-
mediate.

c) Assume that Λ(A) admits a greatest element γ. Then there exists c0 ∈ K such that
c0 ∈ Aα for all α ∈ Λ(A); more precisely, every element of Aγ (and thus also every element
of A◦

γ, if this set is nonempty) has this property. A is residue–immediate if and only if
A◦

γ 6= ∅, and A is value–immediate if and only if A◦
γ = ∅.

d) If Λ(A) does not admit a greatest element, and if there exists an element c0 ∈ K such
that c0 ∈ Aα for all α ∈ Λ(A), then A is residue–immediate, but not value–immediate.

e) A is immediate if and only if there exists no c0 ∈ K such that c0 ∈ Aα for all α ∈ Λ(A).

Proof:
a): Assume that there exists an element c0 ∈ K which is contained in every Aα, α ∈ v(K).
Then by definition, Λ(A) = v(K). An application of Lemma 12.1 shows that for every
c ∈ K with c 6= c0, we have c /∈ A◦

β, where β = v(c0− c) ∈ v(K) = Λ(A). In view of (at 1)
this shows that c cannot be included in Aα for α > β, hence c0 is the only element which
is included in all Aα, α ∈ v(K). Furthermore, for every α ∈ v(K), the set A◦

α is nonempty
since by Lemma 12.1, it contains c0; this shows that A is residue–immediate. But since
c0 /∈ A∞ by hypothesis, there is no α ∈ v(K) ∪ {∞} such that c0 ∈ Aα \A◦

α; this shows
that A is not value–immediate.

b): Let α ∈ Λ(A). By our hypothesis that Λ(A) has no greatest element, there exists
β ∈ Λ(A), β > α, such that Aβ 6= ∅. Now Aβ ⊂ A◦

α by (at 1), hence A◦
α 6= ∅. Since

α ∈ Λ(A) was arbitrary, assertion b) is proved.

c): Assume that Λ(A) admits a greatest element γ. By definition of Λ(A), there exists
an element c0 ∈ Aγ. Hence by Lemma 12.1, c0 ∈ Aα for all α ∈ Λ(A), and c0 ∈ A◦

α

for all α < γ; hence if A◦
γ 6= ∅, then A◦

α 6= ∅ for all α ∈ Λ(A) which implies that A is
residue–immediate. On the other hand, A◦

γ = ∅ implies that A is not residue–immediate
since Aγ 6= ∅ by our choice of γ. Now if A◦

γ 6= ∅ and c0 ∈ A◦
γ, then c0 ∈ A◦

α for all
α ∈ Λ(A) by (at 4◦); in this case, there is no α ∈ Λ(A) such that c0 ∈ Aα \A◦

α, and A is
thus not value–immediate. Finally, assume that A◦

γ = ∅. From Lemma 12.1 we know that
c ∈ Aβ \A◦

β whenever c ∈ K with β = v(c0 − c) < γ. If on the other hand, v(c0 − c) ≥ γ,
then c ∈ Aγ by (at 3), but c /∈ ∅ = A◦

γ. This shows A to be value–immediate.

d): Under the assumptions as stated in d), A is residue–immediate according to part b)
of our lemma. By hypothesis, for every α ∈ Λ(A) there exists a value β > α such that the
element c0 is included in Aβ and thus also in A◦

α by virtue of (at 1). This shows that there
exists no α ∈ v(K) such that c0 ∈ Aα \A◦

α, i.e. that A is not value–immediate.

e): If A admits an element c0 ∈ K such that c0 ∈ Aα for all α ∈ Λ(A), then part c) and
d) of our lemma show that A cannot be immediate. Conversely, assume that A does not
admit such element. Then by part c), Λ(A) does not contain a greatest element, and by
part b), A is thus residue–immediate. It remains to show that A is also value–immediate;
to this end, let c be an arbitrary element of K. By hypothesis, there exists α ∈ Λ(A) such
that c /∈ Aα. Let cα ∈ Aα (such element exists by definition of Λ(A)). Now v(cα − c) < α
by (at 3) since c /∈ Aα. Hence by Lemma 12.1, c ∈ Aβ \A◦

β for β = v(cα− c). Since c ∈ K
was arbitrary, we have proved that A is value–immediate. 2

Lemma 12.4 Let A be an approximation type over the valued field (K, v) with A∞ 6= ∅.
Then A∞ consists of exactly one element c0 ∈ K, and for all α ∈ v(K), we have c0 ∈ Aα
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and c0 ∈ A◦
α. For every c ∈ K, c 6= c0, we have

c ∈ Aβ \A◦
β for β = v(c0 − c) .

Consequently,
A = appr(c0, K) ,

and A is immediate with Λ(A) = v(K).

Proof: Let c0 ∈ A∞, hence c0 ∈ Aα and c0 ∈ A◦
α for all α ∈ v(K) in view of (at 4) and

(at 1). The former implies Λ(A) = v(K), the latter shows that A is residue–immediate.
From Lemma 12.1 we infer that c ∈ Aβ \ A◦

β whenever c0 6= c ∈ K with β = v(c0 − c),
and by (at 1) it follows that c /∈ A∞, hence A∞ consists only of the element c0, and
c0 /∈ ∅ = A◦

∞. Hence for every c ∈ K, there exists a value β ∈ v(K) ∪ {∞} with
c ∈ Aβ \A◦

β, proving that A is value–immediate and thus immediate. On the other hand,
Lemma 12.1 shows c ∈ Aα ⇐⇒ c ∈ appr(c0, K)α for all c ∈ K and all α ∈ v(K)∪{∞}, and
c ∈ A◦

α ⇐⇒ c ∈ appr(c0, K)◦α for all c ∈ K and all α ∈ v(K); this gives A = appr(c0, K).
2

Corollary 12.5 Let A be an arbitrary approximation type over the valued field (K, v).
Then

a) If A is immediate, then Λ(A) has no greatest element and consequently, dist(A) is not
finitely assumed.

b) A is value–immediate or residue–immediate.

c) If dist(A) is not finitely assumed by an element of K, then A is residue–immediate.

d) If A is not immediate, then there exists an element c0 ∈ K such that c0 ∈ Aα whenever
Aα 6= ∅ and c0 ∈ A◦

α whenever A◦
α 6= ∅.

Proof: a): This is a consequence of part c) of Lemma 12.3 together with Lemma 12.4.

b): This is a consequence of part b) and c) of Lemma 12.3 together with Lemma 12.4.

c): This is a consequence of part b) of Lemma 12.3 together with Lemma 12.4.

d): If A is not immediate, then in view of Lemma 12.4, we know that A∞ = ∅. Assume
that Λ(A) admits a greatest element γ. Then choose c0 ∈ A◦

γ if this set is nonempty,
otherwise in Aγ. (at 0), (at 1) and (at 4) show that c0 has the required properties. Now
assume that Λ(A) has no greatest element γ. Then choose c0 by virtue of part e) of
Lemma 12.3; (at 1) and (at 4) show that c0 has the required properties. 2

Furthermore, we state some facts about the restriction of an approximation type; the
proof is straightforward.

Lemma 12.6 Let AL be an approximation type over the valued field L which contains
the field K. Then the restriction AK of AL to K is an approximation type over K with
Λ(AK) = Λ(AL) ∩ v(K) and consequently,

dist(AL) ≥ dist(AK) .

The following lemma treats approximation types of elements in defectless extensions:
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Lemma 12.7 Let L|K be a nontrivial finite extension admitting a valuation basis, and let
x ∈ L \ K. Then appr(x,K) is not immediate, and there exists an element c ∈ K such
that

v(x− c) ≥ dist(x,K) .

Here, equality holds if appr(x,K) is value–immediate.

Proof: By Lemma 2.6 we may assume that L|K admits a valuation basis which contains
1. We write

x = c0 + c1y1 + . . . + cnyn

with c0, . . . , cn ∈ K and y1, . . . , yn elements of the valuation basis, different from 1. For all
c ∈ K, we have

v(x− c) = v(c0 − c + c1y1 + . . . + cnyn)

= min{v(c0 − c), v(c1x1), . . . , v(cnxn)}
≤ min{v(c1x1), . . . , v(cnxn)} ,

where the latter value is assumed for c = c0. Hence

v(x− c0) = max{v(x− c)|c ∈ K}
≥ sup{v(x− c) ∈ v(K)|c ∈ K} = dist(x,K) .

If appr(x,K) is value–immediate, then v(x − c0) ∈ v(K) and dist(x,K) is assumed by
c0 ∈ K. Since x /∈ K by hypothesis, Lemma 12.4 shows that the distance must be finitely
assumed, and part a) of Corollary 12.5 now shows that appr(x,K) is not residue–im-
mediate, if it is value–immediate; hence it is not immediate. 2

12.1 Comparison of our notion of “approximation types” with
other possible concepts, and the realization of approximation
types.

We want to compare our notion of approximation types with the classical concept of pseudo
Cauchy sequences as defined by Ostrowski in [OS] and used by Kaplansky in his important
paper “Maximal fields with valuations” [KAP1], by Schilling in [SCH] and by Ribenboim
in [RIB1]. Though this comparison is mainly of historical interest, the concept of pseudo
Cauchy sequences may still be adequate for the construction of valuation theoretical ex-
amples.

A second basic notion seems to be of higher theoretical interest in connection to approxi-
mation types. As indicated already in the name “approximation type”, model theoretic
types are closely related to approximation types. In the following, we will first discuss this
relation.

As we have already explained in section 6, we are working in a fixed language L of
valued fields. Given a valued field (K, v), we extend L to a language L(K) by adding to
L a constant symbol for every element in K. The elementary diagram of (K, v) is the
collection of all sentences in L(K) that hold in (K, v). Furthermore, we add to L(K) a
symbol X for one variable and obtain L(K, X). Let T be a collection of sentences in
L(K,X). If this collection is consistent with the elementary diagram of (K, v) and if it
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is maximal with respect to this property, then T is called a type (or 1–type) over (K, v).
An arbitrary collection S of sentences in L(K,X) is realized (over (K, v)) in a valued field
(L, v), if (L, v) contains (K, v) and there exists an element x ∈ L such that all sentences of
S hold in (L, v) when X is replaced by x. In this case, we say that x realizes S. S is called
finitely satisfiable in (K, v), if every finite subset S0 ⊂ S is realized in (K, v). We will use
the following basic properties of types:

Lemma 12.8 A collection S of sentences in L(K,X) is consistent with the elementary
diagram of (K, v) if and only if it is finitely satisfiable in (K, v).

Proof: Let S′ be the union of S and the elementary diagram of (K, v). Then S is
consistent with the elementary diagram of (K, v) if and only if S′ is consistent. By the
Completeness Theorem 1.3.21 of [CHK], p. 66, S′ is consistent if and only if it has a model.
It remains to show that S′ has a model if and only if it is finitely satisfiable over (K, v).

Let us first assume that S′ has a model M. By [CHK], Proposition 3.1.3, p. 108, any
model of the elementary diagram of (K, v) is an elementary extension of (K, v) with respect
to the language L(K), i.e. (K, v) ≺ M. If S′0 ⊂ S′ is a finite subset, we may form the
conjunction φ(X) over all sentences in S′0. Now the L(K)–sentence

∃x : φ(x)

holds in M, so it must hold in (K, v) too. This shows that S′0 is realized by an element in
(K, v), and we have proved that S′ is finitely satisfiable over (K, v).

For the converse, let us assume now that S′ is finitely satisfiable over (K, v), i.e. (K, v)
is a model for every finite subset of S′. Then by the Compactness Theorem (cf. [CHK],
Theorem 1.3.22, p. 33), S′ has a model. 2

Lemma 12.9 If T is a type over (K, v) and (K∗, v∗) is a |K|+–saturated elementary
extension of (K, v), then T is realized in (K∗, v∗). Note that such extension (K∗, v∗)
always exists.

Proof: Since (K∗, v∗) is an elementary extension of (K, v), its theory with respect to
the language L(K) is equal to the elementary diagram of (K, v) (which is nothing else but
the theory of (K, v) with respect to the language L(K) ); this is true in view of [CHK],
Theorem 1.3.22, p. 33, since the theory of a model is complete (since a sentence either holds
or does not hold in the model). Hence the given type T is consistent with the L(K)–theory
of (K∗, v∗). Now the assertion follows immediately from the definition of “ α–saturated”
models as given in [CHK], chapter 5, p. 214.

The existence of a |K|+–saturated elementary extension of (K, v) follows from Lemma 5.1.4
of [CHK], p. 216, together with the fact that every α–saturated model is also β–saturated
for every β ≤ α (which follows immediately from the definition). 2

Now we will detect the connection between approximation types and types by discussing
through which sets S of sentences in L(K,X) an approximation type A can be (uniquely)
determined, in a sense that we have to make precise now. We say that S determines A,
if the following holds: if (K(x), v)|(K, v) is an extension of valued fields such that every
sentence of S holds for x in the place of X, then A = appr(x,K). Let us begin with the
trivial observation that every approximation type A over K is uniquely determined by the
set

S(A) = S>(A) ∪ S=(A) ∪ S<(A)
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of sentences in L(K,X), where

S>(A) := {“v(X − c) > v(d)” | c, d ∈ K ∧ c ∈ A◦
v(d)}

S=(A) := {“v(X − c) = v(d)” | c, d ∈ K ∧ c ∈ Av(d) \A◦
v(d)}

S<(A) := {“v(X − c) < v(d)” | c, d ∈ K ∧ c /∈ Av(d)} .

This holds even in the following strong sense: if A and A′ are approximation types, then

S(A) ⊂ S(A′) =⇒ A = A′ .

We will also consider the following set

S≥(A) = {“v(X − c) ≥ v(d)” | c, d ∈ K ∧ c ∈ Av(d)}
of sentences in L(K,X). The significance of this set will be shown in Lemma 12.11 below.
Also S=(A) plays a central role:

Lemma 12.10 Every value–immediate approximation type A is determined already by the
set S=(A).

Proof: We assume that A is value–immediate, hence for all elements c ∈ K, there exists
d ∈ K such that c ∈ Av(d) \A◦

v(d) and consequently, “ v(X − c) = v(d)”∈ S=(A). We have
to show that the sentences of the sets S>(A) and S<(A) are logical consequences of the
sentences in S=(A) and the elementary diagram D of (K, v). But this is immediately seen
to be true since in view of “ v(X−c) = v(d)”∈ S=(A) we have: “ v(X−c) > v(d′)”∈ S>(A)
whenever “ v(d′) < v(d)”∈ D, and “ v(X−c) < v(d′)”∈ S<(A) whenever “ v(d′) > v(d)”∈
D. 2

Lemma 12.11 Every immediate approximation type A is determined by the set S=(A)
and also by the set S≥(A). Both sets are consistent with the elementary diagram D of
(K, v); in fact, this is already true for residue–immediate approximation types.

Proof: It was already shown in the previous lemma that A is determined by the set
S=(A). We have to show that it is also determined by S≥(A). For this, it suffices to show
that the sentences of S=(A) are logical consequences of the sentences of S≥(A) and the
elementary diagram D of (K, v). To this end, we assume that “ v(X− c) = v(d)”∈ S=(A),
i.e. c ∈ Av(d) \A◦

v(d) and thus “ v(X − c) ≥ v(d)”∈ S≥(A).
Let us first assume that d = 0. Then the sentence “ d = 0” is contained in D, and

together with “ v(X − c) ≥ v(d)” it implies “ v(X − c) = v(d)”.
Let us now assume that d 6= 0. By hypothesis, A is residue–immediate and hence there

exists an element c′ ∈ K such that c′ ∈ A◦
v(d). Since A is value–immediate, there exists

d′ ∈ K such that c′ ∈ Av(d′) \ A◦
v(d′). Consequently, “ v(X − c′) ≥ v(d′)”∈ S≥(A), and

v(d′) > v(d) by virtue of (at 4◦). c′ ∈ A◦
v(d) yields v(c′ − c) ≤ v(d) by (at 3◦) because of

c /∈ A◦
v(d). On the other hand, c, c′ ∈ Av(d) and (at 2) yield v(c′ − c) ≥ v(d). So we have

shown that v(c′ − c) = v(d). Both sentences, “ v(d′) > v(d)” and “ v(c′ − c) = v(d)” are
sentences of D. Together with “ v(X − c′) ≥ v(d′)”, they imply the sentence “ v(X − c) =
v(d)”. This poves that the sentences of S=(A) are logical consequences of the sentences of
S≥(A), as desired.

It remains to show that both sets S=(A) and S≥(A) are consistent with D (under
the only condition that A is a residue–immediate approximation type). According to
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Lemma 12.8, it suffices to show that they are finitely satisfiable in (K, v). Let S0 be a
finite subset of S=(A) or of S≥(A), and let

α0 = max{v(d) | d ∈ K and

“v(X − c) = v(d)” ∈ S0 or “v(X − c) ≥ v(d)” ∈ S0} .

Since A is residue–immediate by hypothesis, there exists an element c0 ∈ K with c0 ∈ A◦
α0

.
By (at 0) and (at 4), c0 ∈ Aα for all α ≤ α0. For given c, d ∈ K with “ v(X − c) = v(d)”
or “ v(X − c) ≥ v(d)” in S0, we will now compute the value of c0 − c.

If “ v(X − c) ≥ v(d)”∈ S0, then c ∈ Av(d) and v(d) ≤ α0; the latter implies c0 ∈ Av(d).
Hence by (at 2), v(c0 − c) ≥ v(d). Consequently, for the case where S0 ⊂ S≥(A) we have
proved that S0 is realized by c0 in (K, v).

If “ v(X − c) = v(d)”∈ S0, then c ∈ Av(d) \ A◦
v(d) and v(d) ≤ α0. As before, it is

shown that v(c0 − c) ≥ v(d). On the other hand, from c /∈ A◦
v(d) and (at 3◦) we obtain

v(c0−c) ≤ v(d). This shows v(c0−c) = v(d). Consequently, for the case where S0 ⊂ S=(A)
we have proved that S0 is realized by c0 in (K, v). This completes the proof of the lemma.

2

This lemma shows that for an immediate approximation type A, we may actually forget
about the second part of the map A which sends α ∈ v(K) ∪ {∞} to A◦

α. As soon as we
know that the approximation type is immediate, all the remaining information is carried
already by the first part of the map. We will use this principle when we are working with
immediate approximation types.

Since by the preceding lemma, for every immediate approximation type A the set S≥(A)
is consistent with the elementary diagram D of (K, v), there exists by Zorn’s Lemma a
maximal set T of sentences in L(K, X) which contains S≥(A) and is consistent with D
(since T is maximal, it thus contains D). By definition, T is a type over (K, v). If we
take (K∗, v∗) to be a |K|+–saturated extension of (K, v), then by Lemma 12.9 there exists
an x ∈ K∗ that realizes T over (K, v). (K(x), v) — where v denotes the restriction of
v∗ — is a valued subfield of (K∗, v∗) containing (K, v). Every existential sentence with
constants from K which holds in (K(x), v) will trivially hold in (K∗, v∗) too; so if we take
the latter to be an elementary extension of (K, v), the sentence will also hold in (K, v). We
conclude that (K, v) is existentially closed in (K(x), v). Then in particular, x ∈ K or x is
transcendental over K; this is shown in Lemma 6.3. We summarize what we have proved:

Lemma 12.12 For every immediate approximation type A over K, there exists a simple
valued field extension (K(x), v)|(K, v) such that A = appr(x,K) and (K, v) ≺∃ (K(x), v).
Note that the latter property implies that x is transcendental over K if x /∈ K. x can be
found in every |K|+–saturated extension of (K, v).

Under additional assumptions, it is possible to show the same for approximation types
which are not immediate. This will be discussed in the sequel.

Lemma 12.13 Let A be an approximation type over a valued field (K, v) whose residue
field K is infinite. Then the set S=(A) is consistent with the elementary diagram of (K, v).
Consequently, if A is value–immediate, then it is realized in every |K|+–saturated elemen-
tary extension of (K, v) and thus, there exists a simple valued field extension (K(x), v)|(K, v)
such that A = appr(x,K) and (K, v) ≺∃ (K(x), v). Again, x ∈ K or x is transcendental
over K.
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Proof: Let S0 be a finite subset of S=(A) and let

α0 = max{v(d) | d ∈ K ∧ “v(X − c) = v(d)” ∈ S=(A)} .

Furthermore, let

C = {c ∈ K | “v(X − c) = v(d)” ∈ S0 ∧ v(d) = α0} ,

and let c0 ∈ C. By (at 2), we know that v(c − c0) ≥ α0 for every c ∈ C. Since C is
finite and by hypothesis, K is infinite, there exists an element c′ ∈ K with value α0 such
that v(c′ − (c − c0)) = v(c′) = α0 for all c ∈ C. We claim that the element c0 + c′ ∈ K
realizes S0. Indeed, if c ∈ C, then v((c0 + c′) − c) = v(c′ − (c − c0)) = α0 = v(d). If
“v(X − c) = v(d)” ∈ S0 with c /∈ C, then v(d) < α0 and as in the proof of Lemma 12.11 it
can be shown that v(c0− c) = v(d); consequently, v((c0 + c′)− c) = v(c′ + (c0− c)) = v(d).
This proves that c0 + c′ realizes S0 in K, proving that S=(A) is finitely satisfiable in (K, v)
and hence consistent with the elementary diagram of (K, v), according to Lemma 12.8. We
conclude that S=(A) is realized in every |K|+–saturated elementary extension of (K, v).
The same is true for A if A is value–immediate, since then according to Lemma 12.10, it
is determined by S=(A). 2

In view of the fact that every approximation type is residue–immediate if it is not
value–immediate (cf. part b) of Corollary 12.5), it only remains to deal with the case of a
residue–immediate approximation type.

Lemma 12.14 Every residue–immediate approximation type A is determined by S>(A)∪
S<(A).

Proof: Assume that A is a residue–immediate approximation type over K. We will
show that the sentences of the set S=(A) are logical consequences of the sentences in S>(A)
and the elementary diagram D of (K, v), which yields the assertion of our lemma. To this
end, assume that “ v(X − c) = v(d)”∈ S=(A), i.e. c ∈ Av(d) \ A◦

v(d). A being residue–
immediate by assumption, there exists an element c′ ∈ A◦

v(d) and we have “ v(X − c′) >
v(d)”∈ S>(A). By (at 3◦) we know that v(c′ − c) ≤ v(d), and by (at 2) we conclude
that v(c′ − c) = v(d); hence “ v(c′ − c) = v(d)”∈ D. Now “ v(X − c) = v(d)” is a logical
consequence of “ v(X − c′) > v(d)” and “ v(c′ − c) = v(d)”. 2

Lemma 12.15 Let A be a residue–immediate approximation type over a valued field (K, v)
whose value group v(K) is dense. Then the set S(A) is consistent with the elementary
diagram of (K, v). Hence A is realized in every |K|+–saturated elementary extension of
(K, v) and thus, there exists a simple valued field extension (K(x), v)|(K, v) such that
A = appr(x,K) and (K, v) ≺∃ (K(x), v). Again, x ∈ K or x is transcendental over K.

Proof: In view of the foregoing lemma, we only have to show that S>(A) ∪ S<(A) is
consistent with the elementary diagram of (K, v). By virtue of Lemma 12.8 it suffices to
show that every finite set S0 ⊂ S>(A) ∪ S<(A) is realized in (K, v). Let

α0 := min{v(d) | “v(X − c) > v(d)” ∈ S>(A)
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(α0 = −∞ if the set is empty), and choose an element c′ ∈ A◦
α0

which exists in view of our
definition of α0. Furthermore, let

β0 := min{v(c− c′), v(d) | “v(X − c) < v(d)” ∈ S<(A) ∧
∧v(c− c′) > α0 ∧ v(d) > α0}

(β0 = ∞ if the set is empty). We have β0 > α0, and since v(K) is dense by assumption,
there exists an element c̃ ∈ K such that β0 > v(c̃) > α0. We put c0 := c̃ + c′ and we
will prove that c0 realizes S0. From Lemma 12.1 it follows that c0 realizes all sentences
“v(X − c) > v(d)” ∈ S0. Now let “v(X − c) < v(d)” ∈ S0. Let us assume first that
v(c− c′) > α0; for such c we have c ∈ Aα0 by (at 3) and thus v(d) > α0, by the definition
of c̃, and we compute

v(c0 − c) = min(v(c̃), v(c− c′)) = v(c̃) < β0 ≤ v(d) .

Now let us assume that v(c−c′) ≤ α0 < v(c̃); for such c we have c ∈ Av(c−c′) by Lemma 12.1,
which shows that necessarily v(c− c′) < v(d), hence v(c− c′) < v(c̃), and we compute

v(c0 − c) = min(v(c̃), v(c− c′)) = v(c− c′) < v(d) .

We have shown that c0 realizes all sentences in S0, as contended. The further assertions of
the lemma follow as in the corresponding lemma on value–immediate approximation types
that we have proved above. 2

To show that in any case a given approximation type is realized in some simple valued
field extension, we have to consider whether an approximation type over K can always be
prolongated to a given overfield L of K which has an infinite residue field and a dense value
group (e.g. L = K̃). Indeed:

Lemma 12.16 Let A be an approximation type over the valued field K and let L be a field
extension of K. Then there exists an approximation type AL over L whose restriction to
K coincides with A. AL may be chosen to be immediate if A is immediate.

Proof: We distinguish the following two cases:

case 1: There exists c0 ∈ L such that A = appr(c0, K). Then we take AL to be appr(c0, L)
which by Lemma 12.4 is an immediate approximation type and whose restriction to K is
just appr(c0, K) = A.

case 2: There exists no c0 ∈ L such that A = appr(c0, K); in particular, A∞ = ∅ by
Lemma 12.4. Then we define AL as follows: for every α ∈ v(L), we put

(AL)α = {c ∈ L | ∃β ∈ v(K), β ≥ α, ∃c′ ∈ Aβ : v(c′ − c) ≥ α}
(AL)◦α = {c ∈ L | ∃β ∈ v(K), β ≥ α, ∃c′ ∈ A◦

β : v(c′ − c) > α}

The proof that AL is an approximation type over L is straightforward and thus left to the
reader. Note that Λ(AL) is just the minimal initial segment of v(L) containing Λ(A).

Now assume in addition that A is immediate; we want to show that AL is immediate
too. By our definition of AL, we also have (AL)∞ = ∅. In view of Lemma 12.3 it thus
suffices to prove that there is no element c0 ∈ L such that c0 ∈ (AL)α for all α ∈ Λ(AL).
In order to derive a contradiction, let us assume the existence of such element c0. Now we
will apply Lemma 12.1 where we put Υ = Λ(AL) and cΥ = c0. Using the fact that A is
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immediate by hypothesis and consequently, Λ(A) and thus also Λ(AL) have no greatest
element, we now deduce from Lemma 12.1 that for all c ∈ L and all β ∈ v(L),

c ∈ Aβ ⇐⇒ v(c0 − c) ≥ β

c ∈ A◦
β ⇐⇒ v(c0 − c) > β

which in particular shows that A = appr(c0, K) in contradiction to our assumption of case
2. This is the desired contradiction, and our lemma is proved. 2

Corollary 12.17 For every approximation type A over a valued field K there exists a
simple valued field extension (K(x), v)|(K, v) such that A = appr(x,K).

Proof: By the foregoing lemma, there exists a prolongation A′ of A which is an
approximation type over the algebraically complete valued field K̃. This field has the

infinite residue field K̃ and the divisible and thus dense value group ˜v(K). Hence one of
the above lemmata guarantees that A′ = appr(x, K̃) for some simple valued field extension
(K̃(x), v)|(K̃, v). Since the restriction of appr(x, K̃) to K is just appr(x,K), it follows that
(K(x), v)|(K, v) is a simple valued field extension with A = appr(x,K). 2

At this point, let us introduce an observation which is a corollary to part e) of Lemma 12.3
and will be useful for the next lemma:

Corollary 12.18 For every approximation type A over a valued field K there exists an
immediate approximation type A′ over K such that S≥(A) ⊆ S≥(A′).

Proof: If A is already immediate, there is nothing to show. If this is not the case, then we
know by part e) of Lemma 12.3 and Lemma 12.4 that there is an element c0 ∈ K such that
c0 ∈ Aα for all α ∈ Λ(A). We put A′ = appr(c0, K). Assume that “ v(X − c) ≥ v(d)” ∈
S≥(A), i.e. c ∈ Av(d) and v(d) ∈ Λ(A). Hence c0 ∈ Av(d) and by (at 2), v(c− c0) ≥ v(d) or
equivalently, c ∈ (A′)v(d). This shows S≥(A) ⊆ S≥(A′), and our corollary is proved. 2

For the construction of immediate approximation types, we need the following

Lemma 12.19 Let K be a valued field and S a set of sentences in L(K,X) of the form
“ v(X − c) ≥ v(d)” (c, d ∈ K). Assume that S is consistent with the elementary diagram
of K or equivalently, that S is finitely satisfiable in K. Then there exists an immediate
approximation type A over K such that S ⊂ S≥(A).

Consequently, a given sequence of partial sums

sk =
k∑

i=1

ci

where ci, i ∈ IN , are elements of K satisfying ∀i : v(ci+1) > v(ci), induces an immediate
approximation type through

S = {“v(X − sk) ≥ v(ck+1)” | k ∈ IN} .
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Proof: Since S is consistent with the elementary diagram of (K, v), it is realized in
every |K|+–saturated valued extension field of (K, v). Let x be an element realizing S.
Then S ⊆ S≥(appr(x, K)). If appr(x,K) is not already immediate, then according to the
preceding corollary we may replace it by an immediate approximation type A′ such that

S≥(appr(x,K)) ⊆ S≥(A′)

and hence also S ⊆ S≥(A′).
In the case of the partial sums sk, we only have to show that S is finitely satisfiable in

K. But this is trivial since every finite subset of S is realized by some sk for large enough
k. 2

Furthermore, we want to clear up the connection of pseudo Cauchy sequences and
approximation types.

Lemma 12.20 For every pseudo Cauchy sequence in (K, v), there exists an immediate
approximation type A such that in every valued field (K(x), v) where x realizes A, this
element x is a limit of the given pseudo Cauchy sequence.

Conversely, let A = appr(x,K) be an immediate approximation type over K and (aρ)ρ<λ

an arbitrary sequence of elements aρ ∈ Aαρ \A◦
αρ

, where λ is a limit ordinal and αρ, ρ < λ,
is a monotonically increasing sequence of values in Λ(A) (such sequences of elements aρ

always exist). Then (aρ)ρ<λ is a pseudo Cauchy sequence with limit x (in (K(x), v)).

Proof: Let (aρ)ρ<λ be a pseudo Cauchy sequence. We define γρ = v(aρ+1− aρ) and take

S = {“v(X − aρ) ≥ γρ” | ρ < λ} .

Every finite subset S0 of S is realized by some aσ for high enough σ < λ (σ should just be
greater than all indeces occuring in S0, cf. [KAP], Lemma 2, p. 304). Hence S is finitely
satisfiable in (K, v), and we obtain by Lemma 12.19 an immediate approximation type A
over K such that S ⊂ S≥(A). If the element x in some valued field extension of K realizes
this approximation type A, then it also realizes S and is thus a limit of the pseudo Cauchy
sequence (aρ)ρ<λ (cf. [KAP], Definition, p. 304).

For the converse, let A = appr(x,K) be an immediate approximation type over K.
Sequences (aρ)ρ<λ with aρ ∈ Aαρ \A◦

αρ
and (αρ)ρ<λ monotonically increasing, can be found

as follows: Suppose that the elements aρ, ρ < σ, are already constructed. If the values αρ

are cofinal in Λ(A), then σ must be a limit ordinal since Λ(A) has no greatest element
according to Corollary 12.5; in this case, we put λ = σ, and the sequence (aρ)ρ<λ has the
required properties. If the values αρ are not cofinal in Λ(A), then we may choose a value
α∗σ ∈ Λ(A) which is greater than all αρ, ρ < σ (the latter condition is void for the starting
value σ = 0). Furthermore, we choose an element aσ ∈ Aα∗σ . Since A is immediate, there
exists a value ασ ∈ Λ(A) such that aσ ∈ Aασ \ A◦

ασ
, and in view of (at 1) we conclude

that ασ ≥ α∗σ which shows that ασ is greater than all αρ, ρ < σ, which is just the required
property of the new element aσ.

Now we assume that (aρ)ρ<λ is a sequence with the described properties. We have to
show that it is a pseudo Cauchy sequence, i.e. that v(aτ − aσ) > v(aσ − aρ) whenever
ρ < σ < τ < λ. Indeed, by (at 1) we find that aτ ∈ A◦

ασ
and aσ ∈ A◦

αρ
, and by (at 3◦)

we find that v(aτ − aσ) = ασ and v(aσ − aρ) = αρ. In view of ασ > αρ, we conclude that
v(aτ − aσ) > v(aσ − aρ), as desired. 2
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Note that by the procedure described in the above proof, it is possible to construct pseudo
Cauchy sequences (aρ)ρ<λ which have the property that the values v(aρ+1− aρ), ρ < λ, are
cofinal in Λ(A). It can be shown that such sequences determine the approximation type A
uniquely, i.e. there is no other approximation type over K from which the sequence can be
derived in the described way, and there is no other approximation type which is connected
to the sequence in the way as described in the first assertion of the lemma. Similarly, it can
be shown that a pseudo Cauchy sequence which admits no limit in K, will yield a unique
approximation type A in the sense of the lemma.

We should note that immediate approximation types can be easily distinguished by se-
quences of elements which need not be pseudo Cauchy sequences (but contain subsequences
which are pseudo Cauchy sequences):

Lemma 12.21 Let A be an immediate approximation type and (αρ)ρ<λ some cofinal se-
quence in Λ(A). Then A is uniquely determined by every sequence (cρ)ρ<λ of elements
cρ ∈ Aαρ.

Proof: According to Lemma 12.11, A is uniquely determined already by the sets Aα,
α ∈ v(K). A being immediate, for every c ∈ K there is a value α ∈ Λ(A) such that
c ∈ Aα \A◦

α. Choosing ρ such that αρ > α, we get cρ ∈ Aα by (at 4), and v(cρ − c) = α
by (at 2) and (at 3◦). Hence every approximation type A′ with cρ ∈ A′

αρ
will satisfy

c ∈ Aα \ A◦
α by (at 3) and (at 2◦). Since c ∈ K was arbitrary, this shows that A is

uniquely determined by the sequence (cρ)ρ<λ. 2

Finally, we want to describe another concept which is closely connected to approxi-
mation types and which will also play a certain role in the next subsection. Any valued
field extension (L, v) over (K, v) may also be viewed as a valued vector space over (K, v).
Similarly, every type over (K, v) may be restricted to a type in the language of valued
(K–)vector spaces by omitting all sentences of the type which are not sentences in the
new language. We do not want to formalize this language here, but in any case one finds
that given an L(K, X)–sentence which uses multiplication and inversion only by elements
from K, this sentence will contain the variable X only linearly: every rational function in
X appearing in the sentence will just be a linear polynomial. Consequently, an element
x which realizes the restricted type, will realize it already in the valued K–vector space
K +Kx (which is equal to K if x ∈ K and equal to K⊕Kx if x /∈ K). Now the elementary
diagram of this vector space in the language of K–vector spaces (without valuation) is just
a logical consequence of the elementary diagram of K (in the language of fields) together
with a sentence expressing that K + Kx is one–dimensional (if x ∈ K) resp. that K + Kx
is two–dimensional (if x /∈ K). But if we view K + Kx as a valued vector space, the
nontrivial question arises: which sentences determine the valuation on K + Kx ? To
answer this question, we first observe that for any approximation type A, the restriction
of S(A) to the K–vector space language coincides with S(A): every assertion of S(A) is
just an assertion about the valued K–vector space K + Kx. And in spite of the fact that
it does not contain every assertion about the valuation on K + Kx which we may think
of, it indeed determines the valuation on K + Kx. To prove this fact, we first need the
following lemma:

Lemma 12.22 Let A = appr(x,K) be an approximation type over K. If it is a value–
immediate approximation type, then for every c ∈ K there is an element d ∈ K such that
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v(x− c) = v(d), and “ v(X − c) = v(d)”∈ S=(A) ⊂ S(A). If appr(x, K) is not value–im-
mediate, and if c0 ∈ K is chosen as in part d) of Corollary 12.5, then v(x−c0) /∈ v(K), and
the following holds: for every c ∈ K with v(c− c0) ∈ Λ(A), we have v(x− c) = v(c− c0),
and “ v(X − c) = v(c− c0)”∈ S=(A) ⊂ S(A); if on the other hand, v(c− c0) /∈ Λ(A), we
have v(x− c) = v(x− c0), and “ v(X − c) = v(X − c0)” is a logical consequence of S(A).

Proof: If appr(x,K) is value–immediate, then the assertion follows by definition.
Now assume that A = appr(x,K) is not value–immediate; hence it is residue–immediate

by virtue of part b) of Corollary 12.5; in particular, this shows

∀α ∈ v(K) : c0 ∈ Aα =⇒ c0 ∈ A◦
α ,

and consequently, v(x − c0) /∈ v(K). Let c0 ∈ K be as in part d) of Corollary 12.5.
Applying Lemma 12.1 with Υ = Λ(A) and cΥ = c0, we find that v(x − c) = v(c − c0)
whenever v(c− c0) ∈ Λ(A). In this case, c ∈ Av(c−c0) \A◦

v(c−c0), which implies “ v(X− c) =
v(c− c0)”∈ S=(A), as contended.

It remains to deal with the case of v(c− c0) /∈ Λ(A). Then v(x− c) = v(c− c0) ∈ v(K)
is impossible since it would yield v(c − c0) ∈ Λ(A) contrary to our assumption. On the
other hand, v(x − c0) = v(c − c0) is impossible since v(x − c0) /∈ v(K). This shows
v(x− c) = v(x− c0) as well as

v(x− c) < v(c− c0) and v(x− c0) < v(c− c0) ,

so that “ v(X − c) < v(c − c0)”∈ S<(A) and “ v(X − c0) < v(c − c0)”∈ S<(A). These
sentences imply the sentence “ v(X − c) = v(X − c0)”. 2

Lemma 12.23 Let K(x) be a valued field extension of K. Then the valuation on the K–
vector space K +Kx is uniquely determined by appr(x,K). In other words, the elementary
diagram of the valued K–vector space K + Kx is a logical consequence of the elementary
diagram D of (K, v) together with S(appr(x,K)) and a sentence fixing the K–dimension
of K + Kx.

Proof: The only terms with constants in K ∪ {X} which can be built up in the vector
space language, are just the linear polynomials in X with coefficients in K. Hence it
suffices to show that “ v(a1X +b1) ≥ v(a2X +b2)” with a1, a2, b1, b2 ∈ K is a consequence of
S(appr(x,K)) together with the elementary diagram D of (K, v), if v(a1x+b1) ≥ v(a2x+b2)
holds in K +Kx, and that the same is true for “ v(a1X +b1) > v(a2X +b2)”. After division
by a1 and a2 we have to deal with the sentence “ v(X + c1) + v(a1) ≥ v(X + c2) + v(a2)”
resp. “ v(X + c1) + v(a1) > v(X + c2) + v(a2)” where c1 = b1/a1 and c2 = b2/a2. Let
us first assume that appr(x,K) is value–immediate. Then by the foregoing lemma, there
are elements d1, d2 ∈ K such that the sentences “ v(X − ci) = v(di)”, i = 1, 2, belong to
S=(A). If v(a1x + b1) ≥ v(a2x + b2) holds in K + Kx, then v(d1) + v(a1) ≥ v(d2) + v(a2)
holds in K, and the corresponding sentence is contained in D (and similarly for “ >”
in the place of “≥”). Now these sentences imply “ v(a1X + b1) ≥ v(a2X + b2)” resp.
“ v(a1X + b1) > v(a2X + b2)”.

Now assume that appr(x,K) is not value–immediate. Let c0 ∈ K be as in the foregoing
lemma. If both v(c1 − c0) and v(c2 − c0) are elements of Λ(A), then the proof works
like above. If both v(c1 − c0) and v(c2 − c0) are not elements of Λ(A), then v(x − c1) =
v(x− c0) and v(x− c2) = v(x− c0), and the corresponding sentences in L(K, X) are logical
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consequences of S(A), as shown in the foregoing lemma. It follows that v(x−c1) = v(x−c2),
and if v(a1x + b1) ≥ v(a2x + b2) holds in K + Kx, then v(a1) ≥ v(a2) holds in K, and
the corresponding sentence is contained in D (and similarly for “ >” in the place of “≥”).
Consequently, the sentences “ v(a1X+b1) ≥ v(a2X+b2)” resp. “ v(a1X+b1) > v(a2X+b2)”
are shown to be consequences of S(A) ∪D in the present case.

Finally, we have to discuss the remaining case where only one of the values v(c1 − c0),
v(c2 − c0) belong to Λ(A). We distinguish the following two cases:

case 1: Only v(c1 − c0) belongs to Λ(A). According to the foregoing lemma, v(x− c1) =
v(c1 − c0) and v(x − c2) = v(x − c0), and the corresponding L(K, X)–sentences are con-
sequences of S(A). Since v(a1), v(a2) ∈ v(K) and v(x − c1) = v(c1 − c0) ∈ v(K), it
follows that v(x− c1) + v(a1) 6= v(x− c2) + v(a2) because the foregoing lemma shows that
v(x−c2) /∈ v(K). So we only have to deal with the case v(x−c1)+v(a1) > v(x−c2)+v(a2),
i.e.

v(x− c0) = v(x− c2) < v(c1 − c0) + v(a1)− v(a2) .

We choose d ∈ K such that v(d) = v(c1 − c0) + v(a1) − v(a2) so that the corresponding
sentence is contained in D. Then “ v(X − c0) < v(d)”∈ S<(A) ⊂ S(A). Both sentences
together with those that we have noted above, imply “ v(a1X − b1) > v(a2X − b2)” and
thus also “ v(a1X − b1) ≥ v(a2X − b2)”.

case 2: Only v(c2 − c0) belongs to Λ(A). This is the same as the first case, except that
the role of c1 and c2 is exchanged and thus “ <” is replaced by “ >”. 2

If appr(x,K) is immediate, the valuation may be determined even on much larger sub-
vectorspaces of K(x) which actually depend on the degree of appr(x,K). For this, see
Corollary 12.37 below.

12.2 The approximation type version of the theory of pseudo
Cauchy sequences.

We will now develop the theory of immediate approximation types over a valued field
(K, v). In view of Lemma 12.12, we may always assume that A = appr(x,K), i.e. that A
is realized by x in an extension (K(x), v) of (K, v).

The proof of the following lemma for arbitrary approximation types is straightforward:

Lemma 12.24 For every c ∈ K,

appr(x + c,K)α = c + appr(x,K)α ,

appr(x + c,K)◦α = c + appr(x,K)◦α ,

dist(x + c, K) = dist(x,K) ,

appr(cx, K)α+v(c) = c · appr(x,K)α ,

appr(cx, K)◦α+v(c) = c · appr(x,K)◦α ,

v(c) + dist(x,K) = dist(cx,K) .

Furthermore, we note:

Lemma 12.25 (cf. Lemma 3 of [KAP])
Let x, y be elements of a valued field extension of the valued field (K, v). If v(x − y) ≥
dist(x, K), then

dist(x,K) ≤ dist(y, K) .
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If in addition appr(x,K) is immediate, or if v(x− y) > dist(x,K), then

dist(x,K) = dist(y,K) and appr(x,K) = appr(y, K) .

On the other hand,

appr(x,K) = appr(y,K) =⇒ v(x− y) ≥ dist(x,K) .

If dist(x,K) is finitely assumed and appr(x,K) or appr(y, K) is residue–immediate, then

appr(x,K) = appr(y,K) ⇐⇒ v(x− y) > dist(x,K) .

Furthermore, if (K, v) ⊂ (L, v) ⊂ (L(x), v), then

dist(x, L) ≥ dist(x,K) ,

and if “>” holds, then there exists an element y ∈ L with

appr(x,K) = appr(y, K) and dist(x,K) = dist(y, K) .

Proof: Assume that v(x−y) ≥ dist(x,K). Then c ∈ appr(x, K)α implies v(x−c) ≥ α and
thus v(y−c) ≥ α, because v(x−y) ≥ dist(x,K) ≥ α. This shows appr(x,K) ⊆ appr(y, K)
which in particular yields

Λ(appr(x,K)) ⊆ Λ(appr(y,K))

and thus dist(x,K) ≤ dist(y, K).
Assume that v(x− y) > dist(x, K). Then v(y− c) > dist(x,K) would imply v(x− c) ≥

α > dist(x,K) for some α ∈ v(K), a contradiction; this proves dist(x,K) ≥ dist(y,K) and
thus the equality.

Assume that v(x− y) = dist(x,K) and that appr(x,K) is immediate. Then v(y− c) >
dist(x, K) would imply dist(x,K) = v(x − c) ∈ v(K) ∪ {∞}, which in view of part a) of
Lemma 12.5 yields that v(y − c) > dist(x,K) = ∞, a contradiction; again, this shows the
desired equality.

Now assume that v(x − y) ≥ dist(x,K) = dist(y, K). Then c ∈ appr(x,K)α implies
v(x− c) ≥ α and thus v(y− c) ≥ α, because v(x−y) ≥ dist(x,K) ≥ α. Since the situation
is symmetric, this proves

appr(x,K)α = appr(y,K)α

for all α ∈ v(K) ∪ {∞}. From Lemma 12.1 we know that appr(x, K)α determines all sets
appr(x,K)β and appr(x,K)◦β for α > β ∈ v(K). The same holds for y in the place of x,
hence the equalities that we just proved yield appr(x,K) = appr(y, K) if dist(x,K) is not
finitely assumed. If the latter is not the case, our hypothesis says v(x − y) > dist(x,K).
Then c ∈ appr(x,K)◦γ implies v(x − c) > γ and thus v(y − c) > γ, because v(x − y) >
dist(x, K) = γ. Since the situation is symmetric, this proves appr(x,K)◦γ = appr(y, K)◦γ
and completes the proof of appr(x,K) = appr(y, K).

Conversely, assume appr(x,K) = appr(y,K). Then c ∈ appr(x,K)α implies v(x− c) ≥
α and v(y−c) ≥ α and thus v(x−y) ≥ α; since this is true for every α ∈ Λ(appr(x,K)), this
shows v(x−y) ≥ dist(x,K). If dist(x,K) is finitely assumed, hence γ := dist(x,K) ∈ v(K),
and if appr(x,K) is residue–immediate, then

appr(x,K)◦γ 6= ∅ ,
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and c ∈ appr(x,K)◦γ implies v(x− c) > γ and v(y − c) > γ and thus v(x− y) > γ.
The inequality of the distances in the last part of the lemma follows from Lemma 12.6.

If “ >” holds, then there exists a value γ ∈ v(L) with γ > dist(x,K) and an element
y ∈ appr(x, L)γ, i.e. v(x−y) ≥ γ > dist(x,K). Now the assertion appr(x,K) = appr(y, K)
follows from the first part of our lemma. 2

Theorem 12.26 (cf. Theorem 1 of [KAP])
Let L be an immediate extension of K. Then for every element x ∈ L it follows that
A = appr(x,K) is immediate and in particular, v(x) < dist(x,K).

Proof: Let us first show that A is residue–immediate. Assume c ∈ Aα for α ∈
v(K); we have to show that A◦

α 6= ∅. If c ∈ A◦
α, we are done. Otherwise, we know

that v(x − c) = α ∈ v(K), hence there exists d ∈ K such that v(d(x − c)) = 0; now
d(x− c) ∈ L = K, hence there exists d′ ∈ K such that d(x− c)− d′ = 0 which means
v(x− c− d′d−1) > −v(d) = v(x− c). Since c + d′d−1 ∈ K, this shows that A◦

α 6= ∅. If we
set c = 0, we also obtain that v(x) < dist(x,K).

Now we want to show that A is value–immediate. Let c ∈ K. Then v(x − c) ∈
v(L) ∪ {∞} = v(K) ∪ {∞}, and by definition, c ∈ Av(x−c) \A◦

v(x−c). 2

Given an immediate approximation type A = appr(x,K) of an element x over K and
a polynomial f ∈ K[X], the computation of

appr(f(x), K)

plays a key role in the theory of approximation types. The same is to be seen in the theory
of pseudo Cauchy sequences, but it is more clandestine there. We want to concede some
independent interest to this problem and thus we will attack it before using it as a tool in
later proofs.

In the sequel, we will consider the following situation:

A = appr(x, K) is an immediate approximation type
of degree d over K and
p = char(K) > 0 or p = 1 if char(K) = 0,

f ∈ K[X] is a polynomial of degree n = deg(f) ≤ d .





(156)

From this assumption it follows that A fixes the value of every formal derivative fi of f
(i > 0), since every such derivative has a degree < d. So we may define

βi := v(fi(c)) for c ↗ x . (157)

For the convenience of the reader, we will state and prove some lemmata though we will
take them over from Ostrowski and Kaplansky almost without change.

Lemma 12.27 Let β1, ..., βm be any elements of an ordered abelian group Γ, and let Υ ⊂ Γ
an infinite subset without greatest element. Let t1, ..., tm be distinct positive integers. Then
there exists an element λ ∈ Υ and an integer k (1 ≤ k ≤ m) such that

βi + ti · γ > βk + tk · γ
for all i 6= k and all γ ∈ Υ, γ > λ.
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For the proof, see [OS], p. 371, IV. In view of Corollary 12.2 and of part a) of Corollary 12.5,
we may derive the following corollary:

Corollary 12.28 Let A = appr(x,K) be immediate. If β1, ..., βm and t1, ..., tm are as in
the preceding lemma, then for c ↗ x,

βi + ti · v(x− c) 6= βj + tj · v(x− c)

whenever i 6= j. Hence there exists an integer k (1 ≤ k ≤ m) such that

βi + ti · v(x− c) > βk + tk · v(x− c)

for all i 6= k and c ↗ x.

Lemma 12.29 If p is prime and r is a positive integer prime to p, r > 1, then
(

ptr
pt

)

is prime to p, for any integer t ≥ 0.

Proof: (
ptr
pt

)
=

ptr(ptr − 1) · ... · (ptr − pt + 1)

pt(pt − 1) · ... · 1
In the numerator of this fraction, the first factor ptr is divisible by precisely pt, while the
remaining factors ptr − m, 1 ≤ m ≤ pt − 1, are not divisible by pt. Hence, for every
such factor occuring in the numerator, the corresponding factor ptr−m− pt(r− 1) which
occurs in the denominator will be divisible by p to precisely the same power. This gives
the desired result. 2

From now on we will assume (156) together with definition (157) of the
values βi.

Lemma 12.30 If i = pt, j = ptr with r > 1, (r, p) = 1, then

βi + i · v(x− c) < βj + j · v(x− c)

for c ↗ x.

Proof: We form a Taylor expansion for fi(x) (cf. [KAP1], equation (10), p. 310):

fi(x)− fi(c) = (i + 1)(x− c)fi+1(c) + ...

. . . +

(
j
i

)
(x− c)j−ifj(c) + ... +

(
n
i

)
(x− c)n−ifn(c) .

For c ↗ x, the values v(fi+1(c)), ..., v(fn(c)) will be be equal to βi+1, . . . , βn as defined in
(157). By Lemma 12.28, among the terms on the right hand side there will be precisely
one which has least value for all c ↗ x. The value of this term must then equal the value
of the left hand side, which in turn is not less than βi if c ↗ x (since then, both values
v(fi(x)) and v(fi(c)) are fixed, but the value v(fi(x) − fi(c)) is not). It follows that the
term (

j
i

)
(x− c)j−ifj(c)
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occuring on the right hand side, must also have value not less than βi for c ↗ x. But by

Lemma 12.29,
(

j

i

)
has value zero. Therefore,

βi ≤ (j − i) · v(x− c) + βj

for c ↗ x. Since Λ(A) contains no greatest element according to Corollary 12.5, “ <” will
hold for c ↗ x in the above inequality, as contended. 2

Corollary 12.31 There is an integer h = h(f) which is a power of p (including the case
h = 1 = p0), such that for all c ↗ x,

βi + i · v(x− c) > βh + h · v(x− c)

for i 6= h, 1 ≤ i ≤ deg(f). Furthermore: for c ↗ x, all values βi+i·v(x−c), 0 ≤ i ≤ deg(f),
are different.

Proof: This is an immediate consequence of Corollary 12.28 and Lemma 12.30. 2

The following lemmata will give more detailed information on h(f).

Lemma 12.32 Let v(x − c) ≥ 0 for c ↗ x. If k is an integer such that among all βi,
i > 0, the value of βk is minimal, then h(f) ≤ k.

Proof: By assumption, we have βj − βk ≥ 0 for all j > 0. h = h(f) is the unique index
with

βh + h · v(x− c) < βi + i · v(x− c)

for every i > 0, i 6= h, and every c ↗ x. Thus

0 ≤ βh − βk ≤ (k − h) · v(x− c)

for c ↗ x which in view of v(x−c) ≥ 0 for c ↗ x yields k−h ≥ 0 which is the assertion. 2

Lemma 12.33 Let p ≥ 2 and

f(x) =
n∑

i=1

cix
i ∈ K[x]

with v(x) = 0. Assume that there exists i0 > 0 such that v(ci0) < v(ci) for all i > 0, i 6= i0,
and write i0 = jpm with (p, j) = 1. Then h(f) ≤ pm, and for every c with v(c) = 0 we
have v(fh(c)) ≥ v(ci0).

Proof: For every k ≥ 0 we have

fk(X) =
n∑

i=k

(
i
k

)
ciX

i−k ,

hence for v(c) = 0 and k ≥ 1,

v(fk(c)) ≥ min
k≤i≤n

v

((
i
k

)
cic

i−k

)
≥ v(ci0) .
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By Lemma 12.29, the binomial coefficient
(

jpm

pm

)

is not divisible by p which shows that

v(fpm(c)) = v(ci0) .

Observe that for all c ↗ x we have v(c) = 0 since v(x) = 0; this yields

βpm = v(ci0) ≤ βi

for all i > 0. The foregoing lemma now gives our assertion. 2

Corollary 12.34 Let f(x) and h be as in the foregoing lemma and e ≥ 1. If for all i with
pe|i the coefficient ci is equal to zero, then h < pe.

In the following lemmata, we will give a more precise version of Kaplanskys Lemmata
8 and 9.

Lemma 12.35 There is an integer h = h(f), 1 ≤ h ≤ deg(f), which is a power of p, such
that

∀c ∈ K, c ↗ x : v(f(x)− f(c)) = βh + h · v(x− c) < βi + i · v(x− c) (158)

whenever i 6= h, 1 ≤ i ≤ deg(f); hence

∀c ∈ K, c ↗ x : c ∈ appr(x,K)γ ⇐⇒ f(c) ∈ appr(f(x), K)βh+h·γ (159)

In particular,

dist(f(x), K) ≥ distK(f(x), f(K)) = βh + h · dist(x,K) ,

and distK(f(x), f(K)) is not finitely assumed by an element of K.

Proof: We consider the Taylor expansion

f(x)− f(c) = (x− c)f1(c) + ... + (x− c)nfn(c) (160)

with c ∈ K. According to Corollary 12.31, there exists an integer h = h(f) which is a
power of p, such that the value v(f(x) − f(c)) of the right hand side will be equal to the
value h · v(x − c) + v(fh(c)) of the left hand side, for c ↗ x. This yields equations (158)
and (159) as well as

distK(f(x), f(K)) ≥ h · dist(x,K) + βh ,

while dist(f(x), K) ≥ distK(f(x), f(K)) follows from the definition of the distance. It
remains to prove

distK(f(x), f(K)) = h · dist(x,K) + βh .

If dist(x,K) = ∞, this equality follows immediately from the inequality that we have
already proved. So let us assume from now on that dist(x,K) < ∞. In order to deduce a
contradiction, assume that there exists an element c0 ∈ K such that

v(f(x)− f(c0)) ≥ h · dist(x, K) + βh ,
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or equivalently,
v(f(x)− f(c0)) > v(f(x)− f(c))

for all c ↗ x, hence

v(f(c0)− f(c)) = min{v(f(x)− f(c)), v(f(x)− f(c0))}
= v(f(x)− f(c))

for all c ↗ x. Replacing x by c0 in the Taylor expansion (160) and using the above
computation for the value of v(f(x)− f(c)), we find

v((c− c0)f1(c0) + ... + (c− c0)
nfn(c0)) = v(f(c0)− f(c))

= v(f(x)− f(c))

= h · v(x− c) + v(fh(c))

for all c ↗ x. By our assumption dist(x,K) < ∞, we know from part a) of Corollary 12.5
that v(x− c0) < dist(x,K), hence v(c− c0) will be equal to v(x− c0) and thus fixed for all
c ↗ x. On the other hand, the value h · v(x − c) + v(fh(c)) is not fixed for c ↗ x, so we
may conclude that the value

v(f1(c0)) + (c− c0)f2(c0) + ... + (c− c0)
n−1fn(c0))

is not fixed for c ↗ x which proves the existence of a polynomial of degree n − 1 whose
value is not fixed by A = appr(x,K). But n − 1 = deg(f) − 1 which by hypothesis is
smaller than the degree of A, a contradiction. This proves the desired equality, and it
shows that distK(f(x), f(K)) is not finitely assumed. 2

Lemma 12.36 Let A, f and h be as above. If A fixes the value of f , then v(f(x)) =
v(f(c)) for c ↗ x, and if deg(f) < d, then appr(f(x), K) is an immediate approximation
type over K with

dist(f(x), K) = distK(f(x), f(K)) = βh + h · dist(x,K) ;

appr(f(x), K) is thus determined by (159), in the sense of Lemma 12.21.

Proof: Let A fix the value of f . In this case, the value of the right hand side of (160)
can only eventually increase if v(f(x)) = v(f(c)) for c ↗ x. Now assume deg(f) < d.
To show dist(f(x), K) = distK(f(x), f(K)), we have to show that for every c′ ∈ K there
exists an element c ∈ K such that v(f(x)− f(c)) ≥ v(f(x)− c′). Since deg(f(X)− c′) =
deg(f(X)) < d, A fixes the value of f − c′. From what we have just shown, putting f − c′

in the place of f , we infer that v(f(x) − c′) = v(f(c) − c′) for c ↗ x. Consequently, for
such element c ∈ K we get

v(f(x)− f(c)) ≥ min{v(f(x)− c′), v(f(c)− c′)} = v(f(x)− c′) ,

as desired. It follows that dist(f(x), K) = βh + h · dist(x,K) is not finitely assumed by an
element of K, since dist(x,K) is not finitely assumed by an element of K, as is shown in part
a) of Corollary 12.5. According to part c) of Corollary 12.5, this shows that appr(f(x), K)
is residue–immediate. To show that it is value–immediate, assume c′ ∈ K. By what we
have shown above, there is c ∈ K such that α := v(f(x)− c′) = v(f(c)− c′) ∈ v(K), hence
c′ ∈ appr(f(x), K)α \ appr(f(x), K)◦α. This proves that appr(f(x), K) is value–immediate.
Altogether, we have shown that appr(f(x), K) is immediate. 2
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Corollary 12.37 Let A = appr(x,K) be an immediate approximation type of degree d
over K. Then the valued vector space over K generated by the set {xi | 0 ≤ i < d}
has v(K) as its value set and K as its residue set; in this sense, it is immediate over
K; moreover, its valuation is uniquely determined by A. In particular, if d = ∞ or if
d = [K(x) : K] < ∞, then K[x]|K is immediate and the same is consequently true for
K(x)|K.

Proof: Firstly, we have to show that v(f(x)) ∈ v(K) for every f ∈ K[X] with
deg(f) < d. But this is an immediate consequence of the preceding lemma which states
that v(f(x)) = v(f(c)) ∈ v(K) for c ↗ x.
Secondly, we have to show f(x) ∈ K for every f ∈ K[X] with deg(f) < d and v(f(x)) = 0.
We choose c ↗ x such that

0 = v(f(x)) = v(f(c)) .

From the preceding lemma we know that appr(f(x), K) is an immediate approximation
type over K; in particular, we may infer from part a) of Corollary 12.5 that dist(f(x), K)
is not assumed by an element of K. Hence 0 ≤ v(f(x) − f(c)) < dist(f(x), K) and
consequently there exists an element cf ∈ K such that v(f(x) − cf ) > 0 which yields
f(x) = cf ∈ K. 2

Lemma 12.38 Let A, f and h be as above. Assume that A does not fix the value of f ,
hence deg(f) = d. Then

v(f(x)) ≥ v(f(c)) = βh + h · v(x− c) for every c ↗ x

and consequently,

v(f(x)) ≥ distK(f(x), f(K)) = βh + h · dist(x,K) .

In particular, this yields v(f(x)) > v(f(c)) for all c ∈ K, c 6= x.
If d = 1 and f(X) = X − c0 with c0 ∈ K, then c0 = x and A is realized by c0 in K.

Conversely, if A is realized by the element c0 ∈ K, then x = c0 and A does not fix the
value of X − c0 and thus, d = 1.

Proof: Assume that A does not fix the value of f , i.e. deg(f) = d since deg(f) ≤ d by
hypothesis (156). We rewrite (160) as follows:

−f(c) = (x− c)f1(c) + ... + (x− c)nfn(c)− f(x) .

In view of the fact that the value of the right hand side of (160) tends to βh +h ·dist(x,K),
this equation shows that appr(x,K) fixes the value of f whenever v(f(x)) < βh + h ·
dist(x, K). In our present case, this proves v(f(x)) ≥ βh + h · dist(x,K). Since by hy-
pothesis, A is immediate and according to part a) of Corollary 12.5, dist(x,K) is thus not
finitely assumed by an element of K, we have v(f(x)) > v(f(c)) = βh + h · v(x − c) for
every c ↗ x, c 6= x. Together with Lemma 12.35, this proves the first part of our lemma.

Now assume that d = 1 and f(X) = X − c0 with c0 ∈ K. Then h = 1 and βh = 0
and by what we have just proved, we conclude that v(x− c0) = v(f(x)) ≥ dist(x,K), and
by definition of the distance, “ =” must hold. This shows that the distance is assumed
by c0 ∈ K. But the distance is not finitely assumed since appr(x,K) is immediate. We
conclude that v(x− c0) = ∞, i.e. x = c0 and appr(x,K) is thus realized by c0 in K.
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Conversely, assume that the approximation type A is realized by the element c0 ∈ K,
hence A = appr(c0, K) and by Lemma 12.4, x = c0. For every element c ∈ Aα \A◦

α, we
have v(f(c)) = v(c − c0) = α which shows that A does not fix the value of X − c0. This
also shows that d = 1. 2

In the case deg(f) = d we can only say that appr(f(x), f(K)) is determined by (159);
it may happen that

dist(f(x), K) > distK(f(x), f(K)) .

As an example, take x to be an Artin–Schreier–root of t−1 over K =
√

IFp(t), valued such

that t/v = 0. For f(X) = Xp −X − t−1, we have distK(f(x), f(K)) = dist(x, K) = 0, but
dist(f(x), K) = ∞ since f(x) = 0.

If on the other hand, (K, v) is existentially closed in (K(x), v) (which is the situation
of Lemma 12.12), then these difficulties do not appear:

Lemma 12.39 Let A, f and h be as above. Assume that A does not fix the value of f
and that (K, v) ≺∃ (K(x), v). Then
dist(f(x), K) is not finitely assumed by an element of K,

dist(f(x), K) = distK(f(x), f(K)) = βh + h · dist(x,K)

and consequently, appr(f(x), K) is determined by (159), in the sense of Lemma 12.21.
However, appr(f(x), K) is not value–immediate, and v(f(x)) realizes the cut dist(f(x), K)
in v(K(x)).

Proof: Assume that there are elements c, d ∈ K such that∞ > v(d) ≥ distK(f(x), f(K))
and v(f(x)− c) ≥ v(d). Then the existential sentence

∃x : v(f(x)− c) ≥ v(d)

with constants from K holds in (K(x), v), and by hypothesis, it must also hold in (K, v),
hence there is c′ ∈ K with v(f(c′) − c) ≥ v(d) which yields v(f(x) − f(c′)) ≥ v(d) ≥
distK(f(x), f(K)), and by definition of the distance, equality must hold here. But this is a
contradiction since this distance is not finitely assumed, according to Lemma 12.35. This
contradiction shows that dist(f(x), K) is not finitely assumed by an element of K and that
dist(f(x), K) = distK(f(x), f(K)). On the other hand, we know from Lemma 12.38 that

v(f(x)) ≥ distK(f(x), f(K)) = dist(f(x), K) .

Putting c = 0 in our above proof, we find that v(f(x)) /∈ v(K) (since the existence of d
would yield a contradiction), so A cannot be value–immediate. Moreover, we find that
there exists no element of v(K) which lies between v(x) and Λ(A) (in v(K(x)) ), i.e. v(x)
realizes the cut dist(f(x), K) in v(K(x)). 2

It can even be shown that f(x) is algebraically valuation–independent over K. For this,
cf. Corollary 12.47 below.

Up to this point, we only considered polynomials of degree ≤ d. To give a description
of the behaviour of polynomials of higher degree, we assume that A = appr(x,K) is an
approximation type of degree d < ∞ and that f ∈ K[X] is of degree d such that A does
not fix the value of f . Any polynomial g ∈ K[X] of arbitrary degree may be written in a
unique way as

g(X) = f(X)kck(X) + ... + f(X)c1(X) + c0(X) (161)

with polynomials ci ∈ K[X] of degree < d and k a nonnegative integer.
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Lemma 12.40 Let g(x) be given as in (161). Then there exists an integer m, 0 ≤ m ≤ k,
such that for every i 6= m and all c ↗ x,

m · v(f(c)) + v(cm(c)) = v(f(c)mcm(c))

< v(f(c)ici(c)) = i · v(f(c)) + v(ci(c))

with constant values v(cm(c)) = v(cm(x)), v(ci(c)) = v(ci(x)). If A fixes the value of g,
then m = 0 and

v(g(x)) = v(g(c)) = v(c0(c)) = v(c0(x))

for c ↗ x. If A does not fix the value of g, then m ≥ 1 and

v(g(x)) > v(g(c)) = m · v(f(c)) + v(cm(c))

for c ↗ x, c 6= x.

Proof: From Lemma 12.38 we know that v(f(c)) = h · v(x − c) + βh for some integer
h and every c ↗ x, where the value βh = v(fh(c)) is fixed for c ↗ x. Since the ci are
polynomials of degree < d, their values will also be fixed for c ↗ x. Hence we may write

v(f(c)ici(c)) = i · h · v(x− c) + β′i .

From Corollary 12.28 we infer that for c ↗ x, there is exactly one integer m, 1 ≤ m ≤ k,
such that v(f(c)mcm(c)) is the least value among all values v(f(c)ici(c)), 1 ≤ i ≤ k. This
value is not fixed for c ↗ x. Consequently, if A fixes the value of g, it must be greater
than the (fixed) value of c0(c) for c ↗ x, which yields v(g(c)) = v(c0(c)) = v(c0(x)). From
Lemma 12.38 we know that v(f(x)) > v(f(c)) for all c ↗ x, c 6= x, hence v(f(x)ici(x)) >
v(f(c)ici(c)) for all 1 ≤ i ≤ k and c ↗ x, c 6= x. This proves v(g(x)) = v(g(c)).

If A does not fix the value of g, then v(f(c)mcm(c)) < v(c0(c)) and

v(g(c)) = v(f(c)mc0(c)) = m · v(f(c)) + v(cm(c)) = m · h · v(x− c) + β′m

for all c ↗ x. The inequality v(g(x)) > v(g(c)) for c ↗ x is seen as follows. We have
stated already that v(f(x)ici(x)) > v(f(c)ici(c)) for all 1 ≤ i ≤ k and c ↗ x, c 6= x, which
implies

v(g(x)) ≥ min{v(f(x)kck(x)), ..., v(f(x)c1(x)), v(c0(x))}
> min{v(f(c)kck(c)), ..., v(f(c)c1(c)), v(c0(c))} = v(g(c))

in view of v(f(c)mcm(c)) < v(c0(c)). This completes the proof of our lemma. 2

This lemma also gives some information about appr(g(x), K):

Corollary 12.41 Let the assumptions be as in the foregoing lemma. If A fixes the value
of g − c∗ for every c∗ ∈ K, then

appr(g(x), K) = appr(c0(x), K) .

If on the other hand, there exists an element c∗ ∈ K such that A does not fix the value of
the polynomial g − c∗, then there exists an integer m, 1 ≤ m ≤ k, such that

∀c ∈ K, c ↗ x :

c ∈ appr(x, K)γ ⇐⇒ g(c) ∈ appr(g(x), K)m·v(f(c))+v(cm(c)) (162)
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and
∀c ∈ K, c ↗ x : v(g(x)− c∗) > v(g(c)− c∗) ;

and consequently,

dist(g(x), K) ≥ distK(g(x), g(K)) ≥ m · distK(f(x), f(K)) + β(cm) ,

where β(cm) denotes the fixed value of cm(c) for c ↗ x.

Proof: If A fixes the value of g − c∗ for every c∗ ∈ K, then in view of

g(X)− c∗ = f(X)kck(X) + ... + f(X)c1(X) + (c0(X)− c∗) , (163)

it follows from the foregoing lemma that v(g(x) − c∗) = v(c0(x) − c∗) for every c∗ ∈ K
which proves the equality of the approximation types of g(x) and c0(x) in this case.

Now assume that A does not fix the value of g − c∗ for some c∗ ∈ K. In this case, we
infer from the foregoing lemma that

∀c ∈ K, c ↗ x : v(g(x)− c∗) > v(g(c)− c∗) ,

i.e. v(g(x) − g(c)) = v(g(c) − c∗) for c ↗ x. Moreover, the foregoing lemma shows, again
in view of (163), that there exists some integer m, 1 ≤ m ≤ k, such that v(g(c) − c∗) =
m · v(f(c))+ v(cm(c)) for c ↗ x. This shows (162). It follows that distK(g(x), g(K)) ≥ m ·
v(f(c))+v(cm(c)) for all c ↗ x. From Lemma 12.38 we infer that v(f(c)) = v(f(x)−f(c)),
hence distK(g(x), g(K)) ≥ m · distK(f(x), f(K)) + β(cm). 2

Another consequence of the above lemma is the following normal form for polynomials
whose value is fixed by a given approximation type:

Corollary 12.42 Let A = appr(x,K) be an immediate approximation type and g ∈ K[X],
deg(g) = n. Then g may be represented in the form

g(X) =
n∑

i=1

(X − c∗)i c∗i

with suitable elements c∗, c∗0, . . . , c
∗
n ∈ K satisfying

∀i, 1 ≤ i ≤ n : i · v(x− c∗) + v(c∗i ) ≥ v(c∗0) = v(g(c∗)) . (164)

If the value of g is fixed by A, then the elements may be chosen such that in addition,
v(g(c∗)) = v(g(x)) and “≥” may be replaced by “>”.

Proof: For polynomials f of degree deg(f) ≤ d = deg(A), we consider (158) from
Lemma 12.35. From Lemma 12.36 and Lemma 12.38 we know that v(f(x)) ≥ v(f(c)) and
hence v(f(c)) ≤ v(f(x) − f(c)) for c ↗ x. Moreover, if the value of f is fixed by A, we
know that v(f(c)) < v(f(x)− f(c)) for c ↗ x since the latter value is not fixed for c ↗ x,
c 6= x. If we take c∗ to be any such c ↗ x and c∗i = fi(c

∗), these facts prove the assertions
of the lemma in the case of polynomials of degree ≤ d.

Now let f be an associated minimal polynomial for A and let g be given in the form
(161). We may apply to the polynomials f, ci what we have just proved; we find that
there exists an element c∗ such that (164) holds for every monomial f(x)ici(x) in the
place of g(x) (with coefficients c∗i which are derived from the corresponding coefficients
for the polynomials f and ci). If we choose c∗ ↗ x, then we may assume the assertions
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of Lemma 12.40 for c = c∗. In particular, the value of g(c∗) is equal to the value of
exactly one monomial and consequently, it is less or equal to the value of every monomial
(x − c)ic∗i which appears in any of the representations that we have got already for the
monomials f(x)ici(x). Summing up these representations, we thus get a representation
of g(x) which satisfies (164). If in addition, A fixes the value of g, then we know that
v(g(c∗)) = v(c0(c

∗)) = v(g(x)); furthermore, v(c0(c
∗)) is smaller than the value of all other

monomials, and since A fixes the value of c0, inequality (164) holds with “ >” for c0 in the
place of g. This yields that (164) also holds with “ >” for g, if A fixes the value of g. 2

Based on the foregoing corollary, we can give a partial answer to the question: given
f(x) ∈ K[x], which elements g(x) ∈ K[x] have the same approximation type as f(x) over
K?

Corollary 12.43 Let A be an immediate approximation type of degree d and f, g ∈ K[X].
If

g(x) = f(x) +
n∑

i=1

(x− c∗)i c∗i

for some n ∈ IN and elements c∗, c∗0, . . . , c
∗
n ∈ K with

i · v(x− c∗) + v(c∗i ) ≥ dist(f(x), K)

for 0 ≤ i ≤ n, then
appr(f(x), K) = appr(g(x), K) .

If A fixes the value of f − g (which in particular is always the case if deg(f − g) < d, then
g is necessarily of the above form and it may in addition be assumed that

i · v(x− c∗) + v(c∗i ) > v(c∗0)

for 1 ≤ i ≤ n.

Proof: The first part follows from Lemma 12.25, whereas the second part is a consequence
of the preceding corollary. 2

As an immediate consequence of Lemma 12.36, Lemma 12.38 and Lemma 12.40, we get
the following observation:

Corollary 12.44 Let A = appr(x,K) be an immediate approximation type and g ∈ K[X]
be any polynomial. A does not fix the value of g if and only if v(g(x)) > v(g(c)) for every
c ↗ x, c 6= x.

From this corollary and Lemma 12.38 we may derive:

Corollary 12.45 Let L be an immediate extension of K. If x ∈ L is algebraic over K
with minimal polynomial f ∈ K[X], then appr(x,K) does not fix the value of f and is thus
of degree ≤ [K(x) : K]. If this degree is 1, then x ∈ K.

Proof: appr(x,K) is immediate by virtue of Lemma 12.26. By hypothesis, f(x) = 0,
but f(c) 6= 0 for all c ∈ K, c 6= x. Hence v(f(x)) > v(f(c)) for all c ∈ K, and the first
assertion follows by an application of Corollary 12.44. Now assume that appr(x,K) is of
degree 1 over K, and let f(X) = c1X + c2 ∈ K[X] be a polynomial of degree 1 whose value
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is not fixed by appr(x,K). Then also the value of X − c0 is not fixed where c0 = −c2/c1.
By Lemma 12.38 we conclude that x = c0 ∈ K. 2

Again, if (K, v) is existentially closed in (K(x), v) then we can prove much more about
the approximation type and distance of g(x):

Corollary 12.46 Let the hypothesis be as in Lemma 12.40 and assume in addition that
(K, v) is existentially closed in (K(x), v). Furthermore, choose the integer m according to
Lemma 12.40. Then for i 6= m,

m · v(f(x)) + v(cm(x)) = v(f(x)mcm(x))

< v(f(x)ici(x)) = i · v(f(x)) + v(ci(x))

and thus
v(g(x)) = m · v(f(x)) + v(cm(x)) .

Moreover, dist(g(x), K) is not finitely assumed by an element of K,

dist(g(x), K) = distK(g(x), g(K))

= m · distK(f(x), f(K)) + β(cm)

= m · dist(f(x), K) + β(cm) ,

and consequently, appr(g(x), K) is determined by (162), in the sense of Lemma 12.21.
Note in particular that appr(g(x), K) is of the form

dist(g(x), K) = m · h · dist(x,K) + β ,

where β ∈ v(K) and h is the power of p according to Lemma 12.39, applied to f .

Proof: Assume the contrary, i.e. v(f(x)ici(x)) ≥ v(f(x)mcm(x)) for some i 6= m. From
Lemma 12.40 we know that

v(f(c)ici(c)) < v(f(c)mcm(c)) (165)

for all c ↗ x, i.e. for every c ∈ Aα for some suitable α < dist(x,K). We fix some cα ∈ Aα

and some dα ∈ K having value v(dα) = α. Since (K, v) ≺∃ (K(x), v) by hypothesis, the
existential formula

∃x : v(f(x)ici(x)) ≥ v(f(x)mcm(x)) ∧ v(x− cα) ≥ v(dα)

which holds in K(x) (for x), must also hold in K, i.e.

v(f(c)ici(c)) ≥ v(f(c)mcm(c))

for some c which satisfies v(c− cα) ≥ v(dα) = α and thus

v(x− c) ≥ min{v(x− cα), v(c− cα)} ≥ α

which shows c ∈ Aα by (at 3). By this, we have deduced a contradiction to (165). This
contradiction proves the first part of our corollary.

In view of
distK(f(x), f(K)) = dist(f(x), K)
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which we infer from Lemma 12.39, it remains now to prove

dist(g(x), K) = distK(g(x), g(K)) = m · distK(f(x), f(K)) + β(cm)

and that dist(g(x), K) is not finitely assumed by an element of K. By virtue of Lemma 12.40,
we choose α ∈ K, α < dist(x,K) such that v(cm(c)) = v(cm(x)) and v(g(x)) > v(g(c)) =
m · v(f(c)) + v(cm(c)) for all c ∈ K with c ∈ Aα; furthermore, we choose some cα ∈ Aα

and some dα ∈ K with v(dα) = α. To deduce a contradiction, we assume that there exist
elements c′, d′ ∈ K such that v(g(x) − c′) ≥ v(d′) ≥ m · distK(f(x), f(K)) + β(cm). Now
the existential sentence

∃x : v(g(x)− c′) ≥ v(d′) ∧ v(x− cα) ≥ v(dα)

with constants from K holds in (K(x), v), and by hypothesis, it must also hold in (K, v),
hence there is c ∈ K with v(g(c) − c′) ≥ v(d′) and v(c − cα) ≥ v(dα) = α. This yields
c ∈ Aα by (at 3), and

v(g(x)− g(c)) ≥ v(d′) ≥ m · distK(f(x), f(K)) + β(cm) .

On the other hand, by our choice of α, we may conclude that

v(g(x)− g(c)) = v(g(c)) = m · v(f(c)) + v(cm(c))

= m · v(f(x)− f(c)) + v(cm(c))

< m · distK(f(x), f(K)) + β(cm) ,

a contradiction. This contradiction shows that dist(g(x), K) is not finitely assumed by an
element of K and that

dist(g(x), K) ≤ m · distK(f(x), f(K)) + β(cm)

which in view of the inequalities shown in Corollary 12.41, proves the remaining equalities.
2

An immediate consequence of this corollary is the following

Corollary 12.47 Let A and f be as in (156) and assume in addition that (K, v) ≺∃
(K(x), v). If A does not fix the value of f , then f(x) is algebraically valuation–independent
over K and even over the valued ring K[x]<d = {g(x) ∈ K[x] | deg(g) < d}.
Proof: Given any g(x) as in (161), we have to show that

v(g(x)) = min
i

v(f(x)ici(x)) .

But this is just the assertion of the foregoing corollary. 2

Now we are able to show:

Theorem 12.48 (cf. Theorem 2 of [KAP])
For every transcendental immediate approximation type A over (K, v) there exists a simple
immediate extension (K(x), v) such that

appr(x,K) = A .
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For every such extension, x must be transcendental over K, and the following holds for
every g ∈ K[X]:

c ↗ A =⇒ v(g(c)) = v(g(x)) . (166)

If (K(y), w) is another valued field extension of (K, v) such that appr(y, K) = A, then y
is also transcendental over K and the isomorphism between K(x) and K(y) over K which
sends x to y, is valuation preserving.

Proof: According to Lemma 12.12, there exists a purely transcendental extension
(K(x), v) of (K, v) such that A = appr(x,K). By Corollary 12.37, K(x)|K is an im-
mediate extension. Given another element y such that A = appr(x,K) = appr(y, K), we
want to show that the isomorphism between K(x) and K(y) induced by x 7→ y is valuation
preserving. For this, we only have to show that v(g(x)) = v(g(y)) for every g ∈ K[X].
By hypothesis, A fixes the value of every polynomial g ∈ K[X]. From Lemma 12.36 we
may thus infer that v(g(x)) = v(g(c)) = v(g(y)) holds for every c ↗ x; this proves the
desired equality and thereby also (166). In particular, g(x) = 0 ⇐⇒ g(y) = 0 and since x
is transcendental over K, the element y must also be transcendental over K. 2

Theorem 12.49 (cf. Theorem 3 of [KAP])
For every algebraic immediate approximation type A over (K, v) of degree d with associated
minimal polynomial f(X) ∈ K[X] and y a root of f , there exists a prolongation v of the
valuation of K such that (K(y), v) is an immediate extension of (K, v) with appr(y,K) =
A. This prolongation will satisfy

∀g ∈ K[X], deg(g) < d : c ↗ A =⇒ v(g(c)) = v(g(y)) . (167)

If (K(z), v) is another valued field extension of (K, v) such that appr(z, K) = A, then
any field isomorphism between K(y) and K(z) over K which sends y to z, preserves the
valuation. (Note that there exists such an isomorphism if and only if z is also a root of f .)

Proof: By Lemma 12.12 there exists a simple extension (K(x), v)|(K, v) such that
appr(x,K) = A, and by Corollary 12.37 we know that the vector space K⊕Kx⊕...⊕Kxd−1

equiped with the valuation v is immediate over K. Sending x to y, we get an isomorphism
from this vector space onto K(y) = K ⊕Ky⊕ ...⊕Kyd−1, and through this isomorphism,
a vector space valuation v on K(y) may be defined such that the isomorphism is valuation
preserving and hence appr(y, K) = appr(x,K) = A; consequently, it also satisfies property
(167). We have to show that (K(y), v) is a valued field. Since it is already a valued vector
space, we only need to show that v(ab) = v(a)+ v(b) for all elements a, b ∈ K(y). Suppose
a = r(y) and b = s(y) with r, s ∈ K[X] satisfying 0 ≤ deg(r) < d and 0 ≤ deg(s) < d. By
our construction,

v(r(x)s(x)) = v(r(x)) + v(s(x)) = v(r(y)) + v(s(y)) .

Now let g(X) := r(X)s(X) and write g(X) in the form (161). Since r(y)s(y) = c0(y) and
v(c0(y)) = v(c0(x)), it suffices now to show that

v(r(x)s(x)) = v(c0(x)) .

But this is true by Lemma 12.40 since A fixes the values of r and s (because their degree
is < d) and thus also the value of g = rs.
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The last assertion of our theorem is seen like the corresponding assertion of Theo-
rem 12.48: if g ∈ K[X] with deg(g) < d then v(g(y)) = v(g(c)) = v(g(z)) for every c ↗ x.
Hence an isomorphism over K sending y to z will preserve the valuation. 2

As immediate consequences we get:

Corollary 12.50 If K is algebraically maximal and A is an approximation type over K
of degree > 1, then A is transcendental and hence it fixes the value of every polynomial in
K[X].

Corollary 12.51 (cf. Theorem 4 of [KAP])
A valued field K is maximal if and only if for every immediate approximation type A over
K there exists an element a ∈ K such that A = appr(a,K).

As a consequence of Corollary 12.50 and the proof of Lemma 12.35, we note:

Lemma 12.52 Let K be an algebraically maximal field and K(x) a nontrivial immediate
extension of K. Then for every polynomial g(X) ∈ K[X] there exists an integer µ ≥ 0
such that for every i ≥ 1, deg(g) ≥ i 6= pµ:

c ↗ x =⇒ v(gpµ(c)(x− c)pµ

) < v(gi(c)(x− c)i)

where gi denotes the i–th formal derivative of g.

12.3 Classes of associated minimal polynomials

Given an immediate algebraic approximation type A = appr(x,K), we want to consider
the class of all associated minimal polynomials for A, which we will denote by amp(A).
As usual, we let d = deg(A) and fix one associated minimal polynomial f(X) ∈ K[X]. It
turns out that amp(A) contains precisely all normed polynomials g of degree d for which
g(x) has the same approximation type appr(f(x), K) over K as f(x), and they are of a
special form:

Lemma 12.53 Let A and f as described, and let g ∈ K[X]. Then g ∈ amp(A) if and
only if appr(f(x), K) = appr(g(x), K), and this is the case if and only if

g(X) = f(X) +
d−1∑

i=1

(X − c∗)c∗i

for suitable elements c∗, c∗0, . . . , c
∗
d−1 ∈ K which satisfy

i · v(x− c∗) + v(c∗i ) > v(c∗0) ≥ dist(f(x), K) for i = 1, . . . ,d− 1 .

In particular, if g(x) is chosen as in Corollary 12.43 with n < d, then it is also an associated
minimal polynomial for A.

Proof: In view of the fact that if g ∈amp(A), then both f and g are normed polynomials
of degree d and consequently, f−g is of degree < d, the entire lemma is just an application
of Corollary 12.43. 2
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Corollary 12.54 If the distance of A = appr(x,K) is ∞, then A admits a unique associ-
ated minimal polynomial which is the minimal polynomial of x over K, and the K[X]–ideal
generated by this polynomial is equal to the set of all polynomials g ∈ K[X] whose value is
not fixed by A.

Proof: If A has distance ∞, then Lemma 12.35 shows that

dist(f(x), K) = ∞ .

In view of the foregoing lemma we conclude that f is the only associated minimal poly-
nomial for A. From Lemma 12.38 we know that v(f(x)) = ∞, i.e. f(x) = 0. Since f is
irreducible over K (cf. page 35), this shows that f is the minimal polynomial of x over K.
Furthermore, any polynomial g may be represented in the form (161) (cf. page 177), and
Lemma 12.40 shows that A fixes the value of g 6≡ 0 if and only if c0(X) 6≡ 0 (since in this
case, the values of all terms except c0(c) tend to ∞ for c ↗ x). But c0(X) ≡ 0 holds if
and only if g lies in the K[X]–ideal generated by f . 2

Now we want to determine easy normal forms for associated minimal polynomials. The
idea is to generalize Kaplansky’s Lemma 10 (cf. [KAP], p. 311) to general rank, using the
fact that henselian fields are separable–algebraically closed in their completion:

Lemma 12.55 If K is a henselian field of arbitrary rank, then Kc∩K̃ is purely inseparable
over K.

Proof: Assume that Kc ∩ K̃ contains a nontrivial finite separable extension L of K.
Take N to be the normal hull of L over K. Let v be prolongated to N.Kc (in fact,
this prolongation is uniquely determined since by Lemma 5.12, Kc is henselian too). Let
a ∈ L \K and let b 6= a be a conjugate of a over K. Then

∞ 6= v(a− b) ∈ v(N.Kc) ⊂ v(K̃c) = v(K̃) ,

hence there is an element α ∈ v(K) with α ≥ v(a − b), and since a ∈ Kc, there is an
element c ∈ K with v(a− c) > α ≥ v(a− b). For σ ∈ Gal(L|K) with σa = b, this yields

v(σ(a− c)) = v(b− c) = min{v(a− b), v(a− c)} = v(a− b) < v(a− c) ,

showing that v and v ◦ σ are two distinct prolongations of the valuation v from K to N ,
a contradiction to our hypothesis that K should be henselian. This contradiction proves
that Kc ∩ K̃ is purely inseparable over K. 2

Furthermore, we need the following details and definitions about cuts in ordered abelian
groups:

Lemma 12.56 Let δ = (Λ, Λ′) be a cut in the ordered abelian group Γ. Then the set

I(δ, Γ) := {γ ∈ Γ | γ + Λ = Λ}
is a convex subgroup of Γ. Λ/I is again an initial segment of the ordered abelian group
Γ/I. Let δ/I denote the corresponding cut (Λ/I, Γ/I \ Λ/I) in the ordered abelian group
Γ/I. Then for every α ∈ Γ,

α ≥ δ ⇐⇒ α/I ≥ δ/I
α > δ ⇐⇒ α/I > δ/I

185



and δ/I = (Λ/I, Λ′/I). Moreover,

I(δ/I, Γ/I) = {0} .

Furthermore, if i is a nonzero integer and γ ∈ Γ, then

I(i · δ + γ, Γ) = I(δ, Γ) .

Proof: We abbreviate I = I(δ, Γ). The straightforward proof that I is a group, is left
to the reader. It remains to show that I is convex in Γ. Since Λ is an initial segment of
Γ, we have Λ + α ⊆ Λ + β whenever α ≤ β. Hence if α, β ∈ I and γ ∈ Γ with α ≤ γ ≤ β,
then

Λ = Λ + α ⊆ Λ + γ ⊆ Λ + β = Λ

which shows that Λ + γ = Λ, i.e. γ ∈ I. This proves that I is convex in Γ. Thus Γ/I is
again an ordered abelian group, and the natural epimorphism “ /I” preserves the relation
“≥”. From this it follows that Λ/I is again an initial segment of Γ/I and that Λ/I ≤ Λ′/I.
Moreover, it shows

α ≥ δ =⇒ α/I ≥ δ/I
α > δ ⇐= α/I > δ/I .

It remains to show the converses. If α/I ≥ δ/I, then there must exist an element γ ∈ I
such that α + γ ≥ δ, hence α ≥ δ − γ = δ by definition of I. If α/I ≤ δ/I, then there
must exist an element γ ∈ I such that α+ γ ≤ δ, hence α ≤ δ− γ = δ. Now it also follows
that Γ/I \ Λ/I = Λ′/I, hence δ/I = (Λ/I, Λ′/I).

The fact that the invariance subgroup of δ/I is trivial, is seen as follows: if γ/I+δ/I =
δ/I for an element γ ∈ Γ, this means that

γ + I + Λ + I = Λ + I ,

and in view of Λ + I = Λ, this yields γ + Λ = Λ, i.e. γ ∈ I and thus γ/I = 0.
Finally, let i be a nonzero integer and γ ∈ Γ. The already proved property of an

invariance subgroup to be a convex subgroup shows that α ∈ I(i · δ) ⇐⇒ i · α ∈ I(i · δ).
Using this, we compute

α + Λ = Λ ⇐⇒ i · α + i · Λ = i · Λ
⇐⇒ α + i · Λ = i · Λ
⇐⇒ α + i · Λ + γ = i · Λ + γ .

For positive i, this proves I(i · δ + γ, Γ) = I(δ, Γ). For negative i, we thus have

I(i · δ + γ, Γ) = I((−i) · (−δ) + γ, Γ) = I(−δ, Γ) ,

and it remains to show that
I(δ, Γ) = I(−δ, Γ) .

Since (Λ, Λ′) is a partition of Γ, we have α + Λ = Λ if and only if α + Λ′ = Λ′. The latter
is true if and only if α + −Λ′ = −Λ′. Hence α is an element of I(δ, Γ) if and only if it is
an element of I(−δ, Γ); this proves the desired equality. 2
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I(δ, Γ) will be called the invariance subgroup of the cut δ in Γ; we will also denote it
by I(δ) if there is no danger of confusion. If Λ/I admits a maximal element, then the cut
δ will be called a weakly distinguished cut. If in this case, δ is the distance of an approxi-
mation type A, then A will be called a weakly distinguished approximation type. If Λ/I
admits 0/I as maximal element (which implies that 0/I realizes the cut δ/I(δ) ), then the
cut δ will be called a distinguished cut, and A will be called a distinguished approximation
type. This name is chosen since distinguished approximation types are corresponding to
distinguished pseudo Cauchy sequences in the sense of Ribenboim [RIB1], p. 105.

Lemma 12.57 Let δ = (Λ, Λ′) be a cut in the ordered abelian group Γ, i a positive integer
and γ ∈ Γ. Then δ is weakly distinguished if and only if i · δ + γ is, and both cuts have
the same invariance subgroup I; moreover, if γδ/I is a maximal element of Λ/I for some
γδ ∈ Γ (which implies that δ/I is realized by γδ/I), then (i ·γδ +γ)/I is a maximal element
of i · Λ + γ (which implies that i · δ + γ is realized by (i · γδ + γ)/I).

If δ is weakly distinguished, and γδ ∈ Γ such that γδ/I is the maximal element of Λ/I,
then the distinguished cut δ − γδ = (Λ− γδ, Λ

′ − γδ) is represented by the convex subgroup
I = I(δ) of Γ, i.e. I is cofinal in Λ−γδ. Conversely, if there exists an element γδ ∈ Γ and
a convex subgroup I of Γ such that I is cofinal in Λ − γδ, then δ is weakly distinguished
with I = I(δ) and γδ/I is the maximal element of Λ/I.

Proof: From Lemma 12.56 we infer I(i · δ + γ) = I(δ), whence

(i · Λ + γ)/I(i · δ + γ) = i · Λ/I(δ) + γ/I(δ)

which for positive i shows that Λ/I(δ) admits γδ/I(δ) as maximal element if and only if
(i · Λ + γ)/I(i · δ + γ) admits (i · γδ + γ)/I(δ) as maximal element. This proves the first
part of our assertion.

Now assume δ to be a weakly distinguished cut and γδ ∈ Γ such that γδ/I is the
maximal element of Λ/I. Consequently, (Λ−γδ)/I admits 0/I as maximal element which
shows that δ− γδ is distinguished. In particular, (Λ− γδ)/I contains no positive elements,
i.e. there are no elements β ∈ Λ − γδ with β > I. Now let β ∈ I. Note that w.l.o.g. γδ

may be chosen to be an element of Λ. Then 0 = γδ − γδ ∈ Λ− γδ, and since β + Λ = Λ, β
being an element of the invariance subgroup I of δ in Γ, we find

β = β + 0 ∈ β + (Λ− γδ) = (β + Λ)− γδ = Λ− γδ .

Since β ∈ I was arbitrary, we deduce that I ⊂ Λ−γδ. Together with what we have shown
before, this proves that I is a final segment of Λ− γδ and hence cofinal in Λ− γδ.

Now assume that there exists an element γδ ∈ Γ and a convex subgroup I of Γ such
that I is cofinal in Λ− γδ. In view of the first assertion of our lemma that we have already
proved, and in view of the equality I(δ − γδ) = I(δ), we may assume w.l.o.g. that γδ = 0.
Thus we have to show that I is the invariance subgroup of the cut which is represented by
I. But this is immediately seen to be true since the biggest convex subgroup I ′ of Γ such
that I + I ′ is cofinal in I, is just I. 2

The following lemma deals with a characteristic interval Uδ that we use in section 4.

Lemma 12.58 Given a negative cut δ = (Λ, Λ′) in Γ (i.e. 0 ∈ Λ′), the set

Uδ = {α ∈ Γ | Λ < α < −Λ}
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is an interval in Γ containing 0 and closed under α 7→ −α. We find

Uδ = Λ′ ∩ −Λ′ .

If Uδ is a group, hence a convex subgroup of Γ, then

Uδ = I(δ) = I(−δ) ,

and −δ is a distinguished cut. If in addition, Γ is divisible, then δ is not weakly distin-
guished.

Conversely, if −δ is distinguished, then δ is a negative cut, and

I(δ) = Uδ = {α ∈ Γ | δ < α < −δ} .

Proof: Since 0 ∈ Λ′ by hypothesis, we have Λ < 0 and 0 = −0 < −Λ, hence 0 ∈ Uδ. If
Λ < α < −Λ, then Λ = −(−Λ) < −α < −Λ which proves that Uδ is closed under α 7→ −α.
Since α > Λ ⇔ α ∈ Λ′, the latter shows

α ∈ Uδ ⇐⇒ α ∈ Λ′ ∧ −α ∈ Λ′ ,

whence Uδ = Λ′ ∩ −Λ′. Consequently, if Uδ is nonempty, then it is cofinal in −Λ′. If in
addition Uδ is a group, then by Lemma 12.57, Uδ is the invariance subgroup of −δ in Γ, and
−δ is weakly distinguished with −δ/I(−δ) = 0, hence distinguished. By Lemma 12.56,
I(δ) = I(−δ). Furthermore, let Γ be divisible; then so is Γ/I(δ). From Lemma 12.56
we know that (Λ/I(δ), Λ′/I(δ)) is a cut in Γ/I(δ), and from Lemma 12.57 we infer that
0/I(δ) is the maximal element of −Λ′/I(δ), hence the minimal element of Λ′/I(δ). Since
Γ/I(δ) is divisible, this shows that Λ/I(δ) has no maximal element and thereby proves
that δ is not weakly distinguished.

For the converse, assume that −δ = (−Λ′, Λ) is distinguished. Then by Lemma 12.57,
I(δ) is cofinal in −Λ′. In particular, this shows that −Λ′ contains nonnegative elements,
hence −δ is a positive and δ is a negative cut. Furthermore, we may deduce that −Λ′

admits no maximal element and Λ′ admits no least element, which yields

Uδ = {α ∈ Γ | δ < α < −δ} .

Finally, since both Uδ and I(δ) are cofinal in −Λ′ and are closed under α 7→ −α, we
conclude that

Uδ = I(δ) .

2

For the investigation of associated minimal polynomials, we need a further lemma.

Lemma 12.59 Given the cut δ = (Λ, Λ′) in the ordered abelian group Γ, let 0 < η /∈ I(δ).
Then there exists an element γ ∈ Λ such that γ + η > Λ (i.e. γ + η ≥ δ).

Proof: Since η /∈ I, we have Λ 6= Λ + η. On the other hand, Λ ⊂ Λ + η since Λ is an
initial segment and η > 0 by hypothesis. Consequently, there exists an element in Λ+η \Λ
which we may write as γ + η for some element γ ∈ Λ. Since Λ is an initial segment, it
follows that γ + η > Λ, as asserted. 2
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Lemma 12.60 Given the cut δ = (Λ, Λ′) in the ordered abelian group Γ, suppose that δ is
not weakly distinguished. Let i, j be natural numbers, j > i > 0, and αi, αj ∈ Γ. If there
exists β ∈ Λ such that

αj + j · β > αi + i · β ,

then there exists an element β0 ∈ Λ such that

∀β ≥ β0 : αj + j · β > αi + i · Λ .

Proof: First we show that there exist α ∈ Λ and η ∈ Γ, η > I, such that

αj − αi + (j − i) · α ≥ i · η > I .

Indeed, by assumption there exists β ∈ Λ such that

αj − αi + (j − i) · β > 0 .

Since δ is assumed to be not weakly distinguished, Λ/I has no greatest element, hence
there exists an element α ∈ Λ such that α/I > β/I, i.e. α− β > I, whence

αj − αi + (j − i) · α > (j − i) · (α− β) > I .

If Λ/I has no smallest positive element, then there exists an element η > I such that
(j − i) · (α− β) > i · η > i · I = I. If on the other hand, Λ/I possesses a smallest positive
element, say η/I, then by our hypothesis that Λ/I has no greatest element, we may choose
α ∈ Λ such that α−β > i · η, whence again, (j− i) · (α−β) > i · η > i · I = I. This proves
the existence of the required element η.

Since η /∈ I, by the preceding lemma there exists γ ∈ Λ such that γ + η > Λ. Putting
β0 = max{γ, α} we get β0 + η ≥ γ + η > Λ and consequently i · β0 + i · η > i · Λ. Hence
for all β ≥ β0, we have β ≥ α and

αj + j · β = αj + i · β + (j − i) · β
≥ αi + αj − αi + i · β0 + (j − i) · α
≥ αi + i · β0 + i · η > αi + i · Λ ,

as asserted. 2

We will apply invariance subgroups as a tool in the following general situation. Given
an immediate algebraic approximation type A = appr(x,K) of degree d < ∞, let δ =
dist(x, K) = (Λ, Λ′) (where Λ = Λ(A)), and I = I(δ, v(K)). Furthermore, let wδ = wI
be a coarsening of the valuation v (of K(x)) whose restriction to K is the coarsening of
v on K which corresponds to the convex subgroup I of the value group v(K). Given any
convex subgroup I of v(K), the coarsening wI which corresponds to I is the unique one
which satisfies the following conditions:

∀c ∈ K : wI(c) 7→ v(c) + I

induces an isomorphism
wI(K) ∼= v(K)/I ,

and
∀c ∈ O×

(K,wI) : v/wI(c/wI) 7→ v(c)
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induces an isomorphism
v/wI(K/wI) ∼= I .

The valuation wI is uniquely determined on K, but may have two different prolongations
to K(x) both being coarsenings of v, if the rank of v(K(x)) is greater than the rank of
v(K). Note that wδ is the trivial valuation on K iff δ = ∞. Finally, by δ/I we will denote
the cut (Λ/I, Λ′/I) in wδ(K), cf. Lemma 12.56. For this situation, we note the following

Lemma 12.61 The approximation type appr(x,K) is weakly distinguished if and only if
there exists an element b ∈ K such that appr(bx,K) is distinguished. If x ∈ K, then
appr(x,K) is distinguished.

If A = appr(x,K) is distinguished and x /∈ K, then for every c ↗ x, the wδ–residue
(x − c)/wδ does not lie in the residue field K/wδ but is an element of the completion
(K/wδ)

c(v/wδ) of K/wδ with respect to the induced valuation v/wδ (in particular, this holds
for every c ∈ K with wδ(x− c) ≥ 0).

Conversely, if there exists an element c ∈ K and a coarsening w of v such that (x −
c)/w ∈ (K/w)c(v/w) \K/w, then A is distinguished with x /∈ K and w = wδ (on K).

Proof: The first assertion follows immediately from Lemma 12.57 if we choose b ∈ K such
that v(b) = −γδ. The second assertion is trivial since x ∈ K yields Λ(appr(x,K)) = v(K)
and thus I = v(K) which shows Λ(appr(x,K))/I = {0}.

Let I be a convex subgroup of v(K) and wI a coarsening of v (on K(x)) which corre-
sponds to I. We will show: I is cofinal in Λ(appr(x,K)) if and only if for some c ∈ K,

(x− c)/wI ∈ (K/w)
c(v/wI)
I \K/wI .

By the second of the above mentioned isomorphisms,

I ⊂ Λ(appr(x,K))

is equivalent to the fact that the set

{v/wI((x− c)/wI) | x− c ∈ O×
(K,wI)}

is cofinal in v/wI(K/wI). In this case, there exists some c ∈ K such that x− c ∈ O×
(K,wI),

and in view of (x − c)/wI − c′/wI = (x − (c + c′))/wI , the cofinality of the above set is
equivalent to the property of

Λ(appr((x− c)/wI , K/wI))

to be cofinal in v/wI(K/wI), i.e. the property of (x − c)/wI to be an element of the
completion of K/wI with respect to the induced valuation v/wI .

Furthermore, the existence of an element β ∈ Λ(appr(x,K)) with β > I is equivalent
to the existence of an element cβ ∈ K with wI(x − cβ) > 0, i.e. (x − c − (cβ − c))/wI =
(x − cβ)/wI = 0, and this is equivalent to (x − c)/wI ∈ K/wI . Together with what we
have proved already, this shows that I is cofinal in Λ(appr(x,K)) and x /∈ K if and only
if for some c ∈ K,

(x− c)/wI ∈ (K/w)
c(v/wI)
I \K/wI .

Now let δ = (Λ, Λ′) be the distance of A. If δ is distinguished, then by virtue of
Lemma 12.57, the convex subgroup I = I(δ) of v(K) is cofinal in Λ. Then by what we
have shown, there exists c ∈ K such that

(x− c)/wδ ∈ (K/w)
c(v/wδ)
δ \K/wδ .
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The same must be true for every c′ in the place of c if v(x−c′) ≥ v(x−c) or wδ(x−c′) ≥ 0.
This is seen as follows: If v(x − c′) > v(x − c) then wδ(x − c′) ≥ wδ(x − c) = 0. Thus
we have wδ(x − c′) ≥ 0 in both cases, and this implies wδ(c − c′) ≥ 0. Consequently,
(x − c′)/wδ = (x − c)/wδ + (c − c′)/wδ ∈ (K/wδ)

c(v/wδ). On the other hand, (x − c′)/wδ)
cannot be an element of K/wδ) since otherwise this would also hold for (x − c)/wδ). We
have herewith proved that the above property holds for every c ↗ x and every c ∈ K with
wδ(x− c) ≥ 0.

For the converse, assume that there exists an element c ∈ K and a coarsening w of v
such that (x− c)/w ∈ (K/w)c(v/w) \K/w, and let w = wI for a suitable convex subgroup
I of v(K). By what we have shown in the beginning, I is cofinal in Λ. Then Lemma 12.57
shows that the cut δ is distinguished with invariance subgroup I(δ) = I, proving moreover
that wδ = wI . This completes the proof of our lemma. 2

Now we are able to prove normal form theorems which generalize Lemma 10 of [KAP].
Beforehand, note that for our investigation of the associated minimal polynomials for
an immediate approximation type A, we may always assume that A = appr(x,K) with
(K, v) ≺∃ (K(x), v) according to Lemma 12.12. By Lemma 12.39, h being as in that
lemma, this yields for every associated minimal polynomial of A:

dist(f(x), K) = h · dist(x,K) + v(fh(c)) . (168)

Theorem 12.62 Let A = appr(x,K), x /∈ K, be a weakly distinguished algebraic approxi-
mation type of degree d and distance δ with associated minimal polynomial f ∈ K[X]. Let
w = wδ the coarsening of v (on K(x)) which we have defined on page 189. Choose the
integer h to be as in Lemma 12.35. Then there exists b ∈ K such that for every c ↗ x we
have: ωc := b(x− c)/w is finite and an element of

(K/w)c(v/w) \K/w ,

and it is a zero of the polynomial

f̃(X) = acf(c)/w + Xh +
d∑

i=h+1

X i(acb
−ifi(c))/w

where ac = bhfh(c)
−1, and the residues (acb

−ifi(c))/w and acf(c)/w are finite. f̃ is of
degree d and irreducible over K/w, and it is the unique associated minimal polynomial for
appr(ωc, K/w). We may put b = 1 if A is distinguished.

Furthermore,

g(X) = f(c) +
d∑

i=h

(X − c)ifi(c)

is an associated minimal polynomial for A whenever c ↗ x.

Proof: A being weakly distinguished by hypothesis, we choose γδ ∈ Γ according to
Lemma 12.57 such that I is cofinal in Λ−γδ. Let b ∈ K such that v(b) = −γδ (we may put
b = 1 if γδ = 0, i.e. if A is distinguished). Then dist(bx,K) = δ − γδ is distinguished, and
for every c ↗ x we will have v(b(x−c)) ∈ I, thus w(b(x−c)) ≥ 0 and ωc = b(x−c)/w 6= ∞.
Since appr(bx,K) is distinguished, we infer from Lemma 12.61 that ωc is an element of
(K/w)c(v/w) \K/w. Furthermore, putting ac = bhfh(c)

−1 we get

v((b(x− c))iacb
−ifi(c)) > v((b(x− c))h)
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for all i 6= h, 1 ≤ i ≤ d, and all c ↗ x by the definition of h (cf. Lemma 12.35). This
shows that all residues ωi

c(acb
−ifi(c))/w and thus all residues (acb

−ifi(c))/w are finite for
c ↗ x. By Lemma 12.38, we know that v(f(x)) > v(f(c)) = v(fh(c)) + h · v(x− c) for all
c ↗ x. Hence

v(acf(c)) = h · v(b) + h · v(x− c) = h · v(b(x− c)) .

Firstly, this shows acf(c)/w 6= ∞. Secondly: since the values v(b(x− c)) are cofinal in the
convex subgroup I for c ↗ x, the same holds for the values h · v(b(x− c)). Consequently,
v(acf(x)) > I, i.e. acf(x)/w = 0. Since on the other hand,

acf(x) = acf(c) + (b(x− c))h +
∑

1 ≤ i ≤ d
i 6= h

(b(x− c))iacb
−ifi(c) ,

by the finiteness that we have shown above we get

0 = acf(c) + ωh
c +

∑

1 ≤ i ≤ d
i 6= h

ωi
c(acb

−ifi(c))/w . (169)

We want to deduce from this that f̃(ωc) = 0, where f̃ is defined as in the assertion of our
theorem. If h = 1, then this is already the assertion. Suppose now that h > 1. By the
definition of h we have

v(fh(c)) + h · v(x− c) < v(fi(c)) + i · v(x− c)

for i 6= h and all c ↗ x. Consequently, if i < h, then for c ↗ x,

v(acb
−ifi(c)) = (h− i) · v(b) + v(fi(c))− v(fh(c))

> (h− i) · v(b) + (h− i) · v(x− c)

= (h− i) · v(b(x− c)) .

The latter values are cofinal in I. On the other hand, the values of ac = bhfh(c) and of
fi(c) are fixed for c ↗ x (fh and fi having degree < d), hence

v(acb
−ifi(c)) > I for i < h and c ↗ x , (170)

i.e. (acb
−ifi(c))/w = 0, which proves that the sum in (169) has to range only over i > h,

as asserted in the theorem.
To show the irreducibility of the polynomial f̃(X), assume that there is a factorization

f̃ = h̃1h̃2 over K/w and let h1, h2 ∈ K[X] be foreimages of h̃1, h̃2 with respect to the
residue map “ /w”. Now we have

(acf(x)− h1(b(x− c))h2(b(x− c)))/w

= acf(x)/w − h1(b(x− c))h2(b(x− c))/w

= 0− h̃1(ωc)h̃2(ωc) = f̃(ωc) = 0

for all c ↗ x, hence

v(acf(x)− h1(b(x− c))h2(b(x− c)))

> I = h · I = h · (γδ + I) + v(fh(c))− h · γδ − v(fh(c))

= h · dist(x,K) + v(fh(c)) + v(ac) ,
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whence by (168) and by Lemma 12.24,

v(acf(x)− h1(b(x− c))h2(b(x− c))) > dist(f(x), K) + v(ac)

= dist(acf(x), K)

which shows appr(h1(b(x− c))h2(b(x− c)), K) = appr(acf(x)), according to Lemma 12.25.
Since appr(x,K) does not fix the value of f(X) by hypothesis, it also does not fix the value
of acf(X), and by the equality of the approximation types it follows that it does not fix the
value of h1(b(X−c))h2(b(X−c)) either. But the degree of this polynomial is ≤ d, hence it
must be equal to d since appr(x,K) is of degree d, and the polynomial must be irreducible
over K as remarked in section 2, page 35. This shows that one of the polynomials h1, h2

must be a constant. The same must hold for h̃1, h̃2 which proves that f̃ is irreducible over
K/w.

Now let g ∈ K[X] be as in the assertion of the theorem. According to Lemma 12.53,
to prove that g is an associated minimal polynomial for A, it suffices to prove that
appr(f(x), K) = appr(g(x), K), and according to Lemma 12.25, this is equivalent to

v(f(x)− g(x)) ≥ dist(f(x), K) .

Using again the Taylor expansion (160) for f , we find

f(X)− g(X) =
∑

1≤i<h

(X − c)ifi(c) .

From (170) and the fact that v(b(x − c)) ∈ I for c ↗ x, it follows that also v((b(x −
c))iacb

−ifi(c)) > I for i < h and every c ↗ x, whence

v(f(x)− g(x)) = v


a−1

c

∑

1≤i<h

(b(x− c))iacb
−ifi(c)




= v


 ∑

1≤i<h

(b(x− c))iacb
−ifi(c)


− v(ac)

> I − v(ac) = I − h · v(b) + v(fh(c))

= I + h · γδ + v(fh(c)) = h · (γδ + I) + v(fh(c)) ,

whence
v(f(x)− g(x)) > h · dist(x,K) + v(fh(c)) = dist(f(x), K)

for every c ↗ x; the last equation holds by (168). This completes the proof of our theorem.
2

Corollary 12.63 Let A = appr(x, K) be a distinguished approximation type of degree d
and distance δ. For every c ↗ x, it induces a distinguished approximation type

A/wδ = appr((x− c)/δ,K/wδ)

which is of the same degree d and has distance ∞.
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Proof: Let w = wδ. Theorem 12.62 shows that for c ↗ x, the element (x − c)/w lies
in the completion of K/w, hence its approximation type appr((x− c)/w, K/w) over K/w
has distance ∞. Moreover, we infer from the theorem that this approximation type has an
associated minimal polynomial of degree d and thus is itself of degree d. 2

For henselian ground fields, the assertion of Theorem 12.62 may be supplemented as
follows:

Theorem 12.64 Let the situation be as in the foregoing theorem and assume in addition
that K is henselian. Let

pw = max{1, char(K/w)} .

Then h = d = pe
w for some integer e ≥ 0. Thus

bdf(c)/w + ωd
c = 0

for all c ↗ x, and
g(X) = f(c) + (X − c)d

is an associated minimal polynomial for A for all c ↗ x. In particular, if d > 1, then
K/w has positive characteristic.

Proof: We choose b as in the proof of Theorem 12.62. According to that theorem, b(x−
c)/w is an element of (K/w)c(v/w) for c ↗ x, and it is algebraic over K. Since K is assumed
to be henselian, Lemma 2.14 shows that (K/w, v/w) is also henselian. By Lemma 12.55,
ωc must be purely inseparable over K. The irreducibility assertion of Theorem 12.62 for f̃
thus shows that f̃(X) must be of the form acf(c)/w +Xh. But Theorem 12.62 also asserts
that its degree is d, hence h = d and d = pe

w since f̃ is the minimal polynomial of ωc

which is purely inseparable over K/w. The last assertion now follows immediately from
Theorem 12.62. 2

Now we turn to the remaining case of A not being weakly distinguished.

Theorem 12.65 Let A = appr(x,K) be an algebraic approximation type of degree d and
distance δ with associated minimal polynomial f ∈ K[X]. Assume that A is not weakly
distinguished. Let h be as in Lemma 12.35 and p = max{1, char(K)}. Then h = d = pe

for some integer e ≥ 0, and

g(X) = f(c) +
e∑

i=0

(X − c)pi

fpi(c)

is an associated minimal polynomial for A whenever c ↗ x. (Note that g is additive if the
characteristic of K is positive.)

Let I = I(δ), the coarsening w = wδ of v and the cut δ/I in v(K)/I be as explained
on page 189. Then

g(X) = f(c) +
e∑

i=0

(X − c)pi

εifpi(c)

is an associated minimal polynomial for A for all c ↗ x, where v(fpi(c)) = v(fpi(x)) and

εi =

{
1 if w(fpi(c)) = (pe − pi) · (δ/I)
0 else.
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In particular, if the cut δ/I is not rational, then

g(X) = f(c) + (X − c)pe

is an associated minimal polynomial for A for all c ↗ x.

Proof: As in the proof of Lemma 12.35, we consider the Taylor expansion (160) of f ,
keeping in mind that A fixes the value of all derivatives fi, i > 0, since their degree is < d.
By Lemma 12.30 we know: if i = pt, j = ptr with r > 1, (r, p) = 1, then

(j − i) · v(x− c) + v(fj(c))− v(fi(c)) > 0

for all c ↗ x. Now it follows from Lemma 12.60 that there exists an element β0 ∈ Λ such
that

v(fj(c)) + j · v(x− c) > v(fi(c)) + i · Λ
for all c ↗ x (such that v(x− c) ≥ β0). On the other hand, if i 6= h then v(fi(c))+ i ·v(x−
c) > v(fh(c))+h · v(x− c) which yields v(fi(c))+ i ·Λ ≥ v(fh(c))+h ·Λ and thus by (168),

v(fj(c)) + j · v(x− c) > v(fh(c)) + h · Λ = dist(f(x), K) . (171)

For any j such that h < j ≤ d, we have by the choice of h that

(j − h) · v(x− c) + v(fj(c))− v(fh(c)) > 0

for all c ↗ x, and in the same way as above, (171) may also be deduced for such j.
Altogether, if we put h = pe according to Lemma 12.35, it follows in view of the Taylor
expansion (160):

v

(
f(x)− f(c)−

e∑

i=0

(x− c)pi

fpi(c)

)
= v


 ∑

j 6=pν∨j>h

(x− c)jfj(c)




≥ dist(f(x), K) ,

hence by Lemma 12.25, appr(f(x), K) = appr(g(x), K) for

g(X) = f(c) +
e∑

i=0

(X − c)pi

fpi(c) ,

which in view of Lemma 12.53 shows that g is an associated minimal polynomial for A
whenever c ↗ x. In particular, A does not fix the value of this polynomial, hence its
degree cannot be less than d. This proves d = h = pe. Note that this yields fh(c) = 1 and
thus v(fh(c)) = 0 for all c ∈ K.

Now let j = pi < h, i ≥ 0. Then by the choice of h, we have

j · v(x− c) + v(fj(c)) > h · v(x− c) + v(fh(c)) = h · v(x− c)

and thus also
j · w(x− c) + w(fj(c)) ≥ h · w(x− c)

for all c ↗ x. This shows

j · (δ/I) + w(fj(c)) ≥ h · (δ/I) .
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If “ >” holds here, then we know that

j · w(x− c) + w(fj(c)) > h · (δ/I)

for all c ↗ x and thus also

j · v(x− c) + v(fj(c)) > h · δ = dist(f(x), K)

for all c ↗ x. As we have shown before in this proof, for such indices j we may
omit the summand (X − c)jfj(c) from the polynomial g(X) without loosing the property
appr(f(x), K) = appr(g(x), K). But for j 6= h, the equation

j · (δ/I) + w(fj(c)) = h · (δ/I)

is only possible if

δ/I =
w(fj(c))

h− j

is a rational cut in Γ/I. Consequently, if this is not the case, then all summands

(X − c)jfj(c) , j 6= h

may be omitted from the polynomial g(X) without loosing the property that f(x) and
g(x) have the same approximation type over K. But if δ/I is rational, then the above
equation yields the criterion that we have used in the formulation of our theorem for those
summands that have to appear in g(X). 2

Whenever we have obtained a polynomial g from the assertion of Theorem 12.62, The-
orem 12.64 or Theorem 12.65, g(x) having the same approximation type as f(x) over K,
then A does not fix the value of g since by hypothesis, it does not fix the value of f . Then
from Theorem 12.49 we know that there is a simple immediate extension K(y)|K of degree
d such that appr(y,K) = appr(x,K) and y is a root of the polynomial g.

Corollary 12.66 Let the situation be as in Theorem 12.65 and assume in addition that
there exists no nontrivial immediate algebraic extension of K of degree < pe. If e > 1,
then δ must be rational, and we will necessarily have ε1 6= 0, i.e. v(f1(c)) = (pe − 1) · δ for
c ↗ x.

Proof: If the assertion were not right, we could write

g(X) = f(c) +
e−1∑

i=0

Zpi

εi+1fpi+1(c)

where Z = (X − a)p. Then the immediate extension K(y)|K which we have introduced
above and which is of degree pe, would admit a nontrivial immediate subextension K(z)|K
where z = (y − a)p, which is of degree pe−1 contradicting our hypothesis. 2

Theorem 12.64 and Theorem 12.65 together show:

Corollary 12.67 If K is a henselian field and A is an immediate approximation type over
K, then the degree of A is a power of p.
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Corollary 12.68 Let K be a henselian field, (K(y), v)|(K, v) be an immediate extension
and (K(y′), v)|(K, v) an arbitrary extension of degree p = char(K). If

appr(y, K) = appr(y′, K) ,

then (K(y′), v)|(K, v) is also an immediate extension.

Proof: The approximation type appr(y′, K) = appr(y,K) is immediate by Theo-
rem 12.26, because K(y)|K is immediate by assumption. Since [K(y′) : K] = p, appr(y′, K)
is of degree ≤ p by Corollary 12.45. If it were of degree less than p, it could only be of
degree 1 by Corollary 12.67. But by Lemma 12.38 this means that y′ ∈ K, contrary to our
assumption that [K(y′) : K] = p. Thus appr(y′, K) is an immediate approximation type of
degree p over K. By Theorem 12.49, there exists an immediate extension of the valuation
v from K to K(y′). Since K is henselian by assumption, this extension must coincide with
the given valuation v on K(y′) which shows that (K(y′), v)|(K, v) is immediate. 2

In Corollary 12.63, we have stated a correlation between a given distinguished approxi-
mation type over K and certain approximation types on the residue field K/w. This also
covers the case of a weakly distinguished approximation type because it is always connected
to a distinguished approximation type through multiplication with a constant. In the case
where the given approximation type is not weakly distinguished, there is a correlation with
certain approximation types on the valued field (K, wδ), as we will see below. Beforehand,
we note the following easy observation:

Lemma 12.69 Let Av = apprv(x,K) be an approximation type over K of degree d ≤ ∞.
Then for every g ∈ K[X] of degree < d,

I(dist(g(x), K)) = I(dist(x,K)) .

If in addition (K, v) ≺∃ (K(x), v), then the assertion holds even for polynomials g of
arbitrary degree.

Proof: If g ∈ K[X] is of degree < d, then by Lemma 12.36,

dist(g(x), K) = i · dist(x,K) + β

for some integer i > 0 and β ∈ v(K). If (K, v) ≺∃ (K(x), v), then according to Lemma 12.39,
the same holds for polynomials g of arbitrary degree. Now our lemma follows from the last
assertion of Lemma 12.56. 2

Theorem 12.70 Let Av = apprv(x,K) be an approximation type with respect to the val-
uation v of K, of degree d and distance δ. Assume that Av is not weakly distinguished,
and let again w = wδ denote a coarsening of v (on K(x)) corresponding to I = I(δ) (cf.
page 189). Then the approximation type Aw = apprw(x,K) of x over K with respect to the
valuation w is also an immediate approximation type of degree d. More precisely, given a
polynomial g ∈ K[X], then Av fixes the value of g if and only if Aw fixes the value of g. In
particular, g is an associated minimal polynomial for Av if and only if it is an associated
minimal polynomial for Aw. In particular, if 1 < d < ∞, then char(K/w) > 0.
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Proof: By hypothesis, Av is not weakly distinguished, i.e. Λ(Av)/I has no greatest
element. But Λ(apprw(x,K)) = Λ(Av)/I, so it follows that distw(x,K) is not assumed by
an element of K. This proves that apprw(x,K) is residue–immediate.

To prove that apprw(x,K) is value–immediate, let c ∈ K; we have to show that there
exists α ∈ w(K) with

c ∈ apprw(x,K)α \ apprw(x,K)◦α .

But this follows immediately from the same property of apprv(x,K).

Now let g ∈ K[X] be an arbitrary polynomial. By Corollary 12.44, Av does not fix the
v–value of g if and only if v(g(x)) ≥ distv(g(x), K), and Aw does not fix the w–value of g
if and only if w(g(x)) ≥ distw(g(x), K). Thus, we have to show

v(g(x)) ≥ distv(g(x), K) ⇐⇒ w(g(x)) ≥ distw(g(x), K) .

In view of the fact that

w(g(x)) = v(g(x))/I and distw(g(x), K) = distv(g(x), K)/I ,

this equivalence holds if and only if the following equivalence holds:

v(g(x)) ≥ distv(g(x), K) ⇐⇒ v(g(x))/I ≥ distw(g(x), K)/I .

But this equivalence follows from Lemma 12.56 and the equality

I(distv(g(x), K)) = I(distv(x,K))

that we have deduced in the foregoing lemma; we may apply this lemma here since we may
assume w.l.o.g. that (K, v) ≺∃ (K(x), v), according to Lemma 12.12. We have proved that
for an arbitrary polynomial g ∈ K[X], Av fixes the v–value of g if and only if Aw fixes the
w–value of g. From this result it follows at once that the degrees of Av and Aw are equal
and that a minimal associated polynomial of Av is also such for Aw, and vice versa.

The assertion on the characteristic of K/w follows by an application of the equation
d = pe of Theorem 12.65 to the approximation type Aw which is an approximation type
over the valued field (K, w) whose residue field is just K/w. 2

12.4 Distinguished approximation types in henselizations.

Our goal in this subsection is to show that every element in the henselization Kh has a
weakly distinguished approximation type over K. To prove this, we will consider a very
special type of immediate extensions (K(x), v)|(K, v). We will call an element x strictly
distinguished over K, if there exists a coarsening w of v such that the following three
conditions hold:

1. w(x) = 0 ,

2. x/w is an element of the completion of K/w ,

3. ∀n ∈ IN : (1, x, ..., xn linearly independent over K =⇒ 1, x/w, ..., (x/w)n linearly
independent over K/w ).
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The following lemma characterizes strictly distinguished elements via their approximation
types:

Lemma 12.71 Let appr(x,K) be of degree d with distance δ. Then the element x is
strictly distinguished over K if and only if wδ(x) = 0 and appr(x,K) is distinguished with
d = [K(x) : K]. In this case, w = wδ.

Proof: From Lemma 12.61 it follows that w(x) = 0 ∧ x ∈ (K/w)c(v/w) is equivalent
to the property that wδ(x) = 0 and appr(x,K) is distinguished; in this case, the equality
w = wδ (on K) also follows from Lemma 12.61.

Now it suffices to show the equivalence of the additional conditions under the assump-
tion that all other conditions hold. From Corollary 12.63 we infer that appr(x/wδ, K/wδ)
is of the same degree d as appr(x,K), but of distance ∞. By virtue of Corollary 12.54, the
associated minimal polynomial of appr(x/wδ, K/wδ) is the minimal polynomial of x/wδ

over K/wδ if appr(x/wδ, K/wδ) is algebraic. If appr(x/wδ, K/wδ) is not algebraic, then
[(K/wδ)(x/wδ) : K/wδ] = ∞ by virtue of Corollary 12.44. This shows d = [(K/wδ)(x/wδ) :
K/wδ]. Hence [K(x) : K] = [(K/wδ)(x/wδ) : K/wδ] if and only if d = [K(x) : K]. 2

Strictly distinguished elements generate extensions with a nice property:

Lemma 12.72 Let (K(x), v)|(K, v) be an immediate extension and x be strictly distin-
guished over K. Then for every element y ∈ K(x), the approximation type appr(y, K) is
weakly distinguished.

Proof: By Lemma 12.61, the case y ∈ K is trivial. Now assume y /∈ K, and let
the coarsening w of v be as in the above definition of strictly distinguished elements. In
the first step, we will prove the lemma under the assumption that y is a polynomial in
x, say y = f(x) with f ∈ K[X] and deg(f) < [K(x) : K] if the latter is finite. (If x
is algebraic over K, then this assumption is no loss of generality.) By Lemmata 12.24
and 12.57, for every c ∈ K× we have that appr(y, K) is weakly distinguished if and only
if appr(by, K) is weakly distinguished; after multiplication with a suitable element b we
may thus assume that f ∈ O(K,w)[X], but f /∈ M(K,w)[X]. Consequently, f/w 6≡ 0,
and since w(x) = 0, we have f(x)/w = f/w(x/w). By our assumption on the degree
of f , the elements 1, x, ..., xdeg(f) are linearly independent over K, and by condition 3) of
the above definition of strictly distinguished elements, the same holds for the elements
1, x/w, . . . , (x/w)deg(f) over K/w. Hence f/w(x/w) /∈ K/w. But since x/w is an element
of the completion of K/w, the element f(x)/w = f/w(x/w) lies also in the completion of
K/w. This shows in view of Lemma 12.61 that appr(f(x), K) is weakly distinguished.

In the second step, it remains to prove the lemma for the case where x is transcen-
dental over K and y = f(x)/g(x) with f, g ∈ K[X]. By a similar argument as above,
we may assume that after multiplication of f and g with suitable elements from K×,
f, g ∈ O(K,w)[X] \ M(K,w)[X] and both f(x)/w and g(x)/w lie in the completion of
(K/w, v/w) and that f(x)/w /∈ K/w if f(x) /∈ K, and g(x)/w /∈ K/w if g(x) /∈ K.
To avoid the case where (f(x)/g(x))/w = (f(x)/w)/(g(x)/w) ∈ K/w, we have to do the
following consideration. If m = deg(g/w), then the m–th coefficient of g is not 0; hence
there exists an element d ∈ K such that the m–th coefficient of the polynomial f − d · g
is 0. After multiplication of f − d · g with a suitable element from K×, we will have that
(f(x)−d ·g(x))/w lies in the completion of (K/w, v/w) and that the degree of (f−d ·g)/w
cannot equal the degree of g(x)/w, which shows

(f(x)− d · g(x))/w

g(x)/w
/∈ K/w .
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But since (f − d · g)/g = (f/g)− d and

appr(
f(x)

g(x)
, K) = appr(

f(x)

g(x)
− d,K) ,

it follows by Lemma 12.61 that appr(f(x)/g(x), K) is weakly distinguished. This completes
our proof. 2

We need some more auxiliary results:

Lemma 12.73 Let L|K be an immediate extension of valued fields and assume that for
every element x ∈ L, the approximation type appr(x,K) is weakly distinguished. If L(y)|L
is also an immediate extension of valued fields, and if appr(y, L) is weakly distinguished,
then appr(y, K) is weakly distinguished too.

Proof: By Lemma 12.25, dist(y, K) ≤ dist(y, L), the latter distance being weakly
distinguished by hypothesis. If “ =” holds, then there is nothing to prove. If “ <” holds,
then we infer from Lemma 12.25 that there exists an element x ∈ L such that

appr(y, K) = appr(x,K) .

Since by hypothesis, appr(x,K) is weakly distinguished, this completes the proof. 2

Lemma 12.74 Let (M, v)|(K, v) be an extension of valued fields generated by a set of
elements {xν | ν < τ} ⊂ M , where τ is an ordinal number, such that for every ν < τ , the
element xν is strictly distinguished over Kν := K(xµ|µ < ν) (K0 := K). Then appr(x,K)
is a weakly distinguished approximation type for every element x ∈ M .

Proof: We prove the lemma by transfinite induction on ρ < τ . The assertion holds
trivially for the field K. Now assume ρ ≥ 1 and that the assertion holds for every Kµ with
µ < ρ. If ρ is a limit ordinal, then Kρ =

⋃
µ<ρ Kµ showing that the assertion holds for Kρ

too. Now let ρ = ν + 1 be a successor ordinal. Then Kρ = Kν(xν) where xν is strictly
distinguished over Kν . Let y be an arbitrary element of Kν(xν). By Lemma 12.72, the
approximation type appr(y,Kν) is weakly distinguished. By our induction hypothesis, for
every element x ∈ Kν , the approximation type appr(x,K) is weakly distinguished; in view
of Lemma 12.73 this yields that also appr(y, K) is weakly distinguished. Hence the lemma
holds for Kρ, and the induction step is established. 2

Lemma 12.75 Let K be a valued field. The henselization Kh can be generated over K in
the way as described in the hypothesis of the foregoing lemma.

Proof: The henselization Kh can be generated over K by a transfinitely repeated
adjunction of roots x of polynomials which satisfy the hypothesis of Hensel’s Lemma. From
the proof of the fact that stepwise complete valued fields are henselian it can be deduced
that every such root x has a weakly distinguished approximation type over the field K ′

in which the polynomial is defined, and moreover, that there exists a coarsening w of the
valuation v such that x/w is an element of the completion of K ′/w with respect to v/w,
but not an element of K ′/w. Hence we only have to care for condition 3) of the definition
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of strictly distinguished elements. We modify our construction in the following way: we
generate a field L over K by transfinitely repeated adjunction of roots x of irreducible
polynomials f over already constructed fields K ′, which satisfy the following condition:
f/v admits x/v as a simple root, and for every proper coarsening w of v, either f/w
remains irreducible or admits a root with v/w–residue x/v. Because of this last condition,
such elements x will also satisfy condition 3). Indeed, if w is the coarsening of v such that
x/w is an element of the completion of K ′/w with respect to v/w, but not an element of
K ′/w, then f/w will be irreducible over K ′/w; this is true since by our hypothesis on f ,
it would otherwise admit a root in K ′/w with v/w–residue x/v which consequently must
be equal to x/w contradicting x/w /∈ K ′. Moreover, L ⊂ Kh. It remains to show that L is
henselian, since then we will have L = Kh and the desired procedure to generate Kh over
K. Assume that there exists an irreducible polynomial f ∈ L[X] satisfying the conditions
of Hensel’s Lemma: f/v has a simple zero x/v. Among all coarsenings w of v, such that
f/w admits an irreducible factor gw of degree > 1 whose v/w–reduction gw/(v/w) admits
x/v as a zero, we choose a coarsening w0 for which gw0 has least degree. Furthermore,
we choose any g∗ ∈ L[X] with g∗/w0 = gw0 and deg(g∗) =deg(gw0). Then g∗ satisfies the
above condition: g∗/v admits x/v as a simple zero, and for every coarsening w of v, the
polynomial g∗/w is either irreducible or admits a zero whose v/w–residue is equal to x/v.
By our construction of L, it must contain a root x of g∗ with residue x/v and consequently,
x/w0 is a root of g∗/w0 = gw0 in contradiction to our assumption that gw0 is irreducible of
degree > 1. This contradiction shows that L is henselian, as asserted, and our lemma is
proved. 2

As an immediate consequence, we now obtain the following corollary:

Corollary 12.76 Let K be a valued field. Then for every element a of the henselization
of K, the approximation type appr(x,K) is weakly distinguished.

With the help of this corollary, we are able to prove:

Lemma 12.77 Let x, y ∈ K̃, y /∈ K. Assume

appr(y,K) = appr(x,K)

and x ∈ Kh. Then
[Kh(y) : Kh] < [K(y) : K] .

In particular, K(y)|K is not purely inseparable.

Proof: If x ∈ K, hence dist(x, K) = ∞, then appr(y,K) = appr(x,K) yields x = y by
Lemma 12.25, and the assertion follows trivially. Now let us assume x /∈ K. Since x ∈ Kh,
the foregoing corollary and Lemma 12.61 show that there exist elements b, c ∈ K and a
coarsening w of v such that w(b(x− c)) = 0 and

b(x− c)/w ∈ (K/w)c(v/w) \K/w ,

where “ c(v/w)” denotes the completion with respect to the valuation v/w. By virtue of
Lemma 12.24, appr(y, K) = appr(x,K) implies

appr(b(y − c), K) = appr(b(x− c), K) .
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In view of this equality and K(b(y− c)) = K(y), we may assume from the start that b = 1
and c = 0. Now appr(y, K) = appr(x,K) implies w(y) = w(x) = 0 and

appr(y/w, K/w) = appr(x/w, K/w)

(the straightforward proof of this equality is left to the reader). Since x/w is an element
of the completion of K/w, this yields y/w = x/w.

Now we consider the fields K, Kh and Kh(y) equipped with the valuation w. Since Kh

is henselian for the valuation v, it is also henselian for the coarsening w by Lemma 2.14.
Let f(X) ∈ K[X] be the minimal polynomial of y over K. Our assertion is proved if we are
able to show that f is reducible over Kh. At this point we may assume that all conjugates
of y over K have the same value v(y) since otherwise the inequality [Kh(y) : Kh] <
[K(y) : K] is immediately seen to be true. This assumption yields f ∈ O(K,w)[X], and
because of w(y) = 0, the reduced polynomial f/w is nontrivial. The minimal polynomial
g ∈ (K/w)[X] for x/w = y/w over K/w has degree > 1 since x/w /∈ K/w. Furthermore,
it must divide f/w which satisfies (f/w)(y/w) = f(y)/w = 0. Since x ∈ Kh,

y/w = x/w ∈ Kh/w ,

and g becomes reducible over Kh/w. From Lemma 2.15, we infer

Kh/w = (K/w)h(v/w) .

In particular, this shows that x/w is a simple root of g since the henselization is a separable
extension. Applying Hensel’s Lemma to the henselian field (Kh, w), one concludes that f
becomes reducible over Kh; indeed, f factors into two nontrivial polynomials where the
roots of the first one all have w–residue y/w while there exists at least one root (in K̃) of
the second polynomial which has as w–residue a root of g (in K̃/w) which is different from
y/w. This proves our lemma. 2

æ
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[BGR] Bosch, S. – Güntzer, U. – Remmert, R. : Non–Archimedean Analysis, Berlin –
Heidelberg – New York – Tokio (1984)

[BOU] Bourbaki, N. : Commutative algebra, Paris (1972)

[CHK] Chang, C. C. — Keisler, H. J. : Model Theory, Amsterdam – London (1973)

[DEL1] Delon, F. : Quelques propriétés des corps valués en théories des modèles, Thèse
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(K, v), (K, P ) a valued field with valuation v resp. place P
v(K) the value group of (K, v) (we always assume ∞ /∈ v(K) )
K, KP , K/v the residue field of (K, v)
v(x) the value of x ∈ K
x, xP , x/v the residue of x ∈ K
Pv, vP the place associated to v resp. the valuation associated to

P
O, Ov, OK the valuation ring
M, Mv, MK the valuation ideal
PQ, v ◦ w the composition of places resp. valuations
v/w the valuation induced by v on the residue field K/w if w is

a coarsening of v
Kh, (K, v)h, (K, P )h the henselization
Kh(P ), Kh(v) the henselization with respect to P resp. v
Kc, (K, v)c, (K,P )c the completion
Kc(P ), Kc(v) the completion with respect to P resp. v
(K, v)hc, Khc the completion of the henselization, cf. p. 124
(K, v)r, Kr the (absolute) ramification field

K̃ the algebraic closure of K
Ksep the separable–algebraic closure of K√

K the perfect hull of K
1

p∞Γ the p–divisible hull of the abelian group Γ

Γ̃ the divisible hull of the abelian group Γ
rkΓ the rank of the abelian group Γ
rrΓ the rational rank of the abelian group Γ
d(L|K) the defect
dc(L|K) the completion defect
dq(L|K) the defect quotient (= quotient of d and dc)
℘(x) = xp − x
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appr the approximation type
dist, distR the distance
A usually denotes approximation types
d the degree of an approximation type
S(A), S=(A),. . . cf. p. 203
Λ(A) the value set of the approximation type A
sup the supremum of a subset of an ordered abelian group,

cf. p. 40
I, I(δ), I(δ, Γ) the invariance subgroup
Uδ cf. p. 93
³ cf. p. 41
c ↗ A, ∀z ↗ A cf. p. 41
c ↗ x, ∀z ↗ x cf. p. 41
≺∃ stands for “existentially closed in”
≺ stands for “elementary extension”
≡ stands for “elementary equivalent”
Th(A) the theory of the model A
|K|+ the successor cardinal to the cardinality of K
æ
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