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Chapter 6

Valued field extensions

6.1 Immediate extensions and density

An extension (L|K, v) is called immediate if the canonical embeddings vK ↪→ vL and
Kv ↪→ Lv are both onto. Instead of the latter, we will also say “if (K, v) and (L, v) have
the same value group and the same residue field” or just “in vL = vK and Lv = Kv”
(recall that we are identifying equivalent valuations and places, so we may view vK as a
subgroup of vL and Kv as a subfield of Lv). But the reader should note that this is less
precise and can be misunderstood. For instance, if vK ∼= Z and L|K is finite, then still,
vK ∼= Z even if the embedding of vK in vL is not onto.

Lemma 6.1 The following are equivalent:

1) the extension (L|K, v) is immediate,

2) for every a ∈ L× there is c ∈ K such that v(a− c) > va,

3) the underlying extension of valued abelian groups is immediate,

4) the underlying extension of ultrametric spaces is immediate.

Proof: Suppose that (L|K, v) is immediate, and let 0 6= a ∈ L. Then va ∈ vL = vK
and thus, there is some b ∈ K such that va = vb. Hence, v a

b
= 0. Then a

b
v ∈ Lv = Kv

and thus, there is some d ∈ K such that a
b
v = dv. That is, v

(
a
b
− d
)
> 0, which yields

that v(a − bd) > vb = va. Hence c = bd is the element that we have looked for. We have
proved that 1) implies 2).

Now we show that 2) implies 1). Take α ∈ vL and a ∈ L such that va = α. If there is
c ∈ K such that v(a − c) > va, then α = va = vc ∈ vK. Now let ζ ∈ L and a ∈ L such
that av = ζ. If there is c ∈ K such that v(a− c) > va = 0, then ζ = av = cv ∈ Kv.

For the equivalence of 2) and 3), see Lemma 2.9. For the equivalence of 3) and 4), see
Corollary 2.10. �

Some classes of valued fields are closed under immediate extensions. Let us give two
important examples.

Lemma 6.2 Every immediate extension of a finitely ramified field is again a finitely ram-
ified field. Every immediate extension of a formally ℘-adic (resp. formally p-adic) field is
again a formally ℘-adic (resp. formally p-adic) field.
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Proof: If (K, v) is a finitely ramified field and (L|K, v) is an immediate extension, then
because of vL = vK, the prime element of (K, v) will also be a prime element of (L, v),
showing that also (L, v) is a finitely ramified field. If in addition, K is finite, then so is L,
and (L, v) is a formally ℘-adic field (resp. a formally p-adic field if L = K = Fp . �

Recall that (K, v) is said to be dense in (L, v) if for every a ∈ L and all β ∈ vL there
is some c ∈ K such that v(a− c) > β. It follows directly from the definition that (L|K, v)
is immediate if (K, v) is dense in (L, v). The converse is not true, cf. Example 11.59. We
leave the proof of the following lemma as an exercise to the reader.

Lemma 6.3 The following are equivalent:

1) the valued field (K, v) is dense in (L, v),

2) the underlying valued additive group of (K, v) is dense in the underlying valued additive
group of (L, v).

3) the underlying ultrametric space of (K, v) is dense in the underlying ultrametric space
of (L, v).

The properties discussed above are transitive:

Lemma 6.4 Take an extension (L|K, v) of valued fields and is an arbitrary subextension
E|K of L|K.

a) The extension (L|K, v) is immediate if and only if the extensions (L|E, v) and (E|K, v)
are immediate.

b) The valued field (K, v) is dense in (L, v) if and only if (E, v) is dense in (L, v) and
(K, v) is dense in (E, v).

Proof: a): This is trivial since vK ⊂ vE ⊂ vL and Kv ⊂ Ev ⊂ Lv for every extension
(L|K, v).

b): The implication “⇒” is trivial. Suppose that (K, v) is dense in (E, v) and (E, v) is
dense in (L, v). Let a ∈ L and β ∈ vL. Choose c′ ∈ E such that v(a − c′) > β. Without
loss of generality, we may assume that β ≥ va. Then it follows that va = vc′ ∈ vE. So we
can choose c ∈ K such that v(c′ − c) > β. Then v(a− c) ≥ min{v(a− c′), v(c′ − c)} > β.
We have proved that (K, v) is dense in (L, v). �

6.2 Vector space defectless extensions

After having treated immediate extensions in the last section, we shall now consider the
contrary case: one might call it the “anti-immediate case”, where the extensions vL|vK
and L|K are the maximal possible. But we have to make precise what we mean by that.
To this end, we use our notion of a defectless extension of valued vector spaces.

As usual in field theory, we may view L as a K-vector space. Even more, we may view
(L, v) as a valued K-vector space. If v is nontrivial on K, then the scalar multiplication
is not value preserving and also not component-compatible. On the other hand, (L, v) is
an ordinary valued K-vector space: if a and b are elements of L having equal bones and
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if r ∈ K, then v(a − b) > va and thus, v(ra − rb) = v(a − b) + vr > va + vr = vra,
showing that ra and rb have equal bones. But this is not the only basic property of (L, v)
as a valued K-vector space. We also see that every 1-dimensional subvector space of (L, v)
is isomorphic to (K, v) as a valued K-vector space. Indeed, it is of the form (Ka, v) for
some a ∈ L, and the map ι : c 7→ ca is an isomorphism of the K-vector space K onto the
K-vector space Ka, satisfying vb < vc ⇔ vιb < vιc for every b, c ∈ K. This gives rise
to the following definition: A valued K-vector space (V, v) will be called a (K, v)-vector
space if every 1-dimensional subvector space of (V, v) is isomorphic to (K, v) as a valued
K-vector space. We have seen:
If (L|K, v) is an extension of valued fields, then (L, v) is a (K, v)-vector space.

An extension (L|K, v) of valued fields will be called vs-defectless if (K, v) ⊂ (L, v) is
a vs-defectless extension of valued K-vector spaces. Alternatively, the name separated
pair was introduced by W. Baur in [BAUR1], [BAUR2] and used by F. Delon in [DEL8].

In view of the fact that valued fields are ordinary valued vector spaces, the following
transitivity of vs-defectless extensions is a direct consequence of Lemma 3.63.

Lemma 6.5 Let (L|K, v) be an extension of valued fields and E|K an arbitrary subexten-
sion of L|K. If (L|K, v) is a vs-defectless extension, then so is (E|K, v). Conversely, if
(L|E, v) and (E|K, v) are vs-defectless extensions, then so is (L|K, v).

But note that if (L|K, v) is a vs-defectless extension and E|K is not finite, then it will
in general not follow that (L|E, v) is a vs-defectless extension. The examples of Sec-
tion 11.5 will show that there are fields (K, v) admitting algebraic extensions (L, v) such
that (K̃|K, v) is a vs-defectless extension (for every extension of the valuation), while
(K̃|L, v) is not a vs-defectless extension.

Algebraic vs-defectless extensions may be characterized as follows:

Lemma 6.6 An algebraic extension (L|K, v) of valued fields is vs-defectless if and only if
every finite subextension (E|K, v) of (L|K, v) is vs-defectless.

Proof: The implication “⇒” is just a special case of Lemma 6.5, and the converse holds
since every finite K-subvector space of an algebraic extension L|K already lies in a finite
subextension E|K. �

At the beginning of this section, we have mentioned the expression “anti-immediate”.
The vs-defectless extensions are indeed anti-immediate in the following sense:

Lemma 6.7 Let (L|K, v) be a vs-defectless extension and b ∈ L \K. Then the set v(b −
K) = {v(b− c) | c ∈ K} has a maximum. Hence, in every coset b−K there is an element
a for which the condition in part 2) of Lemma 6.1 fails.

Proof: It follows from the definition of vs-defectless extensions that the K-subvector
space (K ⊕ Kb, v) of (L, v) admits a K-valuation basis. Corollary 3.13 shows that the
set v(b −K) has a maximum v(b − c0). For the element b − c0 ∈ b −K the condition in
part 2) of Lemma 6.1 fails; otherwise, we would have that v(b − c0) < v((b − c0) − c =
v(b− (c0 + c)) ∈ v(a−K), a contradiction. �

The vs-defectless extensions are anti-immediate also in the sense that they are lin-
early disjoint from all immediate extensions. Recall that if b1, . . . , bn are K-valuation
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independent elements in a valued field extension of (K, v), then they are also K-linearly
independent (cf. page 65).

Lemma 6.8 Let (Ω|K, v) be an arbitrary valued field extension with (L|K, v) a vs-defectless
and (F |K, v) an immediate subextension. Then L|K is linearly disjoint from F |K, the ex-
tension (L.F |L, v) is immediate and the valuation on L.F is uniquely determined by the
valuations on L and F . If b1, . . . , bn ∈ L are K-valuation independent, then they are also
F -valuation independent.

Proof: We have to show that for every choice of finitely many K-linearly independent
elements x1, . . . , xn ∈ L, these elements are also F -linearly independent. Since (L|K, v) is
assumed to be vs-defectless, the K-vector space generated by x1, . . . , xn admits a valuation
basis. This must consist of n elements, say b1, . . . , bn ∈ L. Since they generate the same
vector space as the xi also over F , it now suffices to show that b1, . . . , bn are F -linearly
independent. This in turn will follow if we can show that the elements b1, . . . , bn are F -
valuation independent. So let a1, . . . , an ∈ F such that ai 6= 0 for at least one i. Since
(F |K, v) is assumed to be immediate, we can choose c1, . . . , cn ∈ K such that ci = 0 if
ai = 0, and v(ai − ci) > vai otherwise. Then we have that vai = vci and

v

(
n∑
i=1

cibi

)
= min vcibi < min v(ai − ci)bi

and therefore,

v

(
n∑
i=1

aibi

)
= v

(
n∑
i=1

cibi +
n∑
i=1

(ai − ci)bi

)
= v

(
n∑
i=1

cibi

)
= min vcibi = min vaibi .

This proves that the elements b1, . . . , bn are F -valuation independent. �

Corollary 6.9 If (L|K, v) is a vs-defectless and (F |K, v) is an immediate extension, then
the compositum of (L, v) and (F, v) is unique up to isomorphism of valued fields over K.

Corollary 6.10 Let (L|K, v) be a vs-defectless extension. If (L, v) is a maximal field, then
so is (K, v).

Proof: If (F |K, v) were a non-trivial immediate extension, then by Lemma 6.8, every
compositum (L.F, v) were a nontrivial immediate extension of (L, v). There is no such
extension since (L, v) is maximal. Hence there is no nontrivial immediate extension of
(K, v), showing that also (K, v) is maximal. �

In the following, let us use on (K, v) the coefficient map as defined on page ??, with
factors ζα,β as given in (??). Then the scalar multiplication acts on the bones as follows.
Given a bone (α, c), write it as (α, c) = (va, co a) for some a ∈ L. Then r · (α, c) =
(vra, co ra) = (vr + va , rat−vra) = (vr + va , co r · co a · ζvr,va). So we have:

r · (α, c) = (vr + α , co r · c · ζvr,α) . (6.1)
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Note that the factor ζvr,α only depends on α and the value of r. If the coefficient map is
multiplicative, then this factor is always equal to 1.

Given bones (α1, ζ1), . . . , (αn, ζn), we may deduce from (6.1) the following facts. If the
values α1, . . . , αn belong to distinct cosets modulo vK, then the bones are K-independent.
On the other hand, if all αi are equal and the elements ζi are K-independent, then again,
the bones are K-independent. More precisely:

Lemma 6.11 Let (L|K, v) be an extension of valued fields and (αi, ζij), i ∈ I, j ∈ Ji ,
bones in the skeleton of (L, v). If the values αi , i ∈ I, belong to distinct cosets modulo vK
and for every i, the elements ζij , j ∈ Ji , are K-linearly independent, then these bones are
K-independent.

Proof: Suppose that
∑

i,j rij(αi, ζij), rij ∈ K, is an admissible finite linear combination,
that is, all values vrij +αi with rij 6= 0 are equal. Since all αi are generating distinct cosets
modulo vK, this yields that there is some i0 such that for all i 6= i0 , we must have rij = 0.
Further, all ri0j 6= 0 will have the same value, which we will denote by β. Let α := αi0 .
Then our linear combination is equal to the bone (β + α , ζβ,α ·

∑
j co ri0j · ζi0j) . Since all

co ri0j ∈ K and since the elements ζi0j, j ∈ Ji0 , are K-independent by assumption, the sum∑
j co ri0j ·ζi0j is not equal to 0. This proves that the bones (αi, ζij) are K-independent. �

6.3 Valuation independence

For extensions of valued modules we have developed a notion of valuation independence of
elements. We will now transfer this notion to extensions of valued fields. In what follows,
let (L|K, v) be an arbitrary extension of valued fields.

Lemma 6.12 Let (L|K, v) be an extension of valued fields and {zi, uj | i ∈ I , j ∈ J} ⊂ L
such that the values vzi , i ∈ I, belong to distinct cosets modulo vK and that uj , j ∈ J ,
are elements of O×L whose residues uj are K-independent. Then the elements

ziuj i ∈ I , j ∈ J

are K-valuation independent.

Proof: Let rij ∈ K. Consider the summands of least value α in the (nontrivial) sum∑
i,j

rijziuj .

We have to show that α is also the value of the whole sum. So let i0, j0 be such that
ri0j0zi0uj0 is a summand of least value α. Then α ∈ vzi0 + vK and by hypothesis on the
elements zi , we find α /∈ vzi + vK for i 6= i0. Hence, all summands rijziuj of least value
must satisfy i = i0. So if we are able to show that the value of the sum

∑
j ri0jzi0uj is α,

then we are done since the remaining summands are all of value > α. After a division by
the element ri0j0zi0 (which is of value α), it remains to show that the sum a :=

∑
j r
−1
i0j0
ri0juj

is of value 0. By construction, all sj := r−1
i0j0
ri0j are of value ≥ 0, and sj0 = 1. Hence,
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a =
∑

j sj uj is a nontrivial linear combination with sj ∈ K, and by our assumption on the
elements uj , it must be nonzero. That is, va = 0 as required. �

For the convenience of the reader, we have given a direct proof for this lemma. But it
also follows from Lemma 6.11. Indeed, from Lemma 3.17 we know that elements of L are
K-valuation independent if and only if their bones are K-independent. Further, note that
if ai ∈ L, i ∈ I, are elements of equal value α whose coefficients are K-independent, then
for arbitrary a ∈ L, the elements aai , i ∈ I, have coefficients ζva,α · co a · co ai which are
still K-independent. In view of these facts, the foregoing lemma implies:

Consider an arbitrary extension (L|K, v) of valued fields. We choose elements zi ∈ L
such that vzi, i ∈ I, is a system of representatives for the cosets of vL modulo vK. Hence,
|I| = |vL/vK| (which may be a finite or infinite cardinal). Further, we may choose elements
uj ∈ L such that uj, j ∈ J , is a K-basis of L. Hence, |J | = dimK L (which again may be
a finite or infinite cardinal). Then by the last corollary, the elements ziuj , i ∈ I, j ∈ J ,
are K-valuation independent. Hence, [L : K] is an upper bound for the number |I| · |J | of
these elements ziuj . This proves:

Lemma 6.13 If (L|K, v) is a finite extension of valued fields, then L|K is finite and the
quotient vL/vK is finite and hence a torsion group. Moreover,

[L : K] ≥ (vL : vK) · [L : K] . (6.2)

The (finite or infinite) cardinal e(L|K, v) := (vL : vK) is called the ramification
index of (L|K, v), and f(L|K, v) := [L : K] is called the inertia degree of (L|K, v).
Writing shortly n = [L : K], e = e(L|K, v) and f = f(L|K, v), equation (6.2), called
the fundamental inequality, can be expressed in the following form which is easy to
remember:

n ≥ e · f .

Note that the extension (L|K, v) is immediate if and only if e = 1 and f = 1.
As a first application of the fundamental inequality, let us give two important examples

of classes of valued fields which are closed under finite extensions. We know already from
Lemma 6.2 that the same classes are closed under immediate extensions.

Lemma 6.14 Every finite extension of a finitely ramified field is again a finitely ramified
field. Every finite extension of a formally ℘-adic field is again a formally ℘-adic field.

Proof: Take a finitely ramified field (K, v) and a finite extension (L|K, v). Then by
Lemma 6.13, (vL : vK) is finite, and since vK has a least positive element, the same
holds for vL, showing that also (L, v) is a finitely ramified field. Again by Lemma 6.13,
[Lv : Kv] is finite. Hence, if in addition K is finite, then so is L, and (L, v) is a formally
℘-adic field. �

Now let (L|K, v) be an algebraic extension, not necessarily finite. For every value
α ∈ vL and every residue c ∈ L we may pick a, b ∈ L such that va = α and b = c. Since
L|K is algebraic, K(a, b)|K is a finite extension. Consequently, (vK+Zα)/vK is a torsion
group and K(c)|K is finite, by virtue of the Lemma 6.13. This shows:
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Corollary 6.15 If (L|K, v) is an algebraic extension of valued fields, then also L|K and
vL|vK are algebraic extensions.

Let us observe that ramification index and inertia degree are multiplicative, since the
same holds for the degree of group and field extensions.

Lemma 6.16 Let (L|K, v) be a valued field extension and (E|K, v) a subextension. Then

e(L|K, v) = e(L|E, v) · e(E|K, v) and f(L|K, v) = f(L|E, v) · f(E|K, v) .

If bi ∈ L are K-valuation independent elements, then we will also say that they are
(linearly) valuation independent over (K, v). This is not meant in the sense that
they are K-valuation independent over the subvector space K. This would for instance
not be true for the elements that we have constructed preceding to Lemma 6.13. Indeed,
one of the values represents the coset vK, and some linear combination of the residues is
an element of K. In this case, however, we only have to omit one suitably chosen element
bi to obtain a set of elements which are K-valuation independent over the subvector space
K. Vice versa, adding the element 1 to a set of the latter type, we obtain again a set of
K-valuation independent elements. So there is no real danger of confusion in our abuse
of notation. In the same spirit, a K-valuation basis of (L, v) (over the zero vector space)
will also be called a valuation basis of (L, v) over (K, v) (or of (L|K, v)). Hence if the
valued K-vector space (L, v) admits a K-valuation basis over (K, v), then the valued field
extension (L|K, v) admits a valuation basis.

Observe that in our construction preceding to Lemma 6.13, we may take the represen-
tative of the zero coset vK just to be 0 and the element of value 0 just to be 1. Similarly,
we may choose a K-basis of L which contains 1, and the element having residue 1 may
also taken to be 1. Then, 1 will be an element of our valuation independent set of elements
ziuj . A valuation independent set of this form will be called a standard valuation in-
dependent set of (L, v) over (K, v). If it is finite, we will assume in addition that it is
of the form {ziuj, | 1 ≤ i ≤ e(L|K, v) , 1 ≤ j ≤ f(L|K, v)}, numbered such that z1 = 1
and u1 = 1. If a standard valuation independent set is a basis of L|K, then it will be
called a standard valuation basis of (L, v) over (K, v). By the definition of a standard
valuation independent set B of (L, v) over (K, v), the K-subvector space (V, v) generated
by B has the same skeleton as the valued K-vector space (L, v). That is, the extension
(V, v) ⊂ (L, v) is immediate. We have V = L if and only if B is a standard valuation basis
of (L, v) over (K, v). If the latter holds, then the set B \ {1} is a K-valuation basis of the
vector space (L, v) over the subspace (K, v), and Corollary 3.60 shows that (K, v) ⊂ (L, v)
is thus a vs-defectless extension of valued K-vector spaces, that is, every finitely generated
subextension admits itself a K-valuation basis over the subspace (K, v).

Finite vs-defectless extensions are characterized as follows:

Lemma 6.17 Let the extension (L|K, v) be finite. Then the following conditions are equiv-
alent:

1) (L|K, v) is a vs-defectless extension,
2) (L|K, v) admits a standard valuation basis,
3) (L|K, v) admits a valuation basis,
4) [L : K] = (vL : vK) · [L : K].
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Proof: Let again V denote the vector space generated by a standard valuation inde-
pendent set of (L, v) over (K, v). We have seen above that the equality V = L implies
condition 2), and that condition 2) implies condition 1).

Now assume that the extension L|K is finite. Then V is a K-vector space of dimension
e(L|K, v) · f(L|K, v). Hence V = L if and only if [L : K] = e(L|K, v) · f(L|K, v), which
is condition 4). If V 6= L, then (V, v) ⊂ (L, v) is a proper immediate extension of valued
K-vector spaces, and Lemma 3.59 shows that the valued K-vector space (L, v) can not
admit a K-valuation basis over (K, v). This shows that condition 1) implies V = L. We
have thus proved that conditions 1), 2) and 4) are equivalent.

Since 2)⇒3) is trivial, it now suffices to prove 3)⇒1). But a valuation basis of (L|K, v)
is a K-valuation basis of the valued K-vector space (L, v) over the zero vector space. Now
Lemma 3.59 shows that (L, v) also admits a K-valuation basis over (K, v). By definition,
this is condition 1). �

Let us remark that every K-valuation independent set in a valued field extension
(L|K, v) can be transformed by multiplication with elements from K into a valuation
independent set where every two elements have already equal value if their values belong
to the same coset modulo vK.

We will show later that a vs-defectless algebraic extension (L|K, v) admits only one
extension of v from K to L (cf. Lemma 11.15). In the case of an extension (L|K, v) which
admits a standard valuation basis, we can show the following result here:

Lemma 6.18 Let (L|K, v) be an algebraic extension which admits a standard valuation
basis {zi, uj | i ∈ I , j ∈ J} (where the values αi = vzi , i ∈ I, form a set of representatives
for the cosets of vL modulo vK, and the residues ζj = uj , j ∈ J , form a basis of L over
K). Then the valuation v on L is uniquely determined by its restriction to K and the data

vzi = αi (i ∈ I) and ujv = ζj (j ∈ J) . (6.3)

Proof: Every element of L is a sum
∑

i,j cijziuj . If a valuation w satisfies w = v on K
and (6.3), then the value of this sum is equal to that of the summands of minimal value.
But the value of a summand cijziuj is uniquely determined by vcij and vzi . �

So far, we have slipped through without a general characterization of valuation inde-
pendence. But we will need it later, so we have to append it here.

Lemma 6.19 Let (L|K, v) be a valued field extension and B ⊂ L. Then B is valuation
independent over (K, v) if and only if the following holds: For every choice of distinct
elements b1, . . . , bn ∈ B such that the values vb1, . . . , vbn belong to the same coset modulo
vK, there exist elements c2, . . . , cn ∈ K such that the elements 1, c2b2b

−1
1 . . . , cnbnb

−1
1 are

of value 0 and their residues are K-linearly independent.

Proof: “⇒”: Let b1, . . . , bn ∈ B such that the values vb1, . . . , vbn belong to the same coset
modulo vK. Then there exist c2 . . . , cn ∈ K such that the elements b1, c2b2 . . . , cnbn are all
of the same value, namely vb1 . Since b1, . . . , bn are assumed to be valuation independent
over (K, v), we have that for all elements c′1, . . . , c

′
n ∈ OK, not all of them in MK, the

value of c′1b1 + c′2c2b2 + . . . + c′ncnbn is equal to vb1 , i.e., the value of c′1 + c′2c2b2b
−1
1 +

. . . + c′ncnbnb
−1
1 is 0. This shows that for every choice of elements ζi ∈ K, not all of
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them zero, ζ1 + ζ2 c2b2b
−1
1 + . . . + ζn cnbnb

−1
1 6= 0. We have proved that the residues of

1, c2b2b
−1
1 . . . , cnbnb

−1
1 are K-linearly independent.

“⇐”: Let b1, . . . , bn ∈ B and d1 . . . , dn ∈ K. We have to show that v(d1b1 + . . . +
dnbn) = mini vdibi . If this holds under the assumption that all values vdibi are equal,
then it also holds in the general case. But if all vdibi are equal, then the values of all
bi lie in the same coset modulo vK. So by assumption, there are c2 . . . , cn ∈ K such
that the elements 1, c2b

−1
1 b2 . . . , cnbnb

−1
1 are of value 0 and their residues are K-linearly

independent. In particular, 1 + d2d
−1
1 c−1

2 c2b2b
−1
1 + . . . + dnd

−1
1 c−1

n cnbnb
−1
1 6= 0 (note that

did
−1
1 c−1

i ∈ K and that v(did
−1
1 c−1

i ) = 0 since vd1b1 = vdibi and vcibib
−1
1 = 0 imply that

vdi = vd1b1b
−1
i = vd1ci ). It follows that the value of 1 + d2b2d

−1
1 b−1

1 + . . . + dnbnd
−1
1 b−1

1 is
zero. In other words, v(d1b1 + . . .+ dnbn) = vd1b1 = mini vdibi , as required. �

The proof of the next lemma is left to the reader as an exercise:

Lemma 6.20 Let (Ω|K, v) an extension of valued fields with subextension (L|K, v). Let
ai , i ∈ I, be a valuation basis of (L|K, v). If bi ∈ Ω are elements such that v(ai−bi) > vai ,
then bi , i ∈ I, are K-valuation independent. If in addition all bi lie in L, then bi , i ∈ I,
is a valuation basis of (L|K, v).

How far is a finite valued field extension from having a valuation basis? This question
probably makes no sense in general, but there is a situation where this question is the key
to the proof of a nice result. Let us first observe (cf. Lemma 3.11 and Lemma 1.11):

Lemma 6.21 Let (K, v) be a valued field. If the finite dimensional (K, v)-vector space
(V, v) admits a K-valuation basis {b1, . . . , bn}, then as an ultrametric space, (V, v) is the
product

∏n
i=1(Kbi, v) of the ultrametric spaces (Kbi, v). Every (Kbi, v) is isomorphic to

(K, v) as a (K, v)-vector space. Hence if (K, v) is complete resp. spherically complete, then
so is (V, v).

We will later show that every finite extension of a spherically complete field admits a
valuation basis and is thus again spherically complete. Unfortunately, not every extension
of a complete field admits a valuation basis. Indeed, there are even complete fields of rank 1
which admit immediate extensions (cf. Example 11.50). Nevertheless, every finite extension
of a complete field is again complete. This is because the extension of the valuation is “not
too far” from having a valuation basis. We need the following observation whose proof is
left to the reader.

Lemma 6.22 Let (K, v) be a valued field, (V, v) a (K, v)-vector space of arbitrary dimen-
sion and B an arbitrary K-basis of V . Define

vB(c1b1 + . . . cnbn) = min
1≤i≤n

vci

for every choice of basis elements b1, . . . , bn ∈ B and coefficients c1, . . . , cn ∈ K. Then
(V, vB) is a (K, v)-vector space with valuation basis B.

Theorem 6.23 Let (K, v) be a complete valued field, (V, v) a finite dimensional (K, v)-
vector space and B any basis of V . Then there are elements β, γ ∈ vV such that

vBa+ β ≤ va ≤ vBa+ γ (6.4)

for every a ∈ V . Furthermore, (V, v) is complete.
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Proof: Let B = {b1, . . . , bn} and a = c1b1 + . . .+ cnbn ∈ V . Then va ≥ min1≤i≤n vcibi ≥
min1≤i≤n vci + min1≤i≤n vbi = vBa + min1≤i≤n vbi . Hence β := min1≤i≤n vbi satisfies the
lower inequality.

For the upper inequality, we proceed by induction on n. For n = 1, the assertion trivially
follows with γ := vb1 . So let us assume that n > 1 and that the assertion of our theorem
is already proved for dimension n − 1. For every i ∈ {1, . . . , n} we let Vi denote the K-
subvector space of V generated by b1, . . . , bi−1, bi+1, . . . , bn . Then bi /∈ Vi , hence at (bi, Vi)
is nontrivial by virtue of Lemma ??. By induction hypothesis, (Vi, v) is complete. Hence
by Lemma 1.38, every completion type over (Vi, v) is trivial. Consequently, at (bi, Vi) is
not a completion type. In view of Corollary ?? we conclude that dist (bi, Vi) < ∞ or vVi
is not cofinal in {v(bi − d) | d ∈ Vi} ∪ vVi . If the former holds, then there is some γi ∈ vVi
such that v(bi − d) ≤ γi for every d ∈ Vi . If the latter holds, then there is some di ∈ Vi
such that v(bi − di) > vVi and consequently, γi := v(bi − di) = max{v(bi − d) | d ∈ Vi}.
Hence in both cases, v(bi +

∑
j 6=i cjbj) ≤ γi for every choice of cj ∈ K. It follows that

v(
∑

1≤j≤n cjbj) ≤ vci + γi ≤ vci + max1≤`≤n γ` for all i and all cj ∈ K. Hence with
γ := max1≤`≤n γ` , we find that v(

∑
1≤j≤n cjbj) ≤ min1≤i≤n vci + γ = vBa+ γ.

Now we wish to prove that (V, v) is complete. Let A be a nontrivial completion type
over (V, v). Hence Λ(A) = vV . As usual, we let Aα = Bα(aα) for all α ∈ vV (the balls are
taken with respect to v). We distinguish two cases:

Case 1: vV is included in the convex hull of vK. It follows by construction that also β
and γ lie in this convex hull. This implies that for every α ∈ vV there is some α′ ∈ vK
such that α′ + β > α.

Now we consider the balls B′α(aα+γ) in (V, vB) for all α ∈ vBV = vK (the prime
indicates that the balls are taken with respect to vB). The inequalities of (6.4) imply
that Bα+γ(aα+γ) ⊂ B′α(aα+γ) ⊂ Bα+β(aα+γ), and it follows that the latter ball is equal to
Bα+β(aα+β). That is,

Aα+γ ⊂ B′α(aα+γ) ⊂ Aα+β

for all α ∈ vK. From this it follows that the balls B′α(aα+γ) form a nest (since the same
is true for the balls Aα). Since α runs through all of vK, this nest is a completion nest.
Its intersection is nonempty because (V, vB) is complete by virtue of the two preceeding
lemmata. On the other hand, we know that for every α ∈ vK there is some α′ ∈ vK
such that α′ + β > α. This means that for every α ∈ vV there is some α′ ∈ vV such
that B′α′(aα′+γ) ⊂ Aα′+β ⊂ Aα . This shows that the nonempty intersection of the balls
B′α(aα+γ) must lie in the intersection of the balls Aα . Hence the approximation type A is
trivial, showing that (V, v) is complete.

Case 2: vV is not included in the convex hull of vK. Without loss of generality, we can
assume that vb1 is the minimal value among the values vb1, . . . , vbn . Since completeness
is preserved under isomorphisms (as the reader may show), we can replace (V, v) by the
isomorphic (K, v)-vector space (b−1

1 V, v). So we can assume that vb1 = 0 and that no value
vbi is smaller than all values in vK. So also no K-linear combination of the bi (that is, no
element of V ) has a value which is smaller than all values in vK. If our replacement has
produced a vector space V whose value set lies in the convex hull of vK, then we proceed
as in Case 1. Otherwise, there exist elements in V whose value is bigger than vK. Now we
choose a basis {b′1, . . . , b′n} of V containing a maximal number of elements of value bigger
than vK. This number can not be n since otherwise all elements of V would have a value
bigger than vK, but by construction, V contains the element b1 of value 0. Let us assume
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that vb′1, . . . , vb
′
m are bigger than vK, and that vb′m+1, . . . , vb

′
n lie in the convex hull of vK.

Then 1 ≤ m < n by what we have shown. If a K-linear combination of the b′i has a value
bigger than vK, then the coefficients of all b′i with i > m must be zero since otherwise,
some b′i with i > m could be replaced by this linear combination, in contradiction to the
maximality of m.

Now for every α ∈ vV , α > vK, consider the representation of the elements of the ball
Aα as linear combinations of the basis elements b′i . Since v(a− b) ≥ α > vK for every two
elements a, b ∈ Aα, we find that if a = c1b

′
1 + . . . + cnb

′
n and a = c̃1b

′
1 + . . . + c̃nb

′
n , then

ci = c̃i for i = m + 1, . . . , n. Hence, subtraction of d := cm+1b
′
m+1 + . . . + cnb

′
n transfers

the nest {Aα | α > vK} onto the nest {Bα(aα − d) | α > vK}. The latter is a nest of
balls in the (K, v)-subvector space of V which is generated by b′1, . . . , b

′
m . Since this is of

dimension less than n, it is complete by our induction hypothesis. Consequently, the nest
{Bα(aα−d) | α > vK} and thus also the nest {Aα | α > vK} has a nonempty intersection.
But this means that A is realized in (V, v), showing that (V, v) is complete. �

The proof (with the exception of Case 2) is due to P. Roquette ([ROQ1], Lemma 2) and
is based on lectures given by E. Artin. Since for an algebraic extension (L|K, v) the value
group vL lies in the divisible hull of vK by virtue of Corollary 6.15, the first case of the
proof suffices to deduce:

Corollary 6.24 Let (K, v) be a complete valued field and (L|K, v) a finite extension of
valued fields. Then also (L, v) is complete.

Lemma 6.25 Let (L|K, v) be a finite extension of valued fields and (K, v)c = (Kc, v) the
completion of (K, v). Then there is a unique extension of v from Kc to L.Kc which is also
an extension of v from L to L.Kc. With this extension, the valued field (L.Kc, v) is the
completion of (L, v). So we can write

Lc = L.Kc .

Proof: Since L|K is finite, so is L.Kc|Kc. Hence by the foregoing corollary, (L.Kc, v) is
complete for every extension of v from Kc to L.Kc. Let a ∈ L.Kc and va < α ∈ v(L.Kc).
Choose any K-basis {b1, . . . , bn} of L. Since these elements also generate L.Kc over Kc,
we can write a = c1b1 + . . . + cnbn with ci ∈ Kc. Since L.Kc|Kc is finite, Corollary 6.15
shows that v(L.Kc) lies in the divisible hull of vK. Hence, there is some β ∈ vK such
that β ≥ α−mini vbi. Since (K, v) is dense in its completion (K, v)c, we can find elements
c′i ∈ K such that v(c′i − ci) ≥ β. We set a′ := c′1b1 + . . . + c′nbn ∈ L. Then it follows
that v(a − a′) ≥ mini v(cibi − c′ibi) ≥ β + mini vbi ≥ α. This proves that va = va′, so v
is uniquely determined by its restriction to L. Moreover, since α was arbitrarily large, we
have proved that (L, v) is dense in (L.Kc, v). �

Corollary 6.26 Let (K, v) = (k((t)), vt) and (K(s)|K, v) an algebraic extension such that
sn = t for some natural number n. Then (K(s), v) = (k((s)), vs).

Proof: By the foregoing lemma, K(s) is the completion of (k(t, s), v) = (k(s), vs). But
this completion is just (k((s)), vs). �
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The main notions introduced in this and the last section are invariant under isomor-
phisms. We leave it to the reader to prove the following facts:

Lemma 6.27 Let (L|K, v) an extension of valued fields and ι : L → ιL a field isomor-
phism. Then ι is an isomorphism from (L, v) onto (ιL, vι−1) and resK(ι) is an isomorphism
from (K, v) onto (ιK, vι−1). For the valued field extension (ιL|ιK, vι−1), the following facts
hold:

a) (ιL|ιK, vι−1) is vs-defectless if and only if (L|K, v) is,
b) (ιL|ιK, vι−1) is immediate if and only if (L|K, v) is,
c) (ιK, vι−1) is dense in (ιL, vι−1) if and only if (K, v) is dense in (L, v),
d) If L|K is finite, then so is ιL|ιK, and

e(ιL|ιK, vι−1) = e(L|K, v) and (ιL|ιK, vι−1) = f(L|K, v) ,

e) B is a set of K-valuation independent elements in (L, v) if and only if ιB = {ιb | b ∈ B}
is a set of ιK-valuation independent elements in (ιL, vι−1),
f) B is a valuation basis of (L|K, v) if and only if ιB is a valuation basis of (ιL|ιK, vι−1).

Exercise 6.1 Show how a finite valuation basis can be transformed into a standard valuation basis.

Exercise 6.2 Show that isomorphisms of valued fields preserve the properties of being a spherically
complete or a maximal field.

Exercise 6.3 Define the notion of a direct sum of ultrametric spaces and apply it to infinite valued
field extensions with valuation bases. What can be said about completeness and spherical completeness?

6.4 Algebraic valuation independence

In field theory, we have the notions of linear independence and algebraic independence.
In valuation theory, the notion of valuation independence is the analogue to the first. We
shall now introduce the notion of algebraic valuation independence, which is the analogue
to algebraic independence. Let (L|K, v) be an extension of valued fields. A subset T ⊂ L
is called algebraically valuation independent over (K, v), if for every choice of finitely
many distinct elements t1, . . . , tn ∈ T , the value of every polynomial f in K[t1, . . . , tn] is
equal to the value of a summand of f of minimal value. That means,

v

(∑
ν

cνt
ν1
1 · . . . · tνnn

)
= min

ν
(vcνt

ν1
1 · . . . · tνnn ) (6.5)

where ν = (ν1, . . . , νn) runs over all n-tuples of integers ≥ 0 and only finitely many cν are
nonzero. Observe that if at least one coefficient is nonzero, then the value of the polynomial
is less or equal to the value of this coefficient and thus <∞, that is, the polynomial does
not equate to zero. This proves:

Lemma 6.28 Let (L|K, v) be a valued field extension. If T ⊂ L is algebraically valuation
independent over (K, v), then the elements of T are algebraically independent over K.
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If a transcendence basis of L|K is algebraically valuation independent over (K, v), then we
call it a valuation transcendence basis of (L|K, v). Note that the elements t1, . . . , tn
are algebraically valuation independent over (K, v) if and only if the elements tν11 · . . . · tνnn ,
ν1, . . . , νn ∈ N, are linearly valuation independent over (K, v). From this, we deduce:

Lemma 6.29 Let (L|K, v) be a valued field extension. If T ⊂ L is algebraically valuation
independent over (K, v), then the subextension (K(T )|K, v) of (L|K, v) is vs-defectless.

Proof: Let V ⊂ K(T ) be a K-vector space of finite dimension and containing K. We
have to show that (V, v) admits a valuation basis over the subspace (K, v). Every K-basis
of V over K consists of finitely many elements of K(T ), which are rational functions in
the elements of T . If we take a ∈ K[T ] to be the common denominator of these rational
functions, we find that aV ⊂ K[T ]. On the other hand, if a 6= 0 is any element of K(T ),
then B is a valuation basis of (V, v) over the subspace (K, v) if and only if aB is a valuation
basis of (aV, v). So we can assume from the start that V ⊂ K[T ]. We choose again a
K-basis of V over K and collect the finitely many products of the form tν11 · . . . · tνnn with
n, ν1, . . . , νn ∈ N and ti ∈ T that appear in the elements of that basis. These products form
a valuation basis of a valued K-vector space (V ′, v) ⊂ (K(T ), v) which contains (V, v). By
Lemma 3.59 it follows that also (V, v) admits a valuation basis. �

If the elements t1, . . . , tn have values which are rationally independent over vK, then
no two summands of the sum appearing on the left hand side of (6.5) will have equal value.
This yields that the equality in (6.5) holds. Indeed, if two distinct summands cνt

ν1
1 · . . . · tνnn

and cν′t
ν′1
1 ·. . .·t

ν′n
n would have equal value, we would obtain that vcν−vcν′+(ν1−ν ′1)vt1+. . .+

(νn − ν ′n)vtn = 0, contradicting our assumption that the values vt1, . . . , vtn are rationally
independent over vK.

Now assume that n = r + s, that ti = xi have values which are rationally independent
over vK, 1 ≤ i ≤ r, and that tr+j = yj have residues which are algebraically independent
over K, 1 ≤ j ≤ s. Suppose that we have a polynomial f ∈ K[t1, . . . , tn] which is a
counterexample to (6.5). Then it will still be a counterexample if we omit all summands
that are not of minimal value; hence without loss of generality, we may assume that all
summands in f have equal value. But then it follows from our above arguments that
every element xi has to appear to the same power νi in every of these summands. So
dividing f by xνii for 1 ≤ i ≤ r, we obtain a polynomial g ∈ K[y1, . . . , ys] with summands
of equal value, which is still a counterexample to (6.5). Since the elements yj all have
value zero, we find that all nonzero coefficients must have equal value. After dividing
by one of them, we can assume that all summands have value zero, but that the value
of g is > 0. Passing to the residue field through the residue map, we obtain a nontrivial
polynomial g(X1, . . . , Xs) ∈ K[X1, . . . , Xs] such that g(y1, . . . , ys) = 0. But this contradicts
our assumption that the residues y1, . . . , ys be algebraically independent over K. We have
proved:

Lemma 6.30 Let (L|K, v) be an extension of valued fields. Assume that xi ∈ L, i ∈ I,
are elements whose values vxi, i ∈ I, are rationally independent over vK. Assume further
that yj ∈ L, j ∈ J , are elements whose residues yj, j ∈ J , are algebraically independent

over K. Then T = {xi , yj | i ∈ I , j ∈ J} is algebraically valuation independent over
(K, v) and thus also algebraically independent over K.
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Given any extension (L|K, v) of valued fields, we can choose a special set of algebraically
valuation independent elements as follows. We choose elements yj ∈ L, j ∈ J , such
that their residues yj form a transcendence basis of L|K. For the extension vL|vK of
abelian groups, one can show by means of Zorn’s Lemma that there exist maximal sets
of elements in vL which are rationally independent over vK. This is analogous to the
existence of transcendence bases for arbitrary field extensions. In view of this analogy,
such a maximal subset of vL will be called a transcendence basis of vL|vK. Note
that elements αi ∈ vL are rationally independent over vK if and only if their cosets
αi + vK are rationally independent. That is, the cardinality of a transcendence basis
of vL|vK is equal to the rational rank rr vL/vK. We choose elements xi ∈ L, i ∈ I,
such that their values vxi form a transcendence basis of vL|vK. By the foregoing lemma,
T = {xi , yj | i ∈ I , j ∈ J} is algebraically valuation independent over (K, v) and thus
also algebraically independent over K. A set T of this form will be called a standard
algebraically valuation independent set of (L|K, v). We obtain:

Lemma 6.31 Let (L|K, v) be an extension of valued fields. Then

trdegL|K ≥ rr vL/vK + trdegL|K . (6.6)

(If one of these numbers is infinite, the inequality is to be understood as an inequality of
cardinal numbers.)

If trdegL|K is finite, then the lemma shows that both rr vL/vK and trdegL|K are
finite, and that

trdef (L|K, v) := trdegL|K − rr vL/vK − trdegL|K

is a nonnegative integer. We will call it the transcendence defect of (L|K, v). If
trdef (L|K, v) = 0, then we call (L|K, v) an extension without transcendence defect.

The transcendence degree of field extensions is additive, as we have stated in Sec-
tion 24.5. The same holds for extensions of abelian groups, that is, rrC/A = rrC/B +
rrB/A if A ⊂ B ⊂ C. Hence it follows that also the transcendence defect is additive:

trdef (L|K, v) = trdef (L|E, v) + trdef (E|K, v)

if E is an intermediate field of L|K. Consequently:

Lemma 6.32 Let (L|K, v) be an extension of valued fields of finite transcendence degree.
If E|K is any subextension of L|K, then (L|K, v) is an extension without transcendence
defect if and only if both (L|E, v) and (E|K, v) are extensions without transcendence defect.

In view of this lemma, we can generalize our definition to extensions of infinite transcen-
dence degree as follows. We will say that an arbitrary extension (L|K, v) is an extension
without transcendence defect if every subextension (E|K, v) of finite transcendence
degree is an extension without transcendence defect.

If a standard algebraically valuation independent set of (L|K, v) is a transcendence
basis of L|K, then we call it a standard valuation transcendence basis of (L|K, v).
Now we can prove:
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Lemma 6.33 Let (L|K, v) be an extension of valued fields of finite transcendence degree.
Then the following assertions are equivalent:

1) (L|K, v) is an extension without transcendence defect.
2) (L|K, v) admits a standard valuation transcendence basis,
3) (L|K, v) admits a valuation transcendence basis.

Proof: 1)⇒2): As we have done above, we choose a standard algebraically valuation
independent set of (L|K, v). Its elements are algebraically independent over K, and its
cardinality is equal to rr vL/vK + trdegL|K. Hence if (L|K, v) has transcendence defect
0, then its cardinality is equal to trdegL|K, which yields that it is a transcendence basis
of L|K.

2)⇒3) is trivial.

3)⇒1): Let T = {t1, . . . , tn} be a valuation transcendence basis of (L|K, v). Hence n =
trdegL|K. We can assume that the numeration is such that for some r ≥ 0, the values
vt1, . . . , vtr are rationally independent over vK and the values of every r + 1 elements in
T are rationally dependent over vK. That is, for every j such that 0 < j ≤ s := n − r,
there are integers νj > 0 and νij , 1 ≤ i ≤ r, and a constant cj ∈ K such that the element

t′j := cjt
νj
r+j

r∏
i=1

t
νij
i

has value 0. Observe that r ≤ rr vL/vK and that r + s = trdegL|K.
Now assume that (L|K, v) has nontrivial transcendence defect. Then

s = trdegL|K − r ≥ trdegL|K − rr vL|vK > trdegL|K .

This yields that the residues t′1, . . . , t
′
s are not K-algebraically independent. Hence, there

is a nontrivial polynomial g(X1, . . . , Xs) ∈ O×K[X1, . . . , Xs] such that g(t′1, . . . , t
′
s) = 0.

Hence, vg(t′1, . . . , t
′
s) > 0. After multiplying with sufficiently high powers of every element

ti , 1 ≤ i ≤ r, we obtain a polynomial f in t1, . . . , tn which violates (6.5). But this
contradicts our assumption that T be a valuation basis. Consequently, (L|K, v) can not
have a nontrivial transcendence defect. �

Corollary 6.34 If a valued field extension admits a valuation transcendence basis, then it
is an extension without transcendence defect.

Proof: Let (L|K, v) be an extension with valuation transcendence basis T . Given a
subextension (E|K, v) of finite transcendence degree, we have to show that it is without
transcendence defect. Let T ′ be a transcendence basis of E|K. Since T ′ is finite, there
exists a finite subset T0 ⊂ T such that all elements of T ′ are algebraic over K(T0). Now let
F be the relative algebraic closure of K(T0) in L. Then E ⊂ F . The extension (F |K, v) has
valuation transcendence basis T0, because F it is algebraic over K(T0). By the foregoing
lemmy, it is an extension without transcendence defect. In view of Lemma 6.32 we conclude
that also (E|K, v) is an extension without transcendence defect. �

Equality (6.5) allows us to determine the value group and residue field of extensions
which are generated by algebraically valuation independent elements. When we write



154 CHAPTER 6. VALUED FIELD EXTENSIONS

“vK ⊕ Zvx” then we mean the direct sum of vK with the group generated by vx as
abelian groups; the symbol gives no infromation about the ordering on this direct sum.
The ordering will usually be given by the ordering on the value group of a valued field
extension of (K, v) which contains x. Extensions of the form vK ⊕

⊕n
i=1 Zαi | vK are the

abelian group analogues of rational function fields K(x1 . . . , xn)|K of transcendence degree
n (resp. of similar extensions of K).

Lemma 6.35 Let (L|K, v) be an extension of valued fields containing a standard valuation
independent set T = {xi , yj | i ∈ I , j ∈ J} ⊂ L such that the values vxi , i ∈ I,
are rationally independent over vK, and that the residues yj , j ∈ J , are algebraically

independent over K. Then

v

(∑
ν

cνx
ν1
1 · . . . · xνrr · y

νr+1

1 · . . . · yνr+ss

)
= min

ν
vcν + ν1vx1 + . . . νrvxr ,

and

vK(T ) = vK ⊕
⊕
i∈I

Zvxi

K(T ) = K(yj | j ∈ J) .

If J is finite, then K(T ) is a rational function field over K. If P is the place associated
with v, then we can write K(T )P = KP (T P ), where T P = {tP | t ∈ T }.

Further, v is uniquely determined on K(T ) by its restriction to K, the prescription
of the values vxi , and the condition that the residues yj be algebraically independent over

K. If in addition, the residues yj are prescribed, then also the residue map is uniquely
determined on K(T ).

The following corollary shows that the value group of a rational place of a function field
in one variable is isomorphic to Z. Note that if a valuation v is trivial on a field K, then
we can assume that the residue map is the identity on K, so that we can write K = K.

Corollary 6.36 If (L|K, v) is a finitely generated extension without transcendence defect,
then also the extensions vL|vK and L|K are finitely generated. In particular, if (F |K, v)
is a valued algebraic function field of transcendence degree 1 such that v is trivial on K but
nontrivial on F , then vF ∼= Z and F |K is finite.

Proof: By Lemma 24.16 the finitely generated extension L|K has finite transcendence
degree. Hence by virtue of Lemma 6.33, we can choose a (finite) standard valuation tran-
scendence basis T of (L|K, v). The foregoing lemma shows that the extensions vK(T )|vK
and K(T )|K are finitely generated. Since L|K is finitely generated and T is a transcen-
dence basis of L|K, it follows that L|K(T ) is a finite extension. From Lemma 6.13 we can
thus infer that vL|vK(T ) and L|K(T ) are finite. Consequently, also the extensions vL|vK
and L|K are finitely generated.

Assume that (F |K, v) is a valued algebraic function field such that v is trivial on K.
Then vK = {0} and K = K. If v is nontrivial on F , then vF 6= {0}, and there is some
t ∈ F such that vt 6= 0. Now {t} is algebraically valuation independent and thus also
algebraically independent over K. If trdegF |K = 1, then {t} is a transcendence basis
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and thus also a valuation transcendence basis over K. In particular, F |K(t) is finite. By
Lemma 6.13, vF |vK(t) and F |K(t) are finite. On the other hand, the foregoing lemma
shows that vK(t) = Zvt ∼= Z and K(t) = K. The latter implies that F |K is finite. Finally,
since vF |vK(t) is finite, we conclude that also vF is isomorphic to Z. �

As a further consequence of Lemma 6.35, we prove the following embedding lemma:

Lemma 6.37 Let the assumptions be as in Lemma 6.35. Further, let (K, v) ⊂ (F,w) be
a valued field extension and assume that there are embeddings

ρ : vK(T ) −→ wF

over vK and
σ : K(T ) −→ Fw

over K. For every i ∈ I, choose some x′i ∈ F such that wx′i = ρvxi , and for every j ∈ J ,
choose some y′j ∈ F such that y′jw = σyj . Then T ′ = {x′i , y′j | i ∈ I , j ∈ J} is a
standard valuation independent set in (F,w) such that the values wx′i , i ∈ I, are rationally
independent over vK, and that the residues y′jw , j ∈ J , are algebraically independent over

K. Further, the assignment xi 7→ x′i , yj 7→ y′j induces an embedding of (K(T , v) in (F,w)
over K which respects ρ and σ.

Proof: The assertions about the values wx′i , i ∈ I and the residues y′jw , j ∈ J follow

from the assumption that ρ is an embedding (over vK) and σ is an embedding (over K).
Now it follows from Lemma 6.30 that both T and T ′ are algebraically independent over
K. Hence, the assignment xi 7→ x′i , yj 7→ y′j induces an embedding ι of K(T in F over
K of fields. Through this embedding, a valuation wι and a residue map a 7→ (ι−1a)w are
induced on K(T ). By the choice of the elements x′i and y′j , the induced valuation satisfies
wιxi = wx′i = ρvxi , and the induced residue map satisfies (ιyj)w = y′jw = σyj . By the
uniqueness assertion of Lemma 6.35, we now obtain that wιa = ρva holds for all a ∈ K(T ),
and (ιa)w = σa holds for all a ∈ K(T ) of value ≥ 0. That is, ι respects ρ and σ. �

If t is an element of a standard algebraically valuation independent set of (L|K, v), then

– either its value vt is 0 and its residue t is transcendental over K,

– or its value vt is rationally independent over vK.

In the first case, we call t residue-transcendental, in the second case value-trans-
cendental (overK). If one of these cases holds for t, we call t valuation-transcendental.

In the residue-transcendental case, the valuation obtained on K(t) is called the func-
tional valuation or Gauß valuation associated with t. For a polynomial

f(x) = c0 + c1t+ . . .+ cnt
n ∈ K[t]

we have
vf(t) = min

0≤i≤n
vci

and consequently,
vK(t) = vK and K(t) = K(t) , (6.7)
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with K(t) a rational function field in one variable over K. The valuation v on K(t)
is uniquely determined by its restriction to K and the prescription that t be valuation-
transcendental.

In the value-transcendental case, given a polynomial f(t) like above, we have that

v(f(t)) = min
0≤i≤n

(vci + ivt) ,

and consequently,
vK(t) = vK ⊕ Zvt and K(t) = K . (6.8)

The valuation v on K(t) is uniquely determined by its restriction to K and the rationally
independent value of t (which in turn is described by the cut induced by vt in the divisible

hull ṽK of the value group vK).

Lemma 6.38 An element x in a valued field extension of (K, v) is algebraically valuation
independent over (K, v) if and only if
– either there is an integer e > 0 and some c ∈ K such that cxe is residue-transcendental
over (K, v),
– or x is value-transcendental over (K, v).
If the first case holds, then cxe is residue-transcendental for every e such that evx ∈ vK
and every c ∈ K such that vc = −evx.

Proof: Assume that x is algebraically valuation independent over (K, v). If it is not
value-transcendental, then its value is a torsion element over vK. Let e > 0 be any integer
such that evx ∈ vK and choose any c ∈ K with vc = −evx. Then cxe has value 0. If its
residue were algebraic over K, then there would exist a polynomial g(X) ∈ OK [X] such
that g is nonzero and 0 = g(cxe) = g(cxe). But then vg(cxe) > 0 although at least one of
its monomials has value 0. Since this contradicts our assumption that x be algebraically
valuation independent, we conclude that cxe is residue-transcendental.

Now we wish to prove the converse. If x is value-transcendental, then it is algebraically
valuation independent by Lemma 6.30. So it remains to discuss the case where cxe is
residue-transcendental for some e and c. Take e0 > 0 minimal with e0vx ∈ vK. Since
evx = −vc ∈ vK, e is a multiple of e0, say, e = me0. Take any c0 ∈ K such that
vc0 = −e0vx. Then

cxe = c/cm0 c0x
e0m .

Since cxe is transcendental over K, the same must hold for ζ := c0x
e0 . Now we apply the

criterion of Lemma 6.19 to B := {x` | ` = 0, 1, . . .}. The values of elements x`1 , . . . , x`n

belong to the same coset modulo vK if and only `1, . . . , `n are equivalent modulo e0. Hence,
there are distinct nonzero integers k2, . . . , kn such that kie0 = `i − `1 . It follows that the
elements 1, ck20 x

`2−`1 , . . . , ckn0 x
`n−`1 have the residues 1, ζk2 , . . . , ζkn , which are K-linearly

independent since ζ is transcendental over K. This proves that B is valuation independent
over (K, v), that is, x is algebraically valuation independent. �

Exercise 6.4 Let t1, . . . , tn be algebraically valuation independent.
a) Show that (6.5) also holds if ν1, . . . , νn are arbitrary integers.
b) Let e1, . . . , en be nonzero integers. Prove that also te1

1 , . . . , t
en
n are algebraically valuation independent.

What happens if we replace ti by an arbitrary polynomial in ti ?



6.5. CONSTRUCTION OF VALUED FIELDS 157

Exercise 6.5 Following the arguments of the proof of implication 3)⇒1) of Lemma 6.33, give criteria for
algebraic valuation independence, by looking at the values and residues of given elements.

Exercise 6.6 Let (L|K, v) be an extension which admits a valuation transcendence basis. Prove that
|L| ≤ max{ℵ0 , |K| , |vL| , |L|} and that equality holds if L is infinite.

6.5 Construction of valued fields

In this section, we will deal with the following problem. Suppose that (K, v) is a valued
field and that Γ|vK is an extension of ordered abelian groups and k|K is a field extension.
Does there exist an extension (L|K, v) of valued fields such that vL = Γ and Lv = k? We
include the case of (K, v) being trivially valued (like the finite field Fp); this amounts to
the construction of a valued field with given value group and residue field. We know from
Section 4.3 that there are extensions of the valuation from (K, v) to every extension field,
but there was nothing said about their value groups and residue fields.

If Γ/vK is a torsion group, then set I = ∅. Otherwise, pick a maximal set {αi | i ∈ I}
of elements in Γ rationally independent over vK. If k|Kv is algebraic, then set J = ∅.
Otherwise, pick a transcendence basis {ζj | j ∈ J} of k|Kv. By Theorem ?? there is a
purely transcendental field extension L0|K and an extension of v to L0 such that vL0 =
vK ⊕

⊕
i∈I Zαi and L0v = Kv (ζj | j ∈ J). Now Γ/vL0 is a torsion group and k|L0v is

algebraic. Therefore, we may from now on assume that already Γ/vK is a torsion group
and k|Kv is algebraic, and we will construct an algebraic extension of (K, v) having value
group Γ and residue field k. (Under certain conditions, such value group and residue
field extensions can also be realized by purely transcendental field extensions, see [] and
Section ??.

Before we continue, let us adjust the following notion to our purposes. Usually, when
one speaks of an Artin-Schreier extension then one means an extension of a field K
generated by a root of an irreducible polynomial of the form Xp − X − c, provided that
p = charK. When working with a valued field, we will replace the condition “p = charK”
by the weaker condition “p = charK”. In fact, such extensions also play an important role
in the mixed characteristic case, where charK = 0. This will be seen when we deal with the
defect of valued field extensions. See also R. E.MacKenzie and G. Whaples [MCK–WHA].

Every Artin-Schreier polynomial Xp −X − c is separable since its derivative does not
vanish. The following is a simple but very useful observation:

Lemma 6.39 Let (K, v) be a valued field and c ∈ K such that vc < 0. If an element a in
some valued field extension (L, v) of (K, v) satisfies v(ap − a − c) ≥ 0, then v(ap − c) =
va > pva = vc. In particular, if a ∈ K̃ such that ap − a = c, then this holds for every
extension of v from K to K(a).

Proof: Necessarily, va < 0 since otherwise, 0 ≤ v(ap − a− c) = min{pva, va, vc} = vc,
a contradiction. Since va < 0, it follows that vap = pva < va and thus, vc = v(ap − a) =
min{pva, va} = pva. Moreover, v(ap − c) = min{v(ap − a− c), va} = va. �

Lemma 6.40 Let (K, v) be a valued field, p a prime and α an element of the divisible hull
of vK such that pα ∈ vK, α /∈ vK. Choose an element a ∈ K̃ such that ap ∈ K and
vap = pα. Then v extends in a unique way from K to K(a). It satisfies va = α and

vK(a) = vK + Zα and K(a) = K .
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If charK = charK = p > 0, then this extension K(a)|K is purely inseparable. On the other
hand, if charK = p > 0, then there is always a separable Artin-Schreier extension K(a)|K
with the same properties (if α < 0, then a itself can be chosen to be an Artin-Schreier root).

Proof: Choose some c ∈ K such that vc = pα. Further, choose some a ∈ K̃ such that
ap = c. By Corollary 4.11, there is an extension of v from K to K(a). For this extension,
we must have that pva = vc = pα by virtue of Lemma 6.39. Consequently, va = α and
(vK(a) : vK) ≥ (vK+Zα : vK) = p. On the other hand, the fundamental inequality (6.2)
shows that

p = [K(a) : K] ≥ (vK(a) : vK) · [K(a) : K] ≥ (vK(a) : vK) ≥ p .

Hence, equality holds everywhere, and we find that (vK(a) : vK) = p and [K(a) : K] = 1.
That is, vK(a) = vK + Zα and K(a) = K. Further, 1, a, . . . , ap−1 is a valuation basis of
(K(a)|K, v) since the values of these elements belong to distinct cosets modulo vK. The
uniqueness of v on K(a) thus follows from Lemma 6.18.

Now suppose that p is equal to the characteristic of K. Then the polynomial Xp − c
is purely inseparable. To construct a separable extension, assume that vc = pα < 0;
otherwise, just replace c by 1/c in the following. By the foregoing lemma, every root a of
the Artin-Schreier polynomial Xp−X− c must satisfy pva = vc. Now we replace a by 1/a
if α > 0 (but note that 1/a is not an Artin-Schreier root). �

Lemma 6.41 Let (K, v) be a valued field and ζ an element of the algebraic closure of
K. Choose a monic polynomial f ∈ OK[X] whose reduction f is the minimal polynomial
of ζ over K. Further, choose a root b ∈ K̃ of f . Then v extends in a unique way
from K to K(b). The associated residue map can be extended such that b = ζ. Further,
[K(b) : K] = [K(ζ) : K], and

vK(b) = vK and K(b) = K(ζ) .

In all cases, f can be chosen to be separable, provided that the valuation v is nontrivial.
On the other hand, if charK = charK = p > 0 and ζ is purely inseparable over K, then b
can be chosen to be purely inseparable over K.

If v is not trivial on K, charK = p > 0 and ζp ∈ K, ζ /∈ K, then there is also an
Artin-Schreier extension K(b)|K such that [K(b) : K] = [K(ζ) : K], vK(b) = vK and
K(b) = K(ζ).

Proof: By Corollary 4.11, there is an extension of v from K to K(b). Since f has
integral coefficients, b must also be integral for this extension, and b must be a root of f .
We may compose the residue map with an isomorphism in GalK which sends this root to
ζ. Doing so, we obtain a residue map (still associated with v) that satisfies b = ζ. Now
ζ ∈ K(b) and consequently, [K(b) : K] ≥ [K(ζ) : K] = deg f = deg f . On the other hand,
the fundamental inequality (6.2) shows that

deg f = [K(b) : K] ≥ (vK(b) : vK) · [K(b) : K] ≥ [K(b) : K] ≥ deg f .

Hence, equality holds everywhere, and we find that [K(b) : K] = [K(ζ) : K] = [K(b) : K]
and (vK(b) : vK) = 1. That is, vK(b) = vK and K(b) = K(ζ). Further, 1, b, . . . , bdeg f−1
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is a valuation basis of (K(b)|K, v) since the residues of these elements are K-linearly
independent. The uniqueness of v on K(a) thus follows from Lemma 6.18.

If f is separable, then so is f . If f is not separable and v is nontrivial on K, then f can
always chosen to be separable since we can add a summand cX with 0 6= c ∈MK without
changing the reduction of f . On the other hand, if f = Xpν − c is purely inseparable, then
we can choose f = Xpν − c which also is purely inseparable if charK = p.

Now suppose that charK = p > 0 and ζp ∈ K, ζ /∈ K. Choose c ∈ K such that c = ζp.
To construct an Artin-Schreier extension, choose any d ∈ K with vd < 0, and let b be a
root of the Artin-Schreier polynomial Xp −X − dpc. Since vdpc = pvd < 0, Lemma 6.39
shows that v(bp − dpc) = vb > vbp. Consequently, v((b/d)p − c) > v(b/d)p = vc = 0, and
b/d = c1/p = ζ. As before, it follows that vK(b) = vK and K(b) = K(ζ). �

Theorem 6.42 Let (K, v) be an arbitrary valued field. For every extension Γ|vK of or-
dered abelian groups and every field extension k|K, there is an extension (L, v) of (K, v)
such that vL = Γ and L = k. If Γ|vK and k|K are algebraic, then L|K can be chosen to
be algebraic.

In general, L can be chosen to be a separable extension of K (provided that Γ 6= {0})
and such that (L|K, v) admits a standard valuation transcendence basis. On the other
hand, if Γ/vK is a p-group with p the characteristic exponent of K, and if k|K is a purely
inseparable extension, then L can be chosen to be a purely inseparable extension of K.

Proof: For the proof, we assume that Γ 6= {0} (the other case is trivial). Let αi ,
i ∈ I, be a transcendence basis of Γ|vK. Then by Lemma ?? there is an extension
(K1, v) := (K(xi | i ∈ I), v) of (K, v) such that vK1 = vK⊕

⊕
i∈I Zαi and K1 = K. Next,

choose a transcendence basis ζj , j ∈ J , of k|K. Then by Lemma 5.5 there is an extension
(K2, v) := (K1(yj | j ∈ J), v) of (K1, v) such that vK2 = vK1 and K2 = K(ζj | j ∈ J).
Note that {xi , yj | i ∈ I , j ∈ J} is a standard valuation transcendence basis of (K2|K, v).
If Γ|vK and k|K are algebraic, then K2 = K.

If we are given an ascending chain of valued fields whose value groups are subgroups
of Γ and whose residue fields are subfields of k, then the union over this chain is again a
valued field whose value group is a subgroup of Γ and whose residue field is a subfield of
k. So a standard argument using Zorn’s Lemma together with the transitivity of separable
extensions shows that there are maximal separable algebraic extension fields of (K2, v) with
these properties. Choose one of them and call it (L, v). We have to show that vL = Γ
and L = k. Since already Γ/vK2 is a torsion group and k|K2 is algebraic, the same holds
for Γ/vL and k|L. If vL is a proper subgroup of Γ, then there is some prime p and some
element α ∈ Γ \ vL such that pα ∈ vL. But then, Lemma 6.40 shows that there exists
a proper separable algebraic extension (L′, v) of (L, v) such that vL′ = vL + Zα ⊂ Γ
and L′ = L ⊂ k, which contradicts the maximality of L. If L is a proper subfield of k,
then there is some element ζ ∈ k \ L, and ζ is algebraic over L. But then, Lemma 6.41
shows that there exists a proper separable algebraic extension (L′, v) of (L, v) such that
vL′ = vL ⊂ Γ and L′ = L(ζ) ⊂ k, which again contradicts the maximality of L (here we
have used Γ 6= {0}, which implies that v is not trivial on L). This proves that vL = Γ and
L = k, and (L, v) is the required extension of (K, v). Since K2 is generated over K by a set
of elements which are algebraically independent over K, we know from Lemma 24.40 that
K2|K is separable. Since also L|K2 is separable, we find that (L, v) is a separable extension
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of (K, v). Since L|K2 is algebraic, {xi , yj | i ∈ I , j ∈ J} is a valuation transcendence basis
of (K2|K, v). If Γ|vK and k|K are algebraic, then L is an algebraic extension of K = K2 .

In the case of Γ/vK being a p-group and k|K being a purely inseparable extension, we
set K2 = K and consider the purely inseparable extensions of (K, v) whose value group is
a subgroup of Γ and whose residue field is a subfield of k. The same arguments as above
work, with “purely inseparable” in the place of “separable”. We then obtain a purely
inseparable extension of (K, v) with the required properties. �

Every ordered abelian group is an extension of the trivial group {0} as well as of the
ordered abelian group Z. Every field of characteristic 0 is an extension of Q, and every field
of characteristic p > 0 is an extension of Fp. Let Γ be an ordered abelian group and k a
field. If char k = 0, then Q endowed with the trivial valuation v will satisfy vQ = {0} ⊂ Γ
and Q = Q ⊂ k. If char k = p > 0, then we can choose v to be the p-adic valuation on Q
(see Section 4.2) to obtain that vQ = Z ⊂ Γ and Q = Fp ⊂ k. But also Fp endowed with
the trivial valuation v will satisfy vFp = {0} ⊂ Γ and Fp = Fp ⊂ k. An application of the
foregoing theorem now proves:

Corollary 6.43 Let Γ be an ordered abelian group and k a field. Then there is a valued
field (L, v) with vL = Γ and L = k. If char k = p > 0, then L can be chosen to be
of characteristic 0 (mixed characteristic case) or of characteristic p (equal characteristic
case).

We can also derive information about extensions of the form (K̃|K, v) and (Ksep|K, v).

From Corollary 6.15 we know that vK̃|vK, vKsep|vK, K̃|K and Ksep|K are algebraic
extensions. On the other hand, Lemma 6.40 shows that the value group of a separable-
algebraically closed field must be divisible. Similarly, it follows from Lemma 6.41 that
the residue field of a separable-algebraically closed field must be algebraically closed. This
proves:

Lemma 6.44 Let (K, v) be a valued field and extend v to K̃. Then the value groups vK̃

and vKsep are equal to the divisible hull of vK, and the residue fields K̃ and Ksep are equal
to the algebraic closure of K.

Corollary 6.45 Let (K, v) be a valued field with divisible value group and algebraically
closed residue field. Then every maximal immediate extension and every maximal imme-
diate algebraic extension is algebraically closed. In particular, every maximal immediate
extension of an algebraically closed valued field is again algebraically closed.

Proof: If K is algebraically closed, then by the foregoing lemma, vK is divisible and K
is algebraically closed. Hence it suffices to prove the first assertion. So let vK be divisible
and K be algebraically closed, and let (L, v) be an immediate extension of (K, v). Then
by the foregoing lemma, the extension (L̃|L, v) must be immediate for every extension of v
from L to L̃. Hence if (L, v) admits no immediate algebraic extension, then this extension
is trivial, that is, L is algebraically closed. �

A valued field (K, v) of residue characteristic p > 0 will be called Artin-Schreier
closed if every Artin-Schreier polynomial with coefficients in K admits a root in K. Recall
that if charK = p, then this means that every Artin-Schreier polynomial with coefficients
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in K splits into linear factors over K. As a corollary to Lemma 6.41 and Lemma 6.40, we
obtain:

Corollary 6.46 Every Artin-Schreier closed valued field of residue characteristic p > 0
has p-divisible value group and perfect residue field.

Similarly, Lemma 6.41 and Lemma 6.40 show that the value group of the perfect hull
of a valued field (K, v) of characteristic p > 0 is p-divisible, and that its residue field is
perfect. On the other hand, if α ∈ vK1/p∞ and a ∈ K1/p∞ such that va = α, then ap

m ∈ K
and thus pmα ∈ vK for some integer m ≥ 0. This shows that vK1/p∞ is contained in the
p-divisible hull of vK. Similarly, if ζ is an element of K1/p∞ and b ∈ K1/p∞ is such that
b = ζ, then bp

m ∈ K and thus ζp
m ∈ K for some integer m ≥ 0. This shows that K1/p∞ is

contained in K
1/p∞

. This proves:

Lemma 6.47 Let (K, v) be a valued field of characteristic p > 0 and extend v to K1/p∞.

Then vK1/p∞ is the p-divisible hull of vK, and K1/p∞ is the perfect hull of K.

We leave it to the reader to prove the following equalities along the lines of our earlier
arguments:

vK1/p =
1

p
vK and K1/p = K

1/p

and

vKp = pvK and Kp = K
p
.

6.6 Extensions of a valuation to an algebraic field ex-

tension

In this section, we let L|K be an algebraic field extension. We want to determine all
possible extensions of a given valuation v from K to L. If ṽ is an arbitrary extension of v
from K to K̃, then for every embedding ι of L in K̃ over K, the valuation ṽι (which shall
denote the more correct expression ṽ|ιLι ) is an extension of v from K to L. We shall show
that these are all possible extensions (see Theorem 6.53 below).

We need a basic approximation theorem:

Theorem 6.48 (Chinese Remainder Theorem)
Let R be a commutative ring with 1 and I1, . . . , In ideals of R. Assume that these ideals
are pairwise comaximal, that is, Ii + Ij = R whenever 1 ≤ i < j ≤ n. Then for every
choice of r1, . . . , rn ∈ R there is some r ∈ R such that r ≡ ri modulo Ii for 1 ≤ i ≤ n.

Proof: In the case n = 2, there is an equation 1 = s1+s2 with si ∈ Ii , and r = r2s1+r1s2

is the required element.
Now assume that we have proved our theorem for n − 1 ideals. For every i ≥ 2 we

choose elements s′i ∈ I1 and si ∈ Ii such that 1 = s′i + si . The product

n∏
i=2

(s′i + si) ∈ I1 +
n∏
i=2

Ii



162 CHAPTER 6. VALUED FIELD EXTENSIONS

is equal to 1. That is, the ideals I1 and
∏n

i=2 Ii of R are comaximal. By the first part of
our proof, we may choose an element t1 ∈ R such that

t1 ≡ 1 (mod I1) and t1 ≡ 0 (mod
n∏
i=2

Ii) .

By a similar procedure we find elements t1, . . . , tn such that we obtain

ti ≡ 1 (mod Ii) and tj ≡ 0 (mod Ij) for j 6= i .

Now r = r1t1 + . . .+ rntn is the required element. �

Now let us fix the following situation:

K = (K, v) a valued field with
OK its valuation ring, which has
MK as its maximal ideal,
L|K an algebraic field extension,
R the integral closure of OK in L.

 (6.9)

We need a first statement about the prime ideals of R.

Lemma 6.49 Let R ⊃ R′ be an extension of commutative rings with 1 and assume that
R is integral over R′. Let I be a prime ideal of R and set I ′ = I ∩ R′. Then I ′ is a
maximal ideal if and only if I is.

Proof: Assume that I ′ is maximal. Then R′/I ′ is a field. Since I is a prime ideal
satisfying I ′ = I ∩R′, we have that R/I is an entire ring extending R′/I ′. Further, R/I
is integral over R′/I ′ because R is integral over R′. Hence, every element a ∈ R/I is
algebraic over the field R′/I ′, which yields that R′/I ′[a] is a field. Consequently, every
element of R/I is invertible, that is, R/I is a field and I is a maximal ideal.

For the converse, assume that I is a maximal ideal. Then R/I is field, and as before,
it is integral over the subring R′/I ′. Suppose that I ′ is not maximal, that is, R′ := R′/I ′
is not a field. Then it admits a nonzero maximal ideal I ′. By Theorem 4.7 there exists a
valuation ring R of R/I containing R′ such that the maximal ideal of R contains I ′ and
is thus nonzero. But by virtue of Theorem 4.14, R must contain the integral closure of R′

in R/I which is R/I itself. Hence, R is a field and can not have a proper nonzero ideal.
This contradiction shows that I ′ must be maximal. �

Lemma 6.50 Assume that O is a valuation ring of L lying above OK. Let M be the
maximal ideal of O, and let I be the prime ideal M∩R of R. Then I is a maximal ideal
and O is the localization RI.

Proof: Since O lies above OK , we have I ∩ OK = M∩R ∩ OK = M∩OK = MK.
Hence by Lemma 6.49, I is a maximal ideal. From I = M∩R it follows that RI ⊂ O.
Now let x ∈ O ; we want to show that x ∈ RI . Since L|K is assumed to be algebraic,
there is an equation anx

n + . . . + a0 = 0 with coefficients ai ∈ K, not all 0. Let m be the
maximal index for which vam is the minimum of the values of these coefficients. Hence,
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the elements bi := ai/am are all contained in OK . Dividing our equation by amx
m, and

defining

y := bnx
n−m+. . .+bm+1x+1 ∈ OK[x] , z = bm−1+. . .+b1

(
1

x

)m−2

+b0

(
1

x

)m−1

∈ OK

[
1

x

]
,

we obtain y+ 1
x
z = 0. Now let O′ be any valuation ring of L containing OK. If O′ contains

x, then y ∈ OK[x] ⊂ O′, and z = −yx ∈ O′. If O′ contains 1
x
, then z ∈ OK[ 1

x
] ⊂ O′, and

y = − 1
x
z ∈ O′. Since O′ satisfies (VR), we see that it will always contain y and z. From

Theorem 4.14 we deduce y, z ∈ R.
By the minimality of m, we have bn, . . . , bm+1 ∈ MK ⊂ I. This shows y ∈ 1 + I,

yielding that y /∈ I. Consequently, x = −z/y ∈ RI . �

We will now study how the automorphisms of L|K act on the maximal ideals of R.
Note that every automorphism of L|K maps R into R. Indeed, if σ ∈ GalL|K and b ∈ R
then σb satisfies the same equation with coefficients from OK as b and is consequently also
integral over OK. Further, σ sends prime ideals of R onto prime ideals of R, and maximal
ideals onto maximal ideals.

Lemma 6.51 Let L|K be a finite normal extension. Assume that I and J are maximal
ideals of R and that I contains MK. Then there exists σ ∈ GalL|K such that σJ = I.

Proof: Suppose that I 6= σJ for all σ ∈ GalL|K. Then τI 6= σJ for all σ, τ ∈ GalL|K.
Since J and I are maximal ideals of R, the same holds for all σJ and σI, σ ∈ GalL|K.
Hence, the sum of any two distinct of them is equal to R. So we may apply the Chinese
Remainder Theorem 6.48. According to this theorem, there exists b ∈ R such that for
all σ ∈ GalL|K, b ≡ 0 modulo σJ and b ≡ 1 modulo σI. Let [L : K]insep = pν where
p is the characteristic exponent of K. The norm a := NL|K(b) =

∏
σ∈GalL|K σb

pν lies in
R∩K. Since OK is integrally closed by Lemma 4.1, we have R∩K = OK, showing that
NL|K(b) ∈ OK.

Since b ∈ J by our choice of b, it follows that a ∈ J ∩ OK. Since J is a proper ideal
of R, we know that J ∩ OK is a proper ideal of OK and thus contained in MK . By
assumption, I ∩ OK = MK, hence NL|K(b) ∈ I. But b /∈ σI for all σ ∈ GalL|K by our
choice of b, that is, σb /∈ I for all σ ∈ GalL|K. This contradicts our assumption that I be
a prime ideal. This contradiction completes the proof of our lemma. �

Theorem 6.52 Let L|K be a normal algebraic field extension and OK a valuation ring
of K with maximal ideal MK . Let R be the integral closure of OK in L. For every two
valuation rings O,O′ of L lying above OK, with maximal ideals M,M′ respectively, there
is an automorphism σ ∈ GalL|K such that σO′ = O and σM′ =M. The valuation rings
of L lying above OK are precisely all the localizations of R with respect to its maximal
ideals. Moreover, R is equal to the intersection of all valuation rings of L lying above OK.

Proof: According to Lemma 6.50, with the maximal ideals I =M∩R and I ′ =M′∩R,
we have O = RI and O′ = RI′ . Suppose that we are able to show for every maximal ideal
J the existence of some σ ∈ GalL|K such that σJ = I. Then because of σR = R, we
obtain σRJ = RσJ = RI = O. Applying this to J = I ′, we obtain σO′ = O. But then, σ
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will also send the unique maximal idealM′ of O′ onto the unique maximal idealM of O.
With J running through all maximal ideals of R, also the last assertion of the theorem will
follow: By Theorem 4.7 there is at least one valuation ring O of L lying above OK ; every
localization RJ will thus be sent onto O by some σ ∈ GalL|K and will therefore be itself
a valuation ring of L lying above OK . On the other hand, we have seen at the beginning
that every valuation ring of L lying above OK is the localization RJ with respect to some
maximal J of R.

In the case of a finite normal extension L|K, the existence of σ is assured by Lemma 6.51.
We have to generalize to the infinite case. Since L|K is a normal algebraic extension, L
is the union over all finite normal subextensions Li|K, i ∈ I. Let Ri := R ∩ Li which is
the integral closure of OK in Li. Further, let Ii := I ∩Ri and Ji := J ∩Ri . Since I and
J are maximal ideals, so are Ii and Ji by virtue of Lemma 6.49; moreover, Ii contains
MK. Hence by Lemma 6.51 there exists σi ∈ GalLi|K such that σiJi = Ii . By the
Compactness Principle for Algebraic Extensions (cf. Lemma 24.5 where we take F = L̃),
there exists σ ∈ GalL|K and a subset J ⊂ I such that L =

⋃
j∈J Lj and resLi(σ) = σi .

Since I =
⋃
j∈J Ii and J =

⋃
j∈J Ji , it follows that σJ = I.

It remains to prove the last assertion of the theorem. By Theorem 4.14, R is equal
to the intersection of all valuation rings of L lying above R. In view of what we have
proved so far, it suffices to show that every valuation ring O0 of L lying above R contains
a valuation ring of L lying above OK. Let M0 be the maximal ideal of O0. Choose some
maximal ideal I of R containing the prime ideal I0 = O0 ∩ R. Since the latter contains
precisely all elements of R which are non-units in O0 we find that O0 must contain the
localization RI . But this is a valuation ring of L which lies above OK. �

For L|K an arbitrary algebraic extension, we are now able to determine all extensions of
v from K to L. We have L̃ = K̃, and L̃|K is a normal algebraic extension containing L|K.
Given two extensions w,w′ of v from K to L, by virtue of Theorem 4.10 we may choose
extensions w̃, w̃′ to L̃. Then by the preceding theorem, there is σ ∈ Gal L̃|K such that
σOw̃′ = Ow̃ and σMw̃′ = Mw̃. Consequently, w̃′ = w̃σ showing that also w′ = w̃resL(σ).
If L|K is normal, then the embedding ι := resL(σ) of L in L̃ over K is an automorphism
of L and we may write w′ = wι. Even if ι is not an automorphism of L, we shall call w
and w′ = w̃ι conjugate extensions of v. One also says that the valuations w and w′

resp. their associated places Pw and Pw′ = P ι are conjugate over K. Fixing an arbitrary
extension ṽ of v from K to K̃, we may write w = ṽ|L and w̃ = ṽ. Then we find that every
extension w′ of v from K to L is of the form ṽι. We have proved:

Theorem 6.53 If L|K is algebraic, then every two extensions of v from K to L are
conjugate. Given an arbitrary extension ṽ of v from K to K̃, the set of all extensions of v
from K to L is

{(ṽι)|L | ι an embedding of L in K̃ over K} .

As a corollary to this theorem and Corollary 4.11, we can note for the special case of
the algebraic closure of a valued field:

Corollary 6.54 Let (K, v) be an arbitrary valued field. Then there exists an extension ṽ
of v from K to K̃, and the set of all such extensions is given by

{ṽι | ι ∈ GalK} .
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In other words, every two algebraic closures of (K, v) are isomorphic over K.

If the algebraic extension L|K is normal and we pick one extension of v to L and denote
it again by v, then the set of all extensions of v from K to L can be written as

{vι | ι ∈ GalL|K} .

In view of part c) of Lemma 6.27, this yields:

Corollary 6.55 If (L|K, v) is a finite normal extension, then for every extension w of v
from K to L,

e(L|K,w) = e(L|K, v) and f(L|K,w) = f(L|K, v) .

For a finite extension L|K, the number of distinct embeddings of L in L̃ over K is equal
to the separable degree [L : K]sep. Hence, we may deduce from the foregoing theorem:

Corollary 6.56 If L|K is finite, then the number of distinct extensions of v from K to L
is not greater than the separable degree [L : K]sep.

As a special case, we obtain the following corollary:

Corollary 6.57 If L|K is a purely inseparable algebraic extension, then the extension w
of v from K to L is uniquely determined.

Let us give another proof of this corollary. Let p = charK. For every b ∈ L there is some
nonzero n ∈ N such that bp

n
= a ∈ K. Hence, wb = 1

pn
va for every extension w.

We generalize the last two assertions of Theorem 6.52 to algebraic extensions which are
not necessarily normal.

Lemma 6.58 Let L|K be an algebraic field extension and OK a valuation ring of K with
maximal ideal MK . Let R be the integral closure of OK in L. Then the valuation rings of
L lying above OK are precisely all the localizations of R with respect to its maximal ideals.
Moreover, R is equal to the intersection of all valuation rings of L lying above OK.

Proof: It follows already from Lemma 6.50 that every valuation ring of L lying above OK

is the localization of R with respect to some maximal ideal. For the converse, assume that
I is a maximal ideal of R. Since R is integral over OK , Lemma 6.49 shows that I ∩ OK

is a maximal ideal and thus equal to MK . From Theorem 4.7 we infer the existence of
a valuation ring O of L containing R whose maximal ideal M contains I. Consequently,
O contains OK and M contains MK which shows that O lies over OK . By Lemma 6.50,
O is the localization of R with respect to the maximal ideal M∩R. Since this maximal
ideal contains I, it must be equal to I.

The last assertion is shown as in the proof of Theorem 6.52. �

Two valuation rings O1 , O2 resp. their associated valuations are called comparable
if O1 ⊂ O2 or O1 ⊃ O2 ; otherwise, they are called incomparable. From the foregoing
lemma, we obtain:

Corollary 6.59 Every two distinct extensions of a valuation to an algebraic extension
field are incomparable.
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Proof: Let the notation be as in the foregoing lemma. Given two extensions of v from
K to L with valuation rings O1 and O2 respectively, the foregoing lemma tells us that
Oi = RIi with maximal ideals Ii of R, i = 1, 2. Let us assume that O1 ⊂ O2. Then
I1 ⊂ I2 which yields I1 = I2 because of their maximality. Consequently, O1 = O2. �

Let us exploit once more the Chinese Remainder Theorem 6.48:

Lemma 6.60 Let (K, v) be a valued field, L|K an algebraic extension and v1, . . . , vn dis-
tinct extensions of v from K to L. Given any elements ζ1 ∈ L/v1 , . . . , ζn ∈ L/vn , there
is some a ∈ L such that a/v1 = ζ1 , . . . , a/vn = ζn .

Proof: Let Ov be the valuation ring of v in K and let R be its integral closure in L.
Denote the valuation ring of vi in L by Oi , its maximal ideal byMi and set Ii :=Mi∩R.
By Lemma 6.50, Oi = RIi . Since L/vi = Oi/Mi = RIi/RIiIi = R/Ii , we may choose
ai ∈ R such that ai/vi = ai/Ii = ζi . Since the Ii are maximal ideals, we have Ii + Ij = R
for i 6= j. So we may use the Chinese Remainder Theorem to find a ∈ R which satisfies
a ≡ ai modulo Ii for 1 ≤ i ≤ n. That is, a/vi = a/Ii = ai/Ii = ζi . �

With Lemma 5.6 as a tool, we prove:

Lemma 6.61 Let (L|K, v) be a normal extension of valued fields. Then for every ζ ∈
L and every ξ ∈ K̃ which is conjugate to ζ over K, there exists some a ∈ L and an
automorphism σ ∈ GalL|K such that a = ζ and σa = ξ. In particular, L|K is normal.

Proof: Let g be the minimal polynomial of ζ over K, so ζ, ξ are roots of g. By
Lemma 6.60, there exists some a ∈ L such that a = ζ and via > 0 for all extensions vi 6= v
of v from K to L. In view of Theorem 6.53, this yields that all conjugates of a, hence all
roots of f , are integral. Consequently, the minimal polynomial f of a over K has integral
coefficients. Since a is integral and a root of f , we know that a = ζ is a root of f ∈ K[X].
Consequently, g must divide f , showing that also ξ is a root of f . Then by part b) of
Lemma 5.6, ξ is the residue of some root b ∈ L of f . By our choice of f , there is some
σ ∈ GalL|K such that b = σa. So ξ = σa, as contended. In particular, ξ ∈ L. Since ζ was
an arbitrary element of L and ξ was an arbitrary conjugate of ζ over K, this proves that
L|K is normal. �

Exercise 6.7 Let K = (K, v) be an arbitrary valued field and let a be algebraic with minimal polynomial
f over K. Prove that f ∈ OK[X] if and only if a is integral for all extensions of v from K to K̃ (or to
K(a)).

6.7 Valuation disjoint extensions

Let (Ω|K, v) be an extension of valued fields and F |K and L|K two subextensions of Ω|K.
We say that (F |K, v) is valuation disjoint from (L|K, v) (in (Ω, v)) if every standard
valuation independent set B of (F |K, v) is also a standard valuation independent set of
(F.L|L, v). Let us observe that it is possible that a standard valuation independent set
B of (F |K, v) remains valuation independent over (L, v) without remaining a standard
valuation independent set of (F.L|L, v):
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Example 6.62 Let k be a non-perfect field of characteristic p and c ∈ k \ kp. Let t be
transcendental over k and consider the valued field (k(t), vt) with the t-adic valuation. Ex-

tend vt to k̃(t) and choose a, b ∈ k̃(t) such that ap = ct and bp = t. Define K := k(t). Then
the standard valuation basis {1, a, . . . , ap−1} of (K(a)|K, vt) will remain valuation indepen-
dent over (K(b), vt) since ai/bi = ci/p and {1, c1/p, . . . , cp−1/p} is valuation independent over
(K(b), vt). But {1, a, . . . , ap−1} is not a standard valuation basis of (K(a, b)|K(b), vt) since
the values of its elements are all in the same coset modulo vK(b) without being equal.

With this example, we can observe also another phenomenon which will play a role
later in this section. We have that vK(a) = vK(b) = Zvt

p
, hence K(a) = K(b) = K

by the fundamental inequality. Consequently, K(a).K(b) = K(a, b) = K(c1/p) 6= K =
K(a).K(b) . To obtain a similar phenomenon for the value groups, it suffices to change
the definition of a slightly, requiring now that ap = c + t. Then we have that K(a) =
K(b) = K(c1/p), hence vK(a) = vK(b) = vK by the fundamental inequality. Then
K(a, b) = K(t1/p, c1/p) and consequently, vK(a, b) = Zvt

p
6= Zvt = vK(a) + vK(b). ♦

We have chosen the strong condition using standard valuation independent sets since
then, valuation disjoint extensions can be characterized by means of their value groups and
residue fields. We need some preparation.

Let G and G′ be two subgroups of some group G, and H be a common subgroup of
G and G′. The elements α1, . . . , αn ∈ G are said to be H-independent if they belong
to distinct cosets modulo H. We will say that the group extension G|H is disjoint from
the group extension G′|H (in G) if for every n ∈ N and every choice of H-independent
elements α1, . . . , αn ∈ G, these elements will also be G′-independent. Contrary to the
field case, this is already the case if every two H-independent elements α, α′ remain G′-
independent. Observe that α, α′ are H-independent if and only if α−α′ /∈ H. So if α, α′ do
not remain G′-independent, then α−α′ ∈ G∩G′, showing that H 6= G∩G′. Conversely, if
there exists α ∈ G∩G′, α /∈ H, then α and 0 are H-independent, but not G′-independent.
We have proved:

G|H is disjoint from G′|H if and only if G ∩G′ = H.

Hence, the notion “disjoint from” is symmetrical, like “linearly disjoint from” in the field
case.

Now valuation disjoint extensions can be characterized as follows:

Lemma 6.63 Let (Ω|K, v) be an extension of valued fields and F |K and L|K subextensions
of Ω|K. Then (F |K, v) is valuation disjoint from (L|K, v) in (Ω, v) if and only if

1) vF |vK is disjoint from vL|vK in vΩ, and

2) F |K is linearly disjoint from L|K in Ω.

Consequently, valuation disjointness is symmetrical: if (F |K, v) is valuation disjoint from
(L|K, v), then (L|K, v) is valuation disjoint from (F |K, v).

Proof: From the characterization of valuation independence given in Lemma 6.19 we
infer that (F |K, v) is valuation disjoint from (L|K, v) if the following two conditions are
satisfied:
1) if b, b′ ∈ F have values which belong to distinct cosets modulo vK, then these values
also belong to distinct cosets modulo vL, and
2) if b1, . . . , bn ∈ OF have residues which are K-linearly independent, then these residues
are also L-linearly independent.
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Each of these conditions is equivalent to the corresponding condition in the assertion of
our lemma.

For the converse, assume that condition 1) or 2) is not satisfied. If 1) is not satisfied,
then there are two elements b, b′ ∈ F whose values belong to distinct cosets modulo vK
but to the same coset modulo vL. From the former it follows that {b, b′} is a standard
valuation independent set in (F |K, v), and from the latter it follows that {b, b′} is not
a standard valuation independent set in (F.L|L, v). If 2) is not satisfied, then there are
elements b1, . . . , bn ∈ OF such that their residues are K-linearly independent but not L-
linearly independent. Now {b1, . . . , bn} is a standard valuation independent set in (F |K, v),
but not in (F.L|L, v). This shows that (F |K, v) is not valuation disjoint from (L|K, v). �

The following is a partial analogue to Lemma 24.12; we leave its straightforward proof
to the reader:

Lemma 6.64 Let (Ω|K, v) be an extension of valued fields, and let L|K and F ⊃ E ⊃ K
be subextensions of Ω|K. If (L|K, v) is valuation disjoint from (E|K, v) and (E.L|E, v) is
valuation disjoint from (F |E, v), then (L|K, v) is valuation disjoint from (F |K, v). Con-
versely, if (L|K, v) is valuation disjoint from (F |K, v), then it is also valuation disjoint
from (E|K, v), and if in addition v(E.L) = vE + vL and E.L = E.L, then also (E.L|E, v)
is valuation disjoint from (F |E, v).

An extension (F |K, v) will be called valuation separable if it is valuation disjoint from
(K1/p∞|K, v). Note that this does not depend on the embedding of (F, v) and (K1/p∞ , v)
in a common valued extension field, since K1/p∞ admits a unique embedding in F 1/p∞ and
the extension of v from F to F 1/p∞ is unique. From Lemma 6.63 we infer that (F |K, v)
is valuation separable if and only if vF ∩ vK1/p∞ = vK and F |K is linearly disjoint from

K1/p∞|K. But K1/p∞ = K
1/p∞

, so the latter is equivalent to the condition that F |K is
separable. Similarly, vK1/p∞ is the p-divisible hull of vK, so the former is equivalent to
the condition that every torsion element in vF/vK has order prime to p. We have proved:

Lemma 6.65 An extension (F |K, v) is valuation separable if and only if

1) the torsion subgroup of vF/vK is a p′-group,

2) F |K is separable.

An extension (F |K, v) will be called valuation regular if it is valuation disjoint from
(K̃|K, v) in (F̃ , ṽ) for some extension ṽ of the valuation v from F to F̃ . As it was done for
the notion “valuation separable”, one deduces the following characterization for “valuation

regular”, using that vK̃ is the divisible hull of K and that K̃ = K̃:

Lemma 6.66 An extension (F |K, v) is valuation regular if and only if

1) vF/vK is torsionfree,

2) F |K is regular.

Consequently, (F |K, v) is valuation regular if and only if it is valuation disjoint from
(K̃|K, v) for every extension ṽ of the valuation v from F to F̃ .

By this lemma, every extension of an algebraically closed valued field is valuation
regular. For the scope of this book, the most important examples of valuation regular
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extensions are the valued field extensions which are generated by algebraically valuation
independent sets. Indeed, it follows from Lemma 6.35 that they satisfy the conditions of
the above lemma. Using also Lemma 6.63, we obtain:

Lemma 6.67 Let (Ω|K, v) be an extension of valued fields containing a standard alge-
braically valuation independent set T . Then (K(T )|K, v) is a valuation regular extension.
More generally, if (L|K, v) is a subextension of (Ω|K, v) such that T remains algebraically
valuation independent over (L, v), then (K(T )|K, v) is valuation disjoint from (L|K, v).

Lemma 6.68 Assume that (F |K, v) is a valuation regular subextension of a valued field
extension (Ω|K, v). If T is a standard algebraically valuation independent set in (Ω|F, v),
then also (F (T )|K(T ), v) and (F (T )|K, v) are valuation regular extensions.

Proof: We write T = {xi , yj | i ∈ I , j ∈ J} ⊂ F such that the values vxi , i ∈ I,
are rationally independent over vF , and that the residues yi , j ∈ J , are algebraically
independent over F . Since (F |K, v) is assumed to be valuation regular we know from
Lemma 6.66 that vF/vK is torsion free and that F |K is regular. The former implies that
also vF ⊕

⊕
i∈I Zvxi is torsion free modulo vK ⊕

⊕
i∈I Zvxi . Similarly, the latter implies

by Corollary 24.51 that also the extension F (yj | j ∈ J) |K(yj | j ∈ J) is regular. Again
by Lemma 6.66, we conclude that (F (T )|K(T ), v) is a valuation regular extension. In view
of Lemma 6.67 and Lemma 6.64, the same now follows for the extension (F (T )|K, v). �


