
Chapter 5

Polynomials over valued fields

5.1 The value of a polynomial

Suppose we have a polynomial ring in several variables and a valuation on its quotient
field. Then we would like to know the value of any given polynomial or rational function
under this valuation. This is in general not an easy problem, and the answer depends on
how the valuation is defined on the rational function field. This will be studied at several
points later in this book. Here, we will present a particularly easy and therefore important
special case.

Theorem 5.1 Let (L|K,P ) be an extension of valued fields. Take a set

T = {xi, yj | i ∈ I , j ∈ J}

of elements in L such that the values vxi , i ∈ I, are rationally independent over vK,
vyj = 0 for all j ∈ J , and the residues yjv, j ∈ J , are algebraically independent over Kv.

If we write

f =
∑
k

ck
∏
i∈I

x
µk,i

i

∏
j∈J

y
νk,j

j ∈ K[xi, yj | i ∈ I, j ∈ J ] (5.1)

in such a way that for every k 6= ` there is some i such that µk,i 6= µ`,i or some j such that
νk,j 6= ν`,j , then

vf = min
k

(
v(ck

∏
i∈I

x
µk,i

i

∏
j∈J

y
νk,j

j )

)
= min

k

(
vck +

∑
i∈I

µk,ivxi

)
.

That is, the value of the polynomial f is equal to the least of the values of its monomials. In
particular, this implies that the elements xi, yj, i ∈ I, j ∈ J , are algebraically independent
over K, and that

vK(T ) = vK ⊕
⊕
i∈I

Zvxi

K(T )v = Kv (yjv | j ∈ J) .

Further, v is uniquely determined on K(xi, yj | i ∈ I, j ∈ J) by its restriction to K and
the values vxi , and the residue map is uniquely determined on K(xi, yj | i ∈ I, j ∈ J) by
these data together with the residues yjv.
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120 CHAPTER 5. POLYNOMIALS OVER VALUED FIELDS

Proof: Every element of K(T ) is the quotient of two polynomials in finitely many
elements x1, . . . , xr, y1, . . . , ys ∈ T . We take a polynomial f in these variables and write
it in the form (5.1) where we replace I by {1, . . . , r} and J by {1, . . . , s} in such a way
that the subsequent conditions are satisfied. These conditions together with the rational
independence of the values vxi over vK imply that

v(ck
∏

1≤i≤r

x
µk,i

i

∏
1≤j≤s

y
νk,j

j ) = vck +
∑

1≤i≤r

µk,ivxi

= vc` +
∑

1≤i≤r

µ`,ivxi = v(c`
∏

1≤i≤r

x
µ`,i

i

∏
1≤j≤s

y
ν`,j

j )

if and only if vck = vc` and µk,i = µ`,i for 1 ≤ i ≤ r. So there is exactly one tuple
(µk,1, . . . , µk,r) for which this value is minimal; without loss of generality we may assume
that this tuple and the minimal value is assumed exactly for k = 1, . . . , t; we have that
vc1 = . . . = vct . The corresponding monomials in f have minimal value and the other
have higher value, so we will obtain that vf is equal to this minimal value once we prove
the first equation in

v

(
t∑

k=1

ck
∏
i

x
µk,i

i

∏
j

y
νk,j

j

)
= v(c1

∏
i

x
µ1,i

i

∏
j

y
ν1,j

j ) ;

the second equation holds because vyj = 0 for all j. Since we can write

t∑
k=1

ck
∏
i

x
µk,i

i

∏
j

y
νk,j

j = c1
∏
i

x
µ1,i

i ·
t∑

k=1

ck
c1

∏
j

y
νk,j

j ,

we just have to show that

v

(
t∑

k=1

ck
c1

∏
j

y
νk,j

j

)
= 0 . (5.2)

As v ck
c1

= 0 for 1 ≤ k ≤ t, we find that(
t∑

k=1

ck
c1

∏
j

y
νk,j

j

)
v =

t∑
k=1

ck
c1
v
∏
j

(yjv)νk,j 6= 0

because the residues yjv are algebraically independent over Kv and the coefficients ck
c1
v of

the linear combination are non-zero. This proves that (5.2) holds.
Further, it follows that

vf = vc1 +
r∑
i=1

µ1,ivxi ∈ vK ⊕
⊕
i∈I

Zvxi .

Since the value of a quotient f/g is vf −vg, we see that the values of all non-zero elements
in K(T ) lie in vK ⊕

⊕
i∈I Zvxi . Conversely, by the choice of quotients of suitable polyno-

mials, one shows that every value in vK ⊕
⊕

i∈I Zvxi appears as a value of some element
in K(T ). Observe that the prescription of the values vxi determines which monomials in a
given polynomial are the ones of least value, and that their value is computed by the above
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formula only by use of the restriction of v to K and the values vxi . Hence, v is uniquely
determined on K(T ) by these data, together with the assumption on the residues of the
yj .

Now assume that the value of some quotient f/g is zero; we want to determine its
residue. Since vf = vg, the summands of minimal value in f and g all contain xi to
the same power νi , for every i ∈ {1, . . . , r}. Dividing numerator and denominator by
c
∏r

i=1 x
νi
i with a suitable constant c ∈ K, we obtain a quotient where numerator and

denominator have value zero and where the summands of minimal value are polynomials
in K[y1, . . . , ys]. Since the residues of numerator and denominator are only depending on
the residues of these summands of minimal value 0, our assertion now follows from the fact
that the residue of every polynomial in O[y1, . . . , ys] lies in Kv(yjv | j ∈ J). The prescribed
values vxi determine uniquely the summands of least value 0, and the prescribed residues
yjv determine uniquely their residues. Hence, the residue map is uniquely determined on
K(T ) by these data. �

Let us state the following almost trivial observation:

Lemma 5.2 Let (K, v) be a valued field and L = K(ti | i ∈ I) an extension field of K.
Assume that w is a map from L into an ordered abelian group Γ which extends v. Then
w is a valuation on L if and only if it satisfies axioms (V0), (VT), (VH) on the ring
K[ti | i ∈ I], and w(f/g) = wf − wg for every f, g ∈ K[ti | i ∈ I].

Proof: Suppose that w satisfies the above conditions. We show that it then sat-
isfies the triangle inequality (VT) on all of L; the other details are left to the reader.
Let f1, f2, g1, g2 ∈ K[ti | i ∈ I]. Then v(f1/g1 − f2/g2) = v(f1g2 − f2g1) − vg1g2 ≥
min{vf1g2, vf2g1} − vg1g2 = min{v(f1/g1), v(f2/g2)}. �

Theorem 5.3 Let (K, v) be a valued field, αi , i ∈ I, elements in some ordered abelian
group extension Γ of vK which are rationally independent over vK. Take a set T = {xi, yj |
i ∈ I , j ∈ J} of elements algebraically independent over K. For f ∈ K[T ] given as in
(5.1), define

vf := min
k
v

(
ck
∏
i∈I

x
µk,i

i

∏
j∈J

y
νk,j

j

)
= min

k

(
vck +

∑
i∈I

µk,iαi

)
(5.3)

and extend v to the rational function field K(T ) by setting v(f/g) = vf − vg. Then v is
a valuation on K(T ), and it is the unique valuation extending v from K to K(T ) such
that vxi = αi , i ∈ I, vyj = 0, j ∈ J , and that the residues yjv, j ∈ J , are algebraically
independent over Kv.

Proof: In view of the foregoing lemma, it suffices to show that v defined on the
polynomial ring K[T ] by (5.3) satisfies axioms (V0), (VT), (VH). Its definition on K(T )
is then canonically given by the rule v(f/g) = vf − vg.

The right hand side in (5.3) is ∞ if and only if all ck = 0, that is, if and only if f = 0.
This proves (V0).
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For the proof of the triangle inequality (VT), we observe that each monomial in the
sum of two polynomials f and g is the sum of two monomials c

∏
i∈I x

νi
i

∏
j∈J y

νj

j and

c′
∏

i∈I x
νi
i

∏
j∈J y

νj

j in f and g, respectively. We have that

v(c+ c′)
∏
i∈I

xνi
i

∏
j∈J

y
νj

j = v(c+ c′) +
∑
i∈I

νiαi ≥ min{vc, vc′}+
∑
i∈I

νiαi

= min{vc+
∑
i∈I

νiαi, vc
′ +
∑
i∈I

ν ′iαi}

≥ min{vf, vg}; .

So we see that the value of every monomial in f + g is ≥ min{vf, vg}, which by definition
yields that v(f + g) ≥ min{vf, vg}. This shows that v satisfies (VT) on K[xi | i ∈ I].

We wish to show that v satisfies (VH) on K[xi | i ∈ I]. If we multiply two polynomials
f and g, then we obtain the monomials of minimal value in the product fg by multiplying
out the monomials of minimal value in f and in g. As in the proof of Theorem 5.1 we can
write the monomials of minimal value in f as ck

∏r
i=1 x

µ1,i

i

∏s
j=1 y

νk,j

j , 1 ≤ k ≤ t, and the

monomials of minimal value in g as c′k
∏r

i=1 x
µ′

1,i

i

∏s
j=1 y

ν′
k,j

j , 1 ≤ k ≤ t′. Without loss of
generality, we may assume that among all the tuples (νk,1, . . . , νk,s) the one with k = 1 is
the lexicographically smallest, and we may assume the same for the tuples (ν ′k,1, . . . , ν

′
k,s).

Then among all the possible products of pairs of the above monomials,

c1c
′
1

r∏
i=1

x
µ1,i+µ

′
1,i

i

s∏
j=1

y
ν1,j+ν

′
1,j

j

is the unique one with lexicographically minimal tuple of exponents for the yj . Conse-

quently, the coefficient for
∏r

i=1 x
µ1,i+µ

′
1,i

i

∏s
j=1 y

ν1,j+ν
′
1,j

j in the product fg is just c1c
′
1 6= 0.

Hence by our definition of v, we find that

v(fg) ≤ vc1c
′
1 +

∑
i

(µ1,i + µ′1,i)αi = vc1 +
∑
i

µ1,iαi + vc′1 +
∑
i∈I

µ′1,iαi = vf + vg .

On the other hand, if d
∏r

i=1 x
κi
i

∏s
j=1 y

λj

j is any monomial appearing in fg, then the
coefficient d is a linear combination of products cc′ where c, c′ are coefficients of monomials

c
∏r

i=1 x
µi

i

∏s
j=1 y

νj

j and c′
∏r

i=1 x
µ′

i
i

∏s
j=1 y

ν′
j

j in f and g, respectively, for which µi + µ′i = κi
and νi + ν ′i = λi. Then vc ≥ vf −

∑r
i=1 µiαi and vc′ ≥ vf −

∑r
i=1 µ

′
iαi. Thus, vcc′ =

vf + vg −
∑r

i=1(µi + µ′i)αi = vf + vg −
∑r

i=1 κiαi, and by the ultrametric triangle law on

(K, v), vd ≥ vf + vg −
∑r

i=1 κiαi, showing that vd
∏r

i=1 x
κi
i

∏s
j=1 y

λj

j ≥ vf + vg. Together
with our previous result, this proves that v(fg) = vf + vg.

The uniqueness of v on K(xi | i ∈ I) was already stated in Theorem 5.1. �

An important special case of our definition given in (??) appears when I = ∅. Then
we have

v

(∑
k

ckx
µk,i

i

∏
j∈J

y
νk,j

j )

)
:= min

k
vck . (5.4)

The induced extension of v from K to K(yj | j ∈ J) is called the Gauß valuation or
functional valuation. It can be described by saying that the value of a polynomial is the
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minimum of the values of its coefficients. In particular, vf ≥ 0 if and only if all coefficients
are integral. That is,

K[X1, . . . , Xn] ∩ OK(X1,...,Xn) = OK [X1, . . . , Xn] .

Note that a monic polynomial always has value ≤ 0 and that a monic polynomial with
integral coefficients has value 0. A polynomial f ∈ K[X1, . . . , Xn] is called primitive if
vf = 0, that is, if the coefficients of minimal value are units in OK. The latter is the
classical definition of “primitive”. With the help of the Gauß valuation, it follows at once
from Theorem 5.3 that in the present case, the product of two primitive polynomials is
again primitive. We also get the so-called Gauß’ Lemma for granted:

Lemma 5.4 Let f, g, h ∈ K[X1, . . . , Xn] such that f = gh.

a) (Gauß’ Lemma, first form) If f and g are primitive, then so is h.

b) (Gauß’ Lemma, second form) If f and g are monic and f has integral coefficients,
then also h is monic, and g and h have integral coefficients.

Lemma 5.5 Let (K, v) be a valued field and ζj , j ∈ J , algebraically independent over
K. Choose elements yj , j ∈ J which are algebraically independent over K. Then v and
its associate residue map extend in a unique way from K to the rational function field
K(yj | j ∈ J) such that yj = ζj for every j ∈ J . For this extension,

vK(yj | j ∈ J) = vK and K(yj | j ∈ J) = K(ζj | j ∈ J) .

On K[yj | j ∈ J ], the valuation v is given by

v

(∑
ν

cν y
ν1
1 · . . . · yνn

n

)
= min

ν
vcν ,

and on OK[yj | j ∈ J ], the residue map is given by

∑
ν

cν y
ν1
1 · . . . · yνn

n =
∑
ν

cν y
ν1
1 · . . . · yνn

n .

Proof: Let P be the place associated with v on K. It is a homorphism from OK onto K.
Since the elements yj , j ∈ J , are algebraically independent over K and the elements ζj ,
j ∈ J , are algebraically independent over K, we can extend P to a homomorphism from
OK[yj | j ∈ J ] onto K[ζj | j ∈ J ] by setting yjP = ζj . Via the rule (f/g)P = fP/gP , this
homomorphism extends to a place of the quotient field K(yj | j ∈ J) of OK[yj | j ∈ J ]
(cf. also Theorem 4.10). We have constructed an extension of P from K to K(yj | j ∈ J),
hence the valuation associated with P on the latter field is also an extension of v.

The formula for the value of polynomials is just a special case of (6.5) since vyj = 0 for
all j ∈ J . The uniqueness of v on K(yj | j ∈ J) was already stated in Lemma 6.35. �
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5.2 The value of coefficients and roots

Let K = (K, v) be an arbitrary valued field and

f = cnX
n + cn−1X

n−1 + . . .+ c1X + c0 ∈ K[X] (5.5)

an arbitrary polynomial. In this section, we will consider the valuation theoretical relation
between the coefficients and the roots of f . Since the roots may not lie in K, we extend v to
K̃ and call this extension again v. To begin with, we treat the case of a monic polynomial
f , that is, cn = 1. Write

f =
n∏
i=1

(X − ai) with ai ∈ K̃ .

Recall that the coefficients ci are, up to the sign, elementary symmetric polynomials in the
roots ai . In fact, if 0 < j ≤ n then (−1)jcn−j is equal to the j-th elementary symmetric
polynomial in a1, . . . , an :

sj(a1, . . . , an) :=
∑

1≤i1<...<ij≤n

ai1 · . . . · aij .

In particular, we observe that

vcn−1 = v(a1 + . . .+ an) ≥ min
i
vai and vc0 = v(a1 · . . . · an) = va1 + . . .+ van .

Further, if all roots ai lie in OK̃, then all coefficients ci lie in OK (observe that the latter
does not depend on the chosen extension of v from K to K̃). More precisely, if vai ≥ α
for all i, then vcn−j ≥ jα for 0 < j ≤ n.

Without loss of generality, we may assume that the roots ai are numbered such that
va1 ≤ va2 ≤ . . . ≤ van . Suppose that a1, . . . , a` are all roots of value < 0 (which means
that f has precisely n − ` integral roots). Then the value of a1 · . . . · a` is smaller than
the value of any other product of at most ` distinct roots ai . This yields that a1 · . . . · a`
is the unique summand of minimal value in the `-th elementary symmetric polynomial in
a1, . . . , an . Consequently, vcn−` = va1 ·. . .·a` = va1+. . .+va`. It also yields that this value
is smaller than the value of any summand in the j-th elementary symmetric polynomial,
for every j < `. Consequently, vcn−` < vcn−j for j < `. Moreover, va1 · . . . · a` is smaller or
equal to the value of any other product of distinct roots ai . This yields that vcn−` ≤ vcn−j
for j ≥ `. Hence, among all coefficients of smallest value, vcn−` is the one with maximal
index. Since cn = 1, this also holds if all roots are integral, that is, if ` = 0.

Suppose that precisely a1, . . . , am are of minimal value among the elements a1, . . . , an.
Then a1 ·. . .·am is the unique summand of minimal value in the m-th elementary symmetric
polynomial in a1, . . . , an . Consequently, vcn−m = va1 · . . . ·am = mva1, and cn−m is integral
if and only if a1, . . . , am are integral. For every j ≤ m, every product of j distinct roots
ai has value at least jva1 . On the other hand, for j > m every product of j distinct
roots ai has value > jva1 since it has at least one factor of value > va1 . Consequently,
vcn−j ≥ jva1 for j ≤ m, and vcn−j > jva1 for j > m. Hence, among all coefficients
for which 1

j
vcn−j is minimal, vcn−m is the one with minimal index. Further, we see that

mini vai = va1 = minj
1
j
vcn−j .
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If 0 < m < n is such that vam < vam+1 , then as before, a1 · . . . · am is the unique
summand of minimal value in the m-th elementary symmetric polynomial in a1, . . . , an .
This yields that vcn−m = va1 · . . . · am = va1 + . . . + vam . If moreover m < µ < n is such
that vaµ < vaµ+1 , then vcn−µ − vcn−m = vam+1 + . . . + vaµ . In particular, if 1 < m < n
and vam−1 < vam < vam+1 , then vam = vcn−m − vcn−m+1 ∈ vK. A similar formula holds
for the roots a1 and an if they are the unique root of minimal resp. maximal value. Indeed,
if va1 < va2 , then va1 = vcn−1, which we can write as vcn−1 − vcn ∈ vK because of
cn = 1. If van−1 < van , then by what we have shown, vc1 = va1 + . . . + van−1 . Since
vc0 = va1 + . . .+ van , it follows that van = vc0 − vc1 ∈ vK.

Now assume that f is not monic. Then we divide by cn to obtain a monic polynomial
which has the same roots as f . We have to replace vci by vci − vcn , but this does not
change the order between the values of the coefficients. Let us summarize what we have
proved:

Lemma 5.6 Let K = (K, v) and f ∈ K[X] a polynomial of the form (5.5) with roots
a1, . . . , an . Then:

a) Assume that f is monic. Then f ∈ OK[X] if and only if all roots ai are integral.

b) Suppose that among all coefficients of smallest value, vcj is the one with maximal index.
Then f has precisely j integral roots. If in addition, the roots a1, . . . , an−j are the roots
which are not integral, then vcj − vcn = va1 + . . .+ van−j .

c) The values of the roots are bounded from below by the following formula:

min
i
vai = min

1≤j≤n

vcn−j − vcn
j

.

d) If m ∈ {1, . . . , n} such that vaj 6= vam for all j 6= m, then vam ∈ vK.

Consider a polynomial of the form (5.5). If all coefficients ci are integral, that is, if
f ∈ OK[X], then f will denote the polynomial cnX

n+. . .+c1X+c0 ∈ K[X] which we obtain
from f by replacing its coefficients by their residues. We will also use the notation fv if it is
necessary to indicate the valuation. We call f the reduction of f . Since the residue map is
a ring homomorphism, we have f(a) = cnan + . . .+ c1a+ c0 = cn a

n+ . . .+c1 a+c0 = f(a)
for a ∈ OK. In particular, if a is a root of f then a is a root of f . The converse is certainly
not true if the valuation v is non-trivial on K, since then for every a ∈ K, the set a+MK

of elements with residue a is infinite and thus, not all of these elements can be zeros of f .
Our definition of the reduction of a polynomial is generalized in the obvious way to

polynomials in several variables. When one works with the notions of “polynomial ring”
and “rational function field”, then variables are viewed as transcendental elements (this
ambiguity is also used in the model theory of fields, as we will also do in Chapter 20). Here,
this observation leads to the question whether the reduction of a polynomial is actually the
application of a place of the rational function field, for which the elements of the polynomial
ring are integral. This is in fact true, as we will show now.

Consider the polynomial ring K[X1, . . . , Xn]. Although it is not quite formally correct,
we let X1, . . . , Xn represent elements which are algebraically independent over K as well
as over K. So we take yj = Xj = ζj and apply the Lemma 5.3. We obtain a residue map
on K(X1, . . . , Xn) which satisfies

f(X1, . . . , Xn) = f(X1, . . . , Xn) for every f ∈ OK[X1, . . . , Xn] .



126 CHAPTER 5. POLYNOMIALS OVER VALUED FIELDS

So it coincides with our definition of the reduction of a polynomial. The associated valua-
tion on K[X1, . . . , Xn] assigns to f the minimal value of its coefficients. For a polynomial
f in one variable, given in the form (5.5), this reads as follows:

vf = min
1≤i≤n

vci .

The next lemma tells about the relation of the roots of f and the roots of its reduction f .

Lemma 5.7 Let (K, v) be an arbitrary valued field and let v be extended to K̃. Let f ∈
OK[X] such that f 6= 0. Then the residue map establishes a bijection from the integral
roots of f onto the roots of f (counted with multiplicities). If all roots of f have value < 0,
then f ∈ K.

Proof: Let f be given in the form (5.5). If all roots of f have value < 0, then
according to part b) of Lemma 5.6, c0 is the unique coefficient of f of smallest value.
Hence f = c0 ∈ K \ {0} does not admit any roots.

Now assume that f admits a root. Write f = cn
∏n

i=1(X − ai) with ai ∈ K̃. Define
g :=

∏
i∈I(X − ai) ∈ O(K̃,v)[X] where I = {i | 1 ≤ i ≤ n ∧ vai ≥ 0}. We have that f = gh

with h ∈ O(K̃,v)[X] by virtue of Gauß’ Lemma. By definition, all roots of h have value < 0,

showing that h is a constant. It is a nonzero element in K since it is the leading coefficient
of f 6= 0. Consequently, with c := h ∈ K,

f = c
∏
vai≥0

(X − ai)

which shows that the residue map establishes the asserted bijection. �

5.3 Newton polygons

5.4 Continuity of roots

We are now going to prove what is called the “continuity of roots”. We need some easy
observations.

Lemma 5.8 Let a be a root of the polynomial (5.5). Then vf − vcn ≤ 0, and

vc0 − (n− 1)(vf − vcn) ≥ va ≥ min
1≤j≤n

vcn−j − vcn
j

≥ vf − vcn .

Proof: Since vf − vcn = c−1
n f is the value of a monic polynomial, it is ≤ 0. So

if 1
j
(vcn−j − vcn) ≥ 0, then 1

j
(vcn−j − vcn) ≥ vf − vcn . If 1

j
(vcn−j − vcn) < 0, then

1
j
(vcn−j − vcn) > vcn−j − vcn ≥ vf − vcn by definition of vf . Now the lower bounds for va

follow from part c) of Lemma 5.6. Now let a1 = a, a2, . . . , an be all roots of f . By what
we have just proved, vai ≥ vf − vcn for all i. Consequently, vc0 = v

∏n
i=1 ai =

∑n
i=1 vai ≥

va+ (n− 1)(vf − vcn). This gives the upper bound for va. �
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Lemma 5.9 Let a be a root of the monic polynomial f ∈ K[X]. Further, let g ∈ K[X] be
of degree n = deg f . Then

vg(a) ≥ nvf + v(f − g) .

If v(f − g) > 0, then there is a root b ∈ K̃ of g such that

v(a− b) ≥ vf +
v(f − g)

n
. (5.6)

Proof: Write g(X) =
∑n

i=1 c
′
iX

i. Then vg(a) = v(g(a) − f(a)) = v
∑n

i=1(c
′
i − ci)ai ≥

mini(v(c′i−ci)+iva) ≥ mini v(c′i−ci)+mini iva ≥ v(g−f)+min0≤i≤n ivf = v(f−g)+nvf
because vf ≤ 0.

Now we write g(X) = c′n
∏n

i=1(X − bi) with bi ∈ K̃. By what we have just proved,
nvf + v(f − g) ≤ vg(a) = vc′n

∏n
i=1(a − bi) = vc′n +

∑n
i=1 v(a − bi). If v(f − g) > 0, then

v(cn − c′n) > 0 and since cn = 1, this implies vc′n = 0. It follows that at least one of the
summands v(a − bi) is ≥ 1

n
(nvf + v(f − g)) = vf + 1

n
v(f − g). We choose such an i and

set b := bi . �

Lemma 5.10 Assumptions as in the foregoing lemma. Let v(f − g) > 0 and choose b as
in that lemma. Then

v

(
f(X)

X − a
− g(X)

X − b

)
≥ 2vf +

v(f − g)

n
.

Proof: Since the value of the normed polynomial (X − a)(X − b) is ≤ 0, we have that

v

(
f(X)

X − a
− g(X)

X − b

)
= v (f(X)(X − b)− g(X)(X − a))− v(X − a)(X − b)

≥ v (f(X)(X − b)− g(X)(X − a))

≥ min{v ((f(X)− g(X))X) , v (f(X)b− g(X)a)} .

In view of vX = 0, we find that v ((f(X)− g(X))X) = v(f − g). Further, let us write
f(X)b− g(X)a = f(X)b− f(X)a + f(X)a− g(X)a. Consequently, v(f(X)b− g(X)a) ≥
min{v (f(X)b− f(X)a) , v (f(X)a− g(X)a)} = min{vf + v(b − a), v(f − g) + va)}. In
view of the foregoing lemmata, we thus obtain that

v

(
f(X)

X − a
− g(X)

X − b

)
≥ min{v(f −g), vf +vf +

v(f − g)

n
, v(f −g)+vf} = 2vf +

v(f − g)

n

since v(f − g) > 0 by assumption and vf ≤ 0 because f is monic. �

Theorem 5.11 (Continuity of roots)
Let (K, v) be an arbitrary valued field, 0 ≤ α ∈ vK and f, g ∈ K[X]. Let deg f = deg g = n
and cn , c

′
n be the leading coefficients of f and g respectively. If

v(f − g) > β with β = nnα− 3nn(vf − vcn) + vcn , (5.7)

then we can write f = cn
∏n

i=1(X − ai) and g = c′n
∏n

i=1(X − bi) with ai, bi ∈ K̃ in such a
way that v(ai − bi) > α for 1 ≤ i ≤ n.
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Proof: Condition (5.7) can also be read as v(c−1
n f − c−1

n g) > nnα − 3nnvc−1
n f , with

c−1
n f a monic polynomial. Since the roots do not change when the polynomial is multiplied

with a constant, it thus suffices to prove our assertion under the assumption that f be
monic. Then in particular, vcn = 0 and vf ≤ 0. We use induction on some enumeration
of the roots of f . We set f1 := f and g1 := g (in this proof, the indeces will not indicate
derivatives). After taking the first root a1 and finding a root b1 of g such that v(a1−b1) > α,
we repeat the procedure with f2 := f1/(X − a1) and g2 := g1/(X − b1). Having found the
pair ai , bi of roots of the polynomials fi , gi , we define fi+1 := fi/(X − ai) and gi+1 :=
gi/(X − bi). We continue until we arrive at the linear polynomials fn , gn . Note that
vfi+1 = vfi − v(X − ai) ≥ vfi . Since deg fi = n− i + 1, the foregoing lemma shows that

v(fi+1 − gi+1) ≥ 2vfi + v(fi−gi)
n−i+1

≥ 2vf + v(fi−gi)
n−i+1

. By induction on i, we find that vfi ≥ vf
and that

v(fi+1 − gi+1) ≥ 2vf +
2vf

n− i+ 1
+ . . .+

2vf

(n− 1) · . . . · n− i+ 1
+

v(f − g)

n · . . . · n− i+ 1
.

Since vf ≤ 0 and v(f − g) ≥ 0, all of these values are ≥ 2nvf + v(f−g)
n!

.
Note that every fi is monic. So we may employ Lemma 5.9 to determine a condition

which guarantees that we find a root bi of gi which satisfies v(ai − bi) > α. This condition
is that vfi + 1

n−i+1
v(fi − gi) be > α and that v(fi − gi) be > 0. If the latter holds,

then the former is satisfied if vfi + 1
n
v(fi − gi) > α. Now we can use the lower bounds

that we have computed for vfi and v(fi − gi). We find that our condition is satisfied if

vf + 1
n
(2nvf + v(f−g)

n!
) > α. This is equivalent to v(f − g) > n!(nα− 3nvf). If this holds,

then we also have that v(fi − gi) ≥ 2nvf + v(f−g)
n!

> nα − nvf ≥ nα ≥ 0, because vf ≤ 0
and α was assumed to be ≥ 0. Since nn ≥ n! ·n for every n and α− 3vf ≥ α ≥ 0, we have
that nnα− 3nnvf ≥ n!(nα− 3nvf). This proves that if v(f − g) > nnα− 3nnvf , then at
every induction step we can find a root bi of g such that v(ai − bi) > α, as required. �

Our condition (5.7) on β may be quite coarse. However, its meaning is that it gives
a value which lies in the convex subgroup of vK generated by the values α, vf and vcn .
This will not essentially change under better estimates. For large enough α, the condition
(5.7) can be replaced by “v(f − g) > nnα”.

The following result has a long history. See N. Shell [SHE], §15, Theorem 1, for a list
of contributors.

Theorem 5.12 Let (K, v) be an algebraically closed valued field. Then its completion
(K, v)c is also algebraically closed.

Proof: It suffices to show that (K, v)c is dense in its algebraic closure since then it follows
that both are equal. So let a be an element of this algebraic closure and f its minimal
polynomial over Kc. Let α ∈ vK̃c be given. From Corollary 6.15 we know that vK̃c|vKc

is algebraic, that is, vK̃c lies in the divisible hull of vKc = vK. Hence after enlarging α if
necessary, we may assume that α ∈ vK (and that α ≥ 0). Since f has coefficients in Kc,
we can find a polynomial g with coefficients in K, monic and of the same degree as f , such
that v(f −g) is bigger than nnα−3nn(vf −vcn)+vcn . Then it follows from Theorem 5.11
that there is a root b of g such that v(a− b) > α. But b ∈ K since K is algebraically closed

by assumption. Hence, K and thus also Kc is dense in K̃c. �
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For the conclusion of this section, let us discuss the case of two polynomials f , g not
having the same degree. For this case, our above proof does not work. But we can trace
this case back to the equal degree case by inverting the variables. Assume that f is given
in the form (5.5) and that g = c′mX

m + . . . + c′0 with m ≥ n and c′m 6= 0. We can also
assume that both c0 and c′0 are nonzero; otherwise, we just replace them by any constants
of value > nnα− 3nn(vf − vcn) + vcn . We can do this also to change the value of c0 if vc0
is higher than this value (we will use this fact later). Now we set

f̃ := c0Y
m + c1Y

m−1 + . . .+ cnY
m−n

g̃ := c′0Y
m + c′1Y

m−1 + . . .+ c′nY
m−n + . . .+ c′m

with Y := 1/X. Then vf̃ = vf and v(f̃ − g̃) = v(f − g). Further, a is a root of f if and
only if a 6= 0 and 1/a is a root of f̃ , and b is a root of g if and only if b 6= 0 and 1/b is a
root of g̃. Note that g̃ does not admit 0 as a root, while 0 appears precisely m−n times as
a zero of f̃ . Assume that v

(
1
a
− 1

b

)
> v 1

a
. Then it follows that v 1

a
= v 1

b
, that is, va = vb.

Using the lower bound vf − vcn for the value va = vb of the root a of f , we find that

v(a− b) = v

(
1

a
− 1

b

)
+ va+ vb ≥ v

(
1

a
− 1

b

)
+ 2(vf − vcn) .

Now let
α′ := α− 2(vf − vcn)

and assume that

v(f − g) = v(f̃ − g̃) > nnα′ − 3nn(vf − vc0) + vc0 . (5.8)

Then by Theorem 5.11, f̃ = c0Y
m−n∏n

i=1(Y −
1
ai

) and g̃ = c′0
∏m

i=1(Y −
1
bi

) such that

v
(

1
ai
− 1

bi

)
> α′ for 1 ≤ i ≤ n, and v

(
0− 1

bi

)
= v 1

bi
> α′ for n + 1 ≤ i ≤ m. It follows

that vbi < 2(vf − vcn) − α for n + 1 ≤ i ≤ m. If v
(

1
ai
− 1

bi

)
> v 1

ai
is satisfied, then

it also follows that v(ai − bi) > α, for 1 ≤ i ≤ n. On the other hand, this condition is
satisfied whenever α − 2(vf − vcn) > −vai for 1 ≤ i ≤ n. Using again the lower bound
vf − vcn for the value of the roots of f , we find that the condition is satisfied whenever
α− 2(vf − vcn) > −(vf − vcn), that is, if α > vf − vcn . But for this, it suffices to assume
that α > 0.

Hence, we have shown that (5.8) yields that we obtain pairs of roots with v(ai −
bi) > α. We have also mentioned that we can replace c0 by another constant of value
> nnα − 3nn(vf − vcn) + vcn =: αf if vc0 is higher than αf . Hence we can substitute
something larger than αf , say α + αf for vc0 on the right hand side of (5.8). After this
substitution, the right hand side of (5.8) will only depend on α, vf and vc0 and will lie in
the convex subgroup generated by them. We have thus proved:

Corollary 5.13 Let (K, v) be an arbitrary valued field and f, g ∈ K[X]. Let n := deg f ≤
m := deg g and cn , c

′
m be the leading coefficients of f and g respectively. Then for every

α ∈ vK, α > 0, there is a value β depending on α, vf and vc0 and lying in the convex
subgroup generated by these values, such that the following holds: If v(f − g) > β, then we
can write f = cn

∏n
i=1(X − ai) and g = c′m

∏m
i=1(X − bi) with ai, bi ∈ K̃ in such a way that

v(ai − bi) > α for 1 ≤ i ≤ n, and vbi < 2(vf − vcn)− α for n+ 1 ≤ i ≤ m.
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Exercise 5.1 Let K = (K, v) be an arbitrary valued field and let a be algebraic with minimal polynomial
f over K. Prove that

a) vTrK(a)|K(a) ≥ mini vai and vNK(a)|K(a) = va1 + . . .+ van ,

c) va ∈ vK if a is separable over K and the value of a is different from the values of the other conjugates
of a.

Exercise 5.2 Let the assumptions be as in Lemma 5.9, with the exception that we allow f to be not monic
and m := deg g to be bigger than deg f . Let cn , c

′
m be the leading coefficients of f and g respectively.

Show that vg(a) ≥ m(vf − vcn) + v(f − g) and that there is a root b of g such that v(a − b) ≥
vf − vcn + 1

mv(f − g) − 1
mvc

′
m . Explain why the latter formula in case of m > n is not appropriate to

describe the growth of v(a− b) in dependence on v(f − g).

Exercise 5.3 Let f be a polynomial of the form (5.5). In order to compute the value of all roots from
the value of the coefficients, repeat the procedure that we have applied to the roots a1, . . . , am of minimal
value, preceding to Lemma 5.6. Cf. the method of Newton polygons as described e.g. in [KOB].

Exercise 5.4 Let (K, v) be a valued field and extend v to K̃. Let (K(a)|K, v) be a finite vs-defectless
extension and f the minimal polynomial of a over K. Show that if g ∈ K[X] of degree deg g = deg f
and if b ∈ K̃ is a root of g, then also (K(b)|K, v) is a finite vs-defectless extension with e(K(b)|K, v) =
e(K(a)|K, v) and f(K(b)|K, v) = f(K(a)|K, v) if v(f − g) is large enough (where v is the Gauß valuation
on K(X) ). Discuss also the case of deg g > deg f . (Hint: choose a standard valuation basis of (K(a)|K, v)
and use the idea of Lemma 6.20.)

Exercise 5.5 Let (K, v) be a valued field and a1, . . . , an ∈ K. Show that for every γ ∈ vK there is some
δ ∈ vK such that the following holds: If b1, . . . , bn ∈ K satisfy v(ai− bi) > δ and if i1, . . . , im ∈ {1, . . . , n},
m ≤ n, then

v

 m∏
j=1

(X − aij )−
m∏

j=1

(X − bij )

 > γ .

Can the condition m ≤ n be dropped?

5.5 Polynomial maps

Take any n ∈ N. For any system f = (f1, . . . , fn) of n polynomials in n variables with
coefficients in K, we denote by Jf (b) its Jacobian matrix at b ∈ Kn. We will denote by
J∗f (b) the adjoint matrix of Jf (b).

Proposition 5.14 a) Take a polynomial f ∈ O[X] and b ∈ O such that

s := f ′(b) 6= 0 .

Then f induces a pseudo-linear map with pseudo-slope s from b+ sM into f(b) + s2M.

b) Take n polynomials in n variables f1, . . . , fn ∈ O[X1, . . . , Xn] and b ∈ On such that

s := det Jf (b) 6= 0

for f = (f1, . . . , fn). If vs = 0, then Jf (b) is a pseudo-companion of f on b +M and f
induces an embedding from b+M into f(b) +M with value map ϕ = id.

In the general case, J∗f (b) f induces a pseudo-linear map with pseudo-slope s from b +
sMn into J∗f (b)f(b) + s2Mn
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Proof: Note that whenever we prove pseudo-linearity, the assertions about the range of
the functions will follow from Proposition ??.

a): For a polynomial f in one variable over a field of arbitrary characteristic, we denote
by f [i] its i-th formal derivative (cf. [KA], [KU4]). These polynomials are defined such that
the following Taylor expansion holds in arbitrary characteristic:

f(b+ ε) = f(b) +

deg f∑
i=1

εif [i](b) . (5.9)

Note that f ′ = f [1]. Since f ∈ O[X], we have that f [i] ∈ O[X]. Since b ∈ O, we also
have that f [i](b) ∈ O. Now take y, z ∈ b + sM. Write y = b + εy and z = b + εz with
εy, εz ∈ sM. Then by (5.9),

f(y)− f(z) = (εy − εz)f ′(b) +

deg f∑
i=2

(εiy − εiz)f [i](b) (5.10)

= s(y − z) + S(b, εy, εz) .

Since

εiy − εiz =

= (εy − εz)(εi−1
y + (i− 1)εi−2

y εz + . . .+ (i− 1)εi−2
y εi−2

z + εi−1
y )

∈ (εy − εz)sM

for every i ≥ 2, and since f [i](b) ∈ O, we find that

S(b, εy, εz) ∈ (εy − εz)sM = s(y − z)M .

This proves that

v(f(y)− f(z)− s(y − z)) = vS(b, εy, εz) > vs(y − z) (5.11)

which implies that (??) holds. This proves a).

b): We write J = Jf (b) and J∗ = J∗f (b). Then JJ∗ = (det J)E = sE where E is the n×n
identity matrix. Note that J, J∗ ∈ On×n by our assumptions on f and b. If y ∈ Kn then
we can write y = cz with c ∈ K, vc = vy, z ∈ On and vz = 0. Then Jy = cJz ∈ cOn,
hence vJy = vc+ vJz ≥ vc = vy. Similarly, vJ∗y ≥ vy for all y ∈ Kn.

Take ε1, ε2 ∈ sMn. The multidimensional Taylor expansion gives the following analogue
of (5.10):

f(b+ ε1)− f(b+ ε2) = J(ε1 − ε2) + S(b, ε1, ε2) (5.12)

with

vS(b, ε1, ε2) > vs(ε1 − ε2) . (5.13)

Assume first that vs = 0. Then also J−1 = 1
s
J∗ ∈ On×n, so for all y ∈ Kn, vJ−1y ≥ vy.

But then, vy = vEy = vJ−1Jy ≥ vJy ≥ vy, so equality must hold. We find that for all
y ∈ Kn, vJy = vy and similarly, vJ∗y = vy. In particular, this yields that J induces a
value-preserving automorphism of the valued abelian group (Mn,+), and an isomorphism
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of ultrametric spaces fromMn ontoMn with value map ϕ = id, with inverse maps induced
by J−1. From (5.12) and (5.13) we obtain that for y = b+ ε1 and z = b+ ε2 in b+M,

v(f(y)− f(z) − J(y − z)) > vs(y − z) = v(y − z) = vJ(y − z) .

This proves that J is a pseudo-companion of f on b+M. From Proposition 2.41 we infer
that f induces an embedding from b +M into f(b) + JM = f(b) +M with value map
ϕ = id.

Now we turn to the general case. We compute:

J∗f(y)− J∗f(z) = J∗(f(b+ y − b)− f(b+ z − b))
= J∗J(y − z) + J∗S(b, y − b, z − b)
= s(y − z) + J∗S(b, y − b, z − b) .

By (5.13),

vJ∗S(b, y − b, z − b) ≥ vS(b, y − b, z − b) > vs(y − z) .

Hence,

v (J∗f(y)− J∗f(z)− s(y − z)) = vJ∗S(b, y − b, z − b) > vs(y − z) .

This proves our assertion for the map J∗f (b) f . �

Note that in the one-dimensional case (n = 1), writing det Jf (b) = f ′(b) and J∗f (b) = 1
makes the definition of f〈b〉 in the one-dimensional case a special case of the definition for
the multi-dimensional case.

If vs > 0 in the multi-dimensional case, then in general Jf (b) will not be a pseudo-
companion of f . It is necessary to transform f in order to obtain suitable pseudo-
companions. We have shown above that this can be done so that one even obtains pseudo-
linear functions.

From Proposition 5.14 together with Propositions ?? and 2.41, we obtain:

Theorem 5.15 Assume that (K, v) is spherically complete.

a) Take a polynomial f ∈ O[X] and b ∈ O such that s := f ′(b) 6= 0. Then f induces
a pseudo-linear isomorphism of ultrametric spaces from b + sM onto f(b) + s2M, with
pseudo-slope s.

b) Take n polynomials in n variables f1, . . . , fn ∈ O[X1, . . . , Xn] and b ∈ On such that
s := det Jf (b) 6= 0 for f = (f1, . . . , fn). If vs = 0, then f induces an embedding of
ultrametric spaces from b+M onto f(b) +M.

In the general case, J∗f (b) f induces a pseudo-linear isomorphism of ultrametric spaces
from b+ sMn onto J∗f (b) f(b) + s2Mn, with pseudo-slope s.

5.6 The Newton Algorithm

Let us introduce and discuss the ultrametric version of the Newton Algorithm which is
known from analysis. We take a valued field (K, v) and a polynomial f(X) ∈ O[X]. From
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the Taylor expansion as given in Lemma 24.59 we infer the existence of some h̃(X,Z) ∈
K[X,Z] such that

f(Z) = f(X) + f ′(X)(Z −X) + (Z −X)2Hf (X,Z) .

Since f has coefficients in O, it follows that Hf (X,Z) ∈ O[X,Z] and f ′(X) ∈ O[X]. Hence
if b, c ∈ O, then vHf (b, c) ≥ 0. If we set

c := b− f(b)

f ′(b)
, (5.14)

then we obtain

f(c) = f(b) + f ′(b)(c− b) + (c− b)2Hf (b, c) = (c− b)2Hf (b, c) ,

whence
vf(c) ≥ 2v(c− b) = 2(vf(b)− vf ′(b)) .

From now on we assume that
vf(b) > 2vf ′(b) ; (5.15)

then we obtain
vf(c) ≥ vf(b) + (vf(b)− 2vf ′(b)) > vf(b) .

Now we wish to iterate the procedure (5.14), that is, we take d and c in place of c and b,
respectively, in (5.14). The question arises whether (5.15) still holds with c in place of b.
By our assumption (5.15), we have that v(c− b) > vf ′(b), so that, by the Taylor expansion
for f ′ as given in Lemma 24.59) and by the ultrametric triangle law,

vf ′(c) = v (f ′(b) + (c− b)Gf ′(b, c)) = min{vf ′(b), v(c− b)Gf ′(b, c)} = vf ′(b) ,

since Gf ′(X, Y ) ∈ O[X, Y ]. So we have, indeed,

vf(c) > vf(b) > 2vf ′(b) = 2vf ′(c) ,

and we obtain
vf(d) ≥ vf(c) + (vf(c)− 2vf ′(c)) > vf(c) .

We set c0 := b and

ci+1 := ci −
f(ci)

f ′(ci)
(5.16)

for all integers i ≥ 0. Then by induction, vf ′(ci) = vf(b),

vf(ci+1) ≥ vf(ci) + (vf(ci)− 2vf ′(b)) ,

vf(ci)− 2vf ′(ci) ≥ vf(b)− 2vf ′(b), and therefore,

vf(ci) ≥ vf(b) + i · (vf(b)− 2vf ′(b)) . (5.17)

Hence if vK is archimedean, then the sequence of values vf(ci) is cofinal in vK, or in
other words, f(ci) becomes arbitrarily close to zero with increasing i. The algorithm can
be seen as a successive refinement of the tentative root b. However, the question whether
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this algorithm converges will only make sense if we can show that the refinements ci form a
Cauchy sequence — or at least a pseudo Cauchy sequence in case vK is not archimedean.
But this is clear, as

v(ci+1 − ci) = vf(ci)− vf ′(ci) = vf(ci)− vf ′(b)

and these values are strictly increasing with i.
Suppose that a is a limit of the (pseudo) Cauchy sequence (ci)i∈N . That is, v(a− ci) =

v(ci+1 − ci) for all i. We compute, using the Taylor expansion as given in Lemma 24.59,

vf(a) = v (f(ci) + (a− ci)Gf (a, ci)) ≥ min{vf(ci), v(a− ci)Gf (a, ci)}
= min{vf(ci), v(ci+1 − ci)Gf (a, ci)} = min{vf(ci), vf(ci)− vf ′(b) + vGf (a, ci)}
≥ vf(ci)− vf ′(b) .

If vK is archimedean, then this means that vf(a) =∞, that is, f(a) = 0. Hence if (K, v)
is complete of rank 1, then the limit a exists and is a root of f . Further, v(a − b) =
v(a− c0) = v(c1 − c0) = vf(b)− vf ′(b) > vf ′(b). We summarize:

Theorem 5.16 Take a complete field (K, v) of rank 1, f ∈ O[X] and b ∈ O such that
vf(b) > 2vf ′(b). Then the Newton Algorithm converges to a root a of f which satisfies
v(a− b) > vf ′(b).

If (K, v) is not of rank 1, then a may not be a root of f . One could start the algorithm
again, with a in place of b. If (K, v) is spherically complete, then by a transfinite induction
one obtains a pseudo Cauchy sequence indexed by some limit ordinal, having a limit which
is a root of f . In order to avoid transfinite induction, one can use much more elegant
approaches, such as using fixed point theorems or our own approach which considers poly-
nomials as maps on the valued field (as detailed in the previous section). The use of these
approaches for finding roots of polynomials will be discussed in Section 9.2.

For the conclusion of this section, we show that the algorithm can be simplified by
replacing f ′(ci) by the constant f ′(b). Then our recursion reads as follows:

ci+1 := ci −
f(ci)

f ′(b)
. (5.18)

With b, c as above, we have that

f ′(c) = f ′(b) + (c− b)Gf ′(b, c)

If we set

d′ := c− f(c)

f ′(b)
,

then

f(d′) = f(c) + f ′(c)(d′ − c) + (d′ − c)2Hf (c, d
′)

= f(c) + f ′(b)(d′ − c) + (c− b)Gf ′(b, c)(d′ − c) + (d′ − c)2Hf (c, d
′)

(d′ − c)[(c− b)Gf ′(b, c) + (d′ − c)Hf (c, d
′)] ,



5.6. THE NEWTON ALGORITHM 135

whence

vf(d′) = v(d′ − c) + v ((c− b)Gf ′(b, c) + (d′ − c)Hf (c, d
′))

≥ vf(c)− vf ′(b) + min{vf(b)− vf ′(b) + vGf ′(b, c) , vf(c)− vf ′(b) + vHf (c, d
′)}

≥ vf(c)− vf ′(b) + min{vf(b)− vf ′(b) , vf(c)− vf ′(b)} = vf(c) + vf(b)− 2vf ′(b)

> vf(c) .

It follows that we again obtain the estimate (5.17). So Theorem ?? remains true when the
recursion formula (5.14) is replaced by (5.18). However, the convergence will in general not
be as good as in the original Newton Algorithm. Indeed, we leave it as an exercise to the
reader to show that with the recursion (5.14), the i in the estimate (5.17) can be replaced
by 2i+ 1.

Remark 5.17 For the usual Newton method of calculus it is also known that one can work with a fixed
denominator, although as in the ultrametric case convergence may not be as fast. Note that one may
even replace f ′(b) by any element c′ such that v(f ′(b)− c′) > vf ′(b). This is why the refinement (9.2) in
Section 9.2 works with denominator 1.

Exercise 5.6 Take any field k and any prime p. Consider the polynomial Xp−X− t over the field k((t)).
Apply the Newton Algorithm with both recursion formulas. Assuming that p = char k, express the root
obtained by the algorithm as a power series in k((t)). What happens if the polynomial Xp − X − t is
replaced by the polynomial Xp −X − 1/t?


