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Chapter 4

Valued fields

4.1 Valuations, valuation rings and places

4.1.1 Field valuations

Let K be a field and v : K 3 x 7→ vx ∈ Γ∞ a valuation of its additive group (K,+, 0).
Suppose that Γ also admits an addition + such that (Γ,+, 0, <) is an ordered abelian
group. We extend the connective + to Γ∞ by setting ∞ + α = α +∞ = ∞ +∞ = ∞,
and the ordering by α < ∞, for every α ∈ Γ. Then the group valuation v is called a
valuation of the field K if it is a homomorphism from the multiplicative group of K
onto the additive group Γ. Hence, a map v : K 3 x 7→ vx ∈ Γ∞ is a valuation of K if it
satisfies

(V0) vx =∞⇐⇒ x = 0 ,

(VT) v(x− y) ≥ min{vx, vy} ,

(VH) v(xy) = vx+ vy .

for all x, y ∈ K. In this case, (K, v) is called a valued field, and vK := {vc | 0 6= c ∈ K}
is called the value group of (K, v) (it follows from (VH) that vK is a subgroup of Γ,
hence it is itself an ordered abelian group, and ∞ > vK). Henceforth, we will write vK∞
in the place of Γ∞.

We occasionally use K and L to denote valued fields (K, v) and (L, v), respectively.
From (VH), we obtain v1 = v(1 · 1) = v1 + v1, which implies v1 = 0. With this, (VH)

gives vx+ vx−1 = 0 as a rule for inverses. So every field valuation satisfies

(V1) v1 = 0 ,

(VI) vx−1 = −vx .

Recall also the properties (VS), (V 6=), (V=) and (VM) that v has since it is a group
valuation. Equivalence of valuations is defined as in the case of group valuations, but here
the isomorphism between the value sets is required to be an isomorphism of ordered abelian
groups. A valuation is said to be trivial on K if vK = {0}. Further, we define the rank
of (K, v) to be the rank of the value group vK. So (K, v) is of rank 1 if and only if vK is
archimedean.

It follows from (VT) and (VH) that

Ov := {x ∈ K | vx ≥ 0}
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is a subring of K, called the valuation ring of (K, v) (or: the valuation ring of v). If
several fields are around, we will also write OK or OK.

Again by (VT) and (VH),

Mv := {x ∈ K | vx > 0}
is an ideal of O, called the valuation ideal of (K, v) (or: valuation ideal of v). We will
also writeMK orMK. Later, when there is no danger of confusion, we sill drop subscripts
and write O and M.

Now Ov \Mv is the set of elements of value 0, and in view of (VI), these are precisely
the elements which are invertible in Ov. So we find that Mv is the unique maximal ideal
of Ov, i.e., Ov is a local ring. SinceMv is maximal, Ov/Mv is a field, called the residue
field of (K, v). We denote it by Kv or K. The canonical epimorphism

Ov −→ Ov/Mv = Kv

is called the residue map of (K, v). The image a +Mv of an element a ∈ Ov will be
denoted by av or a and called the residue of a. We observe that

av = 0 ⇐⇒ a ∈Mv ⇐⇒ va > 0 .

Two valuations v1 and v2 on a field K are called equivalent if there is an order
preserving isomorphism ϕ : v1K → v2K such that v2a = ϕ(v1a) for all a ∈ K×. Since
ϕ(α) ≥ 0 ⇔ α ≥ 0, we see that equivalent valuations v1, v2 have the same valuation ring
Ov1 = Ov1 . If there is no danger of confusion, we will identify equivalent valuations.

The characteristic of the field Kv is called the residue characteristic of (K, v). If
charK = p > 0, then the residue characteristic is also equal to p. Indeed, if p · 1 equals
0 in K, then the same is true in Ov and thus also in the residue field Ov/Mv. In other
words: if charK > 0 then charKv = charK. But there is also the mixed characteristic
case where charK = 0 and charKv > 0, as we will see in the next section.

By (VI), an element a ∈ Ov is a unit in Ov if and only if va = 0 (and this in turn is
equivalent to av 6= 0). Thus, the kernel the group homomorphism v : K× → vK is the
multiplicative group O×v of all units in Ov. So we have an isomorphism

K×/O×v ∼= vK .

An element with residue 1 is called a 1-unit, and we observe that the inverse of a 1-unit is
again a 1-unit. Note that 1 +Mv is the multiplicative group of all 1-units. The elements
a, a′ ∈ O×v have the same residue if and only if a/a′ is a 1-unit. Consequently, the residue
map, being a homomorphism from the multiplicative group O×v onto the multiplicative
group Kv× with kernel 1 +Mv, induces an isomorphism

O×v /1 +Mv
∼= Kv× .

From (VI), we see that the elements of negative value are precisely the inverses of the
elements inMv. Since the residue map sends every element inMv to 0, an extension of it
to all of K should send every element of negative value to “1

0
”, an element not contained

in Kv which we will denote by ∞ (there is not too much danger of a confusion with the
maximal element ∞ which we adjoin to value sets). Now this extension is a map Pv from
K onto Kv ∪ {∞}. It is called the place associated with v. We will also denote it by
PK , PK or just P . It is customary to write the application of a place from the right, that
is, for a ∈ K, its image under Pv is denoted by aPv. In this spirit, the residue field Kv can
also be written as KPv. Note that as we did with value sets, we exclude ∞ from KPv .
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4.1.2 Places

Suppose that R is a subring of its quotient field K and f is a homomorphism from R into
any field L. Then f can be extended to a homomorphism from K into L if and only if f
is injective. If f is not injective, then there is 0 6= r ∈ R such that f(r) = 0, so 1/r cannot
be sent to any element in L. We have seen this case already above, where we chose to send
1/r to ∞. This led to the notion of a place.

We axiomatize places as follows. A map P : K → KP ∪ {∞} is a place of K if KP
is a field and there exists a subring OP of K such that

(PH) P is a homomorphism from OP onto KP , and (K \ OP )P = {∞} ,

(PI) ∀x ∈ K× : xP = 0 ⇐⇒ 1
x
P =∞ .

The ring OP is called the valuation ring of P . Note that axiom (PH) yields that there
is some element a ∈ K such that aP 6= 0,∞. Axiom (PH) implies that

OP = {a ∈ K | aP 6=∞} ;

moreover, we deduce:

aP 6= 0,∞ =⇒ a, 1
a
∈ OP ∧ 1

a
P 6= 0,∞ . (4.1)

If (K, v) is a valued field and Pv is the place associated with v, then with OPv = Ov, it
satisfies axioms (PH) and (PI).

Two places P1 and P2 of K are called equivalent if there is a field isomorphism σ :
KP1 → KP2 such that aP2 = σ(aP1) if aP1 6=∞ and aP2 =∞ if aP1 =∞. It then follows
that aP1 = ∞ ⇔ aP1 = ∞, that is, equivalent places P1 and P2 have the same valuation
ring OP1 = OP2 . As we do for valuations, we will identify equivalent places if there is no
danger of confusion. A place is said to be trivial on K if it is an isomorphism on K, that
is, if it is equivalent to the identity on K.

4.1.3 Valuation rings

We have already met the concept of a valuation ring in connection with valuations and
places, so we will axiomatize it now. A subring O of a field K is called a valuation ring
of K if it is a non-trivial and satisfies

(VR) ∀x 6= 0 : x ∈ O ∨ 1
x
∈ O .

Suppose that (K, v) is a valued field and OP is the valuation ring associated with v.
For every x ∈ K× we have that vx ≥ 0 or vx−1 = −vx ≥ 0. Hence x ∈ OP or x−1 ∈ OP ,
showing that OP satisfies axiom (VR).

Note that (VR) implies that 1 ∈ O and that K is the quotient field of O. LetM be the
subset of all non-units in O. We show thatM is a maximal ideal of O. Let a and b 6= 0 be
non-units in O. By (VR), we can assume w.l.o.g. that a

b
∈ O, hence also a+b

b
= 1 + a

b
∈ O.

If a + b were a unit in O then it would follow that 1
b
∈ O, contradicting the assumption

that b is not a unit. Further, for every c ∈ O, also ca is a non-unit because if ca were
invertible, the same would hold for a. We have shown that M is an ideal of O. Since
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O\M contains only units, every proper ideal of O must be contained inM, showing that
M is the unique maximal ideal of O. That is, O is a local ring. By definition of M,

∀x 6= 0 : x ∈ K \ O ⇐⇒ 1

x
∈M . (4.2)

Every valuation ring O is already uniquely determined by its maximal ideal M since
O = K \ {x−1 | 0 6= x ∈M}.

Let us state a few properties of valuation rings:

Lemma 4.1 Take a valuation ring O of a field K. Then the following facts hold.

a) O is integrally closed in K.

b) Every overring of O in K is again a valuation ring.

c) The set of overrings of O in K is linearly ordered by inclusion.

d) The set of ideals and the set of fractional ideals of O are linearly ordered by inclusion.

e) The ordering defined by aO× ≤ bO× :⇔ bO ⊆ aO turns K×/O× into an ordered
abelian group. Its positive cone is {aO× | a ∈ O}.
f) The map

vO : K× −→ K×/O×

becomes a valuation on K when we set vO0 := ∞, which is taken to be an element larger
than all elements in K×/O×.

Proof: a): Let O be a valuation ring of K and P the associated place. Further, let
x ∈ K be an element which is integrally dependent on O, that is, there are elements
a0, . . . , an−1 ∈ O such that xn + . . .+ a0 = 0. Dividing by xn, we obtain

1 = −an−1

(
1

x

)
− an−2

(
1

x

)2

− . . .− a0

(
1

x

)n
.

If x /∈ O, then 1
x
∈ M and thus 1

x
P = 0. Applying P to the above equation, we find

1 = 1P = 0, a contradiction. This shows x ∈ O and proves that O is integrally closed.

b): If (VR) holds for O, then it holds for every subset of K that contains O.

c): Suppose that O1 and O2 are overrings of O in K, and that a ∈ O1 \ O2 . We wish
to show that O2 ⊂ O1 . Take b ∈ O2 . Then a/b /∈ O because otherwise, a/b ∈ O ⊆ O2

and a = b · (a/b) ∈ O2 , a contradiction. Since O is a valuation ring, it follows that
b/a ∈ O ⊆ O1 and b = a · (b/a) ∈ O1 .

d): Take two (possibly fractional) ideals I1 and I2 of O and suppose that a ∈ I1 \ I2 . We
wish to show that I2 ⊂ I1 . Take b ∈ I2 . Then a/b /∈ O since otherwise, a = b · (a/b) ∈ I2 .
Hence, b/a ∈ O, which yields that b = a · (b/a) ∈ I1 .

e): The fact that this is a linear ordering follows from part d). The compatibility of the
ordering with the group operation follows from the fact that bO ⊂ aO implies that cbO ⊂
caO. The neutral element in K×/O× is 1O×, and 1O× ≤ aO× ⇔ aO ⊆ 1O = O ⇔ a ∈ O,
which proves our assertion on the positive cone.

f): Axioms (V0) and (VH) hold by definition. If bO ⊂ aO then (a−b)O ⊂ aO−bO ⊂ aO.
That is, bO ≥ aO implies that (a− b)O ≥ aO, proving that vO satisfies (VT). �
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4.1.4 Valuation — valuation ring — place

We have already seen how to associate a valuation ring and a place to every valuation,
and a valuation to a valuation ring. Further, we have seen that equivalent valuations
have the same valuation ring. Further, we have associated valuation rings to places and
observed that equivalent places have the same valuation ring. In fact, the three concepts
of valuation, valuation ring and place are completely interchangeable, up to equivalence.
We will now fill in the missing details.

First, we shall show that two valuations v1 and v2 on a field K are equivalent if their
valuation rings Ov1 and Ov2 are equal. The idea is to set ϕ(v1a) = v2a for a ∈ K×; we have
to show that this is well-defined. So pick b ∈ K× such that v1a = v1b. Then a/b and b/a are
both elements of Ov1 = Ov2 , whence v2a = v2b. By definition, we have that v2a = ϕ(v1a)
for all a ∈ K×. We have to show that ϕ : v1K → v2K is an isomorphism of ordered abelian
groups. We have ϕ(v1c + v1d) = ϕ(v1cd) = v2cd = v2c + v2d = ϕ(v1c) + ϕ(v1d), hence ϕ
is a group homomorphism. If v1c < v1d, then d/c ∈ Ov1 = Ov2 but c/d /∈ Ov1 = Ov2 , i.e.,
v2c < v2d. This shows that ϕ preserves the ordering and is injective. Clearly, ϕ is also
surjective.

In part f) of Lemma 4.1 we have associated a valuation vO to a given valuation ring
O with value group K×/O×. According to part f) of the same lemma, the non-negative
elements in this value group are precisely the images of the elements in O. This shows that
the map v 7→ Ov is the left inverse of the map O 7→ vO . Modulo equivalence, it is also
its right inverse because two valuations with the same valuation ring are equivalent, as we
have already shown. So we can assign to every equivalence class of valuations the unique
valuation ring of all the valuations contained in the class, and to every valuation ring O
the equivalence class of all valuations equivalent to vO . Then these two maps are inverses
of each other.

Turning to places, we first wish to show that two places P1 and P2 are equivalent if
they have the same valuation ring. Note that OP1 = OP2 impliesMP1 =MP2 because the
maximal ideals are unique. The places P1 and P2 induce isomorphisms σi : OPi/MPi →
KPi, i = 1, 2. We set σ := σ2σ

−1
1 . Then aP2 = σ(aP1) if aP1 6= ∞. If aP1 = ∞ then

a /∈ OP1 = OP2 and hence aP2 =∞. This proves that P1 and P2 are equivalent.

Given a place P on a field K, how do we associate a valuation? One way is to take its
valuation ring OP and construct a valuation from it, as we have done above. An alternative
way is to associate a relation first. Define

a v b :⇐⇒ a 6= 0 ∧ b
a
P 6=∞ . (4.3)

This relation is called valuation divisibility relation. Instead of a v b we will prefer
to write va ≤ vb, even if we formally work with the relation. We derive an equivalence
relation by setting a ∼P b :⇔ a v b∧ b v a. The set of equivalence classes can be ordered by
setting a/∼P ≤ b/∼P if a v b . Observe that ∞ := 0/∼P is the maximal element of the so
obtained ordered set. We introduce addition on the set of all equivalence classes 6= 0/∼P
by a/∼P +b/∼P := ab/∼P . We leave it to the reader to show that we have obtained an
ordered abelian group Γ and a valuation v : K 3 a 7→ a/∼P ∈ Γ∞.

Given a valuation ring O of the field K, we now wish to show how to obtain a place
to which it is the associated valuation ring. Since M is a maximal ideal, O/M is a
field. The canonical epimorphism PO : O → O/M =: KPO, extended to K by setting
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(K \ O)PO = {∞}, satisfies (PH) with OPO = O. By definition of M and (VR) we have
x ∈ M ⇔ 1

x
∈ K \ O, showing that PO satisfies (PI). We have obtained a map from the

set of all valuation rings to the set of all places, with the map P 7→ OPO as its left inverse.
Modulo equivalence, it is also its right inverse because two places with the same valuation
ring are equivalent, as we have already shown. So we can assign to every equivalence class
of places the unique valuation ring of all the places contained in the class, and to every
valuation ring O the equivalence class of all places equivalent to PO . Then these two maps
are inverses of each other.

We have now shown that the three concepts “valuation”, “place” and “valuation ring”
are interchangeable. Every valuation ring corresponds to precisely one equivalence class
of valuations and precisely one equivalence class of places. The valuation ring is a proper
subring of K if and only if the associated valuation is non-trivial on K, which is the case
if and only if the associated place is non-trivial on K.

The arrows in the following picture are bijections:{
equivalence classes

of valuations

}
←→ {valuation rings} ←→

{
equivalence classes

of places

}
Exercise 4.1 In order to define an ordering on K×/O× in an alternate way, take P to be the image of
O \ {0} under the epimorphism v : K× −→ K×/O× and show that P is a positive cone.

4.1.5 Embeddings and extensions

As for valued groups, we define an embedding of valued fields to be a field embedding
which preserves the valuation divisibility relation vx < vy. That is, ι : (K, v) → (K ′, v′)
is an embedding of valued fields if it is an embedding of K in K ′ and satisfies

vx < vy ⇔ v′ιx < v′ιy .

In analogy to the case of abelian groups, the reader may show that such an embedding
induces an embedding ρ : vK → vK ′ and an embedding σ : K → K ′ satisfying

vιa = ρva and ιa = σa for all a ∈ K .

If this holds, then we say that ι preserves ρ and σ (or induces ρ and σ). If ι is an
isomorphism, then so are ρ and σ.

If ι is a field embedding of K in K ′ and v is a valuation of K ′, then vι : K → vK ′∞,
x 7→ v(ιx), is a valuation of K. Its valuation ring is ι−1Ov and its valuation ideal is
ι−1Mv. Value group and residue field of v and vι coincide. Moreover, ι : (K, vι)→ (K ′, v)
is an embedding of valued fields. If P is a place of K ′, then the map P ι : K → K ′P∞,
x 7→ (ιx)P , is a place of K ′. Its associated valuation is vP ι = (vP )ι. Note that P ιι′ = (P ι)ι

′
.

Let k be a common subfield of K and K ′ and ι an embedding of K in K ′ over k. If v is an
extension of a valuation v′ from k to K ′, then vι is an extension of v′ from k to K. If P
is a place of K|k and ι is an automorphism of K|k, then P ι is again a place of K|k. The
proof of these facts is left to the reader. See also Exercise ?? below.

If L|K is a field extension, w is a valuation on L and v is a valuation on K, then we
call (K, v) ⊆ (L,w) (also written as (L,w)|(K, v)) an extension of valued fields and w
an extension of v from K to L if the restriction of w to K, denoted by w|K , coincides
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with v. In this case, vK is naturally a subgroup of wL, and we leave it to the reader to
prove that Kv 3 av 7→ aw is an embedding of Kv in Lw. Later, whenever we are dealing
with only one extension we will denote the valuation on L also by v. Then, the extension
will also be denoted as (L|K, v).

Since the axioms for a valuation are universal, the restriction of a valuation v of L to
a subfield K of L is again a valuation. Hence, (L|K, v) is a valued field extension once we
take the valuation on K to be the restriction of v to K.

If Q is a place on L and P a place on K, then we write (K,P ) ⊆ (L,Q) or (L,Q)|(K,P )
and say that Q is an extension of P from K to L if Q|K = P . In this case, KP is
naturally a subfield of LQ, and we leave it to the reader to prove that vK 3 va 7→ wa is
an embedding of vK in wL.

As to the valuation rings, it is not true that (L,w)|(K, v) is a valued field extension if
Ow ⊃ Ov . Analyzing our construction of places from valuation rings, we see that it is a
crucial point to set xP = ∞ for all x /∈ O. So the required condition is Ow ∩ K = Ov.
In view of (4.2), this condition is equivalent to Mw ∩ Ov = Mv. This gives rise to the
following definition. Let O,O′ be local rings with maximal ideals M,M′ respectively.
Then we will say that O lies above O′ if O ⊇ O′ andM∩O′ =M′. The latter condition
can as well be replaced by the conditionM⊇M′. Indeed, O′ \M′ consists only of units,
and these cannot be elements ofM. This shows that O ⊃ O′ together withM⊃M′ will
imply M∩O′ =M′. We have: (L,w)|(K, v) is a valued field extension if and only if Ow
lies above Ov.

Take an arbitrary extension (L|K, v) of valued fields. Then associated with it we have
two other extensions: the one of their value groups vL ⊃ vK, and the one of their residue
fields L|K. The study of valued field extensions consists to a great extent of the study of
the relation between these three extensions.

The same is true for the restriction of places and valuation rings, but some further
remarks are necessary. Given a field extension L|K and places Q on L and P on K, then
we will say that Q is an extension of P from K to L if the restriction of Q to K
coincides with P . The reader may show that this is the case already when the restriction
of Q to OP coincides with P . If a place Q on L is given, then the restriction P of Q to K
is always a place on K. Indeed, if we set OP := OQ ∩K, then OP is a subring of K and P
is a homomorphismon OP . Since K \OP ⊆ L \OQ, we also have that (K \OP )P = {∞}.
Further, it is clear that (PI) is satisfied.

As it is the case with (PI), it is also clear that if OL is a valuationring on L, then the
subring OL ∩ K of K will satisfy (VR) and will thus be a valuation ring of K. We say
that a valuation ring OL is an extension of the valuation ring OK of K if OL ∩K = OK .
For this to hold it does not suffice that OL ⊇ OK . Indeed, we could have OL = L but
OK ⊂6= K, in which case OL ∩K = K 6= OK .

From the theory of local rings the following notion is well-known. Let O,O′ be local
rings with maximal ideals M,M′ respectively. Then we will say that O lies above O′ if
O ⊃ O′ and M∩O′ =M′. The latter condition can as well be replaced by the condition
M ⊃ M′. Indeed, O′ \ M′ consists only of units, and these can not be elements of M.
This shows that O ⊃ O′ together with M⊃M′ will imply M∩O′ =M′.

Once we have that OL ⊇ OK , the condition OL ∩ K = OK becomes equivalent to
K \ OK ⊆ L \ OL, which by (4.2) is equivalent to MK ⊆ ML . So we see that OL is an
extension of OK if and only if it lies above OK .

We will study the relation between extensions of valuations, places and valuation rings
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in more detail in Section 6.1.

4.2 Examples of valued fields

In this section, we give several basic examples of field valuations.

4.2.1 Valuations on a rational function field k(x)

Let k be a field and k(x) the rational function field in one variable over k. Many mathe-
maticians will remember that in their schooldays they were (more or less) tortured with the
discussion of the properties of suitably chosen rational functions (with real coefficients).
One task was to determine the zeros, poles and their orders. Now for every a ∈ k we define
a map vx−a : k(x) → Z by taking vx−ar(x) to be the zero order of r(x) at a if a is not a
pole of r(x), or otherwise to be the negative pole order of r(x) at a (take a representation
of r(x) with relatively prime numerator and denominator so that removable singularities
do not interfere). For example, vx−a(x − a) = 1, vx−a(

1
(x−a)2

) = −2, vx−b(x − a) = 0 if

b 6= a. Hence, the valuation ring is O = {r(x) | r(x) has no pole at a} and its maximal
ideal is M = {r(x) ∈ O | r(a) = 0}, which is just the ideal generated by the polynomial
x − a. Consequently, the residue map sends x to the same residue class as a. Further, k
is contained in O, which yields that k× ⊂ O× and vx−a(k

×) = {0} and that the residue
map acts on k as an isomorphism (which is induced on k by the natural epimorphism
O → O/M). Composition of the residue map with the inverse of this isomorphism shows
that modulo equivalence, the associated place Px−a can be chosen to act as the identity on
k. Hence, Px−a can be understood to be the evaluation map which sends r(x) to r(a),
and we have k(x)Px−a = k. Note that Px−a sends x − a to 0. If r(x) has a pole at a, the
place Px−a will send it to ∞.

Traditionally, the application of a place P is written in the form g 7→ gP , where instead
of gP also g(P ) was used in the beginning, reminding of the fact that P originated from
an evaluation map. If one translates the German “g an der Stelle a auswerten” literally,
one gets “evaluate g at the place a”, which explains the origin of the word “place”.

Let p(x) be any irreducible polynomial in k[x]. Since k[x] admits unique factorization,
we can write every polynomial f(x) 6= 0 in the form pn(x)g(x) with g(x) prime to p(x).
Define vp(x)f(x) = n and v0 = ∞. In view of (VH), this determines the value of every
rational function. Then vp(x) is a valuation: (V 0) holds by our definition, and (VH) is an
easy consequence. To show (VT), let r(x), s(x) ∈ k(x). After multiplication by a suitable
polynomial, it suffices to show (VT) under the assumption that r, s are polynomials. Now
we only have to observe that if r, s are both divisible by pn(x), then so is r − s. We have
shown that vp(x) is a valuation. It is called the p(x)-adic valuation. The elements of value
≥ 0 are those rational functions which can be written as a quotient of two polynomials,
the one in the denominator being prime to p(x). Consequently, the valuation ring of vp(x)

is the localization k[x](p(x)) = {f(x)
g(x)
| f(x), g(x) ∈ k[x] and g(x) is prime to p(x)}. The

valuation ideal is the ideal generated by p(x). The associated place Pp(x) sends p(x) to 0.
The residue field is k(x)Pp(x) = k[x](p(x))/(p(x)) = k[x]/(p(x)) (for the last equality, see the
corresponding argument in the next example).

Besides these valuations vp(x) there exists v∞ with associated place P∞ which sends 1
x

to 0 (do you remember from your schooldays how to compute the asymptotic behaviour
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of r(x) for x → ∞?). P∞ is called the place at infinity. To compute v∞r(x), write
r(x) = 1

x

n f0
g0

where f0 and g0 are polynomials in 1
x

with non-vanishing constant terms

(hence P∞ sends them neither to 0 nor to ∞). Then v∞r(x) = n. If r(x) = f(x)
g(x)

with
suitable polynomials f, g, then you will find that n = deg g − deg f .

Let us determine all valuations v of k(x) which are trivial on k, or equivalently, all
places P of k(x) which are isomorphisms on k. Assume that P is non-trivial and xP 6=∞.
Then k[x] ⊂ O, and M∩ k[x] will be a non-trivial prime ideal of k[x]. Since k[x] is a
principle ideal domain, this ideal is generated by one element p(x) ∈ k[x], and since the
ideal is prime, p(x) is irreducible. By virtue of p(x) ∈ M, we have p(x)P = 0. Since a
place is (up to equivalence) determined by the valuation ideal, it follows that P = Pp(x)

and thus, vP = vp(x).

Now assume that let xP =∞. Then by (VI), 1
x
P = 0. As we have already seen above,

this determines the valuation and thus also the place on the field K(x) = K( 1
x
) completely

(up to equivalence, as always), and we have P = P∞. We have shown:

If a valuation v of k(x) is non-trivial, but trivial on k, then v = v∞ or v = vp(x) for some
irreducible p(x) ∈ k[x]. If a place P of k(x) is the identity on k but not on k(x), then
P = P∞ or P = Pp(x) for some irreducible p(x) ∈ k[x].

If k is algebraically closed, then every irreducible polynomial is linear, i.e., of the form
x − a with a ∈ k. Hence, all places are of the form Px−a or P∞. Their residue field is
always k.

If k is not algebraically closed, then there will exist irreducible polynomials p(x) of de-
gree deg p(x) > 1. For every such p(x), the residue field will be a proper algebraic extension
of k of degree deg p(x) since xP must be a zero of p(x) (because P is a homomorphism on
O).

In all cases, the value group is Z. Valuations with value group (isomorphic to) Z are
called discrete valuations.

4.2.2 Valuations on Q

In the preceding example, for every prime element (i.e. irreducible polynomial) p(x) in the
ring k[x] there was a valuation vp(x) of the quotient field k(x) with vp(x) = 1 and residue
field k[x]/(p(x)). The same is true for the ring Z and its quotient field Q. For every
prime number p there exists a valuation vp that counts how often the factor p appears
in an integer m, i.e. vpm = e if m = pem′ where (p,m′) = 1. For a rational r = m

n

we put vpr = vpm − vpn according to (VH). vp is called the p-adic valuation. Note
that on Z it coincides with the p-valuation given by the height function; but on Q, the
height of every element is ∞, so we have to distinguish well between p-valuation and p-
adic valuation. Valuation ring and valuation ideal of vp are Op = {m

n
∈ Q | (p, n) = 1}

and Mp = {m
n
| (p, n) = 1 and (p,m) = p} = pOp. The residue field is Z/pZ = Fp (for

every m
n
∈ Q with (p, n) = 1 the residue n of n modulo p is invertible in Z/pZ, hence the

residue of m
n

is just m · n−1 ∈ Z/pZ), and the value group is Z. Every vp yields a metric
dp(x, y) = p−vp(x−y) on Q and thus a completion Qp of Q with respect to this (ultra)metric,
called the field of p–adic numbers. Contrary to the completion R of Q with respect
to the metric induced by the absolute value |x|, in Qp two integers are near to each other
if their difference is divisible by a high power of p. This reminds us of the ultrametric
associated to a valuation. In fact, we will define a completion for every valued field using
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this ultrametric (cf. Section ??). In the case of Q with the p-adic valuation, this definition
just gives Qp.

Observe that in our first example, the characteristic of the residue field k(x)P was the
same as that of the valued field k(x), since it contained k. It can be 0 or a prime number
p. This is the equal characteristic case. In the second example, the valued field Q
has characteristic 0 whereas its residue field Fp with respect to the p-adic valuation has
characteristic p. This is the mixed characteristic case. These are all possible cases
because charK = p > 0 implies charK = p, as we have already seen.

All examples that we gave so far were discrete valuations. Later, we will use the theory
of extensions and compositions of valuations to give examples of non-discrete valuations.
Another way of giving examples is to equip Hahn products with a multiplication, cf. Sec-
tion ??. From the model theoretic point of view, being discrete is not quite the property
of a valuation that we want to investigate (cf. section 20.1). Rather, it is the property of
admitting a prime element (which is also shared by certain non-discrete valuations). An
element π in a valued field (K, v) is called a prime element (also: local parameter or
uniformizing parameter) if its value vπ is the least positive element in the value group
vK, or equivalently, ifM = πO. For instance, (k(x), vx) admits x as a prime element, and
(Q, vp) admits p as a prime element.

4.2.3 Power series fields

Can we explicitly upgrade certain valued abelian groups by introducing a multiplication
on them? In a very important special case, this is indeed possible. Let us fix an arbitrary
ordered abelian group Γ and a field k. Viewing k as an abelian group and Γ as an ordered
set, we have thus given a skeleton with Bγ = k for all γ ∈ Γ, and we can form the Hahn
product Hγ∈Γ k of all maps f from Γ to k with well-ordered support {γ ∈ Γ | f(γ) 6= 0}.
In Section 2.3 we have endowed this set with componentwise addition: (f + g)(γ) :=
f(γ) + g(γ). We define the product of f and g as follows: for every γ ∈ Γ, we set

(f · g)(γ) :=
∑

α+β=γ

f(α) · g(β) . (4.4)

Since the supports of f and g are well-ordered, these sums are finite for all γ. Indeed, if
α1 +β1 = γ = α2 +β2 and α1 < α2 , then β2 < β1 , but a well-ordered set only allows finite
descending sequences.

To generalize the construction, one can introduce a factor set {ζα,β | α, β ∈ Γ} and
define (a · b)γ :=

∑
α+β=γ ζα,βaαbβ; these factor sets have to satisfy certain compatability

conditions. Since we will not need these constructions using factor sets, we omit the details
and refer the reader to [KOC2].

We will write the elements f ∈Hγ∈Γ k in the form∑
γ∈Γ

cγt
γ

where cγ = f(γ), and call them formal power series or just power series. Instead of

Hγ∈Γ k we will write k((tΓ)) or simply k((Γ)). The product of two power series now reads
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as (∑
γ∈Γ

cγt
γ

)
·

(∑
γ∈Γ

dγt
γ

)
=
∑
γ∈Γ

( ∑
α+β=γ

cαdβ

)
tγ ,

or, if a non-trivial factor set is used, as(∑
γ∈Γ

cγt
γ

)
·

(∑
γ∈Γ

dγt
γ

)
=
∑
γ∈Γ

( ∑
α+β=γ

ζα,βcαdβ

)
tγ , (4.5)

In Section 2.3 we defined the minimum support valuation on a Hahn product to
associate to every element the minimum of its support (which exists since the support is
well-ordered). For power series, we will frequently denote this valuation by vt, and vt will
also be called the canonical valuation of k((Γ)). We have:

vt
∑
γ∈Γ

cγt
γ = min{γ ∈ Γ | cγ 6= 0} .

Lemma 4.2 (k((Γ)), vt) is a valued field.

Proof: We know already from Section 2.3 that vt is a group valuation. If in (4.5),
γ1 = min{γ ∈ Γ | cγ 6= 0} and γ2 = min{γ ∈ Γ | dγ 6= 0}, then the coefficient of tα+β

on the right hand side is ζα,βcαdβ 6= 0, hence α + β is the minimum of the support of the
product. This proves that vt(a · b) = vta + vtb, which is axiom (VH). We leave it to the
reader to show that the above definition of multiplication turns the Hahn product into an
integral domain.

It is more interesting to show the existence of inverses, for which we will use the Ul-
trametric Fixed Point Theorem, as was done in [PC2]. We will give the proof for the
case of a trivial factor set and leave the general case as an exercise to the reader. Take
a =

∑
γ∈Γ cγt

γ ∈ k((Γ)) and set α := vta. Consequently, cα 6= 0 and a = cα · tα + a′

with vta
′ > α. This shows that for b := a · c−1

α t−α − 1 we have vtb > 0. Now we consider
the map Ξ : k((Γ)) → k((Γ)) given by x 7→ c−1

α t−α − xb. This map is contractive since
vt(Ξx−Ξy) = vt(−xb+yb) = vt(x−y)+vtb > vt(x−y). By Lemma 2.14, the valued group
k((Γ)) is spherically complete. By the Ultrametric Fixed Point Theorem (1.12), there is a
unique fixed point x ∈ k((Γ)) for Ξ. It satisfies x = a−1

α t−α−xb, that is, x(1+ b) = a−1
α t−α,

whence x · a · c−1
α t−α = c−1

α t−α, which gives x · a = 1. �

A field of the form k((Γ)) is called a power series field. It follows directly from the
definition of vt that vtk((Γ)) = Γ. The elements of the support of a power series are called
the exponents of the power series. A power series lies in the valuation ring Ovt if and
only if has only non-negative elements of Γ. This valuation ring will be denoted by k[[Γ]].
A ring of this form is called a power series ring. The valuation ideal Mvt consists of
all power series with only positive exponents. Every element a ∈ Ovt can be written as
c0t

0 + b with b ∈ Mvt . Hence, the map a 7→ c0 is an epimorphism from Ovt onto k. This
shows that the residue field Ovt/Mvt of (k((Γ)), vt) is (isomorphic to) k.

When dealing with power series fields, we will always assume that the factor set is trivial,
if not stated otherwise. Let us note that in this case, the valued field (K, v) = (k((Γ))
admits a cross-section, that is, a homomorphism ϕ : vK → K such that v ◦ ϕ = idvK .
Indeed, for ϕ(α) := tα we have that ϕ(α + β) = tα+β = tα · tβ = ϕ(α) · ϕ(β). Note that
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t0 = 1 and 1/tα = t−α. Later, we will give conditions for arbitrary valued field which imply
the existence of a cross-section (cf. Section 22.4).

The field

k((t)) := k((tZ)) = k((Z)) = {
∞∑
i=N

cit
i | N ∈ Z , ci ∈ k}

is called the field of formal Laurent series; note that a subset of Z is well-ordered if
and only if it is bounded from below by some N ∈ Z. The valuation ring of (k((t)), vt)
consists of all formal Laurent series with N ≥ 0 and is denoted by k[[t]]. The valuation
ideal can be written as t ·k[[t]]. The value group is Z, and the residue field is k. Since k((t))
is a field and contains k[t], it also contains k(t). The canonical valuation vt on k((t)) is an
extension of the t-adic valuation vt in the sense of Section 4.2 1), t being understood as
a prime polynomial in k[t]. The place associated to this valuation sends t to 0. Further, t
is a prime element of both (k(t), vt) and (k((t)), vt).

A valued field (K, v) is called spherically complete if the underlying valued addi-
tive group is spherically complete (or equivalently, if the underlying ultrametric space is
spherically complete). Again from Lemma 2.14, we obtain:

Theorem 4.3 Every power series field with its canonical valuation is spherically complete.

The construction of k((Γ)) gives an answer to the question whether for a given ordered
abelian group Γ and a given field k there exists a valued field with value group Γ and
residue field k. In view of its maximality, k((Γ)) is a “large field” satisfying our conditions.
Inspired by the observation that the Hahn sums appear to be the smallest valued groups
with a given skeleton, we may ask for “small” valued fields with given value group and
residue field. It turns out that this is indeed an important question, as we will see when we
deal with the defect of valued fields. The word “smallest” will be made precise by means
of the notion “valuation transcendence basis”, cf. Section 6.7.

Note that k((Γ)) is a valued field which has the same residue characteristic as k. If the
characteristic of a given residue field is p > 0, then the question arises whether we can also
construct a valued field of characteristic 0 having this residue field. The analogue of our
above power series field construction is the famous theory of Witt vectors. We refer the
reader to [HAS] or [JAC]. It is of special importance for the structure theory of maximal
fields of mixed characteristic. If one is only interested in the problem of constructing
arbitrary fields with given value group and residue field, then one can again follow the
approach using valuation transcendence bases. It also works in the mixed characteristic
case, starting from the prime field Q with its p-adic valuation.

4.2.4 Puiseux series fields

In this section, we shall consider a special class of valued fields which can be represented
as the union over a countable ascending chain of power series fields. Let k be an arbitrary

field and t transcendental over k. We choose elements tn ∈ K̃(t) for every n ∈ N such that

1) t1 = t,

2) tnn = t,

3) t`n = tm whenever `m = n.
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Now we consider the power series fields Kn := k((tn)) for n ∈ N. Every two fields Kn and
Km are contained in the common extension field Knm . Hence, the union K :=

⋃
n∈NKn is

again a field, and it is endowed with a valuation which extends the tn-adic valuation of every
Kn . (This follows from Lemma 20.7 and the fact that valued fields can be axiomatized by
universal existential axioms). Such a field is called a Puiseux series field over k. We
will denote its canonical valuation by vt . We leave it to the reader to prove that up to
isomorphism, the Puiseux series field over k does not depend on the particular choice of
the tn for n > 1 if k contains all roots of unity.

The field K can be viewed as the union over an ascending chain of fields Kni . Indeed,
let pi denote the i-th prime number and set nk :=

∏k
i=1 p

k
i . If j ≤ k, then nj divides nk

and therefore, Knj ⊂ Knk . Further, for every m ∈ N there is some k ∈ N such that m
divides nk , whence Km ⊂ Knk . Consequently, the fields Knk , k ∈ N, form an ascending
chain of fields with union K.

The value group of every Kn is Zvtni = Z vt
ni

, so the union over all Kn has value group⋃
n∈N Zvt

n
= Qvt. This is divisible and isomorphic to Q. The residue field of every Kn is

k, hence also the residue field of the union of all Kn is k.

For every n ∈ N, the element tn is algebraic over k((t)). Hence it follows from Corol-
lary 6.26 that Kn = k((tn)) = k((t))(tn) is algebraic over k((t)). Consequently, also the
union K of all Kn is algebraic over k((t)).

4.2.5 Formally ℘-adic and finitely ramified fields

A valued field (K, v) is called finitely ramified if it admits a prime element π (i.e., vπ
is the least positive element in vK), and there is a prime p and a natural number e such
that vp = evπ. Such a finitely ramified field has residue characteristic p ; indeed, vp > 0
shows that p = 0 in K. On the other hand, vp = evπ < ∞ shows that the characteristic
of K is 6= p and thus, it must be equal to 0. This shows that every finitely ramified field
is of mixed characteristic.

An important subclass of the class of finitely ramified fields is that of formally ℘-adic
fields. We call a finitely ramified field a formally ℘-adic field if its residue field is a finite
field. If in addition, this residue field is equal to Fp and p is a prime element of the field,
then we call it a formally p-adic field.

A formally ℘-adic field (K, v) is called a ℘-adically closed field if no proper algebraic
extension has both the same prime element and the same residue field as (K, v).

4.2.6 Places in algebraic geometry

An important problem in algebraic geometry is the resolution of singularities: we wish
to associate to any given algebraic variety V another variety V ′ which has no singular
points. The two varieties are required to be birationally equivalent, which is equivalent to
asking that they have the same function field. For varieties over ground field of character-
istic 0, it has been shown by Heisuke Hironaka in 1965 that resolution of singularities is
always possible.

The local form of resolution of singularities, called local uniformization, is the fol-
lowing task: Assume we have a variety V and a point on this variety. We wish to find a
variety V ′ birationally equivalent to V on which the corresponding point is non-singular.
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As varieties will in general not have points in common, we have to set up a correspondence
between the given point on V and the new point on V ′.

Let us have a closer look at our notion of “point”. Assume our variety V is given by
polynomials f1, . . . , fn ∈ K[X1, . . . , X`]. Naively, by a point of V we then mean an `-tupel
(a1, . . . , a`) of elements in an arbitrary extension field L of K such that fi(a1, . . . , a`) = 0 for
1 ≤ i ≤ n. This means that the kernel of the “evaluation homomorphism”K[X1, . . . , X`]→
L defined by Xi 7→ ai contains the ideal (f1, . . . , fn). So it induces a homomorphism η
from the coordinate ring K[V ] = K[X1, . . . , X`]/(f1, . . . , fn) into L over K. (The latter
means that it leaves the elements of K fixed.) However, if a′1, . . . , a

′
` ∈ L′ are such that

ai 7→ a′i induces an isomorphism from K(a1, . . . , a`) onto K(a′1, . . . , a
′
`), then we would

like to consider (a1, . . . , a`) and (a′1, . . . , a
′
`) as the same point of V . That is, we are only

interested in η up to composition σ◦η with isomorphisms σ. This we can get by considering
the kernel of η instead of η. This leads us to the modern approach: to view a point as a
prime ideal of the coordinate ring.

In order to set up a correspondence of the points of two varietes, however, it is most con-
venient to work with the convention that a point of V is a homomorphism of K[V ] over K,
up to composition with isomorphisms. Recall thatK[V ] = K[x1, . . . , x`], where xi is the im-
age of Xi under the canonical epimorphism K[X1, . . . , X`]→ K[X1, . . . , X`]/(f1, . . . , fn) =
K[V ]. The function field K(V ) of V is the quotient field K(x1, . . . , x`) of K[V ]. It is
generated by x1, . . . , x` over K.

Now recall what it means to look for another variety V ′ having the same function field
F := K(V ) as V (i.e., being birationally equivalent to V ). It just means to look for another
set of generators y1, . . . , yk of F over K. Now the points of V ′ are the homomorphisms of
K[y1, . . . , yk] over K, up to composition with isomorphisms. But in general, y1, . . . , yk will
not lie in K[x1, . . . , x`], hence we do not see how a given homomorphism of K[x1, . . . , x`]
could determine a homomorphism of K[y1, . . . , yk]. But if we could extend the homomor-
phism of K[x1, . . . , x`] to all of K(x1, . . . , x`), then this extension would a homomorphism
ofK[y1, . . . , yk]. Let us give a very simple example.

Example 4.4 Consider the coordinate ring K[x] of V = A1
K . That is, x is transcendental

over K, and the function field K(V ) is just the rational function field K(x) over K. A
homomorphism of the polynomial ring K[V ] = K[x] is just given by evaluating every poly-
nomial g(x) at x = a. It can be extended to a homomorphism (and hence an isomorphism)
of K(x) if and only if a is transcendental over K. Indeed, if a is not transcendental over
K, then there will be a polynomial h over K having a as a root. Then a is a pole of
1/h(x). So we have to accept that the evaluation will not only render elements in K(a),
but also the element ∞. So we can extend our homomorphism to a map P on all of K(x),
taking into the bargain that it may not always render finite values. But on the subring
OP = {g(x)/h(x) | h(a) 6= 0} of K(x) on which P is finite, it is still a homomorphism.

Observe that in this example, P is uniquely determined, up to equivalence, by the
homomorphism on K[x]. Indeed, we can always write g/h in a form such that a is not a
zero of both g and h. Then if a is not a zero of h, we have that (g/h)P = g(a)/h(a) ∈ K(a).
If a is a zero of h, we have that (g/h)P = ∞. Thus, the residue field of P is K(a), and
the value group is Z. ♦

At this point, we shall introduce a useful notion. Given a field extension F |K (such
as an algebraic function field), we will call P a place of F |K if it is a place of F whose
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restriction to K is the identity. We say that P is trivial on K if it induces an isomorphism
on K. But then, composing P with the inverse of this isomorphism, we find that P is
equivalent to a place of F whose restriction to K is the identity. A place P of F |K is
said to be a rational place if FP = K. The dimension of P , denoted by dimP , is the
transcendence degree of FP |K. Hence, P is zero-dimensional if and only if FP |K is
algebraic. Note that a place P of F is trivial on K if and only if vP is trivial on K, i.e.,
vPK = {0}. This is also equivalent to K ⊂ OP . We can characterize places of F |K as
follows (the proof is left to the reader):

Lemma 4.5 A place P of F is (equivalent to) a place of F |K if and only if K is contained
in its valuation ring.

Let’s get back to our problem. The first thing we learn from our example is the following.
Clearly, we would like to extend our homomorphism of K[V ] to a place of K(V ) because
then, it will induce a map on K[V ′]. But in order to obtain a corresponding point, this
map must be a homomorphism of K[V ′]. So we have to require that

K[V ′] ⊆ OP

or equivalently, y1, . . . , yk ∈ OP .

The next question coming to mind is whether to every point there corresponds exactly
one place (up to equivalence), as it is the case in Example 4.4. To destroy this hope, I give
again a very simple example. It will also serve to introduce several types of places and
their invariants.

Example 4.6 Consider the coordinate ring K[x1, x2] of V = A2
K . That is, x1 and x2 are

algebraically independent over K, and the function field K(V ) = K(x1, x2) is just the
rational function field in two variables over K. A homomorphism of the polynomial ring
K[V ] = K[x1, x2] is given by evaluating every polynomial g(x1, x2) at x1 = a1 , x2 = a2 .
For example, let us take a1 = a2 = 0 and try to extend the corresponding homomorphism
of K[x1, x2] to K(V ) = K(x1, x2). It is clear that 1/x1 and 1/x2 go to∞. But what about
x1/x2 or even xm1 /x

n
2 ? Do they go to 0, ∞ or some non-zero element in K? The answer is:

all that is possible, and there are infinitely many ways to extend our homomorphism to a
place of K(x1, x2).

There is one way, however, which seems to be the most well-behaved. It is to construct
what we will call a place of maximal rank; we will explain this notion later in full
generality. The idea is to learn from Example 4.4 where we replace K by K(x2) and x by
x1, and extend the homomorphism defined on K(x2)[x1] by x1 7→ 0 to a unique place Q
of K(x1, x2). Its residue field is K(x2) since x1Q = 0 ∈ K(x2), and its value group is Z.
Now we do the same for K(x2), extending the homomorphism given on K[x2] by x2 7→ 0
to a unique place Q of K(x2) with residue field K and value group Z. We compose the
two places, in the following way. Take b ∈ K(x1, x2). If bQ = ∞, then we set bQQ = ∞.
If bQ 6= ∞, then bQ ∈ K(x2), and we know what bQQ = (bQ)Q is. In this way, we
obtain a place P = QQ on K(x1, x2) with residue field K. We observe that for every g ∈
K[x1, x2], we have that g(x1, x2)QQ = g(0, x2)Q = g(0, 0), so our place P indeed extends
the given homomorphism of K[x1, x2]. Now what happens to our critical fractions? Clearly,
(1/x1)P = (1/x1)QQ = (∞)Q =∞, and (1/x2)P = (1/x2)QQ = (1/x2)Q =∞. But what
interests us most is that for all m > 0 and n ≥ 0, (xm1 /x

n
2 )P = (xm1 /x

n
2 )QQ = 0Q = 0. We
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see that “x1 goes more strongly to 0 than every xn2 ”. We have achieved this by sending
first x1 to 0, and only afterwards x2 to 0. We have arranged our action “lexicographically”.

What is the associated value group? The results in Section 4.5 will tell us that for
every composition P = QQ, the value group vQ(FQ) of the place Q on FQ is a convex
subgroup of the value group vPF , and that the value group vQF of P is isomorphic to
vPF/vQ(FQ). If the subgroup vQ(FQ) is a direct summand of vPF (as it is the case in our
example), then vPF is the lexicographically ordered direct product vQF × vQ(FQ). Hence
in our case, vPK(x1, x2) = Z×Z, ordered lexicographically. The rank of (F, P ) is defined
to be the rank of the ordered abelian group vPF . In our case, the rank is 2. We will see
in Section 6.4 that if P is a place of F |K, then the rank cannot exceed the transcendence
degree of F |K. So our place P = QQ has maximal possible rank.

There are other places of maximal rank which extend our given homomorphism (for
example, interchange the role of x1 and x2). But there is also an abundance of places
of smaller rank. In our case, the rank cannot be 0 because that would mean that the
value group is {0} and the place is trivial; but then it cannot send x1 and x2 to 0. So
the only other possibility is rank 1, i.e., there is only one proper convex subgroup of the
value group, namely {0}. For an ordered abelian group G, having rank 1 is equivalent
to being archimedean ordered and to being embeddable in the ordered additive group of
R. Which subgroups of R can we get as value groups? To determine them, we use the
notion of rational rank rrG := dimQ Q⊗ZG of an abelian group G. Note that Q⊗ZG is
(isomorphicto) the divisible hull of G. In fact, rrG is the maximal number of rationally
independent elements in G. We will see in Section 6.4 that for every place P of F |K we
have that

rr vPF ≤ trdegF |K . (4.6)

Hence in our case, also the rational rank of P can be at most 2. The subgroups of R of
rational rank 2 are well known: they are the groups of the form rZ + sZ where r > 0 and
s > 0 are rationally independent real numbers. Moreover, through multiplication by 1/r,
the group is order isomorphic to Z + s

r
Z. As we identify equivalent valuations, we can

assume all rational rank 2 value groups (of a rank 1 place) to be of the form Z + rZ with
0 < r ∈ R \Q. To construct a place P with this value group on K(x1, x2), we proceed as
follows. We want that vPx1 = 1 and vPx2 = r; then it will follow that vPK(x1, x2) = Z+rZ
(cf. Theorem 5.1 below). We observe that for such P , vP (xm1 /x

n
2 ) = m− nr, which is > 0

if m/n > r, and < 0 if m/n < r. Hence, (xm1 /x
n
2 )P = 0 if m/n > r, and (xm1 /x

n
2 )P = ∞

if m/n < r. I leave it to you as an exercise to verify that this defines a unique place P of
K(x1, x2)|K with the desired value group and extending our given homomorphism.

Observe that so far every value group was finitely generated, namely by two elements.
Now we come to the groups of rational rank 1. If such a group is finitely generated, then
it is simply isomorphic to Z. How do we get places P on K(x1, x2) with value group Z?
A place with value group Z is called a discrete place. The idea is to first construct the
place on the subfield K(x1). We know from Example 4.4 that (up to equivalence) there is
a unique place of K(x1)|K which is trivial on K and sends x1 to 0; it has value group Z
and residue field K. Now we can try to extend this place from K(x1) to K(x1, x2) in such
a way that the value group doesn’t change.

There are many different ways how this can be done. One possibility is to send the
fraction x1/x2 to an element z which is transcendental over K. We leace it to the reader to
verify that there is a unique place which does this and extends the given homomorphism;
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it has value group Z and residue field K(z). If, as in this case, a place P of F |K has the
property that trdegFP |K = trdegF |K − 1, then P is called a prime divisor and vP is
called a divisorial valuation. The places Q,Q were prime divisors, one of F , the other
one of FQ.

If we want the residue field to be algebraic over K or even equal to K, then we can
employ another approach, using the field K((t)) of formal Laurent series. It is known that
the transcendence degree of K((t))|K(t) is uncountable. If K is countable, this follows
directly from the fact that K((t)) then has the cardinality of the continuum. But it is
quite easy to show that the transcendence degree is at least one (see Exercise 4.3), and
already this suffices for our purposes here. So take any y ∈ K((t)), transcendental over
K(t); then x1 7→ t, x2 7→ y induces an isomorphism K(x1, x2) → K(t, y). We take the
restriction of vt to K(t, y) and pull it back to K(x1, x2) through the isomorphism. What
we obtain on K(x1, x2) is a valuation v which extends our valuation vP of K(x1). As is true
for vt, also this extension still has value group Z = vPK(x1) and residue field K = K(x1)P .
The desired place of K(x1, x2) is simply the place associated with this valuation v.

We have now constructed essentially all places on K(x1, x2) which extend the given ho-
momorphism of K[x1, x2] and have a finitely generated value group (up to certain variants,
like exchanging the role of x1 and x2). The somewhat shocking experience to every “new-
comer” is that on this rather simple rational function field, there are also places extending
the given homomorphism and having a value group which is not finitely generated. For
instance, the value group can be Q. (In fact, it can be any subgroup of Q.) We postpone
the construction of such places to Section ??. ♦

After we have treated two special cases, the question arises whether any given homo-
morphism of a coordinate ring K[V ] (or more generally, any subring of a field) can be
extended to a place on its quotient field (or more generally, to any field which contains the
ring). A positive answer will be given in the next section.

Exercise 4.2 Prove: if P is a place of F |K then it is an isomorphism on the relative algebraic closure of
K in F (which is called the (exact) constant field of F |K).

Exercise 4.3 Prove that

y =
∞∑

i=1

ti! ∈ K((t))

is transcendental over K. Use this idea to construct more transcendence elements.

4.3 Existence of places and their extensions

We have to answer two questions: Is every homomorphism of a subring of a given field
extendable to a place of that field? Does every valuation of a given field admit an extension
to a valuation of a given extension field? These questions are closely connected, and the
key to their answers is the following theorem:

Theorem 4.7 Let R be a subring of the field K containing 1, and let I be a proper ideal
of R. Then there exists a valuation ring O ⊃ R of K whose maximal ideal M contains I.
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Proof: We consider the set S of all subrings R of K which containR and satisfy RI 6= R.
We have R ∈ S, hence S is a nonempty set which is partially ordered by inclusion. Given
a totally ordered subset S0 of S, the cardinality of its union R0 is bounded by |K|, hence
R0 is a ring (this follows from Lemma 20.7 and the fact that rings can be axiomatized
by universal axioms). If we are able to show that R0 ∈ S, then it will follow by Zorn’s
Lemma that S contains maximal elements. The condition R0 ⊃ R is trivially satisfied.
Now suppose that R0I = R0. Then there are elements r1, . . . , rn ∈ R0 and a1, . . . , an ∈ I
such that

∑
1≤i≤n riai = 1. But there is a ring R1 in S0 which contains already all ri,

hence R1I = R1 contradicting R1 ∈ S. We have shown that R0I 6= R0 and consequently,
R0 ∈ S.

Now it remains to prove that a maximal element O of S is a valuation ring with the
required properties. Since O ∈ S, we have O ⊃ R and OI 6= O. It suffices to show that O
is a valuation ring of K since then, its unique maximal idealM will automatically contain
the proper ideal OI. We have to show that O satisfies (VR), i.e. that x ∈ O ∨ 1

x
∈ O for

every nonzero x ∈ K. By the lemma following this proof, it follows that O[x]I is a proper
ideal of the ring O[x] or O[ 1

x
]I is a proper ideal of the ring O[ 1

x
]. But this contradicts the

maximality of O, unless x ∈ O or 1
x
∈ O. �

Lemma 4.8 Let R be a subring of the field K containing 1, and let I be a proper ideal of
R. Then for every x ∈ K, R[x]I is a proper ideal of the ring R[x] or R[ 1

x
]I is a proper

ideal of the ring R[ 1
x
].

Proof: To deduce a contradiction, assume that R[x]I = R[x] and R[ 1
x
]I = R[ 1

x
].

Then there are elements a0, . . . , an, b0, . . . , bm ∈ I such that 1 =
∑

0≤i≤n aix
i and 1 =∑

0≤j≤m bjx
−j. Assume that m and n are the smallest numbers admitting such equations.

Let m ≤ n; for m ≥ n, the proof is symmetrical. Multiplying the first equation by 1− b0

and the second equation by anx
n, we obtain

1− b0 = (1− b0)a0 + . . .+ (1− b0)anx
n

(1− b0)anx
n = anb1x

n−1 + . . .+ anbmx
n−m .

It follows that

1 = b0 + (1− b0)a0 + . . .+ (1− b0)an−1x
n−1 + anb1x

n−1 + . . .+ anbmx
n−m .

The coefficients on the right hand side are all elements of I. Hence, we have found a
representation of 1 in R[x]I of length n− 1, contradicting the minimality of n. This is the
desired contradiction. �

The following result is often called Chevalley’s Extension Theorem, while the the-
orem we will derive from it is also called Chevalley’s Place Extension Theorem.

Corollary 4.9 Take a subring R with 1 of a field K, and let I be a proper prime ideal
of R. Then there exists a valuation ring O ⊃ R of K whose maximal ideal M satisfies
M∩R = I.
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Proof: Take RI to be the localization of R with respect to I. Then RI has the unique
maximal ideal RII (it is a proper ideal since I is). We claim that RII ∩ R = I. The
inclusion “⊇” follows from 1 ∈ R ⊆ RI . If “⊆” were not true, then RII would contain
an element of R \ I; but this element is invertible in RI which contradicts the fact that
RII is a maximal ideal.

By Theorem 4.7, there is a valuation ring O ⊃ RI whose maximal ideal M contains
RII. Since RI \ RII only contains units and since M does not contain units, we find
that M∩RI = RII. Consequently, M∩R = RII ∩ R = I. �

The following theorem answers our initial questions.

Theorem 4.10 Let R be a subring of the field K containing 1. Then every non-trivial
homomorphism of R can be extended to a place of K. In particular, if k is a subfield of
K, then every place of k admits an extension to a place of K.

Proof: Let ϕ be a non-trivial homomorphism of R and I its kernel. Note that the
kernel is a prime ideal; it is proper since ϕ is assumed to be non-trivial. From the foregoing
corollary we obtain a valuation ring O ⊃ RI whose maximal idealM satisfiesM∩R = I.
This shows that the place P which is given by the canonical epimorphism P : O → O/M
is an extension of the canonical epimorphism ϕ′ : R → R/I. But since I is the kernel of
ϕ on R, we know that ϕ = σ′ ◦ ϕ′ for a suitable isomorphism of R/I (which we may view
in a natural way as a subring of O/M). We may extend σ′ to an isomorphism σ of O/M.
Then the place σ ◦ P (which is equivalent to P ) is an extension of the homomorphism ϕ.

If ϕ is a place of k with valuation ring R and valuation ideal I, thenM∩R = I shows
that O lies above R, and we obtain that P is an extension of ϕ. �

Using the interchangeability of valuations and places, we obtain:

Corollary 4.11 Let (K, v) be a valued field and L|K a field extension. Then there is
always an extension of v to a valuation of L.

A further application of Theorem 4.10 is the following

Corollary 4.12 Let K|k be an arbitrary field extension. There are non-trivial places of
K|k if and only if trdegK|k > 0.

Proof: If P is a place of K|k then we know that the associated valuation ring contains
k. The valuation ring is integrally closed in K by Lemma 4.1. If trdegK|k = 0 then K|k
is algebraic and every element of K is integrally dependent of k. This yields O = K, that
is, P is trivial on K.

Now assume that x ∈ K is transcendental over k. Then the polynomial ring k[x] admits
a homomorphism ϕ onto k which sends x to 0. From Theorem 4.10 we infer the existence
of a place P of K which extends ϕ. Hence xP = 0, showing that P is not trivial on K.
On the other hand, its valuation ring contains k which yields that P is a place of K|k. �

“Almost all” fields admit non-trivial valuations or places:

Corollary 4.13 The only fields which do not admit non-trivial places are precisely the
algebraic extensions of finite fields. In particular, if v is a valuation of the field K of
characteristic p > 0, then its restriction to the relative algebraic closure of Fp in K is
trivial.
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Proof: Let charK = 0. Then K contains Q. We have shown in Section 4.2 that Q admits
non-trivial places (the ones associated with p-adic valuations), hence by Theorem 4.10, so
does K. Now let charK = p > 0. The field Fp has no proper non-trivial subring, hence
by Corollary 4.12, no algebraic extension of Fp admits a non-trivial place. On the other
hand, if trdegK|Fp > 0, then Corollary 4.12 shows that K admits a non-trivial place. �

The following is an important characterization of the integral closure:

Theorem 4.14 Let R be a subring of the field K. Then the intersection of all valuation
rings of K containing R is the integral closure of R in K.

Proof: Since every valuation ring of K is integrally closed (Lemma 4.1), a valuation ring
of K containing R will also contain the integral closure of R. Hence, the intersection of
all valuation rings of K containing R contains the integral closure of R. For the converse,
assume that x ∈ K is not integrally dependent on R; we want to show that there is
a valuation ring O of K containing R such that x /∈ O. We consider the ring R[x−1].
Then x−1 is not a unit in this ring. Otherwise, there would be elements a0, . . . , an ∈ R
such that anx

−n + . . . + a1x
−1 + a0 = (x−1)−1 = x. Multiplying by xn, we would find

xn+1 − a0x
n − . . . − an = 0 in contradiction to our assumption that x be not integrally

dependent on R. Since x−1 is not a unit in R[x−1], it follows that x−1R[x−1] is a proper
ideal of this ring. By Theorem 4.7, there exists a valuation ring O of K containing R[x−1],
whose maximal idealM contains x−1R[x−1]. Consequently, O contains R andM contains
x−1, showing that x /∈ O. �

Taking R to be the valuation ring of a given valued field (K, v), we can apply this
theorem to an arbitrary field extension L of K, in the place of K. Then we obtain:

Corollary 4.15 Let (K, v) be a valued field, L|K a field extension and x ∈ L. Then
wx ≥ 0 for every extension w of v to L if and only if x is an element of the integral closure
of OK in L.


