Chapter 8

Immediate extensions

8.1 Basic facts

If (L|K,v) is any extension of valued fields, then associated with it are two other extensions:
the extension vL|vK of their value groups and the extension L|K of their residue fields.
The study of valued field extensions consists to a great extent of the study of the relation
between these three extensions. In Section 7?7, we have defined (L| K, v) to be immediate
if the extensions vL|vK and L|K are trivial, or loosely speaking, if (K,v) and (L, v) have
the same value group and the same residue field. We have already shown that (L|K,v) is
immediate if and only if the underlying extension of valued abelian groups is immediate,
or equivalently, if and only if the underlying extension of ultrametric spaces is immediate.
Immediate extensions play an important role in valuation theory. Many of their basic
properties are already properties of immediate extensions of ultrametric spaces, of valued
abelian groups or modules, and they have been proved in the previous chapters. But for
the convenience of the reader, we will summarize them here and give direct proofs.

Let a € L and A = at (a, K') the approximation type of a over (K,v). Recall that for
every a € vK, we have ¢ € A,, if and only if v(a — ¢) > a. The set Al(a, K) C vKoo,
called the support of at (a, K), consists of all « € vK oo for which A, # (). Hence, we can
write

A(a,K)={acvKoo|Ic€ K: v(a—c)>a}.

Recall that AL(a, K) is an initial segment of vKoo. Further, co € Al(a, K) if and only if
a€ K.

Lemma 8.1 Let (L|K,v) be an extension of valued fields.

a) If L|K is algebraic, then (L|K,v) is immediate if and only if every finite subextension
of (L|K,v) is immediate.

b) If (L|K,v) is immediate, then for every a € L\ K, the set AX(a, K) has no maximal
element.

c) The extension (LK, v) is immediate if and only if for every a € L\ K, its approzimation
type at (a, K) over (K,v) is immediate.

d) If a € L, then at (a, K) is immediate if and only if for every ¢ € K there is some ¢ € K
such that v(a — ') > v(a — ¢).

Proof:  a): Assume that L|K is algebraic. Implication “=" follows from part a) of
Lemma 6.4. For the converse, just observe that every element a in an algebraic extension
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of K already lies in the finite extension K (a) of K. If va ¢ vK, then vK(a) # vK, and if
av ¢ Kv, then K(a)v # Kwv.

b): Ifa € L\ K and A¥(a, K) has a maximal element, say v(a — ¢p) with ¢y € K, then
a—co # 0, but there is no ¢ € K such that v(a —co—c) > v(a—c¢p). In view of Lemma 6.1,
this proves that (L|K,v) cannot be immediate.

c): Let (L|K,v) be immediate and a € L. For every ¢ € K, a:=v(a—¢) € vLoo = vKoo
and thus, ¢ € at (a, K), \ at (a, K)2. This proves that at (a, K) is value-immediate. Now
let @ € vK such that at (a, K), # 0. That is, there is ¢y € K such that v(a — ¢p) > a. In
view of part e), there is some ¢ € K such that v(a — ¢y — ¢) > v(a — ¢g) > «, which means
that ¢o + ¢ € at (a, K)2. This proves that at (a, K) is residue-immediate. Altogether, we
find that at (a, K) is immediate.

For the converse, assume that 0 # a € L and that at (a, K) is immediate. In view of
(ATVI), choose o € vK oo such that 0 € at (a, K), \ at (a, K)2. That is, va = v(a—0) = «a.
Now using (ATRI), choose ¢ € at (a, K)2. That is, v(a—c¢) > a = va. By virtue of part b),
this proves that if at (a, K') is immediate for every a € L, then (L|K,v) is immediate. [

We can now state that vs-defectless extensions are “anti-immediate” even in the sense
that they do not admit immediate approximation types. This follows from part d) of the
previous lemma together with Lemma 6.7.

Lemma 8.2 Let (L|K,v) be a vs-defectless extension and a € L. Then at (a, K) is not
immediate.

Recall that (K, v) is said to be dense in (L,v) if for every a € L and all 5 € vL there
is some ¢ € K such that v(a — ¢) > (. It follows directly from part e) of the foregoing
lemma that (L| K, v) is immediate if (K, v) is dense in (L,v). The converse is not true, cf.
Example 11.59.

Lemma 8.3 a) If L|K is algebraic, then (K, v) is dense in (L,v) if and only if it is dense
in every finite subextension of (L|K,v).

b) If (K,v) is dense in (L,v), then A¥(a, K) = vK for everya € L\ K.

c) (K,v) is dense in (L,v) if and only if at (a, K) is a completion type for every a € L.

Proof:  a): Similar to the proof of part a) of Lemma 8.1 (by use of the definition of
“dense” in the place of part d) of Lemma 8.1).

b): Let (K,v) be dense in (L,v), a € L'\ K and € vK. Then there is ¢ € K such that
v(a — ¢) > . Hence, 3 € A¥(a, K). On the other hand, co ¢ A’(a, K) since a ¢ K. This
shows that AF(a, K) = vK.

c): Let (K,v) be dense in (L,v). Then (L|K,v) is immediate and thus by part d) of
Lemma 8.1, the approximation type at (a, K') is immediate for every a € L. By part ¢),
A(a,K) =vK or, ifa € K, A'(a, K) = vKoo. That is, the distance dist (a, K) is oo and
by definition, at (a, K) is a completion type. For the converse, let (L|K,v) be an extension
such that at (a, K) is a completion type for every a € L. Since every completion type
is an immediate approximation type, it follows from part d) of Lemma 8.1 that (L|K,v)
is immediate. Now let § € vL = vK. Since at(a, K) is a completion type, that is,
dist (a, K') = 0o, we know that there is some v > 3 such that at (a, K), # (). This means
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that there is ¢ € K such that v(a —¢) > v > 5. We have proved that (K,v) is dense in
(L,v). O

Density plays a special role in the case of a discrete valuation, that is, if vK = Z, as
in the case of (Q,,v,) and (F,((2)),v;):

Lemma 8.4 Let (K,v) be a valued field and vK = Z. Then (K,v) is dense in every
immediate extension.

Proof: Let (L|K,v) be an immediate extension and vL = vK = Z. lf a € L\ K,
then by part c) of Lemma 8.1, A¥(a, K) C vK has no maximal element. Consequently,
A(a, K) = vK = vL. This shows that (K,v) is dense in (L, ). O

8.2 Pseudo Cauchy sequences

We recall the notion of “pseudo Cauchy sequence” that we had introduced in the framework
of ultrametric spaces, and adapt it to the case of valued fields. Take a valued field (K, v)
and a sequence (a,),<y of elements in K, indexed by ordinals v < X where A is a limit
ordinal. It is called a pseudo Cauchy sequence if

(PCS) v(a; —a,) > v(a, —a,) whenever p <o <7 <A

As before, it will be called ultimately a pseudo Cauchy sequence if there is some
vy < A such that the condition in (PCS) holds whenever vy < p < 0 < 7 < A. Similarly,
we will say that an assertion holds ultimately for (a,),<, if there is vy < A such that the
assertion holds for all a, with v > vy .

We have discussed the properties of pseudo Cauchy sequence already in Section 1.14.
Here we will adapt the most important to the case of fields. We leave the proofs as an
exercise to the reader (if you cannot give a direct proof, adapt the proofs from Section 1.14).

As before, we set

Yo = v(ayr1 — ay) .

If (ay,) < is a pseudo Cauchy sequence, then (7, ),<y is strictly increasing.
Lemma 8.5 Let (a,),<) be a pseudo Cauchy sequence in (K,v). Then
v(a, —a,) =7, whenever p <v < \. (8.1)

If a € K, then either
v(a—a,) <v(a—a,) whenever p <v <X\, (8.2)

or there is vy < \ such that
v(a —a,) =v(a — ay,,) whenever g < v < \.
Property (8.2) is equivalent to
v(a—a,) =7, forallv<\. (8.3)

In other words, if (v(a — a,)),<x is not strictly increasing, then it is ultimately constant.
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Taking a = 0, we obtain:

Corollary 8.6 For every pseudo Cauchy sequence (a,),<y, €ither (va,),<x is strictly in-
creasing or ultimately constant.

Note that if (L|K,v) is an extension of valued fields and (a,),<, is a pseudo Cauchy
sequence in (K, v), then it is also a pseudo Cauchy sequence in (L,v). An element a € L is
called a pseudo limit (or just limit) of (a,),<, if it satisfies (8.2), or equivalently, (8.3).
Since v(a — ay+1) > Y41 > 7, implies that v(a — a,) = min{y,,v(a — a,4+1)} = v, , both
conditions are equivalent to

via—a,) >, forallv < \.

Lemma 8.7 If (7,),<x is a strictly increasing sequence in the value group vK of (K, v)
and if (a,),<x 1S a sequence in K such that

v(a, —ay,) =7, whenever p <v <\,
then (a,),<x is a pseudo Cauchy sequence.

Proof: 1If p <o <7 < A, then by assumption,

v(ar —as) = Yo > 7, = v(as —a,),

hence (a, ), <, satisfies the definition of a pseudo Cauchy sequence. 0

8.3 Polynomials and pseudo Cauchy sequences

Throughout this section, we consider a pseudo Cauchy sequence S = (a,),<» in (K, v) and
a polynomial f € K[X]. We will say that S fixes the value of f if the sequence v f(a,),<a
is ultimately constant.

Our first goal in this section is to show that (f(a,)),<x is ultimately a pseudo Cauchy
sequence. This will also tell us what happens if S does not fix the value of f: by Corol-
lary 8.6, the sequence (v f(a,)),<x will then ultimately be strictly increasing.

We will need the following lemma for ordered abelian groups. It is a reformulation of
a lemma of Kaplansky [KAP1]. For archimedean ordered abelian groups, it was proved by
Ostrowski [OS3].

Lemma 8.8 Let oy, ..., a,, be any elements of an ordered abelian group I' and Y C T" an
infinite subset without mazimal element. Lettq, ..., t,, be distinct integers. Then there exists
an element B € T and a permutation o of the indeces 1,...,m such that for all v € T,

v =B,
ap(1) T lo)Y > Qo) Tlo@2)Y > - oo > Qo(m) + to(m) -

Proof:  Assume that 1 <i,57 < m with i # j and that there exist 71,72 € T such that

Q; + iy > Q; + tj’71 and «; + tive < Q; + tj’YQ . (84)
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By assumption, ¢; # {¢;, and w.l.o.g., we may assume t; — {; > 0. Since every ordered
abelian group is a torsion free Z-module, the element v, ; = (o — o) /(t; —t;) € I is the
unique solution of the equation

«; + t,X = 0y + t]X 3 (85)
and from (8.4) we infer
<39 o
T t—t, V2 -

There are only finitely many elements in the divisible hull I' of I" which solve an equation
(8.5) for some pair i # j, (1 <i,j < m). Consider the subset S of those elements among
them which are exceeded by some element in Y. Let o be the maximal element of this
subset. Then there exists § € T, 8 > a. Suppose that § < 71,7 € T such that (8.4)
holds. Then by what we have shown above, there exists a solution +; ; of equation (8.5)
which lies between ~; and 7, and is thus contained in S. But this contradicts the definition
of #. Consequently, if the inequalities given in our assertion are those which hold for g in
the place of 7, then they will hold for all v € T, v > j3. OJ

Now we can achieve our first goal at least in a special case. In what follows, we will use
the Taylor expansion

fX) = fY)+ AMX =Y)+ ..+ fu(Y)(X =Y)",
where f; denotes the i-th formal derivative of f, as described in (24.12).

Lemma 8.9 Assume that for every i, the pseudo Cauchy sequence S = (a,),<x fizes the
value of the formal derivative f; of f, and let B; denote the fized value vf;(a,) for large
enough v (where B; = oo if f; vanishes identically). Then there is an integer h = h(f,S) <
deg f such that

v(f(ay) — flau)) = On+ho(a, —a,) for large enough p,v < X\, (8.6)

and (f(a,))v<x is ultimately a pseudo Cauchy sequence.

If S does not fix the value of f, then
vf(a,) = PBn+hvy,  for large enough v < X .
Proof: Write n = deg f. We consider the Taylor expansion
Flan) = Flan) = (@)@ — a) + -+ fala)(ar — a,)"
For large enough p < v < XA we have that
vfila)(a, — a,)' = Bi+iv,.

So we apply Lemma 8.8 with o; = 3; t; =i and T = {v, | ¥ < A}. We find that there is an
integer h < deg f such that ultimately, 8, 4+ hvy, < §; + 7, for ¢ # h. By the ultrametric
triangle law,

v(f(ay)—f(a,)) = min ;+iv, = fun+hy, = fu+hv(a,—a,) for large enough p <v < \.
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This implies equation (8.7). In view of Lemma 8.7, it also implies that (f(a,)),<x is
ultimately a pseudo Cauchy sequence.

Suppose that S does not fix the value of f. Then by Corollary 8.6, (f(a,)),<x is
ultimately strictly increasing. Hence for large enough p < v < A,

vfla,) > vfla,) = minfvf(a), vf(a.))}t = o(f(a) = fla,)) = Bi+ i
O

This lemma gives us the desired result only in the case where S fixes the value of all
fi . In order to prove the result in general, we need a different approach.

Lemma 8.10 Assume that a is a limit of S = (a,),<x in some valued field extension of
(K,v). Then there is an integer { = £(f,S) < deg f such that

o(F(a) — f(@)) = vfela) + by, ultimately, (5.7
and (f(a,))v<x is ultimately a pseudo Cauchy sequence, with limit f(a), and
v(f(aw) — flan)) = vfela)+ by,  for large enough p < v < X.

The number ¢ and the value v fy(a) do not depend on the particular limit a of S.
If S fixes the value of f, then

v(f(a) — f(a,)) > vf(a) =vf(a,) ultimately. (8.8)
If S does not fix the value of f, then
vf(a) > vf(a,) = vfla)+ by, ultimately.

Proof:  Since a is a limit of S, we have that v(a, —a) = v(a —a,) =, for all v < A.
We write n = deg f and now consider the Taylor expansion

flay) = fa) = fila)(a, = a) + ... + fula)(a, —a)"

in K(a). Applying Lemma 8.8 with a; = vf;(a) and ¢; = i, we find that there is an integer
¢ < deg f such that ultimately, vf,(a) + ¢, < vfi(a) + iy, for i # ¢. By the ultrametric
triangle law, this implies equation (8.7).

From this it follows that for all u, v large enough with u < v < A,

v(flay) = fla,)) = min{v(f(a) = f(a.)),v(f(a) = f(a))}
= min{vfi(a) + ly,, vfi(a) + ly}
= ?}fg(a) + 6/7;1 y

where the first equality holds since v fy(a) + ¢, # vfi(a) + ¢v,. As the sequence (v fy(a)+
07,))u<x is strictly increasing, it follows from Lemma 8.7 that (f(a,)), < is ultimately a
pseudo Cauchy sequence.

Suppose we have two limits a; and as and two corresponding numbers ¢; and ¢5. From
what we have just shown, taking v =+ 1. we obtain

vfe(ar) + 0y, = v(flau) — flay) = vfn(az) +
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for all large enough p < A. This is only possible if ¢, = ¢y and v fy, (a1) = vfy,(az). This
proves our independence statement.

Suppose that S fixes the value of f. Then the ultimate value of vf(a,) cannot differ
from v f(a) since otherwise, the left hand side of (8.7) would be equal to min{v f(a),vf(a,)}
and thus be fixed, while the right hand side of (8.7) increases with v. So the right hand
side is ultimately bigger than min{vf(a,),vf(a,)}, which yields that v(f(a) — f(a,)) >
vf(a) =vf(a,) ultimately.

Suppose that S does not fix the value of f. Then by Corollary 8.6, (vf(a,)),<x is
ultimately strictly increasing. Hence for large enough p < v < A,

vf(a,) > vf(ay) = min{vf(a,),vf(a.)} = v(f(a,) = flan))
= Gi+ivvfi(a) +v(la —a,) = vfi(a) + iy, .

Now we are able to prove:

Proposition 8.11 For every pseudo Cauchy sequence (a,),<x in (K,v) and every poly-
nomial f € K[X]|, (f(a,)),<x is ultimately a pseudo Cauchy sequence, and (vf(a,)),<x 18
either ultimately fived or ultimately strictly increasing.

For the proof, there are several options. We could deduce our readily from Lemma 8.10
if we would know at this point that every pseudo Cauchy sequence has a limit in some
valued extension field. But this fact is actually easy to prove by means of model theory,
see Lemma 20.85.

If we do not want to rely on model theory, we have to find another way. Actually, it
will be shown in the next section that every pseudo Cauchy sequence has a limit in some,
and we even obtain more detailed information about these extensions, depending on the
type of the pseudo Cauchy sequence. The proofs of Kaplansky which we will present will
use Proposition 8.11, and so do we in the proof of Theorem 8.18. But with a little more
effort, that use can be eliminated (see Exercise 8.2).

A third way of proof that combines Lemmas 8.9 and 8.10 is based on a nice little
observation by Ostrowski:

Lemma 8.12 Choose an extension of v to the algebraic closure K of K. If the pseudo
Cauchy sequence (a,),<x in (K,v) does not fix the value of f € K[X], then at least one of
the roots of f is a limit of (ay,),<x-

Proof:  Write f(X) = ¢[[\_,(X — b) with ¢ € K and b; € K. Then vf(a,) =
ve+ Y v(a, —b;). If none of the b; were a limit of (a,),<x, then by Lemma 8.5, the sum
on the right hand side would be ultimately constant, which is not the case if (a,),<) does
not fix the value of f. OJ

Now the proof of our proposition is easy: If (a,),<r fixes the value of every formal
derivative f; of f, then the assertion follows from Lemma 8.9. If there is a derivative the
value of which is not fixed, then (a,),<) has a limit in the algebraic closure of K, and the
assertion follows from Lemma 8.10. ([l
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We will now introduce an important classification of pseudo Cauchy sequences S in a
valued field (K,v). If S fixes the value of every polynomial in K[X], then it is said to
be of transcendental type. If there is some f € K[X] whose value is not fixed by S,
then S is said to be of algebraic type. Recall that if S = (a,),<, then (vf(a,)), <y is
ultimately strictly increasing, according to Proposition 8.11. In [KAP1], Kaplansky uses
this property for the classification. However, the classification can be formulated without
knowing Proposition 8.11, and this is helpful if one wants to obtain the results of the next
section before proving the proposition (see Exercise 8.2).

If there exists any polynomial f € K[X] whose value is not fixed by S, then there
also exists a monic polynomial of the same degree having the same property (since this
property is not lost by multiplication with non-zero constants from K). If f(X) is a monic
polynomial of minimal degree d such that S does not fix the value of f, then it will be
called an associated minimal polynomial for S, and S is said to be of degree d and we
write deg S = d. We define the degree of a pseudo Cauchy sequence S of transcendental
type to be degS = 0o. According to this definition, a pseudo Cauchy sequence in (K, v)
of degree d fixes the value of every polynomial f € K[X] with deg f < d.

Note that an associated minimal polynomial f for S is always irreducible over K.
Indeed, if g,h € K[X] are of degree < deg f, then S fixes the value of g and h and thus
also of g - h. Since every polynomial g € K[X] of degree d whose value is not fixed by
S, is just a multiple c¢f of an associated minimal polynomial f for S (with ¢ € K*), the
irreducibility holds for every such polynomial too. We leave it to the reader to prove:

Lemma 8.13 Tuke a pseudo Cauchy sequence S and an element a € K. Then a is a limit
of S if and only if S does not fix the value of X — a. Hence, S does not admit a limit in
K if and only if its degree is at least 2.

Here is another easy but useful information on he degree of a pseudo Cauchy sequence:

Lemma 8.14 Take a pseudo Cauchy sequence S in (K,v) and limit a in some valued
extension field. Assume that a is algebraic over K with minimal polynomial f € K[X].
Then S does not fix the value of f. Hence, degS < [K(a) : K|, showing in particular that
S is algebraic.

Proof:  Since f(a) = 0, we obtain from equation (8.7) of Lemma 8.10 that the value
vf(a,) is ultimately strictly increasing. O

The following lemma adds some information to that given by Lemma 8.10. It makes es-
sential use of the fact that for an associated minimal poynomial f, the sequence (v f(a,)),<a
is ultimately strictly increasing.

Lemma 8.15 Assume that S = (a,),<y is a pseudo Cauchy sequence in (K, v) of algebraic
type, with associated minimal polynomial f € K|[X]|, and that a is a limit of S in some
valued field extension of (K,v). Further, let g € K[X] be an arbitrary polynomial and write

9(X) = c(X)f(X)" + ..+ ea(X) f(X) + co(X)

with polynomials ¢; € K[X] of degree < deg f. Then there is some integer m < k and a
value B € vK such that with h = h(f,S) as in Lemma 8.9,

v(g(a,) —co(ay)) = vem(a,) +mof(a,) = 6+ mhy, ultimately. (8.9)
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If S fizes the value of f, then
v(g(a) — cola)) > vg(a) = veo(a) . (8.10)
If S does not fix the value of g, then
veg(a) > vg(a,) = f+mhy, and wveg(a) > vg(a,) =+ mhy,  ultimately.

Proof: Since degc; < deg f = deg S, we have that S fixes the value of ¢;, for 0 <17 < k.
We denote by §; the ultimate value of ¢;(a,). Since f is an associated minimal polynomial
for S, we know that S does not fix the value of f. In view of Lemma 8.9 we find that
the ultimate value of ¢;(a,)f(a,)" is equal to &; + ifn + thy,. We apply Lemma 8.8 with
a; = 0; +if, and t; = th and T = {7, | v < A} to deduce that there is an integer
m > 0 such that ve,(a,) f(a,)™ < vei(ay,) f(a,)’ ultimately for 0 < @ # m. Consequently,
v(g(a,,) - CO(au)) = Ucm(au)f(ay)m = 0, + mpPBn + mhry,. We set 3 := 9, + mfn .

Suppose that S fixes the value of ¢g. Since S also fixes the value of ¢y, we can infer from
Lemma 8.10 that v(g(a)—g(a,)) > vg(a) = vg(a,) and v(co(a)—co(a,)) > vep(a) = veg(ay)
ultimately. As the right hand side of (8.9) is strictly increasing, we also obtain as in earlier
proofs that v(g(a,) — co(a,)) > vg(a,) = veg(a,) ultimately. Putting everything together,
we obtain that vg(a) = vg(a,) = veg(a,) = veg(a) ultimately and

v(g(a)=co(a)) = minfu(g(a)—g(a)), v(g(a,)—co(av)), v(co(a) —colar))} > vg(a) = veo(a) .

The proof of the last assertions of our lemma is similar to that of the corresponding
assertion of Lemma 8.10. 0

Note that in the case of S not fixing the value of g, we cannot conclude that vg(a) = vcy(a).
In fact, a may be a zero of one of the polynomials while it is not a zero of the other. By
comparing the last assertions of Lemma 8.10 and Lemma 8.15, however, we find that
¢(g,S) = mh must hold. But this may not be true if S fixes the value of g since then we
may have (g, S) < degcg < mh, even with m = 1 (see Exercise 8.1).

For the conclusion of this section, we formulate some useful consequences of Lemma 8.10.

Lemma 8.16 Take a pseudo Cauchy sequence S = (a,),<x of degree d in (K, v), with
limit a in some valued field extension. Then the valuation on the valued (K,v)-subvector
space (K+Ka+...+Kad™1 v) of (K(a),v) is uniquely determined by S, as vg(a) = vg(a,)
ultimately for every g € K[X] of degree < d. The elements 1,a,...,a%™ are K-linearly
independent. In particular, a is transcendental over K if d = oo.

Moreover, the extension (K,v) C (K + Ka + ...+ Ka%7',v) of valued vector spaces
is immediate. In particular, if d = oo or if d = [K(a) : K] < oo, then (K[a]|K,v) is
immediate and the same is consequently true for the valued field extension (K(a)|K,v).

Proof: If 0 # g € K[X] has degree smaller than the degree of S, then S fixes the
value of g, so Lemma 8.10 shows that v(g(a) — g(a,)) > vg(a) ultimatley, which yields
vg(a) = vg(a,). Since g(a,) € K, this means that the value of g(a) is uniquely determined
by S and the restriction of v to K. We also find that vg(a) # oo, that is, g(a) # 0, which
shows that the elements 1, a,...,a?"! are K-linearly independent.

The inequality v(g(a) — g(a,)) > vg(a) implies that vg(a) = vg(a,) € vK and, in the
case of vg(a) = 0, that g(a)v = g(a,)v € Kv. This means that (K,v) C (K + Ka+ ...+
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Ka%7! v) is an immediate extension of valued vector spaces. If d = [K(a) : K| < oo,
then K(a) = K[a] = K + Ka + ...+ Ka®™!, and we find that the valued field extension
(K (a)|K,v) is immediate.

Now suppose that d = co. Then by what we have shown, (K,v) C (KJa],v) is imme-
diate. But then again it follows that the valued field extension (K (a)|K,v) is immediate.
Indeed, if g, h € K[X], then S fixes the value of both g and h, and (8.10) holds for g and A in
place of f. So for large enough v < A, v(g(a) —g(a,)) > vg(a) and v(h(a) —h(a,)) > vh(a).
Then vg(a) = vg(a,), vh(a) = vh(a,) and

v (g(a) - g(al,)) = wv(g(a)h(a,) — g(a,)h(a)) —vh(a)h(a,)

h(a)  h(a,) (@)
= v <g<a>h(a’u> - g(au)h<av) + g(au)h(au> - g(au)h<a)) - Uh(a>h(al/)
> min{v(g(a) — g(a,))h(ay), vg(a,)(h(ay) — h(a))} — vh(a)h(a,)
B ~gla)
> wg(a)h(a) —vh(a)h(a) = v n(a)
Therefore, v% = UZ((ZS € vK, and if this value is zero, then ZEZ;U = zgzz))v € Kv. Hence
again, the valued field extension (K (a)|K,v) is immediate. O

Exercise 8.1 Construct polynomials f,g and a pseudo Cauchy sequence S such that S fixes the value of
g but not of f, but with the notation from Lemmas 8.10 and 8.15, £(g,S) < degco < mh and m = 1.
What can be said in addition to Lemma 8.15 if £ > degcq ?

8.4 Characterization of maximal fields

In this section we will present Ostrowski’s and Kaplansky’s basic theorems about the
connection between pseudo Cauchy sequences and immediate extensions, as found in the
second section of [KAP1].

Theorem 8.17  (Theorem 2 of [KAP1))

For every pseudo Cauchy sequence S = (a,),<x in (K,v) of transcendental type there
exists a simple immediate transcendental extension (K (x),v) such that x is a limit of S. If
(K(y),v) is another valued extension field of (K,v) such that y is a limit of S , then y is
also transcendental over K and the isomorphism between K(z) and K(y) over K sending
x to y is valuation preserving.

Proof: We take K (z)|K to be a transcendental extension, and we define a valuation on
K(x) as follows. In view of the rule v(g/h) = vg — vh, it suffices to define v on K[x]. Let
g € K[X]. By assumption, S = (a,),<, fixes the value of g, that is, there is & € vK such
that ultimately, vg(a,) = a. We set vg(z) = a. If g is a constant in K, we just obtain
the value given by the valuation v on K. Our definition implies that vg # oo for every
nonzero g, showing that (VO0) is satisfied. Further, (VH) and (VT) are satisfied since they
are already satisfied in K: We have that vg(z)h(z) = vg(a,)h(a,) = vg(a,) + vh(a,) =
vg(x) + vh(x) ultimately, and v(g(z) + h(x)) = v(g(a,) + h(a,)) > min{vg(a,),vh(a,)} =
min{vg(z),vh(x)} ultimately. We have proved that our definition gives a valuation v on
K (z) which extends the valuation v of K. Under this valuation, x is a limit of S. This
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is seen by considering the polynomial ¢(X — a,) for each ;1 < A. By definition, we have
v(r —a,) = vg(x) = vg(a,) = v(a, — a,) = 7, for large enough v. Hence x is a limit of
(ay)y<r. From Lemma 8.16, we now infer that (K (z)|K,v) is a transcendental immediate
extension.

Given another element y in some valued field extension of (K, v) such that y is a limit
of S, we want to show that the epimorphism from KJz| onto K[y] induced by = — y
is valuation preserving. For this, we only have to show that vg(z) = wvg(y) for every
g € K[X]. By hypothesis, the degree of S is co. From Lemma 8.16 we can thus infer
that vg(z) = vg(a,) = vg(y) holds ultimately; this proves the desired equality. Again from
Lemma 8.16, we deduce that y is transcendental over K. Hence, the assignment x +— y
induces an isomorphism from K (x) onto K(y). Since the valuation of K(x) and K (y) is
uniquely determined by its restriction to K[z| and Kly| respectively, it follows from what
we have already proved that this isomorphism is valuation preserving. 0

Theorem 8.18  (Theorem 3 of [KAP1])
Take a pseudo Cauchy sequence S = (a,),<x in (K,v) of algebraic type with degree d > 1
and associated minimal polynomial f(X) € K[X]. If a is a root of f, then there exists an
extension of v from K to K(a) such that (K(a)|K,v) is an immediate extension and a is
a limit of S.

If (K(b),v) is another valued extension field of (K,v) such that b is a limit of S, then
any field isomorphism between K(a) and K(b) over K sending a to b will preserve the
valuation.

Proof: = We define a valuation on K(a) = K]a| as follows. Take g € K[X] of degree
< [K(a) : K] = d. By assumption, S fixes the value of g, that is, there is a € vK such
that ultimately, vg(a,) = . We set vg(a) = a. Like in the proof of Theorem 8.24 it is
shown that the so defined map extends v from K to K(a) and satisfies (V0) and (VT),
and that a is a limit of S.

We have to prove that (K (a),v) satisfies (VH). Suppose that g, h € K[X] are of degree
< [K(a) : K] = d. Then A fixes the value of both g and h and thus also the value of
gh. Take f € K[X] to be an associated minimal polynomial for A and write g(X)h(X) =
¢(X)f(X) +r(X) with ¢,r € K[X] and degr < deg f = d. Here, S fixes the values of
gh and of r, while the value of f is increasing and the value of f is strictly increasing and
the value of ¢ is strictly increasing or ultimately fixed. In both cases, the value of ¢f is
ultimately strictly increasing. Therefore, we have vg(a,)f(a,) # min{vg(a,)h(a,),vr(a,)}
and hence vg(a,)h(a,) # vr(a,) ultimately. We choose v < A large enough so that this
inequality holds as well as vg(a) = vg(a,), vh(a) = vh(a,) and vr(a) = vr(a,). Using also
that f(a) = 0, we obtain:

vg(a)h(a) = w(gh)(a) = v(qf +7)(a) = vr(a) = vr(a,) = vg(ay)h(a,)
= wvg(a,) +vh(a,) = vg(a)+ h(a) .

The last assertion of our theorem is shown like the corresponding assertion of The-
orem 8.24: if both a and b are limits of S and if ¢ € K[X] with degg < d, then by
Lemma 8.16, vg(a) = vg(a,) = vg(b) ultimately. Hence an isomorphism over K sending a
to b will preserve the valuation. O
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Suppose that S is a pseudo Cauchy sequence in (K, v) without a limit in K. Then by
Lemma 8.13, S is of degree > 2, and by the last two theorems, (K,v) admits a proper
immediate extension. Conversely, if (K, v) admits a proper immediate extension, then by
part ¢) of Lemma 8.1, it admits a pseudo Cauchy sequence in (K, v) without a limit in K.
This proves:

Theorem 8.19  (Theorem 4 of [KAP1])
A wvalued field (K,v) is mazimal if and only if every pseudo Cauchy sequence S in (K,v)
has a limit in K.

Exercise 8.2 The proof of Theorem 8.18 uses Proposition 8.11 at the point where the validity of (VH)
is checked. Indeed, the approach used there depends on the fact that (vf(ay,)),<x is ultimately strictly
increasing if it is not ultimately constant. Find a proof that replaces the use of this fact by an application
of Lemma 8.9 together with other arguments.

8.5 Existence of maximal immediate extensions

Do maximal fields exist, and how can one construct them? The following easy observation
is helpful; its proof is left to the reader.

Lemma 8.20 The union of any increasing chain of immediate extensions of bounded car-
dinality 1s again an immediate extension. Fvery maximal immediate extensions of any
gwen valued field is a mazximal field.

The condition on the cardinality guarantees that the union is not a proper class.

Let us show the existence of maximal immediate extensions of any given field (K, v).
As in the case of valued abelian groups (see Section ?77), we can apply Zorn’s Lemma, once
we can prove that there is an upper bound for the cardinality of immediate extensions.
This fact can be readily deduced from Lemma 2.12 since the components of a valued field
are all isomorphic to its residue field. But for the convenience of the reader, we will give a
direct proof.

Lemma 8.21 For every valued field (K, v),

K| <ol
Proof: For every @ € vK, choose some t, € K such that vt, = «, and a set of
representatives S, C K for the elements of the quotient group K/QO, . Take a € K and
a € vK. Then there is a unique element c(a, o) € S, such that v(a — ¢) > a. Set

A ‘= %M’a)v € Kv.
Then the map f, which sends o € vK to a, € Kv lies in (Kv)"!, the set of all maps from
vK into Kv. We show that the map a — f, is injective. Indeed, if a,b € K such that
a # b, then o :=v(a —b) € vK and c(a,a) = ¢(b, ), but

v(a—c(a,a) - b—c(b,a)) _ oAb o

ta la ta
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and therefore a, # by, showing that f, # f,. Hence, |K| < [(Kv)*E| = |Kv|’UK|.
Note that 0 € S, for all @« € vK if and only if f,(a) =0 for alla € K and o < va. O

Since immediate extensions do not enlarge the value group or the residue field, this
lemma yields:

Theorem 8.22 Fvery valued field admits a mazimal immediate extension.

Remark 8.23 From the beginning of valuation theory until now, the maximal fields and thus also the
power series fields have been objects of particular interest. This is mainly due to the fact that they have
the important properties of being spherically complete and thus henselian and defectless (cf. Theorem 8.28,
Theorem 11.27 and Section 9.1). The beginning of the theory of valued fields may be seen in the works
of Hensel [HE1-10]. In accordance to the number theoretical problems that valuation theory was born
from, the first maximal fields considered were complete discretely valued fields (in particular @p). We will
introduce completions of valued fields below. With the appearance of other valued fields, non-discretely
valued or even of higher rank, the completions turned out to be unfit for guaranteeing the validity of
Hensel’s Lemma. Switching to maximal fields, which are always henselian, the question arose whether
every valued field admits an extension which is a maximal field and in particular, a maximal immediate
extension.

W. Krull [KRU7] was the first to use the estimation for the cardinality of a valued field to show
the existence of maximal immediate extensions. His proof of Lemma 8.21 appears to be correct but
rather circuitous. It is a good example of a phenomenon that is to be observed till the present day: the
unnecessary inclination to work inside power series fields. Bursting these chains, K. A. H. Gravett [GRA3]
gave a beautiful short proof. (I would like to thank N. Alling for bringing it to my attention.) Gravett’s
proof has inspired our generalization to ultrametric spaces, cf. Lemma 77.

A different approach was to show that a given valued field can be embedded in a power series field with
same value group and residue field, which will then be a maximal immediate extension of the embedded
field. Having proved the existence of maximal immediate extensions, it is a natural question whether they
are unique (up to isomorphism). I. Kaplansky [KAP1] approached this question by characterizing the
maximal fields as those in which every pseudo Cauchy sequence admits a limit (Theorem 8.19). Under
a certain additional condition (Kaplansky’s hypothesis A), Kaplansky was then able to prove uniqueness
. We will give a more conceptual approach and a natural interpretation of Kaplansky’s hypothesis A in
Section 77 (see also [KU-PA-ROQ)).

While the structural analysis of maximal fields, the power series fields and the Witt vector constructions
are of significant importance for many applications, the concept of maximal fields has turned out to be too
coarse for contemporary valuation theoretical problems. Replacing it by the notion of henselian fields and
henselizations allows us to work with algebraic extensions of given valued fields in the place of maximal
immediate extensions, which in general are of high transcendence degree. In contrast to maximality, the
property of being henselian is elementary (cf. Section 20.1); this is of fundamental importance for the
model theory of valued fields and for the application of model theoretic tools to problems in valuation
theory.

8.6 Immediate approximation types over valued fields

The reader may have noticed in the last sections that the notation connected with pseudo
Cauchy sequences is somewhat lengthy, in particular as the pseudo Cauchy sequences
that are most important are those without a limit in the field in which they live. More
importantly, there are many pseudo Cauchy sequences that have the same limit. But if we
have an element in an immediate extension, we would like to associate with it a unique
object that describes how the element is approximated from the lower field: an object
that represents all possible pseudo Cauchy sequences which have this element as a limit.
Here, approximation types come in handy. They also have the advantage that they are very
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close to the concept of spherically complete ultrametric spaces, which provide an important
characterization of maximal fields.

For the definition of approximation types and a quick introduction to their basic prop-
erties, see Section 1.11. Their connection with pseudo Cauchy sequences is described at
the end of Section 1.14.

For our work with approximation types, we introduce the following notation which is
particularly useful in the immediate case. We introduce it in connection with valued fields,
but its application to ultrametric spaces and other valued structures is similar. So let
(K, v) be an arbitrary valued field and A an approximation type over (K, v). Further, let
F be a formula with one free variable (not necessarily, but usually in some expansion of
the first order language of valued fields with constants from K'). Then both expressions

¢,/ A= F(c
Vz /A F(z)

will denote the assertion that F' holds for all elements of some non-singleton ball in A:
Ja e AP(A)\ {0} Vz € A, : F(2).

In particular, this assertion includes the information that there exists an element a € K
with F(a). If A = at (z, K), then we will also write

c /v, Vz Jx

in the place of “c /* A” and “Vz / A”. Furthermore, if we are given a value v = v(c¢) € vK
depending on ¢ € K (e.g. the value vf(c) of a polynomial f € K[X]), then we will say
that v increases for ¢ /' z if there exists some o € A¥(z, K) \ {oo}, such that for every
choice of ¢ € at (x, K), with x # ¢,

() > () for ¢ /.

Note that the condition x # ¢’ is automatically satisfied if at (z, K) is non-trivial.

In this and the following sections, we will consider an immediate approximation type
A over the valued field (K, v). Recall that this implies that A is non-trivial (i.e., contains
no singleton ball, or equivalently, is not the approximation type of an element in K), and
that its support A'(A) C vK has no maximal element. If A = at (x, K'), we observe that
v(z — ¢) increases for ¢ /" x. This is seen as follows. For arbitrary o € A¥(A) and ¢ € A, ,
there is some 3 € A¥(A) such that ¢ ¢ Ag, because A is immediate. This means that
v(x—c)>p>v(x—C).

Let f € K[X] be an arbitrary polynomial. We will say that A fixes the value of f if
there is some o € vK such that vf(c) = a for ¢ /* A. We will call the immediate approx-
imation type A a transcendental approximation type (over K) if A fixes the value
of every polynomial f(X) € K[X]. Otherwise, A is called an algebraic approximation
type (over K). The definitions of associated minimal polynomial for A, and of the
degree degree deg A are as for pseudo Cauchy sequences.

We ldeave it to the reader that associated minimal polynomial and degree of an ap-
proximation type are the same as for the associated pseudo Cauchy sequences, and vice
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versa. So what we proved for associated minimal polynomial and degree in the case of
pseudo Cauchy sequences also holds in the case of approximation types.

The question arises whether for every approximation type A over (K,v) there is an
immediate extension (L, v) of (K, v) in which A is realized, that is, such that A = at (z, K)
for some = € L. It follows from the already cited model theoretic result (Lemma 20.85)
that there is at least some extension in which A is realized, but that this extension is
immediate cannot be guaranteed. Moreover, even if A is algebraic, the so obtained lement
x will always be transcendental over K. The theorems of Kaplansky as presented in
Section 77 give us a much better result: by Theorems 8.17 and 8.18, we can always assume
that A = at (z, K) with (K(z)|K,v) immediate of degree [K(x) : K| = deg A. Hence we
from now on always assume that a given approximation type is of the form A = at (z, K)
for some element x in some valued extension (K (x)|K,v) of degree equal to deg A. We
will use this assumption since it facilitates our formulas, and in this way the formulas will
often serve a dual purpose.

8.7 Characterization of maximal fields using approx-
imation types

In this section we will present the approximation types version of Theorems 8.17, 8.18
and 8.19. The first two theorems follow readily from Theorems 8.17 and 8.18 by use of
Lemma 1.52.

Theorem 8.24  (Theorem 2 of [KAP1], approximation type version)

For every immediate transcendental approzimation type A over (K, v) there exists a simple
immediate transcendental extension (K(x),v) such that at (z, K) = A. If (K(y),v) is an-
other valued extension field of (K, v) such that at (y, K) = A, then y is also transcendental
over K and the isomorphism between K(x) and K(y) over K sending x to y is valuation
Preserving.

Corollary 8.25 Let (L|K,v) be an extension of valued fields. If y € L such that at (y, K)
is an immediate transcendental approximation type, then (K(y)|K,v) is immediate and
transcendental.

Proof: Suppose that y € L such that at (y, K) is an immediate transcendental ap-
proximation type. By the foregoing theorem, there is an immediate extension (K (z)|K,v)
such that at (z, K) = at (y, K). By the same theorem, there is a valuation preserving
isomorphism of K(x) and K(y) over K. This proves that (K(y)|K,v) is immediate and
transcendental. O

Theorem 8.26  (Theorem 3 of [KAP1], approximation type version)

For every immediate algebraic approximation type A over (K,v) of degree d with associated
minimal polynomial f(X) € K[X]| and y a root of f, there exists an extension of v from K
to K(y) such that (K(y)|K,v) is an immediate extension and at (y, K) = A. If (K(z),v) is
another valued extension field of (K, v) such that at (z, K) = A, then any field isomorphism
between K (y) and K(z) over K sending y to z will preserve the valuation. (Note that there
exists such an isomorphism if and only if z is also a root of f.)
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If (K, v) admits no immediate extensions, then by the last two theorems, it admits no
non-trivial immediate approximation types. On the other hand, if (K, v) admits no imme-
diate approximation types, then by part ¢) of Lemma 8.1, it admits no proper immediate
extensions. This proves:

Theorem 8.27  (Theorem 4 of [KAP1], approximation type version)
A walued field (K,v) is mazimal if and only if it does not admit immediate approximation

types.

We know that a valued field (K, v) is spherically complete if and only if it does not
admit immediate approximation types (cf. Lemma 1.38). By Theorem 8.22; every valued
field admits a maximal immediate extension. Hence, we obtain:

Theorem 8.28 A wvalued field is maximal if and only if it is spherically complete.

See also our discussion in Remark 3.8.



