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Abstract. We prove several coincidence point theorems for two functions in

a minimal setting (“ball spaces”) which is flexible enough to allow applications

in various areas. We illustrate their use by giving applications to ultrametric
spaces, metric spaces, and ordered abelian groups and fields. Further, we

present the general fixed point theorems that can be directly derived from our

general coincidence point theorems.

1. Introduction

Coincidence point theorems (in short: “coincidence theorems”) consider two
functions f and g from a set X into another set Y and give conditions for these
functions to admit a coincidence point, that is, an element x ∈ X such that

f(x) = g(x) .

Fixed point theorems consider one function f from a set X into itself and give
conditions for the existence of a fixed point, that is, an element x ∈ X such that
f(x) = x. We can view fixed point theorems as special cases of coincidence point
theorems where we take X = Y and the second function g to be the identity. The
condition that most often makes classical coincidence point and fixed point theorems
work is some sort of completeness of the sets under consideration, with respect to
some structure like metric, ultrametric or topology. The proofs in many cases use
some iteration method. A typical and well known example is the Newton algorithm
for the (approximative) computation of zeros of functions (in particular, roots of
polynomials); this can be seen as computing a coincidence point of the function f
with the constant function g = 0. Apart from the case of real-valued functions, it
is also known to work over certain valued fields, such as the field of p-adic numbers.
It has been generalized to a much larger class of valued fields, containing all power
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series fields. But this originally came at the expense of replacing the simple iteration
in the proofs by transfinite induction. However, in [7] S. Prieß-Crampe showed that
the transfinite induction can be replaced by the (more elegant) application of an
ultrametric version of Banach’s Fixed Point Theorem. Since then, an abundance of
ultrametric fixed point, coincidence point and related theorems have been proven
(see, e.g., [8], [9], [10], [2]).

The first and the second author have developed a simple approach that al-
lows to extract common principles of proof for fixed point theorems in ultrametric
spaces, metric spaces, ordered abelian groups and fields, topology, partially ordered
sets, and lattices (see [3], [4], [5], and [6]). In this paper we will do the same for
coincidence points and illustrate applications to the first three of the above men-
tioned areas. We will use our approach to give an alternative proof of a coincidence
theorem by Prieß-Crampe and Ribenboim ([10]) and a theorem by Goebel for met-
ric spaces ([1]), as well as its analogues for ultrametric spaces and ordered abelian
groups. Finally, we will present the general fixed point theorems that can be di-
rectly derived from our general coincidence theorems. We will give an application
by proving the main fixed point theorem for functions that are contracting on orbits
in ultrametric spaces, due to Prieß-Crampe and Ribenboim.

We consider ball spaces (X,B), which are given by nonempty sets X with a
nonempty collection B of distinguished nonempty subsetsB ofX. The completeness
property we need for our fixed point and coincidence theorems is inspired by the
spherical completeness property of ultrametric spaces. A nest of balls in (X,B) is a
nonempty totally ordered subset of (B,⊆). A ball space (X,B) is called spherically
complete if every nest of balls has a nonempty intersection.

We will now introduce four coincidence theorems of various flavours. All of
them are essentially more or less direct applications of Zorn’s Lemma. However,
they are not special cases of each other, and they offer quite distinct ways to prove
coincidence theorems in applications.

Throughout, we will write fx in place of f(x).

Theorem 1.1 (Coincidence Theorem I). Let (X,B) be a spherically complete
ball space and f, g : X → Y functions satisfying the following conditions:

(CT1) for every ball B ∈ B, f(B) ⊆ g(B),
(CT2) for every nest of balls N , either

⋂
B∈N g(B) is a singleton or there is B′ ∈ B

such that B′ ⊂6=
⋂
N .

Then in every ball in B there is some element z such that fz = gz.

The condition that (X,B) be spherically complete can be dropped if for every
B ∈ B, B = g−1(g(B)).

In [5], we introduce and study a hierarchy of spherical completeness properties.
Apart from the basic property that we have defined above, we will only use one
stronger property in the present paper. A ball space is said to be S2 if the intersec-
tion of each nest of balls contains a ball. By taking the ball space (X,B) to be S2,
the conditions needed in our coincidence theorem can be made nicely symmetric,
and the use of nests can be avoided in the formulation.

Theorem 1.2 (Coincidence Theorem II). Let (X,B) be an S2 ball space and
f, g : X → Y functions satisfying the following conditions:

(CS1) for every ball B ∈ B, f(B) ∩ g(B) 6= ∅,
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(CS2) for every ball B ∈ B, either f(B) is a singleton or g(B) is a singleton or
there is B′ ∈ B such that B′ ⊂6= B.

Then in every ball in B there is some element z such that fz = gz.

Remark 1.3. The above two theorems become trivial as soon as every ball in
the ball space (X,B) contains a singleton ball. This is for instance the case for
the ultrametric ball spaces, which we will introduce in Section 3.1. However, for
the ball spaces we work with in applications we do not know whether they contain
any singleton balls; in certain cases the existence of coincidence points implies their
existence. (See also Remark 1.9 below.)

The approach used in the following theorem was first developed in [3] to prove
fixed point theorems. The version presented here is not itself a fixed point or
coincidence theorem. But it allows high flexibility in applications. Below, we will
derive from it coincidence theorems for two distinct cases, depending on whether
the domain or the codomain of the functions under consideration is chosen to be a
ball space.

In the following theorems we will not assume that the ball spaces we are working
with are spherically complete. Instead, the spherical completeness appears in a
modified form in our assumptions on specific nests of balls.

Theorem 1.4 (Basic Bx-type Theorem). Take an arbitrary set X and a ball
space (Z,B(Z)). Let P (x) be any assertion about the element x ∈ X. Assume that

X 3 x 7−→ Bx ∈ B(Z)

is a function such that the following conditions hold:

(∗) if N = (Bxi
)i∈I is a nest of balls in B(Z) and P (xi) holds for all i ∈ I, then

there exists some y ∈ X such that P (y) holds and By ⊆
⋂
N , with the inclusion

being proper if
⋂
N is not a singleton.

Then for every x0 ∈ X such that P (x0) holds, there is z ∈ X such that P (z) holds
and Bz is a singleton contained in Bx0

.

The condition (∗) can be broken down into two separate conditions, which in
applications are often checked separately:

(∗1) If Bx is not a singleton and P (x) holds, then there exists y ∈ X such that
By ⊂

6= Bx and P (y) holds.

(∗2) If N = (Bxi
)i∈I is a nest of balls in B(Z) and P (xi) holds for all i ∈ I, then

there exists some y ∈ X such that P (y) holds and By ⊆
⋂
N .

Indeed, if condition (∗) holds, then also the weaker condition (∗2) holds, and (∗1)
is obtained by taking N = {Bx}. Conversely, if N = (Bxi

)i∈I is a nest of balls in
B(Z) and P (xi) holds for all i ∈ I, then by (∗2) there is some y ∈ X such that P (y)
holds and By ⊆

⋂
N ; if By =

⋂
N and this is not a singleton, then (∗1) shows that

By can be replaced by a smaller ball By ⊂
6=
⋂
N for which P (y) still holds.

Note that condition (CT2) of Theorem 1.1 can be broken into two separate
conditions in a similar way.

From Theorem 1.4 we now derive two coincidence theorems for functions f, g :
X → Y . In the first theorem we consider the set X to be a ball space, and take
the assertion P (x) to state that f(Bx) ∩ g(Bx) 6= ∅.
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Theorem 1.5 (Bx-type Coincidence Theorem A). Take a ball space (X,B(X)),
a set Y , and functions f, g : X → Y . Assume that there is a function

X 3 x 7−→ Bx ∈ B(X)

such that the following conditions hold:

(A1) If Bx is not a singleton and f(Bx) ∩ g(Bx) 6= ∅, then there is y ∈ X such
that By ⊂

6= Bx and f(By) ∩ g(By) 6= ∅.
(A2) If N = (Bxi)i∈I is a nest of balls in B(X) such that f(Bxi) ∩ g(Bxi) 6= ∅ for
all i ∈ I, then there is y ∈ X such that By ⊆

⋂
N and f(By) ∩ g(By) 6= ∅.

Then for every x0 ∈ X such that f(Bx0
) ∩ g(Bx0

) 6= ∅, there is z ∈ Bx0
such that

fz = gz.

In applications we often find slightly stronger conditions to be satisfied which
can make the formulation of the coincidence theorem more elegant:

Corollary 1.6. Take a ball space (X,B(X)), a set Y , and functions f, g :
X → Y . Assume that there is a function

X 3 x 7−→ Bx ∈ B(X)

such that f(Bx)∩g(Bx) 6= ∅ for all x ∈ X and the following conditions are satisfied:

(A1′) If Bx is not a singleton, then there is y ∈ X such that By ⊂
6= Bx.

(A2′) The ball space (X, {Bx | x ∈ X}) is S2.

Then every ball Bx contains some z ∈ X such that fz = gz.

In the second Bx-type coincidence theorem, we consider the set Y to be a ball
space, and take the assertion P (x) to state that fx, gx ∈ Bx .

Theorem 1.7 (Bx-type Coincidence Theorem B). Take a ball space (Y,B(Y )),
a set X, and functions f, g : X → Y . Assume that there is a function

X 3 x 7−→ Bx ∈ B(Y )

such that the following conditions hold:

(B1) If Bx is not a singleton and fx, gx ∈ Bx, then there is y ∈ X such that
By ⊂

6= Bx and fy, gy ∈ By.

(B2) If N = (Bxi
)i∈I is a nest of balls such that fxi, gxi ∈ Bxi

for all i ∈ I, then
there is y ∈ X such that By ⊆

⋂
N and fy, gy ∈ By.

Then for every x0 ∈ X such that fx0, gx0 ∈ Bx0 there is some z ∈ X such that
fz = gz ∈ Bx0

.

As before, a slightly stronger condition leads to a nicer formulation of the
coincidence theorem. It will be used in Section 3.3 to derive an ultrametric Bx-
type coincidence theorem.

Corollary 1.8. Take a ball space (Y,B(Y )), a set X, and functions f, g :
X → Y . Assume that there is a function

X 3 x 7−→ Bx ∈ B(Y )

such that fx, gx ∈ Bx for all x ∈ X and the following conditions are satisfied:

(B1′) If Bx is not a singleton, then there is y ∈ X such that By ⊂
6= Bx.

(B2′) The ball space (Y, {Bx | x ∈ X}) is S2.

Then for every x0 ∈ X there is some z ∈ X such that fz = gz ∈ Bx0 .



COINCIDENCE POINT THEOREMS FOR BALL SPACES 5

Remark 1.9. The collections {Bx | x ∈ X} induce ball space structures on
the sets in which the balls Bx are taken. For the ball spaces we obtain in this way,
we will in general not know whether they contain any singletons. But in certain
cases, this is exactly what we want to prove. See also the proof of Theorem 4.1 for
a similar situation.

2. Proofs of the main theorems

Proof of Theorem 1.1: Take any ball B0 ∈ B. The set of all nests of balls
containing B0 is partially ordered by inclusion, and the union over any linearly
ordered set of such nests is again a nest containing B0 . Hence by Zorn’s Lemma
there is a maximal nest N0 containing B0 . By (CT2),

⋂
B∈N0

g(B) must be a

singleton, say {y} for some y ∈ Y , since otherwise there would exist a ballB′ ⊂6=
⋂
N0

and N0 ∪ {B′} would be a nest of balls containing B0 and larger than N0, which
contradicts its maximality.

Using (CT1),

f(
⋂
N0) ⊆

⋂
B∈N0

f(B) ⊆
⋂

B∈N0

g(B) = {y} .

Therefore, fz = y = gz for every z ∈
⋂
N0 ⊆ B0. If (X,B) is spherically complete,

then
⋂
N0 6= ∅ and there is at least one such z. If on the other hand B = g−1(g(B))

for all B ∈ B, then all preimages of y are contained in every B ∈ N0 and thus again,⋂
N0 6= ∅. �

Proof of Theorem 1.2: As before, we choose a ball B0 and find a maximal nest
N0 containing B0 . Since (X,B) is an S2 ball space, the intersection of N0 contains
a ball B. By (CS2) we have that f(B) or g(B) is a singleton {y} for some y ∈ Y
because the existence of a ball B′ ∈ B with B′ ⊂6= B is excluded by the maximality

of the nest N0 . Since f(B) ∩ g(B) 6= ∅ by (CS1), we see that f(B) ∩ g(B) = {y}.
Hence for each z ∈ B ⊆ B0, we obtain that fz = y = gz (note that B is nonempty
as it is a ball). �

Proof of Theorem 1.4: By (∗2), the set S = {Bx ⊆ Bx0 | x ∈ X and P (x) holds}
is downward inductively ordered by inclusion. Hence by Zorn’s Lemma, there is a
minimal element Bz in S. Suppose that Bz is not a singleton. Then by (∗1) there
exists y ∈ X such that By ⊂

6= Bz and P (y) holds. Thus By ∈ S which contradicts

the minimality of Bz . Therefore Bz must be a singleton. Since Bz ∈ S, P (z) must
hold. �

Proof of Theorem 1.5: Take any x0 ∈ X such that f(Bx0) ∩ g(Bx0) 6= ∅.
We apply Theorem 1.4 with Z = X and P (x) being the assertion that f(Bx) ∩
g(Bx) 6= ∅, to obtain some z0 ∈ X such that Bz0 is a singleton contained in Bx0

and f(Bz0) ∩ g(Bz0) 6= ∅. Since Bz0 is a singleton, say Bz0 = {z}, it follows that
∅ 6= f(Bz0)∩ g(Bz0) = {fz}∩{gz}, hence fz = gz. Since Bz0 ⊆ Bx0

, we have that
z ∈ Bx0 . �

Proof of Theorem 1.7: Take any x0 ∈ X such that fx0, gx0 ∈ Bx0
. We apply

Theorem 1.4 with Z = Y and P (x) being the assertion that fx, gx ∈ Bx , to obtain
some z ∈ X such that Bz is a singleton contained in Bx0

and fz, gz ∈ Bz , so
fz = gz ∈ Bx0

. �
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3. Applications to ultrametric spaces

In this section, we will use Coincidence Point Theorem II as well as Corollary 1.8
to prove various ultrametric coincidence theorems.

3.1. Preliminaries on ultrametric spaces. An ultrametric d on a set X is
a function from X ×X to a partially ordered set Γ with smallest element 0, such
that for all x, y, z ∈ X and all γ ∈ Γ,

(U1) d(x, y) = 0 if and only if x = y,
(U2) if d(x, y) ≤ γ and d(y, z) ≤ γ, then d(x, z) ≤ γ,
(U3) d(x, y) = d(y, x) (symmetry).

(U2) is the ultrametric triangle law; if Γ is totally ordered, it is equivalent to:

(UT) d(x, z) ≤ max{d(x, y), d(y, z)}.
A closed ultrametric ball is a set Bα(x) := {y ∈ X | d(x, y) ≤ α}, where
x ∈ X and α ∈ Γ. The problem with general ultrametric spaces is that closed balls
Bα(x) are not necessarily precise, that is, there may not be any y ∈ X such that
d(x, y) = α. Therefore, we prefer to work only with precise ultrametric balls, which
we can write in the form

B(x, y) := {z ∈ X | d(x, z) ≤ d(x, y)} ,
where x, y ∈ X. We obtain the ultrametric ball space (X,B) from (X, d) by
taking B to be the set of all such balls B(x, y).

It follows from symmetry and the ultrametric triangle law that

B(x, y) = B(y, x)

and that

(3.1) B(t, z) ⊆ B(x, y) if and only if t ∈ B(x, y) and d(t, z) ≤ d(x, y) .

In particular,
B(t, z) ⊆ B(x, y) if t, z ∈ B(x, y) .

Two elements γ and δ of Γ are comparable if γ ≤ δ or γ ≥ δ. Hence if
d(x, y) and d(y, z) are comparable, then B(x, y) ⊆ B(y, z) or B(y, z) ⊆ B(x, y). If
d(y, z) < d(x, y), then in addition, x /∈ B(y, z) and thus, B(y, z) ⊂

6= B(x, y). We
note:

(3.2) d(y, z) < d(x, y) =⇒ B(y, z) ⊂
6= B(x, y) .

If Γ is totally ordered and B and B′ are any two balls with nonempty intersec-
tion, then B ⊆ B′ or B′ ⊆ B.

An ultrametric space is called spherically complete if its ultrametric ball
space is spherically complete, and it is said to be S2 if its ultrametric ball space
is S2 .

3.2. An application of Coincidence Theorem II. The following theorem
was proved in [10].

Theorem 3.1 (S. Prieß-Crampe, P. Ribenboim). Let (X, d) be an ultrametric
space and take two functions f, g : X → X. Assume that the following conditions
hold:

a) (g(X), d) is spherically complete,
b) f(X) ⊆ g(X),
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c) if gx 6= fx = gy, then d(fx, fy) < d(fx, gx),
d) if d(gx, gy) ≤ d(gx, fx), then d(gy, fy) ≤ d(gx, fx).

Then there is some z ∈ X such that fz = gz.

Analyzing this theorem, we see that there is no need of g(X) being contained
in X and X being itself an ultrametric space. On the other hand, the theorem
shows some similarity with a theorem of K. Goebel for metric spaces (see Theorem
4.1 below). Learning from this, we formulate the following more general theorem:

Theorem 3.2. Take two sets X and Y , and two functions f, g : X → Y .
Assume that the following conditions hold:

(PR1) (g(X), d) is a spherically complete ultrametric space,
(PR2) f(X) ⊆ g(X),
(PR3) if gx 6= fx = gy, then d(fx, fy) < d(fx, gx),
(PR4) if d(gx, gy) ≤ d(gx, fx), then d(gy, fy) ≤ d(gx, fx).

Then there is some z ∈ X such that fz = gz.

Proof. By condition (PR2), fx ∈ g(X), so we can define the precise ball

B(gx, fx) = {gw | w ∈ X and d(gx, gw) ≤ d(gx, fx)}
in (g(X), d). We define a ball space on the set X by taking B(X) to consist of the
preimages

Bx := g−1(B(gx, fx)) = {w ∈ X | d(gx, gw) ≤ d(gx, fx)} ⊆ X ,

for all x ∈ X. Note that Bx 6= ∅ since x ∈ Bx.
To prove that the conditions of Theorem 1.2 are satisfied, we will first show

By ⊆ Bx for every y ∈ Bx . Take y ∈ Bx and z ∈ By. This means that d(gx, gy) ≤
d(gx, fx) and d(gy, gz) ≤ d(gy, fy). By condition (PR4) we have that d(gy, fy) ≤
d(gx, fx), whence d(gy, gz) ≤ d(gx, fx). By the ultrametric triangle law, we obtain
that d(gx, gz) ≤ d(gx, fx), so z ∈ Bx. This proves that By ⊆ Bx .

Take a nest of balls (Bxi
)i∈I in (X,B(X)). Since g(Bxi

) = B(gxi, fxi), it
follows that N = (g(Bxi

))i∈I is a nest of precise ultrametric balls in (g(X), d).
Since by (PR1), g(X) is spherically complete, there is an element in

⋂
N ; in view

of (PR2), we can write it as g(z) for some z ∈ X. But then z ∈ Bxi and hence
Bz ⊆ Bxi for every i ∈ I, which shows that Bz is contained in the intersection of
the nest (Bxi

)i∈I . This proves that the ball space (X,B(X)) is S2.
By condition (PR2), for every x ∈ X there is y ∈ X such that gy = fx ∈

B(gx, fx). Then also y ∈ Bx , so fx = gy ∈ f(Bx)∩ g(Bx), showing that condition
(CS1) is satisfied.

Take a ball Bx ∈ B(X). If g(Bx) = B(gx, fx) is not a singleton, then fx 6= gx.
By (PR2) there is some y ∈ X such that gy = fx 6= gx. We have that y ∈ Bx, so
By ⊆ Bx. Using condition (PR3), we obtain:

d(gy, gx) = d(fx, gx) > d(fx, fy) = d(gy, fy) .

This shows that gx /∈ B(gy, fy), whence x /∈ By and consequently, By ⊂
6= Bx .

Hence, condition (CS2) is satisfied.
Now we can apply Theorem 1.2 to obtain a coincidence point z for f and g. �

Remark 3.3. Analyzing the proof, we notice two things. First, we used preim-
ages to obtain a spherically complete ball space on X from the spherically complete
ultrametric ball space on g(X). This technique will be discussed further in [5]. It
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makes essential use of the fact that ball spaces are very flexible, as they carry only
the minimal structure necessary for our purposes.

Second, we see that a function X 3 x 7→ Bx ∈ B(X) was introduced. Both
observations suggest that it takes less effort to deduce Theorem 3.2 from Bx-type
Coincidence Theorem A. This will be done in the next section.

3.3. A Bx-type coincidence theorem for ultrametric spaces, and ap-
plications. In this section we will prove three different coincidence theorems for
ultrametric spaces and study the relation between them. The following theorem is
a direct application of Corollary 1.8 since by definition, fx, gx ∈ B(fx, gx) for all
x ∈ X.

Theorem 3.4 (Ultrametric Bx-type Coincidence Theorem). Let X be an ar-
bitrary set and (Y, d) an ultrametric space. Take two functions f, g : X → Y . For
each x ∈ X, set

Bx := B(fx, gx) .

Assume that conditions (B1′) and (B2′) of Corollary 1.8 hold. Then there is some
z ∈ X such that fz = gz.

From this theorem we will now derive Theorem 3.2 as well as the following
second theorem which is an ultrametric version of a theorem of K. Goebel for
metric spaces (see Theorem 4.1 below).

Theorem 3.5. Let X be an arbitrary set and (Y, d) an ultrametric space. Take
functions f, g : X → Y such that the following conditions hold:

(GU1) (g(X), d) is spherically complete,
(GU2) f(X) ⊆ g(X), and
(GU3) d(fx, fy) ≤ d(gx, gy) for all x, y ∈ X, and if gx 6= gy, then d(fx, fy) <
d(gx, gy).

Then the following holds:

i) there exists z ∈ X such that fz = gz,
ii) if z is a coincidence point and gz = gy, then also y is a coincidence point,
iii) if z and y are coincidence points, then gz = gy.

Remark 3.6. Statements ii) and iii) are immediate consequences of the hy-
pothesis, and only the existence of a coincidence point is nontrivial. Indeed, in
order to derive ii), assume that z is a coincidence point and take y ∈ X such that
gz = gy. Then d(fz, fy) ≤ d(gz, gy) = 0 by (GU3). Thus fz = fy, and since
fz = gz, it follows that fy = gz = gy. In order to derive iii), assume that y, z ∈ X
are coincidence points. We have that d(gz, gy) = d(fz, fy) which by (GU3) is only
possible if gz = gy.

We have the following logical connection between the three theorems 3.4, 3.2
and 3.5:

Proposition 3.7. Theorem 3.4 implies Theorem 3.2, and Theorem 3.2 implies
Theorem 3.5.

This proposition is proved by the following lemma which exhibits the logical
relations between the conditions of the three theorems.
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Lemma 3.8. Take a set X, an ultrametric space (Y, d), and functions f, g :
X → Y . For each x ∈ X, set Bx := B(fx, gx). Then:

1) Condition (GU3) of Theorem 3.5 implies conditions (PR3) and (PR4) of The-
orem 3.2.

2) Condition (PR3) implies: if Bx is not a singleton, then

(3.3) ∀x, y ∈ X : gy = fx⇒ By ⊂
6= Bx ,

and condition (PR4) implies:

(3.4) ∀x, y ∈ X : gy ∈ Bx ⇒ By ⊆ Bx .

3) Assume that (PR2) holds, so that we can set Y = g(X) in Theorem 3.4.
Then (3.3) implies condition (B1′) of Corollary 1.8, and (3.4) together with (PR1)
implies (B2′).

Proof. 1): a) Assume that gx 6= fx = gy. Then we can apply (GU3) to
obtain that

d(fx, fy) < d(gx, gy) = d(gx, fx) = d(fx, gx) ,

which proves (PR3).

b) Assume that d(gx, gy) ≤ d(gx, fx). Then we can apply (GU3) to obtain that

d(fx, fy) ≤ d(gx, gy) ≤ d(gx, fx) .

By (U2), the two inequalities d(fx, fy) ≤ d(gx, fx) and d(gx, fx) ≤ d(gx, fx)
yield:

d(gx, fy) ≤ d(gx, fx) .

Again by (U2), this together with d(gx, gy) ≤ d(gx, fx) gives

d(gy, fy) ≤ d(gx, fx) ,

which proves (PR4).

2): a) Assume that Bx is not a singleton, i.e., fx 6= gx, and that gy = fx. Then
by (PR3), d(fx, fy) < d(fx, gx). Hence,

d(fy, gy) = d(gy, fy) = d(fx, fy) < d(fx, gx) .

Since gy = fx ∈ Bx , we obtain from (3.2) that By = B(fy, gy) ⊂
6= B(fx, gx) = Bx .

b) Assume that gy ∈ Bx . Then d(gx, gy) ≤ d(gx, fx) and (PR4) shows that
d(gy, fy) ≤ d(gx, fx), whence by (3.1), By = B(gy, fy) ⊆ B(gx, fx) = Bx .

3): a) Assume that Bx is not a singleton. Since Y = g(X), there is y ∈ X such
that gy = fx. From (3.3) it follows that By ⊂

6= Bx . This proves (B1′).

b) Assume that (Y, d) is spherically complete. Take a nest N = (Bxi)i∈I . Then
there is an element in

⋂
N ; since Y = g(X), it can be written as gy for some y ∈ X.

Then for all i ∈ I, gy ∈ Bxi
and (3.4) yields that By ⊆ Bxi

. Thus By ⊆
⋂
N ,

which proves (B2′). �

In the following, we will illustrate the use of Theorem 3.4 by deriving Theorem
3.5 directly from it.

Proof of Theorem 3.5 by direct application of Theorem 3.4:

We assume that the conditions of Theorem 3.5 are satisfied. Then as in part 3) of
Lemma 3.8, we can take Y = g(X) in Theorem 3.4, and we set Bx := B(fx, gx) ∈
B(Y ) for every x ∈ X. Take x ∈ X and assume that Bx is not a singleton, i.e.,
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fx 6= gx. Since f(X) ⊆ g(X), there is y ∈ X such that gy = fx 6= gx. By condition
(GU3), we obtain that

d(gy, fy) = d(fx, fy) < d(gx, gy) ,

which by (3.2) implies that By = B(fy, gy) ⊂
6= B(fx, gx) = Bx. This shows that

condition (B1′) of Theorem 3.4 is satisfied.
Take a nest of balls N = (Bxi

)i∈I . Since g(X) is spherically complete, there is
y ∈ X such that gy ∈

⋂
N . We wish to show that By ⊆

⋂
N . By the ultrametric

triangle inequality, we obtain for all i ∈ I:

d(fy, gy) ≤ max{d(fy, fxi), d(fxi, gxi), d(gxi, gy)}.

We have that

d(fy, fxi) ≤ d(gy, gxi) ≤ d(fxi, gxi) ,

where the first inequality follows from (GU3) and the second inequality holds since
gy ∈ Bxi = B(fxi, gxi). Hence d(fy, gy) ≤ d(fxi, gxi), which by (3.1) implies
that By = B(fy, gy) ⊆ B(fxi, gxi) = Bxi

. Thus By ⊆
⋂
N , which proves that

condition (B2′) of Theorem 3.4 holds.
Now by Theorem 3.4, there is some z ∈ X such that fz = gz. �

4. An application to complete metric spaces

Take a metric space (X, d). The (closed) metric balls are defined as usual as

Br(x) := {y ∈ X | d(x, y) ≤ r}

for r ∈ R≥0 and x ∈ X. We can take these balls to form a ball space on X. The
problem is only that even when (X, d) is a complete metric space, this ball space
may not be spherically complete (see the discussion in [5]). But if we restrict the
radii r to a subset of R≥0 which has 0 as its only accumulation point, then the so
restricted ball space is spherically complete if and only if (X, d) is complete (we
leave the easy proof to the reader). We will use this fact and the flexibility of the
concept of ball spaces to prove a theorem by K. Goebel that appeared in [1].

It should be noted that in the case of metric spaces, the proofs of fixed point
and coincidence theorems using ball spaces are in general not easier than the direct
proofs using Cauchy sequences. However, it is worthwile pointing out how it can
be done by use of metric balls. More importantly, it is a warm-up to the case of
ordered abelian groups and fields which we will discuss in the next section. There
we will indeed need the idea how to define the balls Bx , which we will develop now.

Theorem 4.1 (K. Goebel). Let X be an arbitrary set and (Y, d) a metric space,
and take functions f, g : X → Y which satisfy the following conditions:

(GM1) (g(X), d) is a complete metric space,
(GM2) f(X) ⊂ g(X),
(GM3) there is a positive real number c < 1 such that d(fx, fy) ≤ cd(gx, gy) for
all x, y ∈ X.

Then the following holds:

i) there exists z ∈ X such that fz = gz,
ii) if z is a coincidence point and gz = gy, then also y is a coincidence point,
iii) if z and y are coincidence points, then gz = gy.
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Proof. In view of Remark 3.6, we only have to prove assertion i). We wish
to apply Corollary 1.8. To this end, we define for each x ∈ X a metric ball Bx in
(g(X), d) as follows. If fx = gx, we set Bx = {gx}. Otherwise, we set

nx := max{n ∈ Z | d(fx, gx) ≤ cn} and rx :=
cnx

1− c
.

Then we define:

Bx := Brx(gx) =

{
gw

∣∣∣∣ w ∈ X and d(gx, gw) ≤ cnx

1− c

}
.

Note that all radii rx lie in a subset of R that has 0 as its only accumulation point.
Since fx = gw for some w ∈ X by (GM2), and since d(fx, gx) ≤ cnx < rx in the
case where fx 6= gx, we always have that fx, gx ∈ Bx .

Assume that Bx is not a singleton. By (GM2) there is y ∈ X such that fx = gy.
By (GM3),

d(fy, gy) = d(fy, fx) ≤ cd(gy, gx) = cd(fx, gx) ≤ cnx+1 ,

so we find that

(4.1) ny > nx and ry ≤ crx < rx .

We show that By ⊆ Bx . Take gw ∈ By for some w ∈ X. Then

d(gw, gx) ≤ d(gw, gy) + d(gy, gx) = d(gw, gy) + d(fx, gx)

≤ cny

1− c
+ cnx ≤ ccnx

1− c
+ cnx

=

(
c

1− c
+ 1

)
cnx =

cnx

1− c
.

Thus gw ∈ Bx and we have proved that By ⊆ Bx .
We know from (4.1) that By has a smaller radius than Bx . However, in a

general metric space this does not automatically mean that By 6= Bx . To ensure
inequality, we take k ∈ N so large that ckrx < d(fx, gx) and iterate the above
procedure k many times. In this way we will find some y ∈ X such that fx /∈ By
or gx /∈ By and consequently, By ⊂

6= Bx . This shows that condition (B1′) of

Corollary 1.8 is satisfied.
Now we wish to show that also condition (B2′) is satisfied. Take a nest N =

(Bxi
)i∈I . If this nest contains a smallest ball, then there is nothing to show.

Otherwise the nest will contain balls of arbitrarily small radii. Since the ball space
(g(X), {Bx | x ∈ X}) is spherically complete by (GM1) and our remark at the
beginning of this section, there is an element in

⋂
N ; in view of (GM2), we can

write it as g(z) for some z ∈ X. We will show that fz = gz, so Bz = {gz} ⊆
⋂
N ,

as desired. Indeed, for each i ∈ I we have that gz ∈ Bxi
, i.e., d(gz, gxi) ≤ rxi

.
Now we compute for x being any of the xi , using (GM3):

d(gz, fz) ≤ d(gz, gx) + d(gx, fx) + d(fx, fz)

≤ d(gz, gx) + d(gx, fx) + cd(gx, gz)

≤ rx + cnx + crx = rx(1 + 1− c + c) = 2rx ,

which gets arbitrarily small with the radii rx approaching 0. This shows that
d(gz, fz) = 0, i.e., fz = gz.

Now we can apply Corollary 1.8 to obtain a coincidence point of f and g. �
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5. An application to ordered abelian groups and fields

In this section we will discuss an analogue of Goebel’s Coincidence Theorem for
the case of ordered abelian groups and fields. In [3] we have proved a fixed point
theorem for this case that can be seen as an analogue of Banach’s Fixed Point
Theorem. Since the underlying additive group of an ordered field is an ordered
abelian group, we will concentrate on discussing the case of ordered abelian groups.

The most natural idea to derive a ball space from the ordering of an ordered
abelian group (G,<) is to define the order balls in G to be the sets of the form

Br(g) := {h ∈ G | |g − h| ≤ r}

for arbitrary g ∈ G and nonnegative r ∈ G. To obtain a ball space on G, we set

B := {Br(g) | g ∈ G, 0 ≤ r ∈ G} .

Then (G,B) is the order ball space associated with (G,<). We say that (G,<) is
symmetrically complete if (G,B) is spherically complete. In [6] we have charac-
terized symmetrically complete ordered abelian groups and fields. We showed that
every ordered abelian group (or field) can be extended to a symmetrically complete
ordered abelian group (or field, respectively), and that all symmetrically complete
ordered abelian groups are Hahn products with its archimedean components equal
to R; it follows that they are divisible and therefore Q-vector spaces.

Here is an analogue of Goebel’s Coincidence Theorem 4.1. For its proof, we
will generalize the idea used in the proof of Theorem 4.1, namely that we will work
only with nests of balls of a certain type. But this time, this is not achieved by
restricting the set of radii in general, but by imposing certain conditions on the
nests we consider. This will mean that we cannot derive our theorem directly from
one of our general coincidence theorems, but our proof will again use Zorn’s Lemma.
A similar approach was used in [3], where we introduced the notion of “f -nest”.

Theorem 5.1. Take a set X, a symmetrically complete ordered abelian group
(G,<) and functions f, g : X → G such that g is surjective. Assume that there is
a positive rational number c < 1 such that

|fx− fy| ≤ c|gx− gy| for all x, y ∈ X.

Then there exists z ∈ X such that fz = gz, and also assertions ii) and iii) of
Theorem 4.1 hold.

Proof. As before, we only have to show the existence of a coincidence point.
We set d(x, y) := |x− y| and choose any q ∈ Q such that

1 <
1

1− c
< q , so

1

q
+ c < 1 .

Now we set

rx := qd(fx, gx)

Bx := Brx(gx) = {gw | w ∈ X and d(gx, gw) ≤ qd(fx, gx)} .

Since q > 1 and g is surjective, we obtain that fx, gx ∈ Bx .
Assume that Bx is not a singleton, so d(fx, gx) 6= 0 and rx 6= 0. Since g is

surjective, there is y ∈ X such that gy = fx. By assumption,

d(fy, gy) = d(fy, fx) ≤ cd(gy, gx) = cd(fx, gx) ,
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whence

ry ≤ crx < rx .

We show that By ⊂
6= Bx . Take gw ∈ By for some w ∈ X. Then

d(gx, gw) ≤ d(gx, gy) + d(gy, gw) = d(gx, fx) + ry

≤ d(fx, gx) + crx =

(
1

q
+ c

)
rx < rx .

Thus gw ∈ Bx and we have proved that By ⊆ Bx . Since rx ∈ G, the elements
gx± rx lie in Bx . But since ry < rx , they cannot both lie in By , so By ⊂

6= Bx .

Take a nest N of non-singleton balls Bx with the property that for every Bx ∈
N there is some y ∈ X with gy = fx such that By ∈ N . Starting with x0 = x
and x1 = y we thus find a chain (xi)i∈N of elements in X such that Bxi

∈ N ,
gxi+1 = fxi and rxi

≤ cirx .
Since g(G,<) is symmetrically complete, its order ball space is spherically com-

plete and there is an element in
⋂
N ; in view of the surjectivity of g, we can write

it as gz for some z ∈ X. We wish to show that Bz ⊆
⋂
N .

For each Bx ∈ N we have that gz ∈ Bx , i.e., d(gx, gz) ≤ rx . Note that rx 6= 0
since by our assumption on N the ball Bx is not a singleton. Now we compute,
using the assumptions of our theorem:

d(fz, gz) ≤ d(fz, fx) + d(fx, gx) + d(gx, gz)

≤ cd(gz, gx) + d(fx, gx) + d(gx, gz)

≤ crx + d(fx, gx) + rx

= rx(c +
1

q
+ 1) < 2rx .

Substituting xi for x, we find that d(fz, gz) < 2cirx for all i ∈ N.

Take an arbitrary element gw ∈ Bz ; then d(gz, gw) ≤ rz = qd(fz, gz). For x1
as defined above, we have that Bx1

∈ N and thus gz ∈ Bx1
, that is, d(gx1, gz) ≤

rx1 ≤ crx . Using these facts, we compute:

d(gx, gw) ≤ d(gx, gx1) + d(gx1, gz) + d(gz, gw)

≤ d(gx, fx) + crx + 2qcirx =

(
1

q
+ c + 2qci

)
rx

for all i ∈ N. Since 1
q + c < 1, we can find some i ∈ N large enough so that the

factor of rx in the last expression is at most 1. This shows that gw ∈ Bx and we
have proved that Bz ⊆ Bx . As this holds for all Bx ∈ N, we see that Bz ⊆

⋂
N .

Consider the set of all nests N with the property that for every non-singleton
Bx ∈ N there is some y ∈ X with gy = fx such that By ∈ N . This set is
inductively ordered by inclusion: the union over an ascending chain of nests with
the prescribed property is again a nest with the prescribed property. By Zorn’s
Lemma, there is a maximal nest N . Suppose that this nest does not contain a
smallest ball. Then all of its balls are non-singletons and as we have shown above,
there is an element z ∈ X such that Bz ⊆

⋂
N . Since N does not contain a smallest

ball, we find that Bz /∈ N . We set z0 = z, and choosing by induction a chain (zi)i∈N
of elements in X such that gzi+1 = fzi , we obtain a nest Nz = (Bzi)i∈N with the
prescribed property. Then N ∪Nz is a nest with the prescribed property, properly
containing N . As this contradicts the maximality of N , we find that N contains a
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smallest ball Bz . This must be a singleton, because otherwise, taking y ∈ X such
that gy = fz, we would obtain smaller balls By , but none of them contained in N ,
contradicting the prescribed property of N . Since Bz is a singleton, we have that
fz = gz, as desired. �

6. Fixed point theorems

6.1. General fixed point theorems. In this section, we will derive general
fixed point theorems for ball spaces from the main theorems and corollaries of the
Introduction. Throughout, let (X,B) be a ball space and consider a function

f : X → X .

The following fixed point theorems are immediately obtained from the correspond-
ing coincidence theorems by taking Y = X and g to be the identity function.

Theorem 6.1 (Fixed Point Theorem I). Assume that f satisfies the following
conditions:

(FPT1) for every B ∈ B, f(B) ⊆ B,
(FPT2) for every nest of balls N in B, either

⋂
N is a singleton or there is B′ ∈ B

such that B′ ⊂6=
⋂
N .

Then every ball in B contains a fixed point of f .

Theorem 6.2 (Fixed Point Theorem II). Assume that (X,B) is an S2 ball
space and that f satisfies the following conditions:

(FPS1) for every B ∈ B, f(B) ∩B 6= ∅,
(FPS2) for every B ∈ B, f(B) is a singleton or there is B′ ∈ B such that B′ ⊂6= B.

Then every ball in B contains a fixed point of f .

Theorem 6.3 (Bx-type Fixed Point Theorem A). Assume that

(6.1) X 3 x 7−→ Bx ∈ B(X)

is a function such that the following conditions hold:

(FPA1) If Bx is not a singleton and f(Bx) ∩ Bx 6= ∅, then there is y ∈ X such
that By ⊂

6= Bx and f(By) ∩By 6= ∅.
(FPA2) If Bxi

, i ∈ I, is a nest of balls in B(X) such that f(Bxi
)∩Bxi

6= ∅ for all
i ∈ I, then there is y ∈ X such that By ⊆

⋂
i∈I Bxi

and f(By) ∩By 6= ∅.
Then for each x0 ∈ X with f(Bx0) ∩Bx0 6= ∅, there is a fixed point for f in Bx0 .

Corollary 6.4. Assume that there is a function (6.1) such that f(Bx)∩Bx 6= ∅
for all x ∈ X and the following conditions are satisfied:

(FPA1′) If Bx is not a singleton, then there is y ∈ X such that By ⊂
6= Bx .

(FPA2′) The ball space (X, {Bx | x ∈ X}) is S2.

Then X contains a fixed point of f .

Theorem 6.5 (Bx-type Fixed Point Theorem B). Assume that

(6.2) X 3 x 7−→ Bx ∈ B(X)

is a function such that the following conditions hold:

(FPB1) If Bx is not a singleton and x, fx ∈ Bx, then there is y ∈ X such that
By ⊂

6= Bx and y, fy ∈ By.
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(FPB2) If Bxi , i ∈ I, is a nest of balls such that xi, fxi ∈ Bxi for all i ∈ I, then
there is y ∈ X such that By ⊆

⋂
i∈I Bxi

and y, fy ∈ By.

If there is any x0 ∈ X such that x0, fx0 ∈ Bx0
, then X contains a fixed point of f .

Corollary 6.6. Assume that there is a function (6.2) such that x, fx ∈ Bx
for all x ∈ X and the following conditions are satisfied:

(FPB1′) If Bx is not a singleton, then there is y ∈ X such that By ⊂
6= Bx .

(FPB2′) The ball space (Y, {Bx | x ∈ X}) is S2.

Then X contains a fixed point of f .

We will illustrate the use of some of these results by proving one more fixed
point theorem for ball spaces. If f : X → X is a function, then a subset B ⊆ X
will be called f-contracting if f(B) ⊂ B and the inclusion is strict whenever B is
not a singleton. The following is Theorem 1.1 of [3].

Theorem 6.7. Take a ball space (X,B) and a function f : X → X which
satisfies the following conditions:

(FC1) there is at least one f -contracting ball,
(FC2) for every f -contracting ball B ∈ B, the image f(B) contains an f -contracting
ball,
(FC3) the intersection of every nest of f -contracting balls contains an f -contracting
ball.

Then f admits a fixed point.

Proof. We take Bf to be the collection of all f -contracting balls in B. By
(FC1), Bf is nonempty, so (X,Bf ) is itself a ball space. Since every B ∈ Bf is an f -
contracting ball, we have that f(B) ⊆ B, hence condition (FPT1) of Theorem 6.1
is satisfied.

Now take a nest of balls N in Bf and assume that
⋂
N is not a singleton. By

(FC3),
⋂
N contains an f -contracting ball B′ ∈ Bf . If B′ is a singleton, then

B′ ⊂6=
⋂
N . If B′ is not a singleton, then by definition, f(B′) ⊂

6= B′, and by (FC2),

f(B′) contains an f -contracting ball B′′ ∈ Bf . Then B′′ ⊆ f(B′) ⊂
6= B′, whence

B′′ ⊂6=
⋂
N . This proves that condition (FPT1) is also satisfied.

Now Theorem 6.1 shows the existence of a fixed point for f . �

6.2. An ultrametric fixed point theorem. We show how to derive from
Corollary 6.6 the main ultrametric fixed point theorem of Prieß-Crampe and Riben-
boim ([9]).

Theorem 6.8 (S. Prieß-Crampe, P. Ribenboim). Take a spherically complete
ultrametric space (X, d) and a function f : X → X which is contracting on
orbits, i.e., satisfies the following conditions for all x, y ∈ X:

(CO1) d(fx, fy) ≤ d(x, y),
(CO2) d(fx, f2x) < d(x, fx) if x 6= fx.

Then f has a fixed point in X.

Proof. For every x ∈ X we set

Bx := B(x, fx) .

Then x, fx ∈ Bx .
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If Bx is not a singleton, i.e., x 6= fx, then d(fx, f2x) < d(x, fx) by (CO2).
It follows from (3.2) that Bfx = B(fx, f2x) ⊂

6= B(x, fx) = Bx . This proves that

condition (FPB1′) of Corollary 6.6 is satisfied.
Take a nest N = (Bxi)i∈I . Since (X, d) is spherically complete, there is some

y ∈
⋂
N . For all i ∈ I, y ∈ Bxi and therefore, d(y, xi) ≤ d(xi, fxi). From (CO1)

we infer that d(fy, fxi) ≤ d(y, xi), whence

d(fxi, fy) = d(fy, fxi) ≤ d(y, xi) ≤ d(xi, fxi) .

By (U2), the two inequalities d(xi, fxi) ≤ d(xi, fxi) and d(y, xi) ≤ d(xi, fxi) yield:

d(y, fxi) ≤ d(xi, fxi) .

Again by (U2), this together with d(fxi, fy) ≤ d(xi, fxi) gives

d(y, fy) ≤ d(xi, fxi) .

Hence by (3.1), By = B(y, fy) ⊆ B(xi, fxi) = Bxi . Consequently, By ⊆
⋂
N ,

hence also condition (FPB2′) of Corollary 6.6 is satisfied. Now we can apply
Corollary 6.6 to obtain a fixed point of f . �
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