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Chapter 7

Ramification theory

7.1 Basic definitions

Let (L|K, v) be a normal algebraic extension of valued fields, not necessarily finite. We
shall investigate three distinguished subgroups of the Galois group GalL|K. The subgroup

Gd(L|K, v) := {σ ∈ GalL|K | vσ = v on L} (7.1)

of GalL|K is called the decomposition group of (L|K, v). The condition “vσ = v on
L” means that ∀x ∈ L : vσx = vx.

Remark 7.1 In the literature, one finds a definition of the decomposition group which appears to be
different from ours. In the place of vσ = v, the condition is used that vσ and v be equivalent, that is, that
they have the same valuation ring. This holds if and only if there is an isomorphism ρ of vL onto vσL over
vK such that vσ = ρ ◦ v. Since we are dealing with algebraic extensions L|K, Lemma 6.15 shows that vL
lies in the divisible hull of vK. But then, ρ can only be the identity.

From infinite Galois Theory (Section 24.4), we know that σ ∈ GalL|K lies in the
closure of Gd(L|K, v) if and only if resLi(σ) ∈ resLi(G

d(L|K, v)) for every finite normal
subextension Li|K of L|K. But then, vσ = v on every Li, and since L is the union over
all Li, this yields that vσ = v on L, that is, σ ∈ Gd(L|K, v). This proves that Gd(L|K, v)
is a closed subgroup of GalL|K .

Let OL andML be the valuation ring and valuation ideal of L = (L, v). Then for every
σ ∈ Gd(L|K, v) we have σOL = OL and consequently also σML =ML. Hence, every such
σ induces an automorphism σ of OL/ML = L which satisfies σ a = σa. We will call it the
reduction of σ. Since σ fixes K, it follows that σ fixes K. Moreover, the map

Gd(L|K, v) 3 σ 7→ σ ∈ GalL|K (7.2)

is a group homomorphism. Note that we have written “GalL|K” since by virtue of
Lemma 6.61, our general hypothesis that L|K be normal yields that also L|K is normal.

The homomorphism (7.2) is continuous. Indeed, we only have to show that for every
open subgroup of GalL|K there is an open subgroup of Gd(L|K, v) that is mapped into it.
Now an open subgroup of GalL|K is of the form GalL|K1 where K1 is a finite extension
of K. Let a1, . . . , an ∈ L such that a1, . . . , an ∈ K1 generate K1 over K. Then a1, . . . , an
generate a finite extension K2 of (L|K, v)d such that K1 ⊂ K2, and the open subgroup
GalL|K2 of Gd(L|K, v) is mapped into GalL|K2 ⊂ GalL|K1 . Consequently, the kernel of
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172 CHAPTER 7. RAMIFICATION THEORY

the homomorphism (7.2) is a closed normal subgroup of Gd(L|K, v); it is called the inertia
group of (L|K, v) and denoted by Gi(L|K, v). We shall show that

Gi(L|K, v) = {σ ∈ GalL|K | ∀x ∈ OL : σx− x ∈ML}
= {σ ∈ GalL|K | ∀x ∈ OL : v(σx− x) > 0} . (7.3)

Let us abbreviate

GT := Gi(L|K, v) and GZ := Gd(L|K, v)

as long as we are working with our fixed extension (L|K, v). Let σ ∈ GalL|K such that
σa−a ∈ML for all a ∈ OL. Then σa ∈ OL for every a ∈ OL, because otherwise we would
have v(σa− a) < 0. This gives σOL ⊂ OL. Since both σOL , OL are valuation rings lying
above OK, Corollary 6.59 shows that both must be equal. Hence, vσ = v which proves
that σ ∈ GZ. Now for σ ∈ GZ, we find that σ is the identity if and only if σa = a for all
a ∈ OL. But σa = a is equivalent to σa− a ∈ML and to v(σa− a) > 0. This gives (7.3).

We will now consider a pairing, that is, a bilinear map

(. , .) : L× ×GT −→ L
×

which sends a ∈ L× and σ ∈ GT to (a, σ) :=
(σa
a

)
(7.4)

where L× and L
×

denote the multiplicative groups of L and L. Note that σ ∈ GT ⊂ GZ

implies vσa = va and thus, σa / a ∈ OL and σa / a 6= 0. For σ ∈ GT, every a ∈ L with
va = 0 will satisfy v(σa− a) > 0 and hence, v(σa

a
− 1) > 0. This shows

(a, σ) = 1 for all a ∈ O×L , σ ∈ GT . (7.5)

For fixed σ ∈ GT, the map ( . , σ) is a homomorphism from L× into L
×

since σab
ab

= σa
a
σb
b

.

For fixed a ∈ L×, the map (a, . ) is a homomorphism from GT into L
×

. To show this, let
also τ ∈ GT. Then στa

a
= στa

σa
σa
a

= σ
(
τa
a

)
σa
a

=
(
σ
(
τa
a

) /
τa
a

)
σa
a
τa
a

showing that (a, στ) =
( τa
a
, σ)(a, σ)(a, τ). But v τa

a
= 0, so (7.5) shows that ( τa

a
, σ) = 1, and we have proved that

(a, . ) is linear.
If G and H are groups, then Hom(G,H) denotes the set of all group homomorphisms

from G to H. For ϕ, ψ ∈ Hom(G,H), define ϕ · ψ by (ϕ · ψ)(g) = ϕ(g)ψ(g) (using the
operation in H) for all g ∈ G. Then Hom(G,H) is a group under this operation.

The bilinearity of the pairing can be restated as follows: the maps

GT −→ Hom(L×, L
×

) σ 7→ ( . , σ) (7.6)

L× −→ Hom(GT, L
×

) a 7→ (a, . ) (7.7)

are group homomorphisms. The kernel of (7.6) is a normal subgroup of GT, called the
ramification group of (L|K, v). It is denoted by Gr(L|K, v), and for the present discus-
sion we will abbreviate it by GV . It consists of all σ ∈ GT for which ( . , σ) = 1, or in other
words, σa / a = 1 for all a ∈ L×. But σa / a = 1 is equivalent to v(σa

a
− 1) > 0, which is

the same as v(σa− a) > va. Note that if σ ∈ GalL|K satisfies v(σa− a) > va and hence
v(σa− a) > 0 for all a ∈ OL, then σ ∈ GT. We have proved that

Gr(L|K, v) = {σ ∈ GalL|K | ∀x ∈ OL : σx
x
− 1 ∈ML}

= {σ ∈ GalL|K | ∀x ∈ OL : v(σx− x) > vx} . (7.8)
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Now let σ ∈ GV, τ ∈ GZ and a ∈ L×. Since GT C GZ, we have τστ−1 ∈ GT. Setting
b := τ−1a, we compute: τστ−1a / a = τσb / τb = τ σb / b = τ 1 = 1. This shows that
τστ−1 ∈ GV, proving that GV is a normal subgroup also of GZ. Further, GV is closed in
GalL|K; the proof of this fact is similar to that for the decomposition group.

We extend the homomorphism introduced in (7.6) to a crossed homomorphism from

GZ to Hom(L×, L
×

). For the definition and basic properties of crossed homomorphisms,
see Section 24.9.

For σ ∈ GZ and d ∈ L×, we set

χσ(d) :=
σ(d)

d
v .

Since σ ∈ GZ, we know that vσ(d) = vd, and as above is seen that chiσ ∈ Hom(L×, L
×

).
This group is a right GalL|K-module under the scalar multiplication

χρ := χ ◦ ρ .

We have χστ (d) = στ(d)
d

= στ(d)
τ(d)

τ(d)
d

= (χσ ◦ τ)(d) · χστ (d). Thus,

χστ = χτσ · χτ .

In other words, the map

GZ 3 σ 7→ χσ ∈ Hom(L×, L
×

) (7.9)

is a crossed homomorphism. Hence, it is injective if and only if its kernel is trivial. This
kernel consists of all σ ∈ GZ for which σa / a = 1 for all a ∈ L×. By what we have shown
above, this is GV.

We summarize our results in the following theorem.

Theorem 7.2 Take any normal algebraic extension (L|K, v) of valued fields.

a) The decomposition group Gd(L|K, v), defined in (7.1), is a closed subgroup of GalL|K .

b) The inertia group Gi(L|K, v), defined as the kernel of the homomorphism (7.2), is a
closed normal subgroup of Gd(L|K, v), and (7.3) holds.

c) The ramification group Gr(L|K, v), defined as the kernel of the homomorphism (7.6),
is a closed normal subgroup of Gd(L|K, v) and of Gi(L|K, v), and (7.8) holds. It is also
the kernel of the crossed homomorphism (7.9).

The fixed field of Gd(L|K, v) in Ks := (L|K)sep is called the decomposition field
of (L|K, v) and will be denoted by (L|K, v)d or by (L|K)d(v). Similarly, the fixed field of
Gi(L|K, v) in Ks is called the inertia field of (L|K, v) and will be denoted by (L|K, v)i

or by (L|K)i(v). Finally, the fixed field of Gr(L|K, v) in Ks is called the ramification
field of (L|K, v) and will be denoted by (L|K, v)r or by (L|K)r(v). By definition, these
fields are separable subextensions of L|K. Note that in contrast to the common use in the
literature, we define the decomposition field to be the fixed field of the decomposition group
in the maximal separable subextension Ks|K of L|K, and similarly we do for the inertia
field and the ramification field. This has the consequence that the ramification field is a
separable extension of K and that all inseparability is shifted “to the top”, that is, to the
extension L | (L|K, v)d (cf. the table on page 185). This version has significant advantages
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for the formulation of certain facts (see for instance Lemma 11.22 and the definition of
tame extensions in Section 13.1).

Since decomposition group, inertia group and ramification group are closed subgroups
of GalL|K, Theorem 24.10 shows that they are equal to GalL | (L|K, v)d, GalL | (L|K, v)i

and GalL | (L|K, v)r respectively.

7.2 Functorial properties of the groups in ramification

theory

We take over from J. Neukirch [NEU] the following description of the functorial properties
of Gd, Gi and Gr . Let us assume that (L′|K ′, v′) is an arbitrary normal algebraic valued
field extension and that τ is an embedding of (L, v) in (L′, v′) such that τK ⊂ K ′. This
embedding induces a homomorphism

τ∗ : GalL′|K ′ → GalL|K , τ∗(σ
′) = τ−1σ′τ .

Note that τL|τK is normal since L|K is; hence σ′τL ⊂ τL for σ′ ∈ GalL′|K ′ in view
of τK ⊂ K ′. This shows that the expression τ−1σ′τ makes sense. Furthermore, τ∗ is
continuous and open since it is the composition of the continuous open restriction map
resτL with the topological isomorphism Gal τL|τK → GalL|K which is induced by the
isomorphism τ : L→ τL.

Lemma 7.3 The continuous homomorphism τ∗ induces continuous homomorphisms

Gd(L′|K ′, v′) −→ Gd(L|K, v)

Gi(L′|K ′, v′) −→ Gi(L|K, v)

Gr(L′|K ′, v′) −→ Gr(L|K, v) .

Proof: By assumption, v = v′τ on L or equivalently, vτ−1 = v′ on τL; we also have
τOL ⊂ O(L′,v′). Let σ′ ∈ GalL′|K ′ and σ = τ∗(σ

′). If σ′ ∈ Gd(L′|K ′, v′), then v′σ′ = v′,
hence

vσ = vτ−1σ′τ = v′σ′τ = v′τ = v

on L, showing that v ∈ Gd(L|K, v). If σ′ ∈ Gi(L′|K ′, v′), then in view of τOL ⊂ O(L′,v′),

v(σa− a) = vτ−1(σ′τa− τa) = v′(σ′τa− τa) > 0

for every a ∈ OL, showing that v ∈ Gi(L|K, v). If σ′ ∈ Gr(L′|K ′, v′), then again in view of
τOL ⊂ O(L′,v′),

v(σa− a) = vτ−1(σ′τa− τa) = v′(σ′τa− τa) > v′τa = va ,

for every a ∈ OL, showing that v ∈ Gr(L|K, v). �

If τ : L → L′ and τ : K → K ′ are isomorphisms, then so are τ∗ and the above
homomorphisms induced by τ∗ . For L = L′ and K = K ′, this yields the following corollary.
In view of the fact that all extensions of a valuation to an algebraic extension field are
conjugate (Theorem 6.53), it gives information about the decomposition field, inertia field
and ramification field with respect to the other extensions of v from K to L:
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Corollary 7.4 Let ι ∈ GalL|K. Then

Gd(L|K, vι) = ι−1Gd(L|K, v) ι and (L|K, vι)d = ι−1(L|K, v)d

Gi(L|K, vι) = ι−1Gi(L|K, v) ι and (L|K, vι)i = ι−1(L|K, v)i

Gr(L|K, vι) = ι−1Gr(L|K, v) ι and (L|K, vι)r = ι−1(L|K, v)r .

The left hand sides of our assertions follow directly from Lemma 7.3, where we set v′ = vι
and τ = ι−1. The right hand sides follow from the left by Theorem 24.10.

For our present discussion of the given extension (L|K, v), let us abbreviate Z =
(L|K, v)d, T = (L|K, v)i and V = (L|K, v)r. So we are studying the following situation:

(L|K, v) a normal algebraic extension of valued fields with
GZ its decomposition group and (Z, v) its decomposition field,
GT its inertia group and (T, v) its inertia field,
GV its ramification group and (V, v) its ramification field,
Ks|K the maximal separable subextension of L|K,
p the characteristic exponent of the residue field K.


(7.10)

Remark 7.5 The abbreviations Z,T,V are a reference to the german words “Zerlegungskörper”, “Träg-
heitskörper” and “Verzweigungskörper”.

Let us summarize what we have already shown for Z, T and V:

Lemma 7.6 In the situation (7.10),

GV ⊂ GT ⊂ GZ V ⊃ T ⊃ Z

where the groups are the Galois groups in L of the respective fields. Moreover, the inertia
group GT and the ramification group GV are normal subgroups of the decomposition group
GZ and thus, the inertia field T and the ramification field V are Galois extensions of the
decomposition field Z.

Assume that E|K is any subextension of L|K. With L′ = L, K ′ = E and τ = idL ,
this constitutes another special case of Lemma 7.3 ; in this case, τ∗ is just the inclusion of
GalL|E in GalL|K.

Lemma 7.7 Assume (7.10). If E|K is any arbitrary subextension of L|K, then

Gd(L|E, v) = GZ ∩GalL|E and (L|E, v)d = (E.Z, v)
Gi(L|E, v) = GT ∩GalL|E and (L|E, v)i = (E.T, v)
Gr(L|E, v) = GV ∩GalL|E and (L|E, v)r = (E.V, v) .

Proof: The inclusions “⊂” on the left hand side follow directly from Lemma 7.3.
But actually, we do not need to employ this lemma, since already the equalities follow
immediately from (7.1), (7.3) and (7.8).

If L|K is Galois, then the right hand side follows from the left hand side by (Gal2′). If
L|K is not separable, then we have to proceed as follows. In that case, we have to take
the fixed fields in (L|E)sep = E.Ks . Since L|E.Ks is purely inseparable, we may view all
subgroups of GalL|K as subgroups of GalE.Ks|K. The extension E.Ks|E is separable.
Hence, the right hand side now follows from Lemma 24.39, applied to the extension E.Ks|K
with F = Z, F = T and F = V respectively. �
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A further special case of Lemma 7.3 is given when E|K is a normal subextension of
L|K. In the lemma, we have to replace L by Es = (E|K)sep = E∩Ks and L′ by Ks, and we
set K ′ = K and τ = idEs . In this case, τ∗ is the restriction resEs : GalKs|K → GalEs|K .
Using Lemma 7.3 and (Gal7), we obtain:

Corollary 7.8 Assume (7.10). If E|K is a normal subextension of L|K, then

resE(GZ) ⊂ Gd(E|K, v) and (E ∩ Z, v) ⊃ (E|K, v)d

resE(GT) ⊂ Gi(E|K, v) and (E ∩ T, v) ⊃ (E|K, v)i

resE(GV) ⊂ Gr(E|K, v) and (E ∩ V, v) ⊃ (E|K, v)r .

The inclusions are in fact equalities, as we will show later. Note that the fixed fields of the
restricted groups are Es ∩ Z, Es ∩ T, Es ∩ V respectively, by virtue of (Gal7). But since
the extensions Z|K, T|K, V|K are separable, these intersections are equal to E∩Z, E∩T,
E ∩ V respectively.

7.3 The decomposition field

Let us now study the properties of the decomposition field.

Lemma 7.9 Assume (7.10). Then:

a) The extension of v from Z to L is unique.

b) For σ, τ ∈ GalL|K, the following assertions are equivalent:
1) vσ = vτ on τ−1Z ,
2) vσ = vτ on L ,
3) στ−1 ∈ GZ .

c) If the automorphism σ ∈ GalL|K does not fix Z, then vσ 6= v on Z .

d) If E|K is a subextension of L|K, then the extension of v from E to L is unique if and
only if Z ⊂ E. In particular, the extension of v from K to L is unique if and only if Z = K,
that is, if and only if GZ = GalL|K.

e) If Z|K is finite, then the number g(L|K, v) of distinct extensions of v from K to L is
finite and equal to (GalL|K : GZ) = [Z : K].

f) For every ι ∈ GalL|K, the restriction resZ(ι−1) is the unique isomorphism over K
sending (Z, v) onto (L|K, vι)d.

Proof: a): From Theorem 6.53 we know that every two extensions of v from Z to L are
conjugate. But by definition, every automorphism of GZ = GalL|Z fixes v.

b): If σ, τ ∈ GalL|K such that vσ = vτ on τ−1Z and hence vστ−1 = v on Z, then also
vστ−1 = v on L by virtue of part a). Since vστ−1 = v on L if and only if vσ = vτ on L,
this proves 1)⇒2). The converse is trivial. By definition of GZ , vστ−1 = v holds on L if
and only if στ−1 ∈ GZ . This proves the equivalence of 2) and 3).

c): This is the implication 1)⇒3) of part b) with τ = idL .

d): Every extension of v from E to L is an extension of v from K to L. Hence if Z ⊂ E,
then by part a), v admits a unique extension from E to L. For the conversely, assume that
Z 6⊂ E. Then there is some a ∈ Z \E. Since Z|K is separable, a is separable algebraic over
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E. Thus, there is some σ ∈ GalL|E which moves a. Hence σ /∈ GZ, so the implication
2)⇒3) of part b) shows that v 6= vσ on L. On the other hand, v = vσ on E. This shows
that v and vσ are two distinct extensions of v from E to L.

e): By the equivalence 2)⇔3) of part b), g(L|K, v) is equal to the number of cosets of
GalL|K modulo GZ = GalL|Z. This in turn is equal to [Z : K].

f): It follows from Corollary 7.4 that the restriction of ι−1 is the required isomorphism. If
there would be a second isomorphism, say σ−1, then vσ = vι on ι−1Z, so by the implication
1)⇒3) of part b), ι−1 and σ−1 must coincide on Z. �

Lemma 7.10 Assume (7.10) and let E|K be a normal subextension of L|K. Then

resE(GZ) = Gd(E|K, v) and (E ∩ Z, v) = (E|K, v)d .

Proof: In view of Corollary 7.8, we have to show that resE : GZ → Gd(E|K, v) is
surjective. Let ρ ∈ Gd(E|K, v) and σ ∈ GalL|K such that ρ = resE(σ). By assumption
on ρ, we have v = vρ = vσ on E. Hence, by Theorem 6.53 there is some τ ∈ GalL|E such
that vτ = vσ on L. That is, στ−1 ∈ GZ with ρ = resE(στ−1). �

The reader may prove that the number g(L|K, v) of distinct extensions of v from K to
L is multiplicative, for arbitrary finite extensions:

Lemma 7.11 Let (L|K, v) be a finite extension of valued fields and E|K a subextension
of L|K. Then g(L|K, v) = g(L|E, v) · g(E|K, v).

We the help of Theorem 7.9, we prove:

Lemma 7.12 Assume (7.10). Then (Z|K, v) is an immediate extension.

Proof: Assume first that L|K is finite. Then also Z|K is finite. Let ζ 6= 0 be an
element of the residue field of Z. By Lemma 6.60, there exists some c ∈ Z such that
c = ζ and v′c > 0 for all extensions v′ 6= v of v from K to Z. By Theorem 7.9 we know
that vσ 6= v on Z for every σ ∈ GalL|K \ GZ. Hence for all conjugates σc 6= c we have
vσc > 0. Now TrZ|K(c) = c +

∑
σ∈H σc where H ⊂ GalL|K is a set of representatives of

the cosets GalL|K modulo GZ which are different from GZ. Hence vσc > 0 for all σ ∈ H.
Consequently, ζ = c = TrZ|K(c) ∈ K. We have proved that Z = K.

Now let α be an element of the value group of Z. Choose b ∈ Z with vb = α. Let c and
H be as before, that is, vc = 0 and vσc > 0 for all σ ∈ H. We choose some m ∈ N such
that vcmb = vb 6= m · vσc + vσb = vσcmb for all σ ∈ H. Set a := cmb and observe that
va = α. The conjugates of a over K are precisely the roots of the minimal polynomial f of
a over K. By construction of a, it is the only root of value α. Thus, an application of part
d) of Lemma 5.6 shows that α = va ∈ vK. We have proved that vZ = vK. This concludes
the proof of our assertion for the case of finite L|K.

In the case of an infinite extension L|K, it suffices to show that every finite subextension
(Z1|K, v) of (Z|K, v) is immediate. Let L1 be the normal hull of Z1|K; it lies in L since L|K
is assumed to be normal. Moreover, L1|K is finite. By the previous lemma, (L1|K, v)d =
L1∩(L|K, v)d ⊃ Z1 . By what we have already shown, (L1|K, v)d is an immediate extension
of (K, v), and the same is consequently true for (Z1, v) . �
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7.4 The inertia field

Next, we investigate the extension T|Z.

Theorem 7.13 Assume (7.10). The value group of the inertia field T is equal to vZ = vK,
and its residue field is equal to the relative separable-algebraic closure of K in L (and hence
a Galois extension of K). The homomorphism (7.2) (which sends σ to σ) is onto and
consequently, T|Z is a Galois extension with Galois group

Gal T|Z ∼= GZ /GT
∼= Gal T|Z ∼= GalL|K

(these are topological isomorphisms).
For every subextension K ′|Z of T|Z, the image of Gal T|K ′ under this isomorphism

is equal to Gal T|K ′. Hence if K ′|Z is normal, the isomorphism induces an isomorphism
of GalK ′|Z onto GalK ′|Z. Moreover, [K1 : K0] = [K1 : K0] for every finite extension
(K1|K0, v) such that Z ⊂ K0 ⊂ K1 ⊂ T.

Proof: By Lemma 7.12, Z = K. Since L|Z is a Galois extension, Lemma 6.61 shows that
L|Z is a normal extension. Now let k|Z be a finite Galois subextension of L|Z and let ζ be a
primitive element of it. Let τ ∈ GalL|Z ; its restriction to k is uniquely determined by the
conjugate τζ. From Lemma 6.61 we know that there is some a ∈ L and an automorphism
σ ∈ GalL|Z such that a = ζ and σa = τζ. That is, σ coincides with τ on k .

If L|K is finite, then also L|Z is finite by virtue of the fundamental inequality (6.2),
and we may choose k = (L|Z)sep ; then our argument shows that (7.2) is surjective. For
the infinite case, we proceed as follows. Let τ ∈ GalL|Z be given. We know that the
maximal separable subextension of L|Z is the union of finite Galois subextensions ki|Z,
i ∈ I, and we have shown that for every i ∈ I, the restriction τi of τ to ki coincides
with that of σi for some σi ∈ GalL|Z. From the Compactness Principle for Algebraic
Extensions (Lemma 24.5), it now follows that there is σ ∈ GalL|Z = GZ such that σ = τ .
This proves the surjectivity of (7.2) in the general case. Since GT is defined to be the
kernel of the continuous homomorphism (7.2), we thus obtain a topological isomorphism
GZ/GT

∼= GalL|Z = GalL|K. The topological isomorphism Gal T|Z ∼= GZ /GT is inferred
from infinite Galois theory.

Now let K ′|Z be any subextension of T|Z. Then by Lemma 7.7, K ′ is the decomposition
field and T is the inertia field of the normal extension (L|K ′, v). What we have just proved
may be applied to K ′ in the place of K, showing that the restriction of (7.2) to GalL|K ′
induces an isomorphism from GalL|K ′ /GT

∼= Gal T|K ′ onto GalL|K ′. On the one hand,
this result yields that if K ′|Z is normal, then the isomorphism induces an isomorphism of
Gal T|Z /Gal T|K ′ ∼= GalK ′|Z onto GalL|Z /GalL|K ′ ∼= GalK ′|Z. On the other hand,
we apply this result to K ′ = T to find that GalL|T is trivial. That is, L|T must be a
purely inseparable extension.

Let K ′|Z be a finite normal subextension of the normal extension T|Z. We have already
shown that GalK ′|Z ∼= GalK ′|Z. Since T|Z and thus also K ′|Z is separable, we obtain
[K ′ : Z] = |GalK ′|Z | = |GalK ′|Z | ≤ [K ′ : Z] ≤ [K ′ : Z], where the last inequality follows
from the fundamental inequality (6.2). Thus, equality holds everywhere, showing that
[K ′ : Z] = [K ′ : Z] and that K ′|Z is Galois. Moreover, from the fundamental inequality we
infer that vK ′ = vZ, which in view of Lemma 7.12 tells us that vK ′ = vK. Since every
value of vT is already contained in the value group of a finite normal subextension K ′|Z,
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we find that vT = vK. Similarly, since every element of T is already contained in the
residue field of a finite normal subextension K ′|Z, we see that T|K is separable. Since L|T
is purely inseparable, we may conclude that T is the relative separable-algebraic closure of
K in L. From this, we also obtain the topological isomorphism of GalL|K = GalL|Z with
Gal T|Z.

Finally, let Z ⊂ K0 ⊂ K1 ⊂ T with K1|K0 finite. We choose a finite normal subexten-
sion K ′|K0 of T|K0 such that K1 ⊂ K ′ . From Lemma 7.7 we know that the decomposition
field of (L|K0, v) is K0.Z = K0 and that its inertia field is K0.T = T, and similarly for K1

in the place of K0. What we have already shown may thus be applied to K0 and K1 in the
place of Z to obtain that [K ′ : K0] = [K ′ : K0] and [K ′ : K1] = [K ′ : K1]. This proves that
[K1 : K0] = [K1 : K0]. �

Lemma 7.14 Assume (7.10) and let E|K be a normal subextension of L|K. Then

resE(GT) = Gi(E|K, v) and (E ∩ T, v) = (E|K, v)i .

Proof: In view of Corollary 7.8, we have to show that resE : GT → Gi(E|K, v) is
surjective. Let ρ ∈ Gi(E|K, v), which means that ρ is the identity on E. It also implies that
ρ ∈ Gd(E|K, v), hence by Lemma 7.10 there exists σ ∈ GZ such that ρ = resE(σ). We see
that σ fixes E, so the surjectivity of (7.2) proved in Theorem 7.13 (applied to the extension
(L|E, v) ) shows that there is some τ ∈ Gd(L|E, v) such that τ = σ. Consequently, στ−1 ∈
GT with ρ = resE(στ−1). �

7.5 The ramification field

Proceeding not too systematically may sometimes turn out to be of advantage. In this
spirit, let us jump to the extension L|V. The next theorem will describe its main properties.
Beforehand, we need a lemma.

Lemma 7.15 Let (K1|K0, v) be an algebraic extension of valued fields. If K1|K0 is a
p-extension, then vK1/vK0 is a p-group. The same is true if K1|K0 is purely inseparable.

Proof: Assume that K1|K0 is a p-extension. Let Z0 be the decomposition field of
(K1|K0, v). From Lemma 7.12 we know that vK0 = vZ0 . Since K1|K0 is a p-extension, the
same is true for K1|Z0 . Hence, it suffices to show our assertion for the extension K1|Z0 .

Let a ∈ K1. Since GalK1|Z0 is a pro-p-group, the number of conjugates of a over Z0 is
a power of p, say pn. Since the extension of v from Z0 to K1 is unique, all conjugates have
the same value. The norm NZ0(a)|Z0(a) ∈ Z0, being the product of these conjugates, thus
has value pnva. This shows that pnva ∈ vZ0. We have proved that vK1/vZ0 = vK1/vK0

is a p-group.
Now assume that K1|K0 is purely inseparable. Then for every a ∈ K1 there is some

n ∈ N such that ap
n ∈ K0 and thus again, pnva ∈ vK0 . As before we find that vK1/vK0

is a p-group. �
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Theorem 7.16 Assume (7.10). The ramification group GV is a pro-p-group. Hence Ks|V
is a p-extension, and [L : V] is a (possibly infinite) power of p. In particular, GV = 1 and
V = L if charK = 0.

The factor group vL/vV is a p-group, and the residue field extension L|V is purely
inseparable.

Proof: Assume that GV is not a pro-p-group, that is, that there exists a prime q 6= p
and a finite normal subextension E|V of Ks|V whose Galois group contains an element
σ of order q. Let K0 be the fixed field in E of the cyclic group generated by σ. Then
E|K0 is a Galois extension of degree q. Let a be a primitive element for E|K0 and
f = Xq + cq−1X

q−1 + . . . + c0 its minimal polynomial over K0 . Note that −cq−1 is equal
to the trace TrE|K0(a) . Replacing a by a+ cq−1/q (which is possible since q 6= 0 in E), we
may assume from the start that this trace of a is zero. On the other hand, let σia be all
conjugates of a, with a suitable choice of σ1, . . . , σq ∈ GalKs|K0 ⊂ GV. Then σia/a = 1
for all i, and the element 0 = a−1TrE|K0(a) =

∑
1≤i≤q σia/a has residue q, but q 6= p is not

zero in K1. This contradiction shows that GV must be a pro-p-group. Since it is the Galois
group of the separable extension Ks|V, this extension is a p-extension. On the other hand,
L|Ks is purely inseparable by definition of Ks, so both degrees [L : Ks] and [Ks : V] and
consequently also [L : V] are powers of p. (Recall that charK = charK = p if charK 6= 0.)

From the preceding lemma it now follows that vL/vKs and vKs/vV are p-groups.
Hence also vL/vV is a p-group. Finally, the residue field extension L|V must be purely
inseparable since it was asserted by Theorem 7.13 that T is the relative separable-algebraic
closure of K in L. �

In view of Corollary 24.29 and Corollary 24.56, the foregoing theorem yields:

Corollary 7.17 Assume (7.10) with p > 1 and let V ⊂ K0 ⊂ K1 ⊂ L. Then K1|K0 is a
tower of normal extensions of degree p, the separable ones being Artin-Schreier extensions.

We will now examine the extension V|T. To this end, we return to our pairing (7.4)
and ask for the kernel of the homomorphism (7.7). It contains T× since for all a ∈ T and
all σ ∈ GT we have σa = a and consequently, (a, σ) = 1. By (7.5), the kernel also contains
O×L . It follows that every element a ∈ L with va ∈ vK lies in the kernel since it can be
written as a = bc with b ∈ K, vb = va, so that c ∈ O×L .

Now we see that the value of (a, σ) only depends on the coset of va modulo vK and
on the coset of σ modulo GV (since the latter was defined to be the kernel of (7.6) ). But
GT/GV

∼= Gal V|T . So the pairing (7.4) is in fact a pairing

(. , .)′ : vL/vK ×Gal V|T −→ L
×

(7.11)

between the additive group vL/vK and the Galois group Gal V|T . For α := α + vK ∈
vL/vK and σ ∈ Gal V|T , it satisfies

(α, σ)′ = (a, σL) (7.12)

where a ∈ L is an arbitrary element such that va = α, and σL ∈ GT is an arbitrary
automorphism such that resV(σL) = σ. If σ ∈ GT, then we will simply write “(α, σ)′”
instead of “(α, resV(σ))′”. Since every element in vL/vK has finite order, the same is true
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for every element (α, σ)′ ∈ L×. That is, the range of the pairing (. , .)′ (which is equal to

that of (. , .) ) lies in the subgroup of all torsion elements in L
×

. This is in fact the subgroup
of all roots of unity in L. It is an abelian torsion group.

Since charL = p, the group of roots of unity in L is a p′-group. Consequently, (α, σ)′ = 1
for arbitrary σ ∈ Gal V|T if α ∈ vL is an element whose order modulo vK is a power of
p. We write vL/vK = (vL/vK)p ⊕ (vL/vK)p′ where (vL/vK)p is an abelian p-group and
(vL/vK)p′ is an abelian p′-group. We find that ((vL/vK)p , Gal V|T)′ = {1}, so the above
pairing can be rewritten as

(vL/vK)p′ ×Gal V|T −→ L
×
.

Given any extension ∆ ⊂ ∆′ of abelian groups, the (relative) p′-divisible closure of ∆
in ∆′ is defined to be the subgroup {α ∈ ∆′ | ∃n : (p, n) = 1 ∧ nα ∈ ∆} of all elements in
∆′ whose order modulo ∆ is prime to p. It is equal to the preimage of (∆′/∆)p′ under the
canonical epimorphism ∆′ → ∆′/∆. Since vL/vV is a p-group by virtue of Lemma 7.16,
the p′-divisible closure of vK in vL lies already in vV. Hence, (vL/vK)p′ = (vV/vK)p′ . In
view of Theorem 7.13 we may also replace vK by vT. Furthermore, observe that we may

replace L
×

by V
×

. Indeed, since the group of all roots of unity in a field of characteristic
exponent p is a p′-group, it remains unchanged under purely inseparable extensions. On
the other hand, Theorem 7.16 shows that L|V is purely inseparable. So the groups of roots
of unity in L and in V are equal, and the above pairing can be rewritten as

(vV/vT)p′ ×Gal V|T −→ V
×
. (7.13)

The homomorphism (7.6) with kernel GV turns into an embedding

Gal V|T −→ Hom
(

(vV/vT)p′ , V
×
)

(7.14)

of Gal V|T in the p-character group Hom
(

(vV/vT)p′ , V
×
)

. Since the latter is an abelian

group, this shows that also the Galois group Gal V|T is abelian.
Now let H be any pro-p-Sylow group of GT containing the pro-p-subgroup GV, and let

L0 be its fixed field in Ks . Then T ⊂ L0 ⊂ V, and V |L0 is a p-extension. From Lemma 7.7
we infer that L0 itself is the inertia field of (L|L0, v) and that V is its ramification field.
Hence, in (7.14) we can just replace T by L0 to obtain an embedding

H/GV
∼= Gal V|L0 −→ Hom

(
(vV/vL0)p′ , V

×
)
.

But Lemma 7.15 shows that (vV/vL0)p′ = 0 since V |L0 is a p-extension. Consequently,

Hom
(

(vV/vL0)p′ , V
×
)

and thus also H/GV are trivial, showing that H = GV. Hence,

GV is a pro-p-Sylow group in GT; it is the only one since it is a normal subgroup of GT.
We have proved:

Lemma 7.18 Assume (7.10). The ramification group GV is the unique pro-p-Sylow group
in the inertia group GT, and Gal V|T ∼= GT/GV is an abelian pro-p′-group.

Now we can state the main properties of the extension V|T:
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Theorem 7.19 Assume (7.10). Then V|T is an abelian p′-extension. The value group of
the ramification field V is the p′-divisible closure of vK in vL, that is, vV/vK = (vL/vK)p′ .
Its residue field is equal to the residue field of the inertia field T. The homomorphism (7.14)
is onto and consequently, the Galois group of V over T is

GT /GV
∼= Gal V|T ∼= Hom

(
vV/vT , T

×
)
.

This is isomorphic to vV/vT if V|T is finite. The isomorphisms are topological isomor-

phisms, and Hom(vV/vT , T
×

) is the full p-character group of vV/vT.
For every subextension K ′|T of V|T, the image of Gal V|K ′ under this isomorphism

is equal to HomvK′/vT(vV/vT , T
×

) ∼= Hom(vV/vK ′ , T
×

). If K ′|T is normal, then this

isomorphism induces an isomorphism of GalK ′|T onto Hom(vK ′/vT , V
×

). If K ′|T is
also finite, then GalK ′|T is isomorphic to vK ′/vT = vK ′/vK. Moreover, [K1 : K0] =
(vK1 : vK0) for every finite extension (K1|K0, v) such that T ⊂ K0 ⊂ K1 ⊂ V.

Proof: According to the previous lemma, the Galois group of the Galois extension V|T is
a p′-group, that is, V|T is a p′-extension. Assume that K ′|T is a finite normal subextension
of V|T. Since V|T is a p′-extension, the same is true for the subextension K ′|T. Theo-
rem 7.16 shows that the ramification group of a p′-extension must be trivial; hence, the
ramification field of (K ′|T, v) must be equal to K ′ . On the other hand, Lemma 7.7 shows
that the inertia field of (L|T, v) is T. Together with Lemma 7.14, this in turn yields that the
inertia field of (K ′|T, v) is again T. In (7.14), we can thus replace V to obtain an embedding

of GalK ′|T in the p-character group Hom((vK ′/vT)p′ , K ′
×

). This in turn is a subgroup

of the full p-character group Hom((vK ′/vT)p′ , k̃
×), where k = K ′. For k a field of charac-

teristic exponent p and a finite abelian p′-group ∆, the full p-character group Hom(∆, k̃) is
isomorphic to ∆ (cf. Lemma 24.58). Using also the inequality |vK ′/vT| ≤ [K ′ : T] which
we infer from the fundamental inequality (6.2), we compute

[K ′ : T] =
∣∣GalK ′|T

∣∣ ≤ ∣∣∣Hom((vK ′/vT)p′ , K ′
×

)
∣∣∣

≤
∣∣∣Hom((vK ′/vT)p′ , k̃

×)
∣∣∣ =

∣∣(vK ′/vT)p′
∣∣

≤ |vK ′/vT| ≤ [K ′ : T] .

Hence, equality holds everywhere. In particular, (vK ′/vT)p′ = vK ′/vT which means that
vK ′/vT is a p′-group, and

GalK ′|T ∼= Hom(vK ′/vT , K ′
×

) ∼= vK ′/vT .

Note that we also obtain that Hom(vK ′/vT , K ′
×

) is already the full character group of
vK ′/vT. Furthermore, we see that [K ′ : T] = (vK ′ : vT), and in view of the fundamental
inequality (6.2), we may conclude that K ′ = T. Since K ′|T was an arbitrary finite normal
subextension of V|T, we have now proved that vV/vT is a p′-group, and that V = T.
Consequently,

Hom
(

(vV/vT)p′ , V
×
)

= Hom
(
vV/vT , T

×
)
.

If V|T is finite, we may choose K ′ = V; then our argument shows that the embedding
(7.14) is surjective, and in this case, it follows that Gal V|T ∼= vV/vT. To show the
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surjectivity of (7.14) in the infinite case, we proceed as follows. Let χ ∈ Hom(vV/vT , T
×

)
be given. The extension V|T is the union of finite Galois extensions Ki|T, i ∈ I and
consequently, vV is the union of the groups vKi. By the surjectivity in the finite case that
we have proved above, we know that for every i ∈ I, the restriction χi of χ to vKi is of
the form ( . , σi)

′ for some σi ∈ GalKi|T. From the Compactness Principle for Algebraic
Extensions (Lemma 24.5) it now follows that there is σ ∈ Gal V|T such that ( . , σ)′ = χ.
This proves the surjectivity of (7.14) in the general case. In this argument, V|T can be
replaced by an arbitrary normal subextension K ′|T, showing that the induced embedding

GalK ′|T→ Hom(vK ′/vT , T
×

) is onto.
Now let K ′|T be an arbitrary subextension of V|T. By Lemma 7.7, the ramification

field of (L|K ′, v) is V, and its inertia field is K ′. The pairing associated with this extension
is obtained by restricting (7.4) to the group Gi(L|K ′, v) = GT ∩ GalL|K ′. By what
we have shown already, the restricted pairing yields an isomorphism of Gal V|K ′ onto

HomvK′/vT(vV/vT , T
×

) ∼= Hom(vV/vK ′ , T
×

) (note that T = K ′).
Finally, let T ⊂ K0 ⊂ K1 ⊂ V with K1|K0 finite. We choose a finite normal subexten-

sion K ′|K0 of T|K0 such that K1 ⊂ K ′ . From Lemma 7.7 we know that the inertia field
of (L|K0, v) is K0.T = K0 and that its ramification field is K0.V = V, and similarly for
K1 in the place of K0. What we have already shown may thus be applied to K0 and K1 in
the place of T to obtain that [K ′ : K0] = (vK ′ : vK0) and [K ′ : K1] = (vK ′ : vK1). This
proves that [K1 : K0] = (vK1 : vK0). �

Lemma 7.20 Assume (7.10) and let E|K be a normal subextension of L|K. Then

resE(GV) = Gr(E|K, v) and (E ∩ V, v) = (E|K, v)r .

Proof: In view of Corollary 7.8, we have to show that resE : GV → Gr(E|K, v) is surjec-
tive. Let ( . , . )′L|K , ( . , . )′E|K and ( . , . )′L|E denote the pairing (7.11) for the extension L|K,

E|K and L|E respectively. Assume that ρ ∈ Gr(E|K, v), which means that ( . , ρ)′E|K is the

trivial character of vE/vK. It also implies that ρ ∈ Gi(E|K, v), hence by Lemma 7.14 there
exists σ ∈ GT such that ρ = resE(σ). It follows that (vE/vK, σ)′L|K = (vE/vK, ρ)′E|K = 1,

so ( . , σ)′L|K is in fact a character of vL/vE. Now the surjectivity proved in Theorem 7.19

shows that there is some τ ∈ Gi(L|E, v) such that ( . , τ)′L|E = ( . , σ)′L|K . It follows that

also ( . , τ)′L|K = ( . , σ)′L|K . Consequently, ( . , στ−1)′L|K = 1, showing that στ−1 ∈ GV with

ρ = resE(στ−1). �

7.6 Synopsis

From the foregoing theorem together with Theorem 7.13, we deduce:

Corollary 7.21 Assume (7.10). If the maximal separable subextension T |K of L|K is a
p′-extension, then also T|Z and V|Z are p′-extensions.

Corollary 7.22 Assume (7.10). Let (K1|K0, v) be a finite normal extension such that
K ⊂ K0 ⊂ K1 ⊂ V. Then

[K1 : K0] = e · f · g
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where e = (vK1 : vK0), f = [K1 : K0] and g is the number of distinct extensions of v from
K0 to K1 . If Z ⊂ K0 , then g = 1.

Proof: From Lemma 7.20 it follows that the ramification field of (K1|K, v) is K1 .
Together with Lemma 7.7, this in turn yields that the ramification field of (K1|K0, v) is
again K1 . In view of

[K1 : K0] = [(K1|K, v)r : (K1|K, v)i] · [(K1|K, v)i : (K1|K, v)d] · [(K1|K, v)d : K0] ,

our first assertion follows from Theorem 7.19, Theorem 7.13 and Theorem 7.9. If Z ⊂ K0 ,
then by Lemma 7.20 and Lemma 7.7, K0 is the decomposition field of (K1|K0, v), and
Theorem 7.9 shows that g = 1. �

Remark 7.23 The isomorphism of Theorem 7.19 induces a topology on the group Hom(vV/vT , T
×

)
which shows that it is in fact a profinite group. Further, Theorem 7.19 shows that the subgroups
Hom(vV/vK ′ , T

×
) are closed for every subextension K ′|T of V|T, and that they are open if and only if

K ′|T is finite. See O. Endler [END8], §20 for further details.
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We summarize our main results of this section in the following table:

GalL|K

Gd(L|K, v)

Gi(L|K, v)

Gr(L|K, v)

1

Galois group

(K, v)

Z = (L|K, v)d

T = (L|K, v)i

V = (L|K, v)r

(L|K, v)sep

(L, v)

field

vK

vK

vK

1
p′∞

vK ∩ vL

vL

value group

K

K

(L|K)sep

(L|K)sep

L

residue field

GalL|K

Char

immediate

unramified

p′-extension

p-extension

purely
inseparable

(vL/vK)p

(vL/vK)p′

Galois

purely
inseparable

decomposition
field

inertia
field

ramification
field

maximal
separable

subextension

where 1
p′∞

vK ∩ vL is the relative p′-divisible closure of vK in vL, and Char denotes the
character group

Hom
(
vL/vK , L

×
)
∼= Hom

(
(vL/vK)p′ , ((L|K)sep)×

)
,

which is also isomorphic to the character group appearing in Theorem 7.19.

Let us return to the pairing (7.13). Lemma 7.19 has shown that vV/vT is a p′-group,
hence (vV/vT)p′ = vV/vT. Further, V = T by Theorem 7.19. Therefore, the pairing
(7.13) induces a homomorphism

vV/vT −→ Hom
(

Gal V|T , T
×
)

(7.15)

of vV/vT into the character group Hom
(

Gal V|T , T
×
)

. We prove:

Lemma 7.24 The homomorphism (7.15) is an embedding.
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Proof: Assume that b ∈ V× is such that σb / b = 1 for every σ ∈ Gal V|T. Then in
particular, all conjugates σib of b over T can be written as σib = b(1 + ci) with ci ∈M(V,v)

(1 ≤ i ≤ n := [T(b) : T]). Hence,

TrT(b)|T(b) = b(n+ c) with c =
∑

1≤i≤n

ci ∈M(V,v) .

Since V|T is a p′-extension according to Lemma 7.19, n is prime to p. That is, vn = 0
showing that vb = vb(n+ c) = vTrT(b)|T(b) ∈ vT. This yields our assertion. �

Corollary 7.25 The pairing

(. , .)′ : vV/vT×Gal V|T −→ T
×

(7.16)

is faithful: If 1 6= σ ∈ Gal V|T, then ( . , σ)′ is a non-trivial character of vV/vT. If
0 6= α ∈ vV/vT, then (α, . )′ is a non-trivial character of Gal V|T.

Finally, let us return once more to the “functorial discussion” which was initiated by
Lemma 7.3. Let us now consider the following case. Let (K ′|K, v) be an arbitrary extension,
(L′|K ′, v) a normal algebraic extension and (L|K, v) a normal algebraic subextension of
(L′|K, v). In this case, τ∗ is the restriction map resL , which is a topological epimorphism
from GalL.K ′|K ′ onto GalL |L ∩K ′.

For the purposes of ramification theory, we take fixed fields in the maximal separable
subextension of a given normal algebraic extension. So let Ls := (L |L∩K ′)sep. Then also
Ls.K

′|K ′ is separable, so Ls.K
′ and thus also Ls are contained in L′s := (L′|K ′)sep. Further,

Ls∩K ′ = L∩K ′ by definition of Ls. Now τ∗ is the restriction map resLs , which again gives
the topological epimorphism from GalL′|K ′ onto GalL |L∩K ′ since GalL′|K ′ = GalL′s|K ′
and GalL |L ∩K ′ = GalLs |Ls ∩K ′. From Lemma 7.3, we obtain:

Lemma 7.26 Let (K ′|K, v) be an arbitrary extension, (L′|K ′, v) a normal algebraic ex-
tension and (L|K, v) a normal algebraic subextension of (L′|K, v). Then

resL(Gd(L′|K ′, v))⊂Gd(L |L ∩K ′, v) and (L ∩ (L′|K ′, v)d, v)⊃ (L |L ∩K ′, v)d

resL(Gi(L′|K ′, v))⊂Gi(L |L ∩K ′, v) and (L ∩ (L′|K ′, v)i, v)⊃ (L |L ∩K ′, v)i

resL(Gr(L′|K ′, v))⊂Gr(L |L ∩K ′, v) and (L ∩ (L′|K ′, v)r, v)⊃ (L |L ∩K ′, v)r .

Later, we will determine criteria for the above inclusions to be equalities. One important
case will be met in the next section.

Exercise 7.1 Show that Hom((vV/vT)p′ , V
×

) is a pro-p′-group, without using that it is isomorphic to
some Galois group.

7.7 Absolute ramification theory

Let (K, v) be a henselian field. The inertia field of the normal extension (K̃|K, v) (or
equivalently, of the normal extension (Ksep|K, v) ) will be called the absolute inertia
field or just inertia field of (K, v) and denoted by (K, v)i or by (Ki, vi). Similarly,
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the ramification field of (K̃|K, v) will be called the absolute ramification field or just
ramification field of (K, v) and denoted by (K, v)r or by (Kr, vr). Observe that both
fields are uniquely determined by the henselian field (K, v) since the extension of v from
K to L is unique. In the following, we will always refer to the valuation v and its unique
extension to K̃. For instance, instead of writing (Ki, vi), we will just write Ki.

Theorem 7.27 Let (K, v) be a henselian field and p the characteristic exponent of its
residue field. Then the following assertions hold:

a) Ki|K and Kr|K are Galois extensions,

b) vKi = vK, Ki = K
sep

and GalKi|K ∼= GalK,

c) vKr is the p′-divisible hull of vK, Kr = Ki and GalKr|Ki is an abelian pro-p′-group,

d) Ksep|Kr is a p-extension.

Proof: Recall first that vKsep is the divisible hull of vK and that Ksep = K
sep

(cf.
Lemma 6.44). Since (K, v) is henselian, the decomposition field of the Galois extension
(Ksep|K, v) is equal to K. Now the assertions follow from Lemma 7.6, Theorem 7.13 and
Theorem 7.19. �

Table 7.6 now takes the following form:
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GalK

Gd

Gi

Gr

1

Galois group

K

Kh

Ki

Kr

Ksep

K̃

field

vK

vK

vK

1
p′∞

vK

ṽK

ṽK

value group

Kv

Kv

(Kv)sep

(Kv)sep

K̃v

K̃v

residue field

GalKv

Char

immediate

Galois,
defectless

abelian Galois
p′-extension,
defectless

Galois
p-extension

purely
inseparable

division
by p

division
prime to p

Galois

purely
inseparable

absolute
decomposition

field

absolute
inertia
field

absolute
ramification

field

separable-
algebraic
closure

where 1
p′∞

vK denotes the p′-divisible hull of vK and Char denotes the character group

Hom
(
vKr/vKi , (Kiv)×

) ∼= Hom
(
vK̃/vK , (K̃v)×

)
. (7.17)

From Lemma 7.7 we obtain:

Lemma 7.28 Let (L|K, v) be an algebraic extension of henselian fields. Then Li = L.Ki

and Lr = L.Kr.

As a consequence of Corollary 7.22, we have

Lemma 7.29 Let (K, v) be a henselian field and K ⊂ K0 ⊂ K1 ⊂ Kr such that K1|K0 is
finite. Then (K1|K0, v) is defectless. Further, e(K1|K0, v) is not divisible by the charac-
teristic of K, and K1|K0 is a separable-algebraic extension.

Proof: Since (K, v) is henselian, the same is true for (K0, v), and we thus have
g(K1|K0, v) = 1. Hence, our assertion follows directly from Corollary 7.22 if K1|K0 is
normal. If this is not the case, we choose N to be the normal hull of K1 over K0 . Since
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Kr|K0 is normal, N lies in Kr. Now Corollary 7.22 applied to the finite normal extension
(N |K0, v) gives the corresponding assertion for this extension. From this, the assertion
also follows for the subextension (K1|K0, v) of (N |K0, v). �

By use of this lemma, we can add the following fact to the assertion of Lemma 7.28:

Lemma 7.30 Let (L|K, v) be an immediate extension of henselian fields. Then Li = L.Ki

and Lr = L.Kr.

Proof: Since vK = vL, we have by Theorem 7.27 that vKi = vK = vL = vLi. It
also follows that the p′-divisible hull of vK is the same as that of vL. Hence in view of
Theorem 7.27, vKr = vLr. Since K = L, the separable-algebraic closure of K is the same
as that of L. Hence in view of Theorem 7.27, Ki = Li and Kr = Lr. This shows that

(Li|Ki, v) and (Li|Ki, v)

are immediate extensions. Consequently, also

(Li|L.Ki, v) and (Li|L.Ki, v)

are immediate algebraic extensions. Now Lemma 7.29 shows that they must be trivial. �

The absolute inertia field and the absolute ramification field of (K, v) are universal in
the sense that their intersection with an arbitrary normal extension of (K, v) produces the
inertia and ramification field of that extension. Indeed, this follows from Lemma 7.14 and
Lemma 7.20. So let us note:

Lemma 7.31 Let (L|K, v) be a normal extension of henselian fields. Then (L|K, v)i =
(L ∩ Ki, v) and (L|K, v)r = (L ∩ Kr, v). In particular, the inertia field of every normal
extension of (K, v) is contained in Ki, and the ramification field of every normal extension
of (K, v) is contained in Kr.

The following lemma shows that even if the extension L|K is not normal, then the
intersections have the main properties of the inertia and ramification field:

Lemma 7.32 Let (L|K, v) be an algebraic extension of henselian fields, and let p denote
the characteristic exponent of K. Then the following holds:

a) L ∩Ki is the relative separable-algebraic closure of K in L, and v(L ∩ Ki) = vK. If
L|K is finite, then [L ∩Ki : K] = [L : K]sep .

b) v(L ∩Kr) is the p′-divisible hull of vK in vL, and L ∩Kr = L ∩Ki. If L|K is finite
and e(L|K, v) = pµ · e′ with e′ prime to p, then [L ∩Kr : L ∩Ki] = e′.

Consequently, if L|K is not purely inseparable, then L|K is not linearly disjoint from Ki|K.
Similarly, if (vL : vK) is not a power of p, then L|K is not linearly disjoint from Kr|K.

Proof: We prove our assertions for the case of a finite extension L|K. The deduction of
the assertions for arbitrary algebraic extensions is left to the reader as a straightforward
exercise. We set V0 := L ∩ Kr and T0 := L ∩ Ki ⊂ V0. Let N be the normal hull of
L|K. Since (K, v) is henselian, we have g = 1 for every extension of valued fields which
are algebraic extensions of (K, v).
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By Lemma 7.14, T := N ∩Ki is the inertia field of (N |K, v) and of (N |T0, v). Hence,
T|T0 is separable with [T : T0] = [T : T0], and N |T is purely inseparable. This shows that

[L.T : T0]sep = [T : T0] = [T : T0] . (7.18)

By Lemma 24.14 in the Appendix, T|T0 is linearly disjoint from L|T0, hence we have
[T : T0] = [L.T : L]. By Lemma 7.7, L.T is the inertia field of (N |L, v). Thus, the
extension L.T|L is separable, and [L.T : L] = [L.T : L]. Altogether, we find that

[L.T : T0]sep = [L.T : L] , (7.19)

which proves that the extension L|T0 must be purely inseparable. Consequently, T0 con-
tains the relative separable-algebraic closure of K in L. But T0|K is separable, being
a subextension of the separable extension Ki|K. This proves that T0 = (L|K)sep. By
Theorem 7.13, vT0 = vK and [T0 : K] = [T0 : K] = [L : K]sep.

Similarly, we treat the field V0 . By Lemma 7.20 and Lemma 7.7, V := N ∩Kr is the
ramification field of (N |K, v), of (N |T0, v) and of (N |V0, v). Hence by Theorem 7.19, V|T0

is separable and vV/vV0 is a p′-group. The former proves that V0 = T0. Indeed, we have
already seen that T0 ⊂ V0 is the relative separable-algebraic closure of K in L, hence the
separable subextension V0|T0 of V|T0 must be trivial.

By Theorem 7.19, we know that V = T. Since also V0 = T0, we have that [V : V0] =
[T : T0] = [T : T0]. In view of Lemma 7.29, it follows that

[V : V0] = (vV : vV0)[V : V0] = (vV : vV0)[T : T0] . (7.20)

By Lemma 7.7, L.V is the ramification field of (N |L.T, v). Hence by Theorem 7.19, L.V =
L.T. Hence from (7.20) and (7.21), we obtain that

[L.V : L] = [L.T : L] = [T : T0] .

Again in view of Lemma 7.29, we conclude that

[L.V : L] = (v(L.V) : vL)[L.V : L] = (v(L.V) : vL)[T : T0] . (7.21)

By Lemma 24.34, V|V0 is linearly disjoint from L|V0, hence we have that [V : V0] = [L.V :
L]. From this together with (7.20) and (7.21), we find that (vV : vV0) = (v(L.V) : vL).
Consequently, (v(L.V) : vV) = (vL : vV0). From Theorem 7.16 we know that vN/vV is a
p-group. Hence also its subgroup v(L.V)/vV is a p-group, which yields that also vL/vV0 is
a p-group. Consequently, vV0 contains the p′-divisible hull of vK in vL. But vV0/vK is a
p′-group, being a subgroup of the p′-group vKr/vK. This proves that vV0 is the p′-divisible
hull of vK in vL. So if e(L|K, v) = pµ · e′ with e′ prime to p, then e′ = (vV0 : vK). By
Corollary 7.22, [V0 : K] = (vV0 : vK) · [V0 : K]. As we have seen already, V0 = T0 and
[T0 : K] = [T0 : K]. Dividing by [T0 : K], we thus find that [V0 : T0] = (vV0 : vK) = e′.

�

In view of this lemma, one may define the inertia and ramification field of an arbitrary
algebraic extension of a henselian field (K, v) to be the respective intersections with Ki

and Kr. We leave it to the reader to work out the details of such a generalized ramification
theory.
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7.8 Henselian fields and henselizations

To the lazy mathematician it may appear uncomfortable to work with too many valuations,
so we take the occasion to define a very handy (and important) class of valued fields: (K, v)
will be called henselian if it admits a unique extension of v to every algebraic extension.
If (K, v) is henselian and if it is clear that the symbol “v” refers to the valuation v on K,
then we will also say that v is a henselian valuation and that its associated place Pv is
a henselian place. Henceforth, if we are working with a henselian field (K, v), we will
automatically assume the valuation extended to every algebraic field extension and to be
called v again; since the extension is unique (and since it is again henselian, as we will see
below), this can’t cause confusion.

Let L|K be an arbitrary algebraic extension of fields and E|K a subextension of L|K.
Let v be a valuation on K. Suppose that v1 and v2 are two distinct extensions of v to E.
By Corollary 4.11, v1 and v2 can be extended to valuations v1 and v2 of L, and we will
have v1 6= v2 on L since already v1 6= v2 on E. Hence K admits a unique extension of v to
L if and only if it admits a unique extension of v to every intermediate field E.

Now let v be extended to E and call this extension again v. Every extension of v from
E to L is also an extension of v from K to L. Hence if K admits a unique extensions of v
to L, then so does E.

If K admits two distinct extensions v1, v2 of v to K̃, then in view of Corollary 6.57,
already their restrictions to the separable-algebraic closure (L|K)sep will be distinct. But
then, there is some a separable over K such that v1a 6= v2a. So we have found a finite
separable subextension K(b)|K of L|K such that v1 and v2 are distinct on K(b). If in
addition, L|K is normal, then we can pass to the normal hull N of K(a) over K, and we
have found a finite Galois extension of N |K such that v1 and v2 are distinct on N .

With L = K̃, these considerations prove:

Lemma 7.33 A valued field (K, v) is henselian if and only if it admits a unique extension
of v to K̃, and this holds if and only if (K, v) admits a unique extension of v to every
finite Galois extension. In particular, every separable-algebraically closed valued field is
henselian. Every algebraic extension of a henselian field is again henselian.

This lemma gives rise to a slightly different characterization of henselian fields:

Lemma 7.34 Take a field (K, v) and a valuation preserving embedding ϕ of (K, v) in an
algebraically closed valued field (F,w). Extend v to a valuation ṽ of K̃. Then (K, v) is
henselian if and only if every field embedding ψ of an algebraic extension L of K in F that
extends ϕ is already a valuation preserving embedding of (L, v) in (F,w).

Proof: Take L and ψ as in the lemma. Then by ??, w ◦ ψ is a valuation on L. Since ϕ
is valuation preserving, w ◦ ψ extends v. Now if (K, v) is henselian, then w ◦ ψ = v by the
foregoing lemma, which means that ψ is valuation preserving.

If on the other hand (K, v) is not henselian, then there are two distinct extensions ṽ
and w of v from K to K̃, and the identity is not a valuation preserving embedding of (K̃, ṽ
in (K̃, w), although it extends the identity on K which is a valuation preserving embedding
of (K, v) in (K̃, w). �

The property of being henselian is preserved under isomorphisms of valued fields. To
see this, let ι : (K, v) → (K ′, v′) be such an isomorphism. In particular, ιOK = OK′ (cf.
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Exercise ??). The field isomorphism ι can be extended to an isomorphism ι̃ : K̃ → K̃ ′. If

(K ′, v′) is not henselian, then there are two distinct valuation rings O′1 and O′2 of K̃ ′ lying
above OK′ . Then the valuation rings ι̃−1(O′1) and ι̃−1(O′2) of K̃ are distinct and lie above
OK . This shows that also (K, v) is not henselian.

Setting L = K̃ in Theorem 7.9, we infer that

(K, v)h : = (K̃|K, v)d

is henselian. This valued field is called the henselization of (K, v) in (K̃, v) . By defini-
tion, it is a separable algebraic extension of K. To denote the underlying field of (K, v)h,
we will also write Kh or Kh(v). It should be pointed out that our definition depends on the
extension of v from K to K̃ that we have chosen. A different extension leads to a different
henselization, but all of these henselizations are isomorphic over (K, v), as we will see now.

Lemma 7.35 Choose an extension of the valuation v from K to K̃ and call it again v.
Denote by (Kh, v) the henselization of (K, v) in (K̃, v). Then for every ι ∈ GalK, the field
(ι−1Kh, vι) is the henselization (Kh(vι), vι) of (K, v) in (K̃, vι) , and (Kh, v) is isomorphic
over K to (ι−1Kh, vι) via the uniquely determined isomorphism resKh(ι−1) .

Proof: The assertion follows from the definition of the henselization together with
Corollary 7.4; the uniqueness of resKh(ι−1) is stated in part f) of Theorem 7.9. �

Lemma 7.36 Let w be any extension of v from K to K̃, and let E be an algebraic extension
of K such that (E,w) is henselian. Then (E,w) contains the henselization (Kh(w), w) of
(K, v) in (K̃, w). Further, there is a unique embedding of (Kh, v) over K in (E,w), and
its image is (Kh(w), w).

Proof: Since (E,w) is assumed to be henselian, the extension of w to Ẽ = K̃ is unique.
Applying part d) of Theorem 7.9 to the extension (K̃|K,w), we find that (E,w) contains
(K̃|K,w)d. But the latter is the henselization (Kh(w), w) of (K, v) in (K̃, w). By virtue
of Theorem 6.53, w = vι for some ι ∈ GalK. By the foregoing lemma, resKh(ι−1) is the
unique isomorphism of (Kh, v) onto (Kh(w), w) over K.

If σ is any embedding of (Kh, v) over K in (E,w), then its image σ(Kh, v) is henselian.
So by what we have just proved, it must contain (Kh(w), w). Conversely, σ−1(Kh(w), w) is
a henselian subfield of (K̃, v), and thus, it contains (Kh, v). This proves that σ(Kh, v) =
(Kh(w), w) and that resKh(ι−1) = resKh(σ−1) is the unique embedding of (Kh, v) in (E,w)
over K. �

As we will later work with a universal extension that is fixed once and for all it is
convenient to choose the notation (K, v)h as introduced above. As the henselization is a
henselian field, the following is a direct consequence of the foregoing lemma:

Corollary 7.37 (K, v) is henselian if and only if (K, v)h = (K, v).

For the generalization of Lemma 7.36 to the case of arbitrary (not necessarily algebraic)
extensions, we need the following corollary to Lemma 7.26:
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Corollary 7.38 The relative separable-algebraic closure of any subfield in a henselian field
is again henselian.

Proof: Let (F, v) be a henselian field and (K, v) a subfield. We apply Lemma 7.26 with
K ′ = F , L′ = F sep and L = Ksep to find that Ksep ∩ (F sep|F, v)d ⊃ (Ksep|Ksep ∩ F, v)d.
But (F sep|F, v)d = (F, v)h = (F, v) by the foregoing corollary because (F, v) is henselian by
assumption. Consequently, (Ksep ∩ F, v)h = (Ksep|Ksep ∩ F, v)d ⊂ (Ksep ∩ F, v), showing
that the latter is henselian. But Ksep ∩ F is just the separable-algebraic closure of K in
F . �

We are now able to prove the following universal property of the henselization:

Theorem 7.39 For every henselian extension field (F,w) of (K, v), there is a unique
embedding of (K, v)h into (F,w) over K. Consequently, there is a henselization of (K, v)
in every henselian extension field of (K, v).

Proof: If (F,w) is henselian, then by the preceding corollary, the same holds for
the relative separable-algebraic closure of (K, v) in (F,w). Since the henselization is an
algebraic extension, every embedded image of (K, v)h must be contained in this relative
algebraic closure. Hence, it suffices to prove the theorem for the case of F being algebraic
over K. But for this case, it is already asserted in Lemma 7.36. �

The following property of the henselization is a consequence of Lemma 7.7, applied
with L = K̃.

Corollary 7.40 Let (K, v) ⊂ (E, v) ⊂ (K̃, v). Then (E, v)h = (E.Kh, v).

This assertion can also be proved as follows. Since (E.Kh, v) is henselian according to
Lemma 7.33, it contains (E, v)h by virtue of Lemma 7.36. Conversely, Eh must contain
Kh and E, so we have (E, v)h = (E.Kh, v).

If there are more than one extension of the valuation in a normal field extension L|K,
then the henselization Kh allows us to shift the setting to a normal extension L.Kh|Kh

which admits a unique extension of the valuation (this is the so-called local case). The
ramification theory of both extensions is connected as follows.

Theorem 7.41 Let (L|K, v) be a normal subextension of (K̃|K, v) and (Kh, v) the henseliza-
tion of (K, v) in (K̃, v). Then

Gd(L|K, v)∼= GalL.Kh|Kh and (L|K, v)d = (L ∩Kh, v)
Gi(L|K, v)∼= Gi(L.Kh|Kh, v) and (L|K, v)i = (L ∩ (L.Kh|Kh, v)i, v)
Gr(L|K, v)∼= Gr(L.Kh|Kh, v) and (L|K, v)r = (L ∩ (L.Kh|Kh, v)r, v) .

(the isomorphisms being induced by the restriction map resL , which is a topological iso-
morphism from GalL.Kh|Kh onto GalL |L∩Kh ). Further, L |L∩Kh is linearly disjoint
from Kh |L ∩Kh. In particular, the extension of v from K to L is unique if and only if
L|K is linearly disjoint from Kh|K.
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Proof: Since Kh|K is separable and since L|K is normal by assumption, it follows from
Lemma 24.34 that L |L ∩Kh is linearly disjoint from Kh |L ∩Kh, and that L ∩Kh = K
if and only if L|K is linearly disjoint from Kh|K. It is asserted by (Gal8) that resL is
a topological isomorphism from GalL.Kh|Kh onto GalL |L ∩Kh . From Lemma 7.10 we
know that resL(Gd(K̃|K, v)) = Gd(L|K, v). By the definition of Kh, Gd(K̃|K, v) = GalKh,
so we have Gd(L|K, v) = resL(Gd(K̃|K, v)) = resL(GalKh) = resL(resL.Kh(GalKh)) =
resL(GalL.Kh|Kh).

From Lemma 7.14 we know that resL(Gi(K̃|K, v)) = Gi(L|K, v). Since Gi(K̃|K, v) ⊂
Gd(K̃|K, v) = GalKh, Lemma 7.7 shows that Gi(K̃|Kh, v) = Gi(K̃|K, v) ∩ GalKh =
Gi(K̃|K, v). Consequently, we haveGi(L|K, v) = resL(Gi(K̃|K, v)) = resL(Gi(K̃|Kh, v)) =
resL(resL.Kh(Gi(K̃|Kh, v))) = resL(Gi(L.Kh|Kh, v)), where the first and the last equality
are inferred from Lemma 7.14. An analogous argument works for the ramification groups,
by use of Lemma 7.20. The equalities on the right hand side follow by (Gal8), applied to
the maximal separable algebraic subextension as explained preceding to Lemma 7.26.

The last assertion of our theorem is a consequence of part d) of Theorem 7.9 and
Lemma 24.34. �

The next important property of the henselization follows from its definition together
with Lemma 7.12:

Theorem 7.42 The henselization is an immediate separable algebraic extension.

Remark 7.43 The method we have used here to prove that the henselization is an immediate extension
does not seem to be widely known. Most authors and lecturers have a hard time proving that the value
group of the henselization (resp. of the decomposition field of an extension (L|K, v) ) is equal to vK. The
main ingredient in many proofs is some version of the Strong Approximation Theorem (Theorem ??). The
strikingly simple method used in the proof of Lemma 7.12 appears in the appendix of James Ax’ paper
[AX3]. This appendix gives a remarkably concise introduction to the valuation theory which is needed for
the deduction of the Ax–Kochen–Ershov Theorem (Theorem 21.30).

In view of Corollary 7.37, the foregoing theorem enables us to provide important exam-
ples for henselian fields. Recall that by Lemma ??, (Qp, vp) and (Fp((t)), vt) are spherically
complete.

Theorem 7.44 Every maximal and thus also every spherically complete valued field is
henselian. In particular, power series fields are henselian. For every prime p, the valued
fields (Qp, vp) and (Fp((t)), vt) are henselian.

Finally, we want to state an easy but important lemma about approximation types over
henselian fields.

Lemma 7.45 Let (L|K, v) be a normal extension of valued fields such that the extension
of v from K to L is unique. Then for every a ∈ L and every ι ∈ GalL|K,

v(a− ιa) ≥ Λ(a,K) .

Consequently, if (K, v) is henselian and f is an irreducible polynomial over K, then all
roots of f have the same approximation type over K.
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Proof: Let (L|K, v), a ∈ L and ι ∈ GalL|K be as in the assumption. Let α ∈ Λ(a,K)
and c ∈ K such that v(a − c) ≥ α. Since vι = v on L, it follows that v(a − c) =
vι(a− c) = v(ιa− c), showing that v(a− ιa) ≥ min{v(a− c), v(ιa− c)} = α. This proves
that v(a− ιa) ≥ Λ(a,K).

If f is an irreducible polynomial over K, then there is a normal extension L|K which
contains all roots of f , and all these roots are conjugate over K. If (K, v) is henselian,
then the extension of v from K to L is unique. Let a1 and a2 be two roots of f , and choose
ι ∈ GalL|K such that a2 = ιa1 . As we have just shown, for every c ∈ K we will have that
v(a1− c) = v(ιa1− c) = v(a2− c). Hence c ∈ at (a1, K)α if and only if c ∈ at (a2, K)α, and
c ∈ at (a1, K)◦α if and only if c ∈ at (a2, K)◦α. That is, at (a1, K) = at (a2, K). �

Exercise 7.2 Let (K, v) be henselian, and let a be algebraic over K. Show that vTrK(a)|K(a) ≥ va
and vNK(b)|K(a) = [K(b) : K] · va. Given an algebraic extension (L|K, v) of degree n, conclude that

va = 1
nvNL|K(a) for every a ∈ L.

7.9 The fundamental inequality

In this section, we will relate the degree of a finite valued field extension (L|K, v) with the
ramification indices and the inertia degrees of all extensions of the valuation. We know
already from Corollary 6.56 that the number of distinct extensions does not exceed [L : K].
If v admits more than one extension from K to L, then the estimate given in Lemma 6.13
will never be sharp. To obtain a better inequality involving also the other extensions, we
will lift the extension L|K to the henselizations of L with respect to these extensions. We
need two lemmata. Recall the following. If H1 and H2 are subgroups of a group G, then
for g ∈ G, the set H1gH2 = {h1gh2 | h1 ∈ H1 ∧ h2 ∈ H2} is called a double coset of G.
Further, g ∼ h :⇔ H1gH2 = H1hH2 is an equivalence relation, and its equivalence classes
are double cosets of the form H1gH2 . If (G : H1) is finite, then there are at most (G : H1)
distinct such double cosets.

Lemma 7.46 Let L|K be a finite and K ′|K an arbitrary algebraic extension. Let g ∈ N
and ι1, . . . , ιg be representatives of the double cosets {GalK ′ ιGalL | ι ∈ GalK} (it follows
that g ≤ (GalK : GalL) ≤ [L : K] <∞).

a) An automorphism ι ∈ GalK lies in GalK ′ ιi GalL if and only if the isomorphism
resL(ι ι−1

i ) : ιiL→ ιL can be extended to an isomorphism of ιiL.K
′ onto ιL.K ′ over K ′.

b) For 1 ≤ i ≤ g, let qi denote the quotient [L : K]ins/[ιiL.K
′ : K ′]ins , which is a power of

charexpK. Then

[L : K] =
∑

1≤i≤g

[ιiL.K
′ : K ′] · qi . (7.22)

c) If L|K or K ′|K is separable, then qi = 1 for 1 ≤ i ≤ g.

d) Assume that K ′|K is separable, f ∈ K[X] is an arbitrary polynomial and L = K(a)
for some root a ∈ K̃ of f . Then f = f1 · . . . · fg with fi irreducible polynomials over K ′

and deg fi = [ιiL.K
′ : K ′].

Proof: a): Let ι ∈ GalK. Then an automorphism in GalK extends res ιiL(ι ι−1
i ) if and

only if it lies in the coset ι ι−1
i Gal ιiL. This coset is equal to ι ι−1

i ιi GalL ι−1
i = ιGalL ι−1

i .
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Hence, there is an extension of res ιiL(ι ι−1
i ) to an isomorphism over K ′ if and only if

ιGalL ι−1
i ∩GalK ′ 6= ∅. But this is equivalent to ι ∈ GalK ′ ιi GalL.

b): Let Ks = (L|K)sep be the maximal separable subextension of K in L. Then L|Ks

is purely inseparable and thus, GalL = GalKs . As a finite separable extension, Ks|K is
simple. Let f ∈ K[X] be the minimal polynomial of some generator b of this extension.
Let

∏
i fi be the decomposition of f into irreducible factors over K ′. Then res ιiKs(ι ι

−1
i ) :

ιiKs → ιKs can be extended to an isomorphism of ιiKs.K
′ onto ιKs.K

′ over K ′ if and
only if ιib and ιb are roots of the same irreducible factor. By virtue of part a), applied to
Ks in the place of L, there are g such factors, and we may enumerate them such that ιib
is a root of fi. Then [ιiKs.K

′ : K ′] is equal to the degree of fi. Hence,

[L : K]sep = [Ks : K] = deg f =
∑

1≤i≤g

deg fi =
∑

1≤i≤g

[ιiKs.K
′ : K ′] . (7.23)

Like Ks|K, every extension ιiKs|K is separable. It follows from Lemma 24.43 that also
every extension ιiKs.K

′|K ′ is separable. On the other hand, ιiL | ιiKs is purely inseparable
like L|Ks. Consequently, ιiL.K

′ | ιiKs.K
′ is purely inseparable, showing that

[ιiKs.K
′ : K ′] = [ιiL.K

′ : K ′]sep = [ιiL.K
′ : K ′] · [ιiL.K ′ : K ′]−1

ins .

Thus, multiplying equation (7.23) with [L : K]ins gives equation (7.22).

c): If L|K is separable, then so is ιiL|K and hence also ιiL.K
′|K ′, for 1 ≤ i ≤ g. Hence

[L : K]ins = 1 = [ιiL.K
′ : K ′]−1

ins , which yields that qi = 1.
Now assume that K ′|K is separable. Since we have already shown that ιiKs.K

′|K ′
is separable, it follows that ιiKs.K

′|K and hence also ιiKs.K
′ | ιiKs, are separable. Since

ιiL | ιiKs is purely inseparable, it is linearly disjoint from ιiKs.K
′ | ιiKs , and ιiL.K

′ | ιiKs.K
′

is purely inseparable. This yields that [ιiL : ιiKs] = [ιiL.K
′ : ιiKs.K

′] and that ιiKs.K
′|K ′

is the maximal separable subextension of ιiL.K
′|K ′. Hence,

[L : K]ins = [L : Ks] = [ιiL : ιiKs] = [ιiL.K
′ : ιiKs.K

′] = [ιiL.K
′ : K ′]ins

which yields that qi = 1.

d): Assume the hypothesis of d) and let ν be the maximal natural number such that
f(X) = f̃(Xpν ) with f̃ ∈ K[X]. Then f̃ is separable and irreducible over K, and Ks =
K(ap

ν
). By what we have shown already, f̃ splits into irreducible factors f̃1, . . . , f̃g over K ′

such that deg f̃i = [ιiKs.K
′ : K ′]. We define fi := f̃i(X

pν ) and note that f = f1 · . . . · fg .
We observe that ιiL = ιiK(a) = K(ιia) and ιiKs = K((ιia)p

ν
). Since K ′|K is assumed

to be separable, also K ′((ιia)p
ν
)|K((ιia)p

ν
) is separable and thus linearly disjoint from

K(ιia)|K((ιia)p
ν
). Consequently, [ιiL.K

′ : K ′] = pν [ιiKs.K
′ : K ′] = deg fi , showing that

the fi are irreducible over K ′. �

Lemma 7.47 Let (K, v) be a valued field and L|K a finite extension. Choose an extension
of the valuation v from K to K̃ and call it again v. Denote by (Kh, v) the henselization of
(K, v). Let ι1, . . . , ιg ∈ GalK be representatives of the double cosets

{GalKh ιGalL | ι ∈ GalK} .

Then the distinct extensions of v from K to L are given by the restrictions of the valuations
vi = vιi to L, 1 ≤ i ≤ g. Further, (L.ι−1

i Kh, vιi) is the henselization of (L, vi) in (K̃, vιi) ,
and it is isomorphic over K to (ιiL.K

h, v) via ιi .
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Proof: By virtue of Lemma 7.35, (ι−1
i Kh, vi) is the henselization of (K, v) in (K̃, vi).

From Corollary 7.40 it follows that (L.ι−1
i Kh, vιi) is the henselization of (L, v) in (K̃, vi).

The restriction of ιi is an isomorphism from (L.ι−1
i Kh, vιi) onto (ιiL.K

h, v) over K.
Assume that vι = vιi on L. Then vι and vιi are both extensions of the same valuation

from L to K̃. From Theorem 6.53 we infer the existence of τ ∈ GalL such that vιiτ = vι
on K̃. Consequently, the restrictions of both ι−1 and τ−1ι−1

i are embeddings of (Kh, v)
in the henselian field (K̃, vι) = (K̃, vιiτ). By Lemma 7.36, they must be equal, that is,
σ := ιτ−1ι−1

i must be an element of GalKh. So we find ι = σιiτ ∈ GalKh · ιi ·GalL.
For the converse, assume that ι lies in the double coset represented by ιi , say ι = σιiτ

with σ ∈ GalKh = Gd(K̃|K, v) and τ ∈ GalL. Then we have vσ = v on K̃ and τa = a
for all a ∈ L. This yields that vιa = vσιiτa = vιia for all a ∈ L, that is, vι = vιi on L. �

From this lemma together with part a) of Lemma 7.46 we can also deduce: If ι, ι′ ∈ GalK,
then vι = vι′ on L if and only if ιL.Kh and ι′L.Kh are isomorphic over Kh.

With Kh(vi) denoting the henselization of (K, v) in (K̃, vi), we have Kh(vi) = ι−1
i Kh.

This field lies in the henselization Lh(vi) (cf. Lemma 7.36), which is equal to L.ι−1
i Kh (cf.

Corollary 7.40). Since ιi sends ι−1
i Kh onto Kh and L.ι−1

i Kh onto ιiL.K
h, we find that

[Lh(vi) : Kh(vi)] = [ιiL.K
h : Kh]. Since the henselization is a separable extension, we can

apply equation (7.22) of Lemma 7.46 with qi = 1 to obtain:

Corollary 7.48 Let (K, v) be a valued field and L a finite extension of K. Let v1, . . . , vg
be the distinct extensions of v from K to L. Then

[L : K] =
∑

1≤i≤g

[Lh(vi) : Kh(vi)] . (7.24)

The degree [Lh(vi) : Kh(vi)] is called the local degree of the extension (L, vi)|(K, v).
Actually, in the literature this name is mainly used for the degree [Lc(vi) : Kc] of the
extension of the respective completions. But to work with the latter degree only makes
sense in this connection if the valuations are of rank 1, that is, their value groups are
archimedean.

By Lemma 6.13 we know that [Lh(vi) : Kh(vi)] ≥ (viL
h(vi) : vKh(vi)) · [Lh(vi)vi : Kh(vi)v]

for 1 ≤ i ≤ g. Since the henselization is an immediate extension by Theorem 7.42, we have
viK

h(vi) = vK, viL
h(vi) = viL, Kh(vi)vi = Kv and Lh(vi)vi = Lvi. It follows that

[Lh(vi) : Kh(vi)] ≥ (viL
h(vi) : viK

h(vi)) · [Lh(vi)vi : Kh(vi)vi] = (viL : vK) · [Lvi : Kv] . (7.25)

Together with equation (7.24), this proves:

Theorem 7.49 Let (K, v) be a valued field and L a finite extension of K. Let v1, . . . , vg
be the distinct extensions of v to L. Then we have the fundamental inequality

[L : K] ≥
∑

1≤i≤g

(viL : vK) · [Lvi : Kv] . (7.26)

Writing shortly n = [L : K], ei = e(L|K, vi) = (viL : vK) and fi = f(L|K, vi) = [Lvi : Kv],
equation (7.26) can be expressed in the following mnemonic form:

n ≥
∑

1≤i≤g

ei · fi .
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The fundamental inequality can also be written in the form of an equality, see (11.2) below.
If L|K is a finite normal extension, then by Corollary 6.55, all ei are equal and all fi are
equal. For this case, we obtain:

Corollary 7.50 Let (L|K, v) be a finite normal extension. Let g be the number of exten-
sions of v from K to L, and set n = [L : K], e = e(L|K, v) and f = f(L|K, v). Then

n ≥ e · f · g . (7.27)

If (K, v) is henselian, then g = 1 and

n ≥ e · f . (7.28)


