
Chapter 3

Valued modules and vector spaces

3.1 Basic definitions

Let R be a ring, not necessarily commutative. By an R-module, we will always mean
a left R-module. A (general) valued R-module (M, v) is a valued group (M, v) which
also carries an R-module structure (with (M,+) as its additive group). Every r ∈ R can
be viewed as an endomorphism of the group (M,+) ; however, it may not respect the
valuation or the coefficient map. On purpose, our definition does not say anything about
the compatibility between valuation and module structure. So it enables us to view a
valued abelian group (G, v) as a valued module over the endomorphism ring of G, and
it is general enough to permit a study of the different possible compatibility properties.
In almost all cases that have been studied in the literature, valued modules satisfy the
following compatibility axiom

(VM≥) ∀a ∈M ∀r ∈ R : vra ≥ va .

A valued module satisfying this axiom will be called component-compatibly valued.
Every valued abelian group is a component-compatibly valued Z-module. Indeed, as every
abelian group is a Z-module, every valued abelian group is a valued Z-module. Indeed, for
R = Z, property (VM≥) is the same as the law (VZ), which we have deduced from the
ultrametric triangle law. As we will see later, this does not mean that (VM≥) remains
true for larger rings.

The following lemma shows the reason for the notion “component-compatibly valued”;
its proof is straightforward:

Lemma 3.1 Let M = (M, v) be a component-compatibly valued R-module. Then for every
initial segment γ of vM ,

ROγM ⊂ O
γ
M and RMγ

M ⊂M
γ
M .

Hence, OγM, Mγ
M and CγM = OγM/M

γ
M are R-modules, and co γ is R-linear, i.e.

∀r ∈ R ∀a ∈M : r co γa = co γ ra .

In particular, for every a ∈M the annihilator of a is contained in the annihilator of co a.
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If we are given a skeleton sk γ∈ΓCγ where all Cγ are R-modules, then in a natural way,
Hahn sum and Hahn product over this skeleton are also component-compatibly valued
R-modules.

The above lemma has shown that every component of a component-compatibly valued
R-module M is an R-module, which in particular means that every r ∈ R induces an
endomorphism of every component. Analogously, we will say that M is value-compatible
if every r ∈ R induces an ≤-preserving map of vM into itself, given by va 7→ vra for
0 6= a ∈ M . Using the terminology introduced in Section ??, M is value-compatible if
every r ∈ R induces a value-compatible map on M. In a value-compatibly valued module,
the value of vra only depends on va and not on co a. Observe that for every invertible
r ∈ R, the induced map va 7→ vra will then be an order preserving bijection. An important
example for such valued modules is given by extensions (L, v) ⊃ (K, v) of valued fields (see
Part II). Here, (L, v) may be considered as a value-compatibly valued K-vector space. It
is then of interest to study the valued K-subspaces of (L, v).

To classify a larger but still well-behaved class of valued modules, we invoke the skeleton.
In short, we want to talk about those valued modules in which the scalar multiplication
induces maps on the skeleton (or at least on almost all elements of the skeleton). Given a
valued R-module M and any map f of M into itself, a bone (α, ζ) ∈ sk M will be called an
exceptional bone for f if there exist two elements a, b of M both having (α, ζ) as their
bone, such that f(a) and f(b) have distinct bones. Hence f induces a map on all bones
that are not exceptional for f . If (va, co a) is an exceptional bone for f , then a is called
an exceptional element for f , and va is called an exceptional value for f . Further,
ExbfM will denote the set of all exceptional bones for f , ExefM will denote the set of
all exceptional elements for f , and ExvfM will denote the set of all exceptional values for
f . Every element of the ring R can be identified with the endomorphism that it induces
on M . This leads to the following definitions. A bone will be called exceptional bone
of M if it is exceptional for some r ∈ R. The set of all exceptional bones of M will be
denoted by ExbM. Further, an element of M is called exceptional element of M if it
is exceptional for some r ∈ R, and the set of all exceptional elements of M is denoted by
ExeM. Similarly, we define the exceptional values of M and the set ExvM.

Example 3.2 The exceptional elements in the valued Z-module Z/2ZqZ/3Z are precisely
(1, 0), (1, 1) and (1, 2). All have the same bone, but we have 2(1, 0) = (0, 0), whereas
2(1, 1) 6= (0, 0) and 2(1, 2) 6= (0, 0). On the other hand, the trivially valued Z-module Z/3Z
has no exceptional elements and correspondingly, the elements (0, 0), (0, 1) and (0, 2) of
Z/2Zq Z/3Z are not exceptional. If Γ is any ordered set and p a prime, then

∐
Γ Z/pZ is

a valued Z-module and a valued Z/pZ-vector space without exceptional elements. ♦

Bones, elements or values which are not exceptional will be called ordinary. A valued
module without exceptional elements will be called an ordinary valued module. For
example, an ordered abelian group equipped with its natural valuation is an ordinary
valued Z-module. Also, the valued field extensions mentioned above are ordinary valued
vector spaces. The following is an important characterization of ordinary valued modules:

Lemma 3.3 Let M be a valued R-module. Then a ∈M is ordinary for r ∈ R if and only
if

va < va′ =⇒ vra < vra′ ∨ ra = ra′ = 0 (3.1)
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for every a′ ∈ M . Hence, M is ordinary if and only if (3.1) holds for all a, a′ ∈ M and
every r ∈ R. Furthermore, ExerM is the set of all a ∈ M for which (3.1) does not hold
for all a′ ∈M .

Proof: Suppose that a ∈M is ordinary for r ∈ R and let a′ ∈M such that ra′ 6= 0 and
va < va′. Then by (2.4), a and b := a′ + a have the same bone. By assumption, it follows
that ra and rb have the same bone. Since ra′ 6= 0, this implies that ra 6= 0 and again by
(2.4), vra < v(ra− rb) = v(−ra′) = vra′.

For the converse, let a 6= 0 and b have the same bone. Then by (2.4), va < va′ for
a′ := a− b. If this implies that vra < vra′, then vra < v(ra− rb), and (2.4) shows that ra
and rb have the same bone. �

A map f on the valued R-module M will be called a finitely exceptional map if
there are only finitely many exceptional bones for f on M. So M will be called a finitely
exceptional valued module if every r ∈ R has only finitely many exceptional bones on
M. In the same spirit, M will be called an almost value-compatible valued module if
every r ∈ R is an almost value-compatible map on M (the latter notion has been introduced
in Section ??). At present, these definitions may seem a bit weird. But for the study of
spherical completeness and spherical continuity, the finitely exceptional and the almost
value-compatible modules provide an appropriate generalization of the notions of ordinary
and value-compatible modules. Moreover, from the model theoretical point of view, finitely
many “exceptions” are not too bad since they can be pinned down by axioms. We will
meet our most important example of finitely exceptional almost value-compatible modules
in Section 12.4 when we study valued fields of characteristic p > 0 as valued modules over
rings of additive polynomials. For the time being, it may suffice to present an infinite but
finitely exceptional Z-module by just replacing “Z/3Z” by “Z” in our last example.

Every element r ∈ R operates on the set sk M \ ExbrM by (va, co a) 7→ (vra, co ra).
Recall that two bones (α1, ζ1) and (α2, ζ2) can be added if and only if they lie in the same
component (i.e., α1 = α2). So we will call a finite formal sum

∑
i ri(αi, ζi) with ri ∈ R an

admissible linear combination if for every i, the bone (αi, ζi) is not exceptional for ri and
if all bones ri(αi, ζi) lie in the same component. If B ⊂M, then B := {(vb, co b) | b ∈ B}
will be the set of the bones of all elements of B. Sets of bones will be denoted by B since
it is always possible to find B ⊂M such that B is precisely the set of bones of all elements
in B.

A valued group or module is called spherically complete resp. complete if it has
these properties as an ultrametric space.

Remark 3.4 A special type of valued vector spaces is studied in non-archimedean analysis. Here, the
value set is a subset of the reals, the field K carries a valuation whose value group is a subgroup of the
reals, and on the valued K-vector space (V, v), the scalar multiplication acts as follows: vrx = vr+ vx for
all r ∈ K and all x ∈ V . (The scalar multiplication behaves in a similar way for the valued vector spaces
that we will derive from valued field extensions.) For details on these real-valued vector spaces, see
[GRU1], [MON], [VDP] and their references. In particular, A. W. Ingleton [ING] shows that real-valued
vector spaces satisfy the Hahn-Banach Theorem if and only if they are spherically complete.

An embedding (resp. isomorphism) of valued modules is an embedding (resp.
isomorphism) of valued abelian groups which also preserves the module structure. An
extension of valued modules is an extension of valued groups which at the same time
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is an extension of modules. In this case, we will write M ⊂ N and call M a valued
submodule of N. We will say that M ⊂ N is a finite extension (or that N is finitely
generated over M) if N/M is finitely generated as an R-module. An extension of valued
modules is called immediate if it is immediate as an extension of valued groups. Thus,
the same cardinality bound as for valued groups also holds for valued modules, showing
that

Lemma 3.5 Every valued module admits some maximal immediate extension.

Such maximal immediate extension are maximal modules in the sense that they do not
admit proper immediate module extensions. But note that for R 6= Z it is not a priori
clear whether every maximal R-module is also a maximal group. In the next section, we
will show that Hahn products are always maximal.

Exercise 3.1 Let Γ be an ordered set, nγ a natural number for every γ ∈ Γ and Cγ = Z/nγZ . Give
conditions on the numbers nγ and the set Γ which yield that

∐
γ∈Γ Cγ is an ordinary Z-module. More

generally, give conditions on the components and the value set of a valued R-module which yield that it is
ordinary. (Hint: consider annihilators.)

3.2 Spherically closed submodules

We will say that M is an spherically closed submodule of N or just spherically
closed in N if as an ultrametric space, it is spherically closed in N. This is equivalent
to the condition that for every b ∈ N \M , the subset v(b + M) = {v(b + c) | c ∈ M} =
{v(b − c) | c ∈ M} of vN admits a maximum. If vb is this maximum, then b is called a
proper representative for the coset b + M . By equivalence (2.6) on page 39 we see
that b is a proper representative for the coset b+M if and only if (vb, co b) /∈ sk M.

Note that M is a spherically closed submodule of N if and only if for every b ∈ N ,
M is a spherically closed submodule of M + Rb. If M is a spherically closed submodule
of N, then it is also a spherically closed submodule of every N′ such that M ⊂ N′ ⊂ N.
From Lemma 1.17 we know that both properties “spherically closed in” and “immediate
extension” are transitive. From Lemma 1.19 and Corollary 2.10, we obtain:

Theorem 3.6 A spherically complete valued module is spherically closed in every valued
module extension, and in particular is maximal.

Together with Lemma 2.14, this gives:

Theorem 3.7 Every Hahn product is maximal.

Remark 3.8 It is an interesting question to ask whether the converse of Theorem 3.6 holds: is every
maximal module spherically complete? Or at least: does every valued module admit some immediate
extension which is a spherically complete module? For certain classes of valued modules, this is known
to be true. If a valued abelian group is embedded between the Hahn sum and the Hahn product over
its skeleton, then the Hahn product is an immediate spherically complete extension. We will show that
component-compatibly valued vector spaces can be embedded in such a way (this is the Hahn Embedding
Theorem for valued vector spaces, cf. Theorem 3.51). Moreover, by a simple model theoretic construction,
it can be shown that every maximal ordinary valued vector space is spherically complete.

According to I. Fleischer [FL1], every maximal component-compatibly valued R-module is spherically
complete if R is a principal ideal ring. (We will prove this result in Section 3.8 below.) In the same
article, an example is given showing that for valued modules, the maximal immediate extensions are not
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necessarily unique if torsion interferes. It is essentially the example that we have given in 2.15. The groups
that we have constructed there are valued Z-modules. The group H of that example has two nonisomorphic
maximal immediate extensions, one of which is even a valued F2-vectorspace like H while the other is not.

For valued modules with value preserving scalar multiplication (cf. section 3.4), N. Sankaran and
R. Venkataraman [SAN–VE] have shown that there is always a maximal immediate extension which is
spherically complete. For component-compatibly valued modules in general, they are still able to show the
existence of what they call an almost spherically complete immediate extension.

For valued fields, the above question is answered in the affirmative by Ostrowski’s and Kaplansky’s
theory of immediate extensions of valued fields; see section ??.

The quotient by a spherically closed submodule can be endowed with a canonical val-
uation, which we will call the quotient valuation:

Lemma 3.9 Suppose that M is a spherically closed submodule of N, and set

w(b+M) := max
c∈M

v(b− c) for every b ∈ N .

Then w is well-defined, and it is a valuation of N/M . Further, w(N/M) ⊂ vN , and
w(b+M) = vb holds if and only if b is a proper representative. If v is component-compatible,
then so is w.

Proof: Since maxc∈M v(b − c) does not depend on the representative b of the coset
b + M , it follows that w is well-defined. We have w(0 + M) = maxc∈M v(0 − c) = ∞,
but if b /∈ M , then 0 /∈ b + M and w(b + M) = maxc∈M v(b − c) 6= ∞; the maximum
exists by our assumption that M be spherically closed in N. By definition, b is a proper
representative if and only if this maximum is equal to vb. To prove that w(b+ b′ +M) ≥
min{w(b+M), w(b′ +M)}, we can assume without loss of generality that b, b′ are proper
representatives. Then

w(b+ b′ +M) = max
c∈M

v(b+ b′ − c) ≥ v(b+ b′)

≥ min{vb, vb′} = min{w(b+M), w(b′ +M)} .

(Note that in general, b+b′ is not a proper representative of b+b′+M = (b+M)+(b′+M).)
If we assume in addition that v is component-compatible, then we obtain for every r ∈ R:

w(rb+M) ≥ vrb ≥ vb = w(b+M) ,

which shows that w is component-compatible. �

Lemma 3.10 Let M ⊂ N′ ⊂ N be valued modules with M spherically closed in N.
a) N′ is spherically closed in N if and only if (N ′/M,w) is spherically closed in (N/M,w).
b) N′ ⊂ N is immediate if and only if (N ′/M,w) ⊂ (N/M,w) is.

Proof:
a): ⇒: Suppose that N′ is spherically closed in N. Then for every b ∈ N there is b′ ∈ N ′
such that v(b − b′) = maxc′∈N ′ v(b − c′). Hence, w(b − b′ + M) = maxc∈M v(b − b′ − c) =
v(b−b′) = maxc′∈N ′ maxc∈M v(b−c′−c) = maxc′∈N ′ w(b−c′+M) , showing that (N ′/M,w)
is spherically closed in (N/M,w).
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⇐: Suppose that (N ′/M,w) is spherically closed in (N/M,w). Then for every every b ∈ N
there is b′ ∈ N ′ (which we can choose to be a proper representative of b′ + M) such that
v(b − b′) = w(b − b′ + M) = maxc′∈N ′ w(b − c′ + M) = maxc′∈N ′ maxc∈M v(b − c′ − c) =
maxc′∈N ′ v(b− c′) , showing that N′ is spherically closed in N.

b): ⇒: Suppose that N′ ⊂ N is immediate. We show that for every b ∈ N there
exists some b′ ∈ N ′ such that w(b − b′ + M) > w(b + M). We assume that b is a proper
representative of b+M . By hypothesis, there exists some b′ ∈ N ′ such that v(b− b′) > vb.
This implies that w(b− b′ +M) = maxc∈M v(b− b′ − c) ≥ v(b− b′) > vb = w(b+M).
⇐: Suppose that (N ′/M,w) ⊂ (N/M,w) is immediate, and let b ∈ N . There exists some
c′ ∈ N ′ such that w(b−c′+M) > w(b+M), i.e. maxc∈M v(b−c′−c) > maxc∈M v(b−c) ≥ vb.
Hence there exists c ∈ M such that v(b − c′ − c) > vb, so b′ = c′ + c ∈ N ′ is an element
which satisfies v(b− b′) > vb. �

Exercise 3.2 Assume that M is spherically closed in N.
a) Show that the converse of the last assertion of Lemma 3.9 does not hold in general; that is, w may be
component-compatible while v is not.
b) Assume that for every r ∈ R, if b is a proper representative of b+M then rb is a proper representative
of rb+M . Use Lemma 3.3 to show that (N/M,w) is ordinary if N is ordinary. Does this also hold without
our additional assumption? Show that the assumption holds if R is a (skew) field.

3.3 Valuation independence

In this section, we will consider the following situation:

R a ring
N = (N, v) a valued R-module

M an R-submodule of N, equipped with the restriction of v (which we will
again denote by v).

If B is a subset of N , then we let M + RB denote the submodule of N and M + RB the
valued submodule of N generated over M by the elements of B. Similarly, if B is a subset of
sk N, then sk M +RB denotes the subskeleton of sk N generated over sk M by the elements
of B; that is, it is the set of all admissible linear combinations of bones in sk M ∪ B. If N
is component-compatibly valued, then for every α ∈ vN , the α-component of sk M + RB
is just the R-module generated over the α-component of sk M by {ζ | (α, ζ) ∈ B}.

A subset B ⊂ N is called R-independent over M if 0 /∈ B and for every choice of
finitely many ri ∈ R, bi ∈ B, where we let i range over some finite index I, and for every
a ∈M , ∑

i∈I

ribi + a = 0 =⇒ ∀i ∈ I : ribi = 0 and a = 0 .

Note: whenever we write “
∑
ribi with bi ∈ B”, then we implicitly mean that all

bi are distinct.
We will say that B ⊂ N is R-valuation independent over M if 0 /∈ B and for every

choice of finitely many ri ∈ R, bi ∈ B, i ∈ I, and every a ∈M ,

v

(∑
i∈I

ribi + a

)
= min

i∈I
{vribi, va} .
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Further, B ⊂ N is called R-valuation independent if it is R-valuation independent over
the zero module. Recall that we have already defined the notion of valuation independent
subsets of a valued abelian group. Using this notion, our above definition reads as follows:
B is R-valuation independent over M if and only if 0 /∈ B and for every n and every choice
of b1, . . . , bn ∈ B, the submodules Rb1, . . . , Rbn,M are valuation independent in N. The
reader may prove the following characterization:

Lemma 3.11 A subset B ⊂ N is R-valuation independent over M if and only if every
finite subset of B is R-valuation independent over M. A finite subset B ⊂ N is R-valuation
independent over M if and only if the ultrametric space (M +RB, v) is the product of the
ultrametric spaces (M, v) and (Rb, v), b ∈ B.

If B is R-valuation independent over M, then it is R-independent over M since oth-
erwise, there would exist finitely many ri ∈ R, bi ∈ B, i ∈ I, and a ∈ M such that some
ribi 6= 0 and

v

(∑
i∈I

ribi + a

)
=∞ 6= min

i∈I
{vribi, va} .

This motivates the next definition. If a set B of generators of the extension M ⊂ N is
R-valuation independent over M, then it will be called an R-valuation basis of N over
M or an R-valuation basis of M ⊂ N. Further, M ⊂ N will be called a defectless
extension of valued modules if every finite subextension admits an R-valuation basis
over M. Note that this does not imply that N itself admits an R-valuation basis over M.
For instance, the extension 0 q Z ⊂ Q q Z is a defectless extension of valued Z-modules,
but Q q Z does not even admit a Z-basis over 0 q Z. Later, we will meet examples of
another type (cf. Examples 3.62). Note that it is not really necessary to exclude 0 from
R-independent and R-valuation independent sets. We have done that in view of the above
definition of an R-valuation basis and our later definition of the valuation basis of an
extension of valued fields, since a “basis” is usually not supposed to contain 0. However,
with the above definition, it may still contain elements b ∈ N such that Rb = {0}, but this
is only possible if R does not contain 1.

Lemma 3.12 The set B ⊂ N is R-valuation independent over M if and only if for every
finite sum b =

∑
i∈I ribi + a of elements bi ∈ B with ri ∈ R and a ∈M ,

min
i∈I

vribi = max
c∈M

v(b− c) . (3.2)

If this equation holds, then v(b− a) = max
c∈M

v(b− c).

Proof: Suppose first that B is R-valuation independent over M. Then for every c ∈M ,
v(b − a) = mini∈I vribi ≥ mini∈I{vribi, v(a − c)} = v(b − c), which yields equation (3.2).
For the converse, suppose that (3.2) holds for all b. Let γ = mini∈I vribi. If v(a− c) < γ,
then

v

(∑
i∈I

ribi + a− c

)
= v(a− c) = min

i∈I
{vribi, v(a− c)} . (3.3)

Now let v(a − c) ≥ γ. Then by (3.2), v(b − c) ≤ mini∈I vribi = mini∈I{vribi, v(a − c)} ≤
v(b− c), hence equality holds everywhere.



66 CHAPTER 3. VALUED MODULES AND VECTOR SPACES

Now suppose that (3.2) holds for b. Then v(b− a) ≥ mini∈I vribi = maxc∈M v(b− c) ≥
v(b− a), hence equality holds everywhere. This completes our proof. �

Corollary 3.13 If N admits an R-valuation basis B over M, then M is spherically closed
in N. The same holds if M ⊂ N is a defectless extension.

Proof: First, let B be an R-valuation basis of N over M. If b ∈ N \M then write
b =

∑
i∈I ribi + a with elements bi ∈ B, ri ∈ R, a ∈M . Then by the previous lemma, b− a

is a proper representative for b+M .
Now assume that M ⊂ N is a defectless extension. Then for every b ∈ N , the module

M + Rb admits an R-valuation basis over M. By what we have shown, it follows that M
is spherically closed in M +Rb. Hence, M is spherically closed in N. �

Lemma 3.14 Assume that M is spherically closed in N, and let B ⊂ N . Then B is
R-valuation-independent with respect to v over M if and only if {b + M ; b ∈ B} is R-
valuation-independent with respect to w and for all r ∈ R and b ∈ B, the elements rb are
proper representatives of rb + M . In this case, every finite sum

∑
i∈I ribi with bi ∈ B is a

proper representative of
∑

i∈I ri(bi +M).

Proof: If b is R-valuation-independent with respect to v over M, then it is a proper
representative of b+M by virtue of Lemma 3.12. Since

max
c∈M

v

(∑
i∈I

ribi + a− c

)
= w

(∑
i∈I

ribi +M

)
= w

(∑
i∈I

ri(bi +M)

)

and

min
i∈I

vribi = min
i∈I

w(ribi +M)

for the proper representatives ribi, our assertion follows from Lemma 3.12. �

From this lemma and the foregoing corollary, we obtain:

Corollary 3.15 If N admits an R-valuation basis over M, then M is spherically closed
in N and (N/M,w) admits an R-valuation basis. If M ⊂ N is defectless, then M is
spherically closed in N and (N/M,w) is a defectless extension of 0.

For ordinary valued vector spaces, also the converses of these assertions hold; cf. Corol-
lary 3.23 below.

The proof of the following lemma is left to the reader.

Lemma 3.16 Let B, B′ be subsets of N . Then B ∪ B′ is R-valuation independent over
M if and only if B is R-valuation independent over M and B′ is R-valuation independent
over M + RB. Further, the union of an ascending chain of R-valuation independent sets
over M is again R-valuation independent over M.
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A subset B ⊂ sk N will be called R-independent over sk M if for every admissible
R-linear combination

∑
i ri(αi, ζi) of bones in B ∪ sk M,∑

i

ri(αi, ζi) = (α, 0) =⇒ ∀i : ri(αi, ζi) = (∞, 0) .

Lemma 3.17 Let B ⊂ N \ExeN. Then B is R-valuation independent over M if and only
if B is R-independent over sk M.

Proof: ⇒: Suppose there are b1, . . . , bn ∈ B and r1, . . . , rn ∈ R, not all equal to zero,
and a ∈M such that

∑
ri(vbi, co bi) + (va, co a) is an admissible linear combination which

equates to zero. Then vr1b1 = . . . = vrnbn = va and
∑
ri co va bi + co va a = 0. We obtain

v(r1b1 + . . .+ rnbn + a) > va = min
i∈I
{vribi, va} ,

which shows that B is not R-valuation independent over M.

⇐: Let
∑

i∈I ribi be a finite sum of elements bi ∈ B with ri ∈ R and let a ∈ M . Let
γ = mini∈I vribi. If va < γ, then (3.3) holds. Assume now that va ≥ γ. Let J ⊂ I contain
precisely the indices for which ribi 6= 0 and vribi = γ. By assumption, the bones of bj,
j ∈ J , are R-independent over sk M. Since all bi are ordinary, this implies

co γ

(∑
i∈J

ribi + a

)
=
∑
i∈J

co γ ribi + co γ a 6= 0 ,

whence

v

(∑
i∈I

ribi + a

)
= γ = min

i∈I
vbi = min

i∈I
{vbi, va} .

�

Corollary 3.18 Let B ⊂ N \ ExeN be R-valuation independent over M. Then B is an
R-independent set of generators of sk (M +RB) over sk M.

Proof: In view of the last lemma, we only have to show that B generates sk (M +RB)
over sk M. For b ∈M +RB, let us write

b =
n∑
i=1

ribi + a with ri ∈ R, bi ∈ B, a ∈M . (3.4)

We assume (after a suitable renumeration) that precisely r1b1, . . . , rmbm, a are the sum-
mands of least value γ in (3.4). If va is smaller than the value of the other summands,
then omit the elements ribi and their bones in the following. On the other hand, if va is
greater than the value of some summand ribi, then omit a and its bone. Since all bi are
ordinary, the linear combination

∑m
i=1 ri(vbi, co bi) + (va, co a) is admissible. In view of our

assumption and the foregoing lemma,
∑m

i=1 co γribi + co γa 6= 0. Hence the bone of b is
equal to

∑m
i=1 ri(vbi, co bi) + (va, co a). �

For the conclusion of this section, we will consider ordinary valued K-vector spaces,
where K is a field or a skew field. We need the following characterization of ordinary
valued vector spaces:
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Lemma 3.19 Let (V, v) be a valued K-vector space. Then (V, v) is ordinary if and only if

va < va′ ⇐⇒ vra < vra′ (3.5)

holds for all a, a′ ∈ V and every r ∈ K \ {0}.

This is a direct consequence of Lemma 3.3 since every r ∈ K \ {0} is invertible. For the
same reason, for an extension (W, v) ⊂ (V, v) of ordinary valued K-vector spaces every
bone in sk (V, v) \ sk (W, v) is already K-independent over sk (W, v). This shows:

Lemma 3.20 Let (W, v) ⊂ (V, v) be an extension of ordinary valued K-vector spaces and
b ∈ V . If (vb, co b) /∈ sk (W, v), that is, if vb = max{v(b − c) | c ∈ W}, then {b} is a
valuation basis of (W +Kb, v) over W . Hence if (W, v) is spherically closed in (V, v), then
every K-subspace (V ′, v) of (V, v) of dimension 1 over W admits a valuation basis over W .

In view of Lemma 3.17 and Corollary 3.18 we deduce that if B ⊂ V is a maximal subset
which is K-valuation independent over W then sk (W + KB) = skW + KB = skV . The
existence of such maximal B is shown by Zorn’s Lemma together with Lemma 3.16. We
have proved:

Lemma 3.21 For every extension (W, v) ⊂ (V, v) of ordinary valued K-vector spaces there
exists a subextension (W, v) ⊂ (V ′, v) such that (V ′, v) admits a K-valuation basis over
W and (V ′, v) ⊂ (V, v) is immediate. Every subset of V which is maximal K-valuation
independent over W , generates a subextension V ′ with these properties.

For ordinary valued vector spaces, we can improve our results on quotients:

Lemma 3.22 Let (W, v) ⊂ (V, v) be ordinary valued K-vector spaces. If b ∈ V and
0 6= r ∈ K, then b is a proper representative of b + W if and only if rb is a proper
representative of rb+W .

Proof: From Lemma 3.19, we obtain that vb = maxc∈W v(b − c) if and only if vrb =
maxc∈W v(rb−rc). Since rW = W , we have maxc∈W v(rb−rc) = maxc∈W v(rb−c), which
proves our assertion. �

From this lemma together with Lemma 3.14, we deduce:

Corollary 3.23 Assume (W, v) ⊂ (V, v) to be ordinary valued K-vector spaces with (W, v)
spherically closed in (V, v). Let B ⊂ V . If {b + W ; b ∈ B} is K-valuation-independent
in (V/W,w) and every b ∈ B is a proper representative of b + W , then B is K-valuation
independent over W . Consequently, if (V/W,w) admits an K-valuation basis, then (V, v)
admits a K-valuation basis over W , and if (V/W,w) is a defectless extension of 0, then
(W, v) ⊂ (V, v) is defectless.

See Section 3.7 below for further details on defectless extensions of ordinary valued
vector spaces.
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3.4 Value preserving scalar multiplication

A valued R-module M will be said to have value preserving scalar multiplication if
it satisfies

(VPSM) ∀x ∈M ∀r ∈ R \ {0} : vrx = vx .

In particular, every valued R-module with value preserving scalar multiplication is compo-
nent-compatibly valued. Conversely, if a component-compatibly module is a vector space,
then it has value preserving scalar multiplication. Indeed, for every nonzero invertible
r ∈ R, we must have vx = vr−1rx ≥ vrx ≥ vx, hence equality. We can generalizes this
observation as follows. Let M be a component-compatibly valued R-module, a ∈ M and
0 6= r ∈ R. Then rco a = 0 if and only if vra > va. This proves:

Lemma 3.24 A valued R-module has value preserving scalar multiplication if and only if
it is component-compatible and every component is a torsion free R-module. In particu-
lar, a valued abelian group has value preserving scalar multiplication if and only if every
component is torsion free.

Examples 3.25 Every ordered group with its natural valuation is a valued Z-module with
value preserving scalar multiplication since it satisfies (NVZ). If in addition, this group is
divisible, then it is a valued Q-vector space with value preserving scalar multiplication.

The socle of a p-group is the set of all elements of order p. It is consequently an
Fp-vector space. Restricting the height function to the socle, we obtain a p-valuation on
this Fp-vector space with value preserving scalar multiplication.

The set K×/K×2 of square classes of a field K is an F2-vector space. If the field has a
valuation, then under certain conditions, it induces a valuation on K×/K×2 ♦

As a direct consequence of Lemma 3.3, we get:

Lemma 3.26 Every valued module with value preserving scalar multiplication is ordinary.

In the case of value preserving scalar multiplication, a linear combination of bones is
admissible if and only if all bones show the same value in their first component. Then
we have

∑
i ri(α, ζi) = (α,

∑
i riζi). Consequently, the condition that a set B of bones

be R-independent over sk M is equivalent to the condition that for all α ∈ vN , the set
Bα := {ζ | (α, ζ) ∈ B} is R-independent over CαM. Hence, the following is a corollary to
Lemma 3.17:

Corollary 3.27 Suppose that N has value preserving scalar multiplication. Then B ⊂ N
is R-valuation independent over M if and only if for every b1, . . . , bn ∈ B of equal value γ,
the elements co γ b1, . . . , co γ bn ∈ CγN are R-independent over CγM.

Observe that in view of Lemma 3.24 which tells us that the components are torsion free R-
modules, R-independence is equivalent to R-linear independence: The elements ζ1, . . . , ζn
are said to be R-linear independent if

∑
riζi = 0 implies ∀i : ri = 0.

The above corollary yields that B ⊂ N is maximal with the property of being R-
valuation independent over M if and only if for every α ∈ vN , Bα is maximal with the
property of being R-independent over CαM. In the case of vector spaces, where R is a field
(or a skew field), a maximal R-independent set is just a basis. So we obtain the following
corollary to Lemma 3.17:



70 CHAPTER 3. VALUED MODULES AND VECTOR SPACES

Corollary 3.28 Let K be a field or a skew field and W ⊂ V an extension of valued
K-vector spaces with value preserving scalar multiplication.

a) A subset B ⊂ V is maximal with the property of being K-valuation independent over
W if and only if for every α ∈ vV , the set Bα = {co α b | b ∈ B and vb = α} forms a basis
of CαV over CαW.

b) Let V ′ ⊂ V be as in Lemma 3.21. Reading the dimensions as (finite or infinite)
cardinals,

dimK V/W ≥ dimK V
′/W =

∑
α∈vV

dimK CαV /CαW ≥ |vV \ vW | . (3.6)

The last inequality of (3.6) holds since for every α ∈ vV \ vW , we have CαW = {0}
whereas CαV contains at least one copy of K, showing that dimK CαV /CαW ≥ 1.

We apply this corollary to the divisible hulls of ordered abelian groups.

Corollary 3.29 Let (H,<) ⊂ (G,<) be an extension of ordered abelian groups and let v
be the natural valuation of G. Then

rrG/H ≥
∑
α∈vG

rr (CαG /CαH) ≥ |vG \ vH| . (3.7)

In particular,

rrG ≥
∑
α∈vG

rr CαG ≥ |vG| (3.8)

and if G has finite rank, then rrG ≥ rkG.

Proof: The reader may verify that for every extension H ⊂ G of abelian groups,
Q⊗Z G/H ∼= (Q⊗Z G)/(Q⊗Z H), whence dimQ Q⊗Z G/H = dimQ(Q⊗Z G)/(Q⊗Z H).
Applying this to the given extension as well as to the extensions of components, inequality
(3.7) follows from part b) of the previous corollary.

Inequalities (3.8) follow from (3.7) with H = {0}. For groups of finite rank, the rank
is equal to the principal rank |vG|, so the inequality rrG ≥ rkG follows from (3.8). �

It can be shown that also for infinite rank, the cardinality of the rank is equal to the
cardinality of the principal rank. So replacing the rank by its cardinality, the last inequality
remains true for arbitrary ordered groups.

Using the upper bound for vV \vW given in part b) of Corollary 3.28, we can show the
following important theorem. It was exploited by R. Brown [BRW1] to classify countably-
dimensional valued vector spaces with value preserving scalar multiplication by their skele-
tons (see Theorem 3.46 below).

Theorem 3.30 Every countably-dimensional valued vector space with value preserving
scalar multiplication admits a valuation basis.

Proof: Let (V, v) be such a valued K-vector space. Then it is the union of finite-
dimensional valued vector spaces (Vi, v), i ∈ N, such that V1 = 0 and dimK Vi+1/Vi = 1 for
every i. By part b) of Corollary 3.28, every value set vVi is finite and thus, every (Vi, v) is
spherically complete. Hence by Lemma 3.6, every (Vi, v) is maximal and consequently, the
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extension (Vi, v) ⊂ (Vi+1, v) is not immediate. In view of Lemma 3.21 and dimK Vi+1/Vi =
1, it follows that every (Vi+1, v) admits a K-valuation basis {bi} over Vi . Now it follows
from Lemma 3.16 that {bi | i ∈ N} is a K-valuation basis of (V, v) over V1 = 0. �

This theorem was generalized by S. Kuhlmann [KUS1] in the following way: If (W, v) ⊂
(V, v) is a countably generated extension of valued K-vector spaces with value preserving
scalar multiplication and if (W, v) admits a K-valuation basis, then (V, v) also admits a
K-valuation basis. Note that this does not mean that (V, v) would admit a K-valuation
basis over W : this is not true in general. However, it is true if (W, v) is spherically closed
in (V, v):

Corollary 3.31 Let (W, v) ⊂ (V, v) be valued vector spaces with value preserving scalar
multiplication. If (W, v) is spherically closed in (V, v) and V/W is of countable dimension,
then (V, v) admits a valuation basis over W .

Proof: We endow V/W with the quotient valuation w. By Theorem 3.30, (V/W,w)
admits a valuation basis. From Lemma 3.26 we know that (V, v) is ordinary valued. Now
our assertion follows from Corollary 3.23. �

From this corollary together with Corollary 3.13, we obtain the following result that
was proved by S. Kuhlmann in [KUS1]:

Theorem 3.32 Let (W, v) ⊂ (V, v) be valued vector spaces with value preserving scalar
multiplication. Then (W, v) is spherically closed in (V, v) if and only if the extension
(W, v) ⊂ (V, v) is defectless.

Note that Theorem 3.30 does not remain true if the assumption of value preserving
scalar multiplication is omitted. The simplest counterexample is that of a proper immediate
extension (K, v) ⊂ (L, v) of valued fields (see below): if we choose a ∈ L \ K then the
2-dimensional valued K-vector space (K +Ka, v) does not admit a K-valuation basis.

We should mention that in a category of valued vector spaces with value preserving
scalar multiplication with suitable morphisms, those admitting a valuation basis are pre-
cisely the free ones. See L. Fuchs [FU2], p. 29.

If all R-modules Cγ are torsion free, then the Hahn sum
∐

γ∈ΓCγ and the Hahn product

Hγ∈ΓCγ are valued R-modules with value preserving scalar multiplication. If R is a field,
then the Hahn sum admits a natural R-valuation basis. Indeed, for every γ we take an
R-basis Bγ of Cγ and for every element ζ of this basis, we take eζ to be the tuple which has
ζ at the γ-th entry and zeros everywhere else. Then the elements {eζ | ζ ∈ Bγ ∧ γ ∈ Γ}
generate

∐
γ∈Γ Cγ. On the other hand, they are R-valuation independent since their bones

are R-independent. This shows that {eζ | ζ ∈ Bγ ∧ γ ∈ Γ} is an R-valuation basis of∐
γ∈ΓCγ.

Remark 3.33 For a more detailed investigation of valued vector spaces with value preserving scalar
multiplication, see [BRW1], [FU2], [FU3], [GRA1], [HI1], [HI2], [HI–WH], [KUS1] and their references.
Much of the material on valued vector spaces as exposed in this chapter, is taken from S. Kuhlmann’s
thesis [KUS1].
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Exercise 3.3 Let (W, v) ⊂ (V ′, v) ⊂ (V, v) be valued vector spaces with value preserving scalar multipli-
cation. Suppose that (W, v) is spherically closed in (V, v) and that V ′/W is of countable dimension. Prove
that (V ′, v) is spherically closed in (V, v).

Exercise 3.4 Prove that every finitely generated valued R-module M with value preserving scalar mul-
tiplication has a finite value set. More precisely, assume that M is generated by n elements, and show
that |vM | ≤ n. Assume in addition that all components are free R-modules, and show that M admits a
valuation basis with at most n elements.

3.5 p-bases and straight bases of p-groups

If we consider an abelian group with a p-valuation as a valued Z-module, then we do not
have value preserving scalar multiplication. Nevertheless, there is an analogue of Brown’s
Theorem (3.30), which we shall discuss now. See Section 2.4 for the definition of the
p-height function, the p-height valuation and the order valuation.

Throughout this section, let G be an abelian p-group. We will consider G with its p-
height valuation v. If ν is the p-height of G, i.e. ν∞ is the set of heights in G, then vG = ν
or vG = ν + 1 depending on whether G is reduced or not. If va < ν, then vpa > va; that
is, p co vaa = 0. This shows that for every µ < ν, the µ-component Cµ(G, v) is an Fp-vector
space. This is not true for Cν(G, v) if it is non-trivial.

In the following, we will prove some facts for arbitrary valuations v on the p-group G.
For this, we need some preparation.

Lemma 3.34 Let (G, v) be an arbitrary valued group, a ∈ G and p a prime.

a) If Cva(G, v) is an Fp-vector space, then vpa > va and vna = va for every integer n
which is prime to p.

b) If G is a p-group, then vna = va for every integer n which is prime to p.

Proof: a): Let Cva(G, v) be an Fp-vector space. Then p co vaa = 0 and thus vpa > va.
If n prime to p, then there exist integers r, s such that 1 = rn+ sp. By (VZ) and what we
have already shown, vspa ≥ vpa > va. Hence va = v(rn + sp)a = v(rna + spa) = vrna.
Again by (VZ), vrna ≥ vna ≥ va. Altogether, we obtain that va = vna = nrna.

b): Since in a p-group every element has order a power of p, the assertion follows from
Lemma 2.1. �

Note that the assertion of part b) in particular holds for the p-height valuation v, even if
Cν(G, v) is non-trivial; that is, G is not reduced.

Lemma 3.35 Let G be an abelian p-group and v an arbitrary valuation on G. Let B ⊂
G\{0} and assume that for every µ ∈ {vb | b ∈ B}, the component Cµ(G, v) is an Fp-vector
space. Then the following conditions are equivalent:

1) For every Z-linear combination
∑m

i=1 nibi with bi ∈ B and ni integers prime to p,

v

(
m∑
i=1

nibi

)
= min vnibi .

(Since ni is prime to p, we could write “vbi” in the place of “vnibi”.)
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2) Condition 1) holds whenever 0 < ni < p.

3) For every µ ∈ {vb | b ∈ B}, the coefficients co µb , b ∈ B of value vb = µ, are
Fp-independent (we could say: the bones of the elements b ∈ B are Fp-independent).

Recall that whenever we write “
∑
nibi with bi ∈ B”, then we implicitly mean

that all bi are distinct (unless stated otherwise).

Proof: 1)⇒2) is trivial. We prove 2)⇒3). Take a linear combination
∑
nico µbi , where bi

are elements in B of value µ. We choose natural numbers 0 < ni < p whose residues modulo
p are ni . Condition 2) tells us that v(

∑
nibi) = µ. Hence,

∑
nico µbi = co µ

∑
nibi 6= 0.

Now we prove 3)⇒1). Take a linear combination
∑
nibi, where bi are elements of B,

and ni are integers prime to p. Let µ = mini vnibi = mini vbi . We have co µ

∑
nibi =∑

nico µbi , where ni denotes the residue of ni modulo p. Since ni is assumed to be prime
to p, we have ni 6= 0 for all i. By our choice of µ, there is at least one i such that co µbi 6= 0.
By condition 3),

∑
nico µbi 6= 0, showing that v

∑
nibi = µ = mini vnibi . �

A subset B ⊂ G will be called p′-valuation independent in (G, v) (read: “p-prime
valuation independent”) if it satisfies condition 1) of this lemma. This looks like valuation
independence, but it is restricted to scalar multiplication with scalars which are prime to
p (that is, preserve the value). Further, B ⊂ G \ {0} will be called a v-p-basis of G if

(vpB1) the elements of B are p′-valuation independent in (G, v),

(vpB2) B generates G,

(vpB3) pB ⊂ B ∪ {0}.

A subset B ⊂ G \ {0} of a p-group G is called a p-basis of G if it is a v-p-basis of G with
respect to the p-height valuation v of G. A p-group admitting a p-basis is called simply
presented.

We have used condition 1) of the above lemma for the definition of p′-valuation inde-
pendence and thus also in the definition of a p-basis. In the literature, condition 2) in the
place of condition 1) is commonly used for the definition of a p-basis. Nevertheless, this
is equivalent to our definition. To show this, we establish the equivalence of conditions 1)
and 2) for every subset B of a p-group, provided that pB ⊂ B ∪ {0}. Even without this
provision, the equivalence holds for all reduced p-groups by means of the foregoing lemma
since for them every component is an Fp-vector space. For the general case, we now give a
proof that does not use Lemma 3.35.

Lemma 3.36 Let G be a p-group and B ⊂ G \ {0} such that pB ⊂ B ∪ {0}. Then every
finite sum a =

∑m
i=1 nibi , with bi (in this case not necessarily distinct) elements from B

and ni arbitrary integers, can be written as a (possibly trivial) sum a =
∑m̃

i=1 ñib̃i with

0 < ñi < p and b̃i distinct elements from the finite set

{pjbi | 1 ≤ i ≤ m and j ≥ 0 with pjbi 6= 0} ⊂ B .

If all bi are distinct and all ni are prime to p, then the latter sum is non-trivial (i.e.,
m̃ ≥ 1); in particular, every element of maximal order among the bi will appear as some
b̃i .

As a consequence, conditions 1) and 2) of Lemma 3.35 are equivalent for every valued
p-group (G, v) and B ⊂ G \ {0}, provided that pB ⊂ B ∪ {0}.
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Proof: We shall prove the first assertion by induction on the maximal order of the
elements bi appearing in the sum. Beforehand, if the elements bi are not all distinct, we
rewrite the sum so that all appearing bi are distinct. Further, we can assume without loss
of generality that all ni are positive. Indeed, if ni < 0, then we choose νi such that pνibi = 0
and add a multiple of pνi to ni in order to obtain a positive coefficient (which is still prime
to p if ni was). Now we use the p-adic expansion of every ni: We represent ni as a finite
sum

∑
ni,jp

j in which 0 ≤ ni,j < p for j ≥ 0. Then a =
∑

i,j ni,jp
jbi . If all bi have order

p, then this sum is equal to
∑

i,0 ni,0bi . If all bi were distinct from the start and if all ni
were prime to p, then all ni,0 are nonzero. This proves our assertion in the case where all
bi have order p.

Let us assume that we have proved our assertion for all sums in which the order of all
elements bi is smaller than pk. Consider a sum a =

∑m
i=1 nibi where the elements b1, . . . , bm′

have order pk and the elements bm′+1, . . . , bm have smaller order, with m′ ≤ m. Proceeding
as before, we find that

a =
∑
i,j

ni,jp
jbi =

m′∑
i=1

ni,0bi +
∑

i>m′ ∨ j>0

ni,jp
jbi .

Since ord(pb) < ord(b) for every element b in a p-group, all pjbi appearing in the latter
sum have order smaller than pk. So we can apply the induction hypothesis to find that the
latter sum can be written as a sum

∑m′′

i=m′+1 ñib̃i with 0 < ñi < p and b̃i distinct elements
from {pjbi | 1 ≤ i ≤ m and j ≥ 0 with pjbi 6= 0 and i ≤ m′ ⇒ j > 0} ⊂ B. This latter set
contains only elements of order smaller than pk, so it does not contain b1, . . . , bm′ . Putting
b̃i := bi and ñi := ni,0 for 1 ≤ i ≤ m′, then omitting ñib̃i if ñi = 0 and renumbering

suitably, we arrive at a sum a =
∑m̃

i=1 ñib̃i which is of the required form. Again, if all bi
were distinct from the start and if all ni were prime to p, then all ni,0 are nonzero. This
completes the proof of our first assertion.

Now we turn to the equivalence of conditions 1) and 2) of Lemma 3.35. 1)⇒2) is trivial.
For the proof of 2)⇒1), take a finite sum

∑m
i=1 nibi, where bi ∈ B and ni are integers prime

to p. Let µ = mini vnibi = mini vbi . If we are able to prove that v
∑

vbi=µ
nibi = µ, then

also v
∑
nibi = µ = mini vnibi . So we can assume from the start that µ = vbi for all

i. We write
∑m

i=1 nibi =
∑m̃

i=1 ñib̃i according to our first assertion. Then all b̃i have a

value ≥ µ (this follows from (VZ) since every b̃i is a multiple of some bj). On the other
hand, at least one bi (of maximal order) appears among the b̃i , so condition 1) yields that
v
∑m̃

i=1 ñib̃i = µ, as required. �

We will also need the following corollary:

Corollary 3.37 Assume that B is a v-p-basis of the valued p-group G. Suppose that

v(nb− p
m∑
i=1

nibi) > vnb

with b, bi (not necessarily distinct) elements in B, ni arbitrary integers and n prime to p.
Then there is some j ≥ 1 and some i such that b = pjbi .

Proof: According to the foregoing lemma, we write p
∑m

i=1 nibi =
∑m

i=1 nipbi =
∑m̃

i=1 ñib̃i
with 0 < ñi < p and b̃i distinct elements from the set {pjpbi | 1 ≤ i ≤ m and j ≥
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0 with pjpbi 6= 0} ⊂ B. But b ∈ B and v(nb −
∑m̃

i=1 ñib̃i) > vnb then show that some b̃i
must be equal to b, by property (vpB1) of the v-p-basis B. On the other hand, b̃i = pjbi
with j ≥ 1. �

In the common definitions of p-bases, a stronger version of condition (vpB2) is used.
Namely, it is required that every element a ∈ G has a unique representation a =

∑
nibi

with bi ∈ B and 0 < ni < p. However, in the presence of (vpB1) and (vpB3), this condition
is equivalent to condition (vpB2). Indeed, (vpB2) and (vpB3) imply the existence of such
a representation, as follows from the first assertion of the foregoing lemma. The uniqueness
of this representation follows from condition (vpB1): Assume that a =

∑
nibi =

∑
mibi

with 0 ≤ ni < p and 0 ≤ mi < p (we admit zero coefficients in order to let the sums run
over the same set of elements bi in B). Then 0 =

∑
(ni−mi)bi with ni−mi either zero or

prime to p. If ni 6= mi would hold for some i, then by p′-valuation independence, the value
of this sum would be equal to the value of some bi and thus < ∞, a contradiction. This
proves the uniqueness of the representation.

For later use, we give a procedure for extending the p-basis of a subgroup of a p-group:

Lemma 3.38 Let (G, v) be a valued p-group and H a subgroup of G with v-p-basis BH .
If a ∈ G is a proper representative of a + H such that pa ∈ BH ∪ {0}, then BH ∪ {a} is a
v-p-basis of H + Za .

Proof: Since BH generates H, we see that BH ∪ {a} generates H + Za . Since pBH ⊂
BH ∪ {0} and pa ∈ BH ∪ {0}, it follows that p(BH ∪ {a}) ⊂ BH ∪ {0}. The p′-valuation
independence is seen as follows. We only have to show that va is the value of every linear
combination na +

∑
nibi with bi ∈ BH of value vbi = va and n, ni prime to p. To see

this, we multiply by an integer n′ which satisfies n′n ≡ 1 modulo the order pν of a. Then
n′na = a, and we obtain that va ≤ v(na +

∑
nibi) ≤ v(a +

∑
n′nibi) ≤ va , where the

latter inequality holds since a was assumed to be a proper representative. This proves that
the value of the sum is indeed equal to va . �

The elements of a p-basis B will in general not be Z-valuation independent unless all of
them have order p, since if b ∈ B with pb 6= 0, then the linear combination 1 · (pb) + (−p) · b
is zero. But throwing away the multiples, one can select subsets of B which are almost Z-
valuation independent: A subset B ⊂ G will be called weakly Z-valuation independent
if every Z-independent subset of B is Z-valuation independent. If in addition B generates
G, then it will be called a weak Z-valuation basis of G.

Lemma 3.39 If B is a p-basis of the p-group G, then the subset B0 ⊂ B of elements of
p-height 0 is weakly Z-valuation independent and generates all elements in B of p-height
< ∞. In particular, if G is reduced, then a weak Z-valuation basis can be selected from
every p-basis. Conversely, if B′ is a weak Z-valuation basis of the reduced p-group G, then
B =

⋃∞
i=0 p

iB′ is a p-basis of G.

Proof: Let B be a p-basis of the p-group G. Let B0 ⊂ B be the set of all elements
of p-height 0 in B. Since pjB0 ⊂ B for all j ∈ N, every Z-linear combination of elements
in B0 can be written as a Z-linear combination of elements in B with coefficients prime
to p. Since pjb = pjb′ is possible for b, b′ ∈ B0 even if b 6= b′, we have to admit that
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an element of B appears more than once in the latter linear combination. If no element
of B appears more than once, then the value of this linear combination is equal to the
minimal value of its summands, because B is a p-basis. But if some element of B appears
at least twice, then this means that the elements of B0 appearing in our original Z-linear
combination are not Z-independent. This proves that the elements of B0 are weakly Z-
valuation independent. Further,

⋃∞
i=0 p

iB0 contains all elements in B of p-height < ∞.
Indeed, let b ∈ B be of p-height < ∞, and assume that our assertion is already proved
for all elements of B of value < vb. By (pH1′) there is some a such that pa = b and
va < vb. We write a =

∑m
i=1 nibi with bi ∈ B and arbitrary integers ni. Consequently,

b = p
∑m

i=1 nibi . According to Corollary 3.37, b = pjbi for some i and j ≥ 1. Since b is
of p-height < ∞, the latter implies vbi < vb. By assumption, bi ∈ pkB0 for some integer
k ≥ 0. Consequently, b ∈ pk+jB0 .

The proof of the remaining assertions is left to the reader. �

This procedure of selecting a weak valuation basis from a p-basis is made possible by the
finite descent from an element of arbitrary height < ∞ to an element of height 0. The
same principle can be found in very different settings; see e.g. the selection of a K[ϕ]-basis
from a Frobenius-closed K-basis in section 12.3.

If a p-group G admits a Z-valuation basis B′ (with respect to its p-height valuation),
then the elements of B′ are Z-independent and thus, G is the direct sum

⊕
b∈B′ Zb. Such

a group is reduced, and all elements have finite p-height. Consequently, a p-group with
elements of infinite height can not admit a Z-valuation basis.

The following theorem is the promised analogue of Brown’s Theorem. Its first assertion
is a result of R. Hunter and E. Walker ([HU–WA], Corollary 4.11).

Theorem 3.40 If G is a countable p-group, then it admits a p-basis. If in addition, G is
reduced and v is the p-height valuation, then (G, v) admits a weak Z-valuation basis. If all
elements of the reduced p-group G have height < ω, then (G, v) admits a Z-valuation basis.

Proof: Let v be the p-height valuation of G. Let aj , j ∈ N, be an enumeration of the
elements of G. It may be chosen in such a way that for every j ∈ N, the element paj is
contained in the group generated by a1, . . . , aj−1 . We set G1 := {0} and B1 = ∅. Suppose
that we have already constructed a finite subgroup Gj of G containing a1, . . . , aj−1 and
admitting a v-p-basis Bj with the following property:

∀b ∈ Bj : vb = µ+ 1 < ν ⇒ ∃b′ ∈ Bj : pb′ = b ∧ vb′ = µ , (3.9)

where ν is the p-height of G. We show how to construct a finite subgroup Gj+1 of G
containing Gj and aj and admitting a v-p-basis Bj+1 containing Bj and having again
property (3.9).

Since Gj is finite, its value set vGj is also finite. Consequently, Gj is spherically closed
in (G, v). Hence, there is a proper representative a′j for aj + Gj . Since also pa′j ∈ Gj and
aj and a′j generate the same abelian group extension of Gj , we can assume from the start
that aj is itself a proper representative. If paj ∈ Bj, then B′′j := Bj ∪ {aj} is a p-basis of
G′′j := G′j + Zaj , by virtue of Lemma 3.38.

If paj /∈ Bj, then we carry through the following construction. Let paj =
∑
nibi with

bi ∈ Bj and ni prime to p. We distinguish two cases.
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Case 1: vaj < ν. Then vbi ≥ vpaj > vaj for all i. By property (3.9), for all i with vbi < ν
a successor ordinal, there are elements b′i ∈ Bj such that pb′i = bi and vb′i ≥ vaj . For bi
with vbi a limit ordinal, (pH1′) allows us to choose an element b′i of value vb′i ≥ vaj such
that pb′i = bi . If Bj does not contain such an element, then we just choose it in G. Since
vbi is a limit ordinal and vGj is finite, there are values in vG which lie properly between
vbi and all values of vGj that are smaller than vbi . By virtue of (pH1′), we can choose b′i
with such a value. Then vb′i /∈ vGj and vb′i > vaj. From the former property, it follows
that Bj ∪ {b′i} is a v-p-basis of G′j = Gj + Zb′i .

Finally, for bi with vbi = ν, we choose b′i such that pb′i = bi and vb′i = vbi = ν (there
is such an element in G since pνG is divisible). If possible, we choose b′i ∈ Bj . If Bj
does not contain such an element, then we just choose it in G, and we have to show that
Bj ∪{b′i} is a v-p-basis of G′j = Gj +Zb′i . If this were not the case, then there would exist a
Z-linear combination nb′i +

∑
k n
′′
kb
′′
k with b′′k ∈ Bj of value ν and n′′k, n prime to p, such that

v(nb′i +
∑

k n
′′
kb
′′
k > vnb′i = ν. But then, the value of nbi + p

∑
k n
′′
kb
′′
k = p(nb′i +

∑
k n
′′
kb
′′
k)

is bigger than ν = vnbi . Now Corollary 3.37 shows that bi = p`b′′k for some k and ` ≥ 1,
hence bi = pp`−1b′′k with p`−1b′′k ∈ Bj of value ν, which contradicts our assumption on bi .

Since vb′i > vaj in all cases where we have to adjoin b′i to Bj, we find that aj will
still be a proper representative of aj + G′j . If necessary, we repeat this procedure for
other elements bi . After a finite number of repetitions, we arrive at a group which we
will again call G′j , with a v-p-basis B′j such that for every i there is b′i ∈ B′j satisfying
vb′i ≥ vaj and pb′i = bi . Moreover, aj will still be a proper representative of aj + Gj . We
set ãj = aj −

∑
nib
′
i . Then vãj ≥ vaj , which yields that vãj = vaj and that ãj is still

a proper representative of aj + Gj . Since pãj = 0 by construction, it now follows from
Lemma 3.38 that B′′j := B′j ∪ {ãj} is a v-p-basis of G′′j := G′j + Zãj .

Case 2: vaj = ν. As in case 1, we choose b′i such that pb′i = bi and vb′i = vbi = ν. Again,
Bj ∪ {b′i} will be a v-p-basis of G′j = Gj + Zb′i , but we can not guarantee that aj is still
a proper representative of aj + G′j . After a finite number of repetitions, we arrive at a
group which we will again call G′j , with a p-basis B′j such that for every i there is b′i ∈ B′j
satisfying vb′i = vaj = ν and pb′i = bi . We set ãj = aj −

∑
nib
′
i . Then vãj ≥ vaj . If “=”

holds, then we proceed as in case 1. If “>” holds, then that means that aj =
∑
nib
′
i . In

this case, we just set B′′j := B′j and G′′j := G′j .

Now we have to enlarge B′′j and G′′j to obtain a v-p-basis that has property (3.9). Assume
that b ∈ B′′j has value µ + 1 < ν and that there is no b′ ∈ B′′j of value µ such that pb′ = b.
(Note that by our construction of B′′j , there are only finitely many such b.) We pick an
element b′ ∈ G with the above properties. If there is no element in B′′j of value µ, then we
can just adjoin b′ to B′′j to obtain a p-basis of the enlarged group G′′j +Zb′. Now assume that
there are elements of value µ in B′′j . Suppose that B′′j ∪{b′} is not p′-valuation independent.
Then there is a linear combination nb′ +

∑
nibi with elements bi ∈ B′′j of value µ and n, ni

prime to p, whose value is > µ. But then, the value of nb + p
∑
nibi = p(nb′ +

∑
nibi) is

> µ+1 = vb (using the assumption that µ+1 = vb < ν). Hence by virtue of Corollary 3.37,
b = pjbi for some i and j ≥ 1. Then j = 1 since otherwise, vb = vpjbi ≥ µ + 2 > vb, a
contradiction. But b = pbi contradicts our assumption on b. This shows that B′′j ∪ {b′} is
p′-valuation independent. So again, we can adjoin b′ to B′′j . The descent from a successor
ordinal to the next lower limit ordinal (or 0) is finite. Hence, after a finite repetition of
this procedure we will arrive at a finite subgroup Gj+1 of G with a v-p-basis Bj+1 that has
property (3.9). This establishes the induction step. The union B :=

⋃
j∈N Bj is the desired
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p-basis of G.

The second assertion of our theorem follows from what we just proved, together with
the previous lemma. The third assertion is seen as follows. If G is reduced and only
ordinals < ω appear as values of elements of G, then for every b being put into the p-basis
by the above procedure, we only need to add an element b′ once so that pb′ = b, namely,
the one satisfying vb = vb′ + 1. That is, in the constructed p-basis B there will be no two
elements b1 6= b2 with pb1 = pb2 . This implies that the elements of B0 = {b ∈ B | vb = 0}
are Z-independent, and thus are Z-valuation independent. If G is reduced, hence generated
by B0, this implies that B0 is a Z-valuation basis of (G, v). �

From now on, let v be the order valuation of the abelian p-group G. With
this valuation, all components of (G, v) are Fp-vector spaces. A p′-valuation independent
set B of generators of (G, v) is called a straight basis of G (we do not require that
pB ⊂ B ∪ {0}). For details on straight bases, see K. Benabdallah and K. Honda [BE–HO].
Here, we prove:

Theorem 3.41 Every p-group G has a straight basis.

Proof: For every m ∈ vG, we choose elements bm,i ∈ G, i ∈ Im , such that vbm,i = m and
the elements combm,i , i ∈ Im , form an Fp-basis of Cm(G, v). Then by Lemma 3.35, the
elements bm,i are p′-valuation independent. Let a ∈ G and m = va. Then there are finitely
many elements bm,i and integers 0 < nm,i < p such that a−

∑
nm,ibm,i has value ≥ m+ 1.

By a finite repetition of this procedure, we find finitely many elements bj,i and integers
0 < nj,i < p, m ≤ j < 0, such that a =

∑
j,i nj,ibj,i . Hence, B = {bm,i | m ∈ vG ∧ i ∈ Im}

generates G. By what we have shown before, B is thus a straight basis of G. �

Finally, let us say some words about linear independence of the elements of p-bases
and straight bases. Given elements b1, . . . , bm ∈ G, we will call them p′-independent
if no non-trivial Z-linear combination

∑m
i=1 nibi , with ni integers prime to p, equates to

zero. p′-valuation independence implies p′-independence. Thus, the elements of p-bases
and straight bases are p′-independent. But contrary to the case of a p-basis, for fixed
m ∈ vG, the elements of value m of a straight basis B are even Z-independent. This is
seen as follows. Let

∑k
i=1 nibi be any Z-linear combination with bi ∈ B of value m and

nibi 6= 0. Let pn be the highest power of p which divides all ni , and write ni = n′ip
n. Note

that m + n = vpnbi ≤ vnibi < ∞. Without loss of generality, we may assume that there
is j with 1 < j ≤ k such that n′1, . . . , n

′
j are prime to p and n′j+1, . . . , n

′
m are divisible by

p. Now v
∑j

i=1 n
′
ibi = m and v

∑k
i=j+1 n

′
ibi ≥ m + 1, which shows that v

∑k
i=1 n

′
ibi = m.

Consequently, v
∑k

i=1 nibi = m+ n <∞, which proves that
∑k

i=1 nibi 6= 0.

Exercise 3.5 Show that p′-independence of the elements of B does not imply the uniqueness of a repre-
sentation a =

∑
nibi with bi ∈ B and ni prime to p.

Exercise 3.6 Let G be a divisible p-group. Construct a p-basis B of G (hint: start from an Fp-basis of
the socle of G). Show that in the case of divisible p-groups, condition 1) for a p-basis is equivalent to

1′) the elements of B are p′-independent.
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3.6 Embedding lemmas

Valuation independent sets can serve to obtain isomorphisms between valued modules, as
the following lemma shows.

Lemma 3.42 Let N and N′ be valued R-modules containing M as a common valued sub-
module. Let B ⊂ N \ ExeN and B′ ⊂ N ′ \ ExeN be R-valuation independent over M.
Suppose that there exists an R-linear embedding

σ : sk N −→ sk N′

over sk M and a bijection

ψ : B −→ B′

preserving σ, i.e.

∀b ∈ B : (vψb, coψb) = σ(vb, co b) .

Then ψ extends R-linearly to an isomorphism

ι : M +RB −→M +RB′

of valued R-modules which also preserves σ.
If in addition, N and N′ are ordered and v is their natural valuation, and if σ is an

embedding of ordered skeletons (i.e. it preserves the ordering on the components), then ι
also preserves the ordering.

Proof: Since B and B′ are R-independent over M , ψ extends R-linearly to an iso-
morphism ι between M + RB and M + RB′. We have to show that it is an isomor-
phism of valued R-modules which preserves σ. Given b ∈ M + RB, let us write b in the
form (3.4). We assume (after a suitable renumeration) that precisely r1b1, . . . , rmbm, a are
the summands of least value γ in (3.4). If va is smaller than the value of the other
summands, then omit the elements ribi in the following; if on the other hand, va is
greater than the value of some summand ribi, then omit a everywhere. By our hypoth-
esis on ψ it follows that precisely r1ψb1, . . . , rmψbm, a are the summands of least value
in ιb =

∑
riψbi + a. Since B is R-valuation independent over M, we have (vb, co b) =

r1(vb1, co b1) + . . . + rm(vbm, co bm) + (va, co b). Since also B′ is R-valuation independent
over M,

(vιb, co ιb) = r1(vψb1, coψb1) + . . .+ rm(vψbm, coψbm) + (va, co b)

= r1σ(vb1, co b1) + . . .+ rmσ(vbm, co bm) + (va, co b)

= σ(r1(vb1, co b1) + . . .+ rm(vbm, co bm) + (va, co b)) = σ(vb, co b) .

This shows that ι preserves σ, which in turn yields that ι is an isomorphism of valued
R-modules.

The last assertion follows directly from Corollary 2.26. �

Let us apply this lemma to ordered abelian groups. As we have mentioned already,
with their natural valuation they are ordinary valued Z-modules.
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Corollary 3.43 Let (G,<) and (G′, <) be ordered abelian groups, equipped with their nat-
ural valuation v and containing (H,<) as a common ordered subgroup. Let B ⊂ G and
B′ ⊂ G′ be Z-valuation independent over H. Suppose that there exists a Z-linear embedding
σ : sk G → sk G′ of ordered skeletons over sk H and let ψ be as in the lemma. Then ψ
extends linearly to an isomorphism ι : H + ZB → H + ZB′ of ordered abelian groups which
also preserves σ.

By Lemma 2.31, there is a unique extension of the orders from M + ZB to M + QB and
from M +ZB′ to M +QB′. Consequently, ι also extends to an isomorphism ι : M +QB →
M+QB′ of ordered abelian groups, and if they are contained in N resp. N′ then ι preserves
σ on their skeletons.

The following is an interesting special case of the foregoing corollary; for an application,
see [KU4].

Corollary 3.44 Let (G,<), (G′, <), (H,<) and v be as in the foregoing corollary. Suppose
that bi and b′i, i ∈ I, are elements of G and G′ respectively, such that

1) all vbi, i ∈ I, are distinct and not contained in vH,

2) sign(bi) = sign(b′i) for all i ∈ I, and the assignment vbi 7→ vb′i establishes an order
isomorphism

ρ : vH ∪ {vbi | i ∈ I} → vH ∪ {vb′i | i ∈ I} .
Then the assignment bi 7→ b′i defines order and valuation preserving isomorphisms

H +
∑
i∈I

Zbi −→ H +
∑
i∈I

Zb′i

H +
∑
i∈I

Qbi −→ H +
∑
i∈I

Qb′i

both preserving ρ. (Here, the groups are endowed with the restrictions of the orders of the
divisible hulls of G and G′ which are uniquely determined by those of G and G′.) Note that
vH∪{vbi | i ∈ I} is the value set of both groups on the left hand side, and vH∪{vb′i | i ∈ I}
is the value set of both groups on the right hand side.

Alternatively, assume 1) and the following condition:

2’) the assignment bi 7→ b′i establishes an isomorphism

ι : H ∪ {bi | i ∈ I} → H ∪ {b′i | i ∈ I}

as ordered sets.

Then ι extends linearly to order and valuation preserving isomorphisms of the above groups.

The equivalence of the conditions 2) and 2’) is seen as follows. Let be given an i ∈ I.
Condition 1) says that vbi /∈ vH∪{vbj | i 6= j ∈ I}. Hence, (2.7) gives |bi| > |a| ⇔ vbi < va
for all a ∈ H ∪ {bj | i 6= j ∈ I}. Note that by virtue of H ∩ {bi | i ∈ I} = ∅, the order on
H ∪ {bi | i ∈ I} is already determined by the cuts induced in H by the elements bi and
by the order on the set {bi | i ∈ I}. Further, observe that every element of G of the same
sign and value as bi will induce the same cut as bi in H. Cuts induced in H by elements
of value not in vH, have special properties; such cuts are studied in the preliminaries of
[KU4] under the name v-cuts.

Another corollary to Lemma 3.42 is the following characterization of those valued vector
spaces which are isomorphic to the Hahn sum over their skeleton:
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Corollary 3.45 Let (V, v) be a valued K-vector space with value preserving scalar mul-
tiplication which admits a K-valuation basis. Then there is an isomorphism from (V, v)
onto the valued Hahn sum over its skeleton. This isomorphism can be chosen so that it
preserves the coefficient map.

If in addition, V is an ordered K-vector space and v is its natural valuation, then the
isomorphism can be chosen as to preserve the ordering.

Conversely, every valued Hahn sum whose components are K-vector spaces is a valued
K-vector space with value preserving scalar multiplication which admits a K-valuation
basis.

Proof: Assume that (V, v) admits a K-valuation basis B. Then by Corollary 3.28
where we take W = 0, the set Bα = {co α b | b ∈ B and vb = α} forms a basis of CαV
for every α ∈ vV . Using these bases of the components, we form a K-valuation basis
B′ = {eζ | ζ ∈ BαV ∧ α ∈ vV } of the Hahn sum

∐
α∈vV CαV. Now our first and second

assertion follow from Lemma 3.42, where we take σ to be the identity.
The converse was already proved in the last section. �

According to Theorem 3.30, every countably-dimensional valued vector space with value
preserving scalar multiplication admits a valuation basis. Hence, the foregoing corollary
yields the following theorem of R. Brown [BRW1]:

Theorem 3.46 Two countably-dimensional valued vector spaces with value preserving scalar
multiplication are isomorphic if and only if their skeletons are isomorphic. Similarly, two
countably-dimensional ordered vector spaces are isomorphic if and only if their natural
skeletons are isomorphic.

The following example is meant to prevent a common error:

Example 3.47 Given an element a in a valued module, let us call the representation
a = a1 + . . .+an a convex decomposition of a of length n if all values va1, . . . , van are
distinct. It is not true that every element in every Hahn sum has a convex decomposition
of maximal length. As soon as the value set admits an infinite ascending chain βi, i ∈ N
of values starting from β1 = va, we can carry out the following construction. We choose
elements bi such that vbi = βi and b1 = a. To obtain a decomposition of a of length n for
arbitrary n ∈ N, we just have to set ai = bi − bi+1 for i < n and an = bn. The sum of the
ai’s is a, and their values vai = vbi are all distinct.

For instance, this construction works for every nonzero element in the Hahn sum
∐

N Q,
which is a valued Q-vector space with value preserving scalar multiplication. ♦

Remark 3.48 This example shows a theorem of Banaschewski ([BAN], Satz, p. 435) to be false. This
theorem characterizes the Hahn sums to be those valued vector spaces with value preserving scalar multipli-
cation in which every element admits a convex decomposition of maximal length. (Note that Banaschewski
uses the names “schwache Hahnsche Summe” for the Hahn sum and “Hahnsche Summe” for the Hahn
product.) The gap in Banaschewski’s proof is that he assumes as obvious that a tuple of the Hahn product
with only one nonzero entry admits only convex decompositions of length 1. (His verification reads “wie
man sofort sieht”. We have carefully avoided using corresponding english phrases in this book, in order
not to mark our errors.)

Most remarkably, Fleischer [FL2] cites the wrong theorem of Banaschewski in order to disprove a
theorem of Hill and Mott ([HI–MO], Theorem 5.1). This theorem states that a countable ordered abelian
group G whose components are all isomorphic to Z, can be embedded in the ordered Hahn sum

∐
vGZ
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(without claiming that the resulting extension is immediate). Fleischer gives an interesting example which,
because of Banaschewski’s error, does not show what he wants but rather lends credibility to the theorem
of Hill and Mott. Consider the Hahn product HNZ and its subgroup of all cofinitely constant tuples. The
latter is generated over the Hahn sum

∐
N Z by just one element: the tuple (1, 1, 1, . . .) which has a 1 at

every entry. According to Banaschewski’s theorem, this group can not be isomorphic to the Hahn sum over
its skeleton, and hence cannot admit a Z-valuation basis. But it does: the elements (0, . . . , 0, 1, 1, 1, . . .)
which are constantly 1 from the i-th entry on and 0 before, for i ∈ N. (I am endebted to S. Kuhlmann
for bringing my attention to the cited articles, for detecting the mentioned errors and for providing the
valuation basis.)

Let us consider once more the assertion of Lemma 3.21. It says that under the as-
sumptions of that lemma, an extension (W, v) ⊂ (V, v) can be broken up into one which
is generated by a system of valuation independent elements and one which is immediate.
This principle will play an important role throughout this book. Having treated exten-
sions of the first type in the last lemma and corollary, the question arises what we can say
about immediate extensions. By the characterization of immediate extensions of ultramet-
ric spaces given in Lemma 1.36 we know that the approximation type of every element in
such an extension is immediate. On the other hand, we have Lemma ?? at hand. If M
is a valued module, N an immediate and N′ an arbitrary extension of M, and if b ∈ N
and b′ ∈ N ′ have the same approximation type over M, then this lemma tells us that
v(b − a) = v(b′ − a) for all a ∈ M . The question is, whether also v(rb − a) = v(rb′ − a)
for all a ∈M and all r ∈ R, because then b 7→ b′ will define an isomorphism of the valued
modules M + Rb and M + Rb′ over M. If both N and N′ are valued vector spaces with
value preserving scalar multiplication, then we are done: if r = 0, there is nothing to show,
and if r 6= 0, then v(rb − a) = v(b − r−1a) = v(b′ − r−1a) = v(rb′ − a). But we want to
prove a little bit more.

Lemma 3.49 Let N, N′ be torsion free ordinary valued R-modules, containing a common
valued submodule M such that M ⊂ N is an immediate extension. Assume that for every
r ∈ R, the R-module rM is spherically closed in M (note that this condition is void if R
is a field). Given elements b ∈ N \M and b′ ∈ N ′ such that at (b,M) = at (b′,M), then
the assignment b 7→ b′ induces an embedding of (M +Rb, v) in N′ over M.

If in addition, N and N′ are ordered and v is their natural valuation, then the embedding
also preserves the ordering.

Proof: From Lemma ?? we know that v(b − a) = v(b′ − a) for all a ∈ M . We show
that v(rb − a) = v(rb′ − a) for all r ∈ R \ {0} and a ∈ M . Since rM is assumed to
be spherically closed in M, there is some c ∈ M such that v(a − rc) = max{v(a − rd) |
d ∈ M}. Since M ⊂ N is an immediate extension, Lemma 2.9 shows that there is
some d ∈ M such that v(b − d) > v(b − c) (note that b − c 6= 0 since b /∈ M). By
assumption, the R-module N is torsion free and r 6= 0, so we have r(b − c) 6= 0. Hence
by Lemma 3.3, v(b− d) > v(b− c) yields that v(rb− rd) > v(rb− rc). Now we compute:
v(rb−rd) > v(rb−rc) ≥ min{v(rb−a), v(a−rc)} ≥ min{v(rb−a), v(a−rd)}, showing that
v(rb− a) = v(a− rd) by virtue of (V=). Since we know already that v(b− c) = v(b′ − c)
and v(b − d) = v(b′ − d), we can replace b by b′ everywhere in the above computation.
This gives v(rb − a) = v(a − rd) = v(rb′ − a), as desired. Furthermore, we observe that
v(rb − a) = v(rb′ − a) ≤ v(rb − rc) < ∞ for all r ∈ R \ {0} and a ∈ M . This proves
rb /∈ M and rb′ /∈ M . Thus, b 7→ b′ induces an embedding of M + Rb in N ′ over M , and
our computation of the values shows that this embedding preserves the valuation.
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Since M ⊂M+Rb is immediate as a subextension of the immediate extension M ⊂ N,
the same is true for the extension M ⊂M +Rb′. Hence trivially, the embedding preserves
the identity on their skeletons, which are equal to the skeleton of M. If N and N′ are
ordered and v is their natural valuation, then by Corollary 2.26 the embedding will also
preserve the ordering. �

The significance of this lemma is that it deduces information about the valued modules
M+Rb and M+Rb′ from information that is encoded in the ultrametric spaces M∪{b} and
M∪{b′}. This principle of reduction to simpler structures is the basic idea in the application
of approximation types and will be met several times in different forms in this book (cf.
e.g. the Ax–Kochen–Ershov Principle introduced in Section 21.2 and Lemma 21.8).

Let us consider for a moment the assumptions of the lemma. If R is a (skew) field,
then for all r ∈ R \ {0} we have rM = M, which is spherically closed in M. Having
in mind the ordered abelian groups, let us also consider (left) valued R-modules M with
value preserving scalar multiplication, and assume in addition that the ring R admits a
field K of (left) fractions (cf. [COHN2], chapter 0, section 0.8). Then we can consider the
K-module K⊗RM . Because of value preserving scalar multiplication, M is R-torsion free
and thus a submodule of K ⊗R M (cf. [COHN2], chapter 0, Proposition 9.1). There is a
unique extension of the valuation from M to K ⊗RM such that the scalar multiplication
remains value preserving. Indeed, for every element b ∈ K ⊗R M there is some r ∈ R
such that rb ∈ M , and we have vb = vrb. Equipped with this extension of the valuation,
the K-module K ⊗R M will be denoted by K ⊗R M. (Without the assumption of value
preserving scalar multiplication, existence and uniqueness of such an extension are not a
priori guaranteed.) Now if M is spherically closed in K⊗RM, then for every r ∈ R\{0} and
every a ∈M there is some c ∈M such that v(r−1a−c) = max{v(r−1a−d) | d ∈M}. Since
the scalar multiplication is value preserving, we find v(a− rc) = max{v(a− rd) | d ∈M}.
Hence: if M is spherically closed in K ⊗R M, then rM is spherically closed in M for
every r ∈ R \ {0}. With the assumptions modified correspondingly, the lemma can now
be applied to ordered abelian groups, with v the natural valuation, R = Z and K = Q. In
this case, K⊗RM is just the divisible hull of M , equipped with the natural valuation with
respect to the unique extension of the ordering (cf. Lemma 2.31). For divisible ordered
abelian groups, the spherical closedness condition is trivially satisfied. Another important
class of ordered abelian groups satisfying this condition is the class of Z-groups:

Lemma 3.50 Every Z-group, equipped with its natural valuation, is spherically closed in
its divisible hull.

Proof: Let (G,<) be a Z-group with smallest positive element g. Let a ∈ G and n ∈ N;
we wish to show that {v( a

n
−d) | d ∈ G} admits a maximum. According to Lemma 2.33 we

write a = nb−mg with b ∈ G and m ∈ N. If n divides m, then a
n
∈ G and the assertion is

trivial. If n does not divide m, then a
n

= b− m
n
g /∈ G. In this case,∞ /∈ {v( a

n
−d) | d ∈ G},

and hence, the maximum is vm
n
g = vg = v( a

n
− b) (which is the maximum of vG). �

Now we are able to prove the Hahn Embedding Theorem for valued and ordered vector
spaces. In particular, it shows that every maximal component-compatibly valued vector
space is isomorphic to the Hahn product over its skeleton, and thus, it is spherically com-
plete. (Recall that every component-compatibly valued vector space has value preserving
scalar multiplication).
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Theorem 3.51 Let K be a field or a skew field and (V, v) an ordinary valued K-vector
space with value preserving scalar multiplication. Then there is an isomorphism ι of the
valued Hahn sum

∐
α∈vV CαV onto a valued subspace (V ′, v) of (V, v) which also preserves

the coefficient map. On the other hand, ι−1 can be extended to an embedding of (V, v)
in the valued Hahn product Hα∈vV CαV which also preserves the coefficient map. This
embedding is onto if and only if (V, v) is maximal. Hence, for component-compatibly valued
vector spaces the properties “maximal”, “spherically complete” and “being (isomorphic to)
a Hahn product” coincide.

If in addition, V is an ordered K-vector space and v is its natural valuation, then the
embeddings can be chosen as to preserve the ordering.

Proof: By Lemma 3.21 where we takeW = 0, we obtain the existence of some valued sub-
space (V ′, v) of (V, v) which admits a K-valuation basis B and such that (V ′, v) ⊂ (V, v) is
an immediate extension. Hence, (V ′, v) has the same skeleton as (V, v). By Corollary 3.45,
(V ′, v) is isomorphic to the Hahn sum over this skeleton, that is, to

∐
α∈vV CαV. The

isomorphism can be chosen as to preserve the coefficient map and, in the ordered case, to
preserve the ordering.

We identify the Hahn sum with its isomorphic image (V ′, v). We wish to show that (V, v)
is embeddable in Hα∈vV CαV over V ′. Consider the set of all such embeddings of subspaces
of (V, v). A union over an ascending chain of such embeddings is again an embedding of
a subspace of (V, v). By Zorn’s Lemma, there is a maximal subspace (V ′′, v) which is
embeddable in this way. We have to show V ′′ = V . Otherwise, there is some b ∈ V \ V ′′.
Let us identify (V ′′, v) with its image in Hα∈vV CαV. Since the extension (V ′′, v) ⊂ (V, v)
is immediate, at (b, V ′′) is immediate by Lemma 1.36. Since Hα∈vV CαV is spherically
complete (Lemma 2.14), Lemma 1.40 shows that at (b, V ′′) is realized by some element
b′ in the Hahn product, i.e., at (b, V ′′) = at (b′, V ′′). Now Lemma 3.49 shows that also
(V ′′ + Kb, v) can be embedded, contrary to our maximality assumption. This shows that
(V, v) can be embedded over V ′ in the Hahn product. Since (V ′, v) ⊂ (V, v) is immediate,
for every b ∈ V there is some a ∈ V ′ such that v(b−a) > vb. If b′ is the image of b under the
embedding, then also v(b′−a) > vb = vb′. It follows that co vbb = co vba = co vb′a = co vb′b

′,
showing that the embedding also preserves the coefficient map. In the ordered case, all
embeddings are taken to be order preserving, and we use the corresponding additional
assertion of Lemma 3.49.

The Hahn product Hα∈vV CαV is an immediate extension of the embedded image
of (V, v). If (V, v) is maximal, then this extension must be trivial. Conversely, if the
embedding is an isomorphism onto the Hahn product, then in view of Theorem 3.7 and
Lemma 2.14, (V, v) must be maximal and spherically complete. �

As a corollary, we obtain the following counterpart to Brown’s Theorem (Theorem 3.46):

Theorem 3.52 Two maximal valued vector spaces with value preserving scalar multiplica-
tion are isomorphic if and only if their skeletons are isomorphic. Similarly, two maximal
ordered vector spaces are isomorphic if and only if their natural skeletons are isomorphic.

Since a divisible ordered abelian group equipped with its natural valuation is a valued
Q-vector space with value preserving scalar multiplication, we obtain:

Corollary 3.53 Every divisible ordered abelian group is embeddable between the ordered
Hahn sum and the ordered Hahn product over its natural skeleton. The embedding is an
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isomorphism onto the Hahn product if and only if the group is maximal with respect to its
natural valuation. Hence, for divisible ordered abelian groups the properties “maximal”,
“spherically complete” and “being (isomorphic to) an ordered Hahn product” coincide.

Given an arbitrary ordered abelian group (G,<), the ordering can be extended to the
divisible hull of G̃, according to Lemma 2.31. From the preceding Corollary, we thus obtain

Corollary 3.54 Every ordered abelian group is embeddable in the ordered Hahn product
over the natural skeleton of its divisible hull.

From Lemma 2.31 we also know the natural skeleton of G̃. In fact, we have vG̃ = vG and
for every α ∈ vG, the α-component of G̃ is the divisible hull of the α-component of G. So
the corollary shows that (G,<) is embeddable in the ordered Hahn product

∐
α∈vG CαG̃.

If we wish to replace these components by a uniform one, we can employ the following
theorem which is due to Hölder [HÖL]:

Theorem 3.55 Every archimedean ordered abelian group can be embedded in the ordered
additive group of the reals.

For the proof and additional remarks, see [PC1], Chapter I, §3. Cf. also Exercise 3.7. This
lemma shows that every component CαG̃ can be viewed as an ordered subgroup of R.
Thus, the ordered Hahn product

∐
α∈vG CαG̃ is an ordered subgroup of the ordered Hahn

product
∐

α∈vG R. (At this point, we should note that all embeddings of ordered abelian
groups that have ocurred so far can be chosen as to preserve also the natural valuation.)
We have now deduced the original Hahn Embedding Theorem:

Corollary 3.56 Every ordered abelian group (G,<) with natural valuation v is embeddable
in the ordered Hahn product Hα∈vG R .

Remark 3.57 Hahn proved this theorem in 1907, cf. [HAHN]. For a brief history of generalizations and
different proofs and for a proof following Banaschewski’s approach, see Prieß-Crampe [PC1]. Corollary 3.53
is due to Banaschewski [BAN]. Our own valuation theoretical approach follows the spririt of Gravett’s
papers [GRA1], [GRA2].

It is not true that an arbitrary ordered abelian group is embeddable in the ordered Hahn product
over its own natural skeleton. Apparently, the first counterexample was given by B. Gordon, as cited by
A. H. Clifford in [CLI]. Contrary to the statements in P. Ribenboim’s papers [RIB4] and [RIB6], it is not
even true if the group is regular in the sense of these papers. Counterexamples were given by P. Hill and
J. L. Mott in [HI–MO]. For instance, there are Z-groups of rank 2 and rational rank 2 with archimedean
components Z and Q such that the convex subgroup Z is not a direct summand (cf. Theorem 3.1 and
Proposition 3.2 of [HI–MO]). It should be noted that if the group is represented as a subgroup of Q×Q, the
projections on the second component will not coincide with the archimedean component Z. Otherwise, Z
would be a direct summand, as was pointed out by G. Sabbagh. In this book, we use the word “component”
in the sense of α-components and archimedean components, and these may differ significantly from the
components which are understood as images under the coordinate projections of tuples.

For ordered abelian groups, the above lemmas are only of interest in the case where the
natural valuation is non-trivial, i.e. where the ordering on the group is non-archimedean.
The results are void for the archimedean case, which in particular is of interest for the
embedding of components. So let us give an auxiliary embedding lemma for this case,
without aiming at the best possible result.
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Lemma 3.58 Let (G,<) ⊂ (H,<) and (G,<) ⊂ (H ′, <) be two extensions of ordered
abelian groups and b ∈ H \ G, b′ ∈ H ′ \ G. Assume further that G is divisible. If b
and b′ induce the same cut in G, then the assignment b 7→ b′ defines order preserving
isomorphisms from G+ Zb onto G+ Zb′ and from G+ Qb onto G+ Qb′.

Proof: Since b, b′ /∈ G, the assignment b 7→ b′ defines isomorphisms from G + Zb onto
G+ Zb′ and from G+ Qb onto G+ Qb′. Let (Λ1,Λ2) be the cut induced by b and b′ in G.
Given m,n ∈ N and a ∈ G, then m

n
a ∈ G and b > m

n
a ⇔ −m

n
a ∈ Λ1 ⇔ b′ > m

n
a. Hence,

n
m
b > a ⇔ n

m
b′ > a. This also yields that − n

m
b > a ⇔ − n

m
b′ > a. We have thus shown

that the isomorphisms are order preserving. �

Exercise 3.7 a) Try to prove Lemma 3.58 without the hypothesis that G be divisible. What is the
difficulty? Compare with our remark following Lemma 3.49. Prove Lemma 3.58 under the assumption
that for every n ∈ N, there is an element divisible by n between every two elements of G. Show that G
has this property already if it is p-divisible for an arbitrary prime p.

b) Prove Theorem 3.55, using Lemma 3.58, Lemma 2.31 and the fact that R is Dedekind complete
(that is, every cut in R is already realized in R, provided that both sets in the cut are nonempty).

3.7 Defectless extensions of valued vector spaces

We have defined defectless extensions of valued modules in section 3.3 to be those extensions
for which every finite subextension admits a valuation basis. It is a direct consequence of
this definition that every subextension of a defectless extension is again defectless. The
most important questions arising in this connection are: Is an extension defectless if it
admits a valuation basis? If an extension admits a valuation basis, does this also hold for
every subextension? We will consider these questions in the case of ordinary valued vector
spaces. In what follows, we let K be an arbitrary field (or a skew field).

Vector spaces have the following basis exchange property: If V is a K-vector space
with basis B over W and if V ′ is a subspace of V with basis B′ over W , then there is a
subset B′′ ⊂ B which is a basis of V over V ′. This implies that B′∩B′′ = ∅ and that B′∪B′′
is a basis of V over W . We will now show the same for valuation bases for the case where
V ′ is finite-dimensional over W . Contrary to the cited situation, we now must also show
the existence of the K-valuation basis B′.

Let (V, v) be an ordinary valued K-vector space and (W, v) a valued subspace. Assume
that B is a K-valuation basis of (V, v) over W . Let b ∈ V \W . We write b = a +

∑
i ribi

with ri ∈ K, bi ∈ B and a ∈ W . Set b′ := b − a. Since the elements bi are K-valuation
independent over W , the same holds for b′ =

∑
i ribi . Hence, B′ := {b′} is a K-valuation

basis of (W + Kb, v) over W . Let j be some index among the i for which the summand
rjbj is of minimal value. Set B′′ := B \ {bj}. We wish to show that B′′ is a K-valuation
basis of (V, v) over W + Kb. This is seen as follows. Given a finite linear combination
a + rb′ +

∑
i 6=j r

′
ibi with r, ri ∈ K, bi ∈ B′′ and a ∈ W , the only critical case appears

if vrb′ = mini 6=j{va, vr′ibi}. In this case, we have to verify that the value of the linear
combination is equal to vrb′. By Lemma 3.3 we know that rrjbj is a summand of minimal
value in rb′ =

∑
i rribi since rjbj was of minimal value in b′ =

∑
i ribi. Hence, vrb′ = vrrjbj .

Rewriting the given linear combination as a+ rrjbj +
∑

i 6=j(rri + r′i)bi , we now see that its
value must be vrb′ by the valuation independence of the bi.
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Repeating this argument and using Lemma 3.16, the following can be shown by induc-
tion on dimK V

′/W :

Lemma 3.59 Let (V, v) be an ordinary valued K-vector space admitting a K-valuation
basis B over the subspace W . If W ⊂ V ′ is a finite subextension of W ⊂ V (i.e.,
dimK V

′/W <∞), then (V ′, v) admits a K-valuation basis B′ over W and there is B′′ ⊂ B
such that B′′ is a K-valuation basis of (V, v) over V ′.

The lemma shows that the first question stated at the beginning can be answered in the
affirmative:

Corollary 3.60 Let (V, v) be an ordinary valued K-vector space with subspace W . If (V, v)
admits a K-valuation basis over W , then (W, v) ⊂ (V, v) is a defectless extension of valued
vector spaces.

If in the situation of Lemma 3.59, W ⊂ V ′ is a subextension of countably infinite di-
mension, then it admits a basis indexed by the natural numbers, and by the same induction
procedure, it can be deduced that V ′ admits a K-valuation basis over W :

Corollary 3.61 Let (V, v) be an ordinary valued K-vector space admitting a K-valuation
basis B over the subspace W . Then every subspace (V ′, v) of (V, v) of countable dimension
over W admits a K-valuation basis over W .

On the other hand, if in the same situation, V ′ is not of finite dimension over W , then the
other part of the assertion of Lemma 3.59 may not remain true:

Examples 3.62 Let K be an arbitrary field and consider the Hahn sum V :=
∐

NK,
which is an ordinary valued K-vector space with value preserving scalar multiplication.
Let ei be the tuple which has a 1 at the i-th entry and zeros everywhere else. Then ei,
i ∈ N, is a K-valuation basis of (V, v) (over the zero subspace). Consider the countably
dimensional subspace V ′ which is spanned by all elements ei− ei+1, i ∈ N. These elements
even form a K-valuation basis of V ′. Then V = V ′⊕Ke1 . On the other hand, the skeleton
of both V and V ′ is sk NK and thus, the extension (V ′, v) ⊂ (V, v) is immediate. This shows
that (V, v) does not admit a K-valuation basis over V ′. Even more, V ′ is dense in (V, v).
This follows from the fact that for every i ∈ N, the element e1 − ei lies in V ′ and we have
v(e1 − (e1 − ei)) = vei = i.

By a slight modification of this example, given by L. Fuchs in [FU3], one can show
that Corollary 3.61 does not remain true if the subextension is not countably generated.
Let us now take V :=

∐
λK where λ is a limit ordinal of cofinality type > ω, and let us

take V ′ to be the subspace generated by all ei − ej for i, j ∈ λ. By way of contradiction,
assume that V ′ admits a K-valuation basis of the form bi , i ∈ λ with vbi = i. Consider the
elements e0 − ej and their unique representations as linear combinations

∑
ribi , ri ∈ K.

If j ≤ k, then v((e0 − ej) − (e0 − ek)) = v(ek − ej) = j showing that for all i < j, the
i-th coefficient must be the same in the representations of both e0 − ej and e0 − ek . We
form an increasing sequence jν , ν ∈ N, of elements in λ as follows. Let j0 > 0. Observe
that for all j > 0 we have v(e0 − ej) = 0 and thus, b0 must appear in the representation
of e0 − ej. If e0 − ejν =

∑
ribi , then e0 6=

∑
i<jν

ribi since e0 /∈ V ′. Hence, we can choose
jν+1 > v(e0 −

∑
i<jν

ribi) =: k. For j ≥ jν+1, we have v(e0 − (e0 − ej)) = vej = j > k
showing that bk must appear in the representation of e0 − ej. By construction, for every
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ν ∈ N, the representation of e0− ejν requires at least ν basis elements bi of value < jν , and
these are also required in the representations of all e0 − ej for j ≥ jν . Since the cofinality
type of λ is not ω, there must be some j ∈ λ which is larger than all jν . But then, the
representation of e0 − ej ∈ V ′ requires infinitely many basis elements bi, a contradiction.
We have proved that V ′ does not admit a K-valuation basis. Observe that as before, V ′ is
dense in (V, v).

In this last example we have constructed a valued vector space not admitting a valuation
basis. There is another method of constructing such vector spaces, using a cardinality
argument. For example, consider

∐
N Q and HN Q. The first is countable since it is a

sum of countably many countable groups. Similarly, the skeleton is countable. The second
Q-vector space has cardinality 2ℵ0 since this is the cardinality of all maps from N into Q
(note that every subset of N is wellordered, so every map from N into Q is an element of
the Hahn product). Since the Hahn product has the same countable skeleton as the Hahn
sum, every Q-valuation independent set contained in it must be countable; hence, it can
not be a basis of the Hahn product. On the other hand, Theorem 3.30 shows that the Hahn
product is a defectless extension of the trivial vector space 0. Even more, Theorem 3.30
in combination with Lemma 3.59 shows that the Hahn product is a defectless extension of
all of its finite-dimensional subspaces. ♦

Our example has shown that there exist defectless extensions (W, v) ⊂ (V, v) of ordinary
valued K-vector spaces which admit a subextension (W, v) ⊂ (V ′, v) such that (V ′, v) ⊂
(V, v) is a proper immediate extension, and thus is not defectless. On the other hand, we
can prove the following transitivity of defectless extensions:

Lemma 3.63 Let (W, v) ⊂ (V, v) be an extension of ordinary valued K-vector spaces and
(W, v) ⊂ (V ′, v) a subextension. If (W, v) ⊂ (V ′, v) and (V ′, v) ⊂ (V, v) are defectless
extensions, then so is (W, v) ⊂ (V, v).

Proof: Let (W, v) ⊂ (V0, v) be a finite subextension of (W, v) ⊂ (V, v). We have to
show that it is defectless. Choose any K-basis b1, . . . , bn of V0 over W and let V1 be the
K-subspace of V generated by b1, . . . , bn over V ′. Since we have assumed (V ′, v) ⊂ (V, v)
to be a defectless extension, we know that the finite extension (V ′, v) ⊂ (V1, v) admits
a K-valuation basis B1 . To write down the elements b1, . . . , bn as K-linear combinations
of the basis elements from B1 and elements from V ′, we only need n elements b′1, . . . , b

′
n

from V ′. Let V2 be the K-subspace of V ′ generated by b′1, . . . , b
′
n over W . Since we have

assumed (W, v) ⊂ (V ′, v) to be a defectless extension, it follows that the finite extension
(W, v) ⊂ (V2, v) admits a K-valuation basis B2 . Since B1 is K-valuation independent over
(V ′, v), it is also K-valuation independent over (V2, v). Hence B := B1 ∪B2 is K-valuation
independent over (W, v). By construction, the K-subspace V3 of V generated by B over
W contains V0 . Since B is a K-valuation basis of the extension (W, v) ⊂ (V3, v), this
extension is defectless by Corollary 3.60. Hence, its subextension (W, v) ⊂ (V0, v) is also
defectless. �

For the conclusion of this section, we wish to discuss the relation of “spherically closed”
and “defectless” for ordinary valued vector spaces (which is not quite as spherically closed
as for vector spaces with value preserving scalar multiplication).
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Lemma 3.64 Let (W, v) ⊂ (V, v) be an extension of ordinary valued K-vector spaces. If
every K-subspace (V ′, v) of (V, v) of arbitrary dimension over W is spherically closed in
(V, v), then (V, v) admits a K-valuation basis over W .

Proof: Take a well-ordered K-basis {bν | ν < ν0} of V over W , where ν0 is some
ordinal. We construct a K-valuation basis of (W, v) ⊂ (V, v) by induction on ν. Let Vµ
be the K-vector space generated by {bν | ν ≤ µ} over W . Assume that we have already
constructed valuation bases Bν for all ν < µ such that Bν ⊂ Bν′ if ν ≤ ν ′. If µ is a limit
ordinal, then we set Bµ :=

⋃
ν<µ Bν . This is a valuation basis over W since every finite

set of elements in Bµ is already included in some Bν with ν < µ. Now let µ = µ′ + 1 be
a successor ordinal. By hypothesis, (Vµ′ , v) is spherically closed in (V, v) and hence also
in (Vµ, v). Since Vµ is of dimension 1 over Vµ′ , Lemma 3.20 shows that (Vµ, v) admits a
K-valuation basis B′µ over Vµ′ . It follows that Bµ := Bµ′ ∪ B′µ is a K-valuation basis of
(Vµ, v) over W , cf. Lemma 3.16. (For µ = 0, just replace (Vµ′ , v) by (W, v) and Bµ′ by ∅ in
this argument.) Now Bν0 is the desired K-valuation basis of (W, v) ⊂ (V, v). �

The following result was proved by F. Delon for the case of valued vector spaces which are
induced by valued fields, cf. [DEL8], Théorème, equivalence of a) and b).

Corollary 3.65 The extension (W, v) ⊂ (V, v) of ordinary valued K-vector spaces is de-
fectless if and only if every K-subspace (V ′, v) of (V, v) of finite dimension over W is
spherically closed in (V, v).

Proof: Let (W, v) ⊂ (V, v) be defectless and (V ′, v) a K-subspace of (V, v) of finite
dimension over W . We have to show that (V ′, v) is spherically closed in every K-subspace
(V ′′, v) of (V, v) of dimension 1 over V ′. But V ′′ is also of finite dimension over W , and
thus, it admits a K-valuation basis over W by hypothesis. Hence, it admits a K-valuation
basis over V ′ by virtue of Lemma 3.59. Corollary 3.13 now shows that (V ′, v) is spherically
closed in (V ′′, v).

For the converse, assume that every K-subspace (V ′, v) of (V, v) of finite dimension over
W is spherically closed in (V, v). Given a K-subspace (V ′′, v) of (V, v) of finite dimension
over W , we have to show that it admits a K-valuation basis over W . By hypothesis, every
K-subspace (V ′, v) of (V ′′, v) of finite dimension over W is spherically closed in (V, v) and
thus also in (V ′′, v). Thus, the existence of the desired valuation basis follows from the
foregoing lemma. �

Exercise 3.8 What happens to the above examples if N is replaced by ω+ 1 and λ is replaced by λ+ 1?

Exercise 3.9 Let (V, v) be a valuedK-vector space with value preserving scalar multiplication. Prove that
every finite-dimensional subspace (W, v) is spherically closed in (V, v) (and consequently, (W, v) ⊂ (V, v)
is defectless). Show that this is not true for all ordinary valued vector spaces.

3.8 Immediate extensions of valued modules

Let M = (M, v) be a component-compatibly valued left R-module. Assume A
to be a non-trivial immediate approximation type over M.
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For r ∈ R and c ∈M , define

Υ(A, r, c) :⇔ ∀α ∈ Λ(A)∃a ∈ Aα : v(c− ra) ≥ α

and
IA := {r ∈ R | Υ(A, r, c) for some c ∈M} .

Note that “∃a ∈ Aα : v(c− ra) ≥ α” is equivalent to “∀a ∈ Aα : v(c− ra) ≥ α”. Indeed,
if a, a′ ∈ Aα, then v(ra − ra′) = vr(a − a′) ≥ v(a − a′) ≥ α and if v(c − ra) ≥ α, then
v(c− ra′) ≥ min{v(c− ra), v(ra− ra′)} ≥ α. Further, note that IA always contains 0 since
for r = 0, the condition is satisfied by c = 0.

In the case of value preserving scalar multiplication, the reader may show that the sets
rAα , α ∈ Λ(A), form a nest of balls in rM , and that its intersection is empty since A is
assumed to be a non-trivial immediate approximation type. Then IA is the collection of
all r ∈ R for which this nest of balls is realized in M . Hence, r /∈ IA if rM is spherically
closed in M . Recall that by Lemma 1.19 this holds if and only if rM is spherically closed
in M . Recall further that this is always the case if rM is spherically complete.

For arbitrary rings R, we have:

Lemma 3.66 For every component-compatibly valued left R-module M and every non-
trivial immediate approximation type A over M, the set IA is a proper left ideal of R.

Proof: For every element r ∈ IA we choose an element cr ∈ M such that Υ(A, r, cr).
Let r ∈ IA and s ∈ R . Then v(scr− sry) ≥ v(cr− ry) ≥ α for all α ∈ Λ(A), showing that
sr ∈ IA . Now let s ∈ IA . Then v(cr + cs− (r+ s)y) ≥ min{v(cr− ry), v(cs− sy)} ≥ α for
all α ∈ Λ(A), showing that r + s ∈ IA . Finally, the intersection of all Aα for α ∈ Λ(A) is
empty by virtue of Lemma ??, because A is a non-trivial immediate approximation type.
This shows that there is no c1 ∈M such that Υ(A, 1, c1) (recall that ∃a ∈ Aα : v(c1−a) ≥ α
implies that c1 ∈ Aα ). Consequently, 1 /∈ IA and IA is a proper left ideal of R. �

Lemma 3.67 Assume that IA = {0}. Then there is a component-compatibly valued left R-
module (M⊕Rx, v) extending M such that (M, v) ⊂ (M⊕Rx, v) is immediate and x realizes
A in (M ⊕ Rx, v). Moreover, if (M, v) ⊂ (M + Ry, v) is another extension of valued left
R-modules such that y realizes A, then there is an isomorphism (M⊕Rx, v) ∼= (M+Ry, v)
of valued R-modules over M which sends x to y. In particular, y is R-independent and
torsion free over M .

Proof: We let Rx be the free R-module on the generator x and M⊕Rx the direct sum of
M with Rx. We have to extend the valuation v from M to M⊕Rx. So let c ∈M and r ∈ R;
we have to define v(c−rx). By our assumption on IA , there is some α ∈ Λ(A) and a ∈ Aα

such that v(c− ra) < α. Then we set v(c− rx) = v(c− ra). This does not depend on the
choice of α and a. Indeed, let α′ ∈ Λ(A) and a′ ∈ Aα′ such that v(c− ra′) < α′. Without
loss of generality, we may assume that α ≤ α′. Then v(ra−ra′) = vr(a−a′) ≥ v(a−a′) ≥ α,
and v(c−ra′) = v(c−ra+ra−ra′) = min{v(c−ra), v(ra−ra′)} = v(c−ra). In particular,
this shows that v(c− ra′) < α for all a′ ∈ Aα .

Let us show that our definition yields a group valuation on M ⊕ Rx. So let c, c′ ∈ M
and r, r′ ∈ R ; we have to show that v(c− rx− c′ + r′x) ≥ min{v(c− rx), v(c′ − r′x)}. By
what we have just shown, we may choose α ∈ Λ(A) large enough and a ∈ Aα such that
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v(c− rx) = v(c− ra), v(c′− r′x) = v(c− ra) and v(c− c′− (r− r′)x) = v(c− c′− (r− r′)a).
Then we have that v(c−rx−c′+r′x) = v(c−c′− (r−r′)a) ≥ min{v(c−ra), v(c′−r′a)} =
min{v(c − rx), v(c′ − r′x)}, as required. In the same way, it is shown that vr′(c − rx) ≥
v(c− rx), that is, the valuation on M ⊕Rx is component-compatible.

We show that x realizes A. Let α ∈ Λ(A) and a ∈ Aα . Then we choose α′ > α and
a′ ∈ Aα′ such that v(a−x) = v(a−a′). But v(a−a′) ≥ α, hence v(a−x) ≥ α, as required.
Now we can also show that the extension is immediate. Given c− rx ∈M ⊕Rx, we choose
α ∈ Λ(A) and a ∈ Aα such that v(c − rx) = v(c − ra) < α and v(a − x) ≥ α. Then
v(c − rx − c + ra) = vr(a − x) ≥ v(a − x) ≥ α > v(c − rx). This proves that for every
b ∈M ⊕Rx there is some b0 ∈M such that v(b− b0) > vb. By Lemma 2.9 it follows that
the extension is immediate.

Now assume that y realizes A. Given c ∈ M and r ∈ R, we again choose α ∈ Λ(A)
and a ∈ Aα such that v(c− ra) < α. On the other hand, v(a− y) ≥ α by our assumption,
which yields that v(ra− ry) ≥ α. Hence, we have v(c− ry) = min{v(c− ra), v(ra− ry)} =
v(c− ra) = v(c− rx). That is, the map c− rx 7→ c− ry is value preserving. Consequently,
c− ry 6= 0 if c 6= 0 or r 6= 0, showing that this map is an isomorphism of R-modules over
M and that y is R-independent over M . �

Lemma 3.68 Assume that IA 6= {0} is principal. Let r0 be a generator of IA and assume
that r0 is not a zero divisor. Then there is a component-compatibly valued left R-module
(M + Rx, v) extending M such that (M, v) ⊂ (M + Rx, v) is immediate, r0x ∈ M and x
realizes A in (M+Rx, v). Moreover, if (M, v) ⊂ (M+Ry, v) is another extension of valued
left R-modules such that y realizes A and r0y = r0x ∈ M , then there is an isomorphism
(M +Rx, v) ∼= (M +Ry, v) of valued R-modules over M which sends x to y.

Proof: We choose c0 ∈ M such that Υ(A, r0, c0). We let Rz be the free R-module
on the generator z, and we define N to be the module (M ⊕ Rz)/R(c0 − r0z). Observe
that r(c0 − r0z) ∈ M will imply that rr0 = 0. Since R is assumed to be a domain,
this in turn will imply that r = 0. That is, N contains M as a submodule. Choosing
x to be the image of z under the canonical epimorphism, we find that x is a generator
of N over M , and we can write N = M + Rx. By definition, r0x = c0 ∈ M . We
extend the valuation v from M to N as follows. Given the element c − rx ∈ N , we
can assume that r /∈ IA; otherwise, c − rx ∈ M and there is nothing to define. But
if r /∈ IA then we may define v(c − rx) just as in the proof of the last lemma. The
independence of the choice of α and a is shown as it was done there. To prove that
v(c− rx) is well-defined, it remains to show that our definition assigns the same value to
c − rx and c′ − r′x if c − rz and c′ − r′z are equivalent modulo R(c0 − r0z) and if r 6= 0,
r′ 6= 0 and r−r′ 6= 0. But the latter means that there is r′′ ∈ R such that r−r′ = r′′r0 and
c−c′ = r′′c0 . We choose α ∈ Λ(A) and a ∈ Aα such that v(c−ra) < α, v(c′−r′a) < α and
v(c−c′−ra+r′a) = vr′′(c0−r0a) ≥ v(c0−r0a) ≥ α. We find that in view of our definition,
v(c − rx) = v(c − ra) = min{v(c′ − r′a), v(c − c′ − ra + r′a)} = v(c′ − r′a) = v(c′ − r′x),
as required. Having proved this, the triangle inequality follows as in the proof of the last
lemma, with one additional provision: We have to take the representation of the elements
c−rx and c′−r′x in such a way that r = 0 if r ∈ IA and r′ = 0 if r′ ∈ IA, and if r−r′ ∈ IA,
then we take r′ = r. Again with the provision that r = 0 if r ∈ IA, it is shown as in the
proof of the last lemma that the extension is immediate, and the proof for the fact that x
realizes A can be taken over literally.
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To show that v is component-compatible on M +Rx, let c ∈M and r, r′ ∈ R, r /∈ IA .
We choose α ∈ Λ(A) and a ∈ Aα such that v(c− ra) < α. Then v(c− rx) = v(c− ra) ≤
vr′(c− ra) = v(r′c− r′ra). If r′r /∈ IA , then we may choose α as large as to guarantee that
v(r′c− r′ra) < α, and we obtain v(r′c− r′ra) = v(r′c− r′rx). Now assume that r′r ∈ IA
and write r′r = r′′r0 . Then v(r′′c0−r′ra) = vr′′(c0−r0a) ≥ α, and in view of v(c−ra) < α
we obtain that v(c − rx) ≤ min{v(r′c − r′ra), v(r′′c0 − r′ra)} = v(r′c − r′′c0). But since
r′′c0 = r′′r0x = r′rx, we obtain that v(c− rx) ≤ v(r′c− r′′c0) = vr′(c− rx). We have thus
proved that v is component-compatible on M +Rx.

Now assume that y realizes A. The map c− rx 7→ c− ry is well-defined by virtue of our
assumption that r0y = c0 . We leave it to the reader to show that it is value preserving.
Consequently, c − ry 6= 0 if c − rx 6= 0, showing that this map is an isomorphism of R-
modules over M . �

As a consequence of the last two lemmata, and in view of Theorem 3.6 and Lemma 1.38,
we obtain the following result of I. Fleischer (cf. [FL1]):

Theorem 3.69 Let R be a left principal ideal domain. Then a component-compatibly
valued left R-module M is maximal if and only if every immediate approximation type over
M is trivial, that is, if and only if M is spherically complete.

As a consequence, every component-compatibly valued left R-module admits an immediate
extension which is spherically complete, provided that R is a left principal ideal ring.

With R = Z, we obtain:

Corollary 3.70 A valued abelian group is maximal if and only if it is spherically complete.

Remark 3.71 E. Schörner [SCHÖ] has obtained the assertion of this corollary, using an induction method
to show that a valued abelian group admits an immediate extension if it admits a non-trivial immediate
approximation type.

For the second half of this section, let M = (M, v) be a finitely exceptional valued
left R-module. In fact, all that we are about to prove, will already work if for every
r ∈ R, the set of exceptional values ExvrM is finite. This is always true in the case of
finitely exceptional modules. By Lemma 3.3, we can write ExvrM = {va | a ∈M ∧ ∃a′ ∈
M : (3.1) does not hold}. In particular,

va < va′ ∧ va /∈ ExvrM =⇒ vra < vra′ ∨ ra = ra′ = 0 .

It turns out that in the case of finitely exceptional modules, it is convenient to work with
pseudo Cauchy sequences, in view of the following fact. Let S := (aν)ν<λ be a pseudo
Cauchy sequence in some valued module M. If r ∈ R is finitely exceptional on M, then
ExvrM is finite and hence, there is some ν0 < λ such that αν := v(aν−aν+1) /∈ ExvrM for
ν0 ≤ ν < λ. From this, it follows that v(raν−raν+1) < v(raν+1−raµ) or raν = raν+1 = raµ
whenever ν0 ≤ ν ≤ µ < λ. Hence (raν)ν<λ is also a pseudo Cauchy sequence, and we will
denote it by Sr . Let ν0 be as in the definition of pseudo Cauchy sequences (Section 1.14).

Assume that c ∈ M is not a limit of S. Then in view of Lemma 1.48, there is some
µ0 such that ν0 ≤ µ0 < λ and v(c − aν) < v(aν − aν+1) whenever µ0 < ν < λ. Suppose
that v(c − aν) /∈ ExvrM for arbitrarily high ν ≥ ν0 . From v(c − aν) < v(aν − aν+1) with
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such a ν > µ0, we then find that v(rc − raν) < v(raν − raν+1) or rc = raν = raν+1 . In
the latter case, it follows that r is not injective on M and that Sr is eventually constant.
Consequently, if Sr is not eventually constant, then rc will not be a limit of Sr . Hence
if c is not a limit of S, but rc is a limit of Sr and this is not eventually constant, then
there is some ν1 ≥ ν0 such that v(aν − aν+1) > v(c− aν) = v(c− aν1) ∈ ExvrM whenever
ν1 ≤ ν < λ . Note that the same will then hold for every c′ ∈ M with rc′ = rc. In
particular, our consideration shows the following:
If r is ordinary and injective on M and S has no limit in M , then Sr has no limit in rM .

Now assume again that A is a non-trivial immediate approximation type
over M. We choose a pseudo Cauchy sequence S = SA without a limit in M, according
to Lemma 1.52. For r ∈ R, we define

JA := {r ∈ R | Sr has a limit in M} .

We leave it to the reader to show that JA does not depend on the choice of the pseudo
Cauchy sequence S. Since S0 has 0 as a limit, JA always contains 0. But JA does not
contain 1, because S has no limit in M. Suppose that c is a limit of Sr , and let s ∈ R.
We wish to show that sc is a limit of Ssr . By the definition of a limit, we have that
v(c− raν) < v(c− raµ) for all large enough µ, ν such that ν < µ < λ. But for large enough
ν we also have that v(c− raν) /∈ ExvsM. This yields that v(sc− sraν) < v(sc− sraµ) or
sc = raν = raµ for all large enough µ, ν such that ν < µ < λ. In both cases, we obtain
that sc is a limit of Ssr . We have proved:

Lemma 3.72 For every finitely exceptional valued left R-module M and every non-trivial
approximation type A over M, JA is a proper subset of R containing 0 but not 1, and
satisfying RJA ⊂ JA. If r /∈ JA and the bone of c− raν is ordinary in M for s ∈ R, then
sr /∈ JA or sc is a limit of Ssr and sc = sraν for all large enough ν.

Now we prove the following analogue of Lemma 3.67:

Lemma 3.73 Assume that JA = {0}. Then there is a finitely exceptional valued left R-
module (M⊕Rx, v) extending M such that (M, v) ⊂ (M⊕Rx, v) is immediate and x realizes
A in (M ⊕ Rx, v). Moreover, if (M, v) ⊂ (M + Ry, v) is another extension of valued left
R-modules such that y realizes A, then there is an isomorphism (M⊕Rx, v) ∼= (M+Ry, v)
of valued R-modules over M which sends x to y. In particular, y is R-independent and
torsion free over M .

Proof: We let Rx be the free R-module on the generator x and M ⊕Rx the direct sum
of M with Rx. We have to extend the valuation v from M to M ⊕ Rx. So let c ∈ M
and 0 6= r ∈ R; we have to define v(c − rx). By our assumption on JA , we know that c
is not a limit of Sr . So by Lemma 1.48, there exists some µ0 such that ν0 ≤ µ0 < λ and
v(c− raν) = v(c− raµ0) whenever µ0 ≤ ν < λ. We set v(c− rx) = v(c− raµ0).

Let us show that our definition gives a group valuation on M ⊕ Rx. If r 6= 0, then
raν 6= c since Sr has no limit in M. Hence v(c− rx) = v(c− raν) 6=∞, showing that (V0)
holds. Now let c, c′ ∈M and r, r′ ∈ R ; we have to show that v(c−rx−c′+r′x) ≥ min{v(c−
rx), v(c′−r′x)}. By what we have just shown, we may choose ν < λ large enough such that
v(c−rx) = v(c−raν), v(c′−r′x) = v(c−raν) and v(c+c′−(r+r′)x) = v(c+c′−(r+r′)aν).
Then we have v(c− rx− c′+ r′x) = v(c+ c′− (r+ r′)aν) ≥ min{v(c− raν), v(c′− r′aν)} =
min{v(c− rx), v(c′ − r′x)}, as required.
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We show that x is a limit of S and thus realizes A. For ν < µ < λ, we have that
v(aν − aµ) = v(aν − aν+1). Hence our definition yields that v(aν − x) = v(aν − aν+1), as
required. Similarly, it is shown that rx is a limit of Sr for every r ∈ R. Now we can also
prove that the extension is immediate. Given c − rx ∈ M ⊕ Rx with r 6= 0, we choose
ν < λ such that v(c− rx) = v(c− raν) < v(raν − raν+1) and v(raν − rx) = v(raν − raν+1).
Then v(c− rx− c+ raν) = v(raν − rx) = v(raν − raν+1) > v(c− rx). This proves that for
every b ∈M ⊕Rx there is some b0 ∈M such that v(b− b0) > vb. By Lemma 2.9 it follows
that the extension is immediate. Further, we note that the bone of c− rx is equal to the
bone of c− raν for large enough ν. Trivially, this also holds if r = 0. Hence if in addition
s ∈ R, then the bone of sc − srx is equal to the bone of sc − sraν , which in turn only
depends on s and the bone of c − raν ∈ M , if the latter is ordinary. This shows that the
bone of c−rx is ordinary in (M⊕Rx, v) for s if the same holds for the bone of c−raν . We
have thus proved that also (M ⊕ Rx, v) is finitely exceptional, with the same exceptional
bones as M.

Now assume that y also realizes A. It follows that y is a limit of S, like x. Given c ∈M
and r ∈ R, we choose ν < λ such that v(c− raν) < v(raν − raν+1). Since ry is a limit of
Sr (which is shown as for rx), we have that v(raν − ry) = v(raν − raν+1) > v(c − raν).
Hence, v(c−ry) = min{v(c−raν), v(raν−ry)} = v(c−raν) = v(c−rx). That is, the map
c − rx 7→ c − ry is value preserving. Consequently, c − ry 6= 0 if c 6= 0 or r 6= 0, showing
that this map is an isomorphism of R-modules over M and that y is R-independent and
torsion free over M . �

The following is the analogue of Lemma 3.68:

Lemma 3.74 Assume that R is a left euclidean domain with respect to a degree function
deg, and assume that JA 6= {0}. Let r0 6= 0 be an element of minimal degree deg r0 in
JA. Then there is a finitely exceptional valued left R-module (M + Rx, v) extending M
such that (M, v) ⊂ (M + Rx, v) is immediate, r0x ∈ M and x realizes A in (M + Rx, v).
Moreover, if (M, v) ⊂ (M +Ry, v) is another extension of valued left R-modules such that
y realizes A and r0y = r0x ∈M , then there is an isomorphism (M +Rx, v) ∼= (M +Ry, v)
of valued R-modules over M which sends x to y.

Proof: We choose c0 ∈M to be a limit of Sr0 . We let Rz be the free R-module on the
generator z, and we define N to be the module (M ⊕ Rz)/R(c0 − r0z). As in the proof
of Lemma 3.68, N is shown to contain M as a submodule. Choosing x to be the image
of z under the canonical epimorphism, we find that x is a generator of N over M , and we
can write N = M + Rx. By construction, r0x = c0 ∈M . We extend the valuation v from
M to N as follows. Take any element c − rx ∈ N . We can assume that deg r < deg r0 :
Since R is a left euclidean domain by hypothesis, for every r ∈ R \ {0} there is r′ ∈ R with
deg r′ < deg r such that r − r′ ∈ Rr0 . But then, c − rz is equivalent modulo R(c0 − r0z)
to c′ − r′z for some c′. So every element of N can be given in the form c − rx with
deg r < deg r0 . This yields that r = 0 or r /∈ JA. In the first case, c − rx = c ∈ M
and there is nothing to define. In the second case, we can define v(c − rx) just as in the
proof of the last lemma. Again it follows that the bone of c − rx is equal to the bone
of c − raν for large enough ν (which again proves that the extension is immediate). To
prove that v(c−rx) is well-defined, it remains to show that our definition assigns the same
value to c− rx and c′ − r′x if c− rz and c′ − r′z are equivalent modulo R(c0 − r0z) and if
deg r < deg r0 and deg r′ < deg r0.
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We shall show a little bit more. We just assume that c− rz and c′ − r′z are equivalent
modulo R(c0−r0z). Then there is r′′ ∈ R such that r−r′ = r′′r0 and c− c′ = r′′c0 . Hence,

c− raν − (c′ − r′aν) = c− c′ − (r − r′)aν = r′′c0 − r′′r0aν .

Since c0 is a limit of Sr0 , we know that r′′c0 is a limit of Sr′′r0 . Hence by the definition
of a limit, v(r′′c0 − r′′r0aν) increases with ν, or r′′c0 = r′′r0aν for all large enough ν. In
the second case, c− raν = c′ − r′aν for all large enough ν. Now assume the first case, and
assume in addition that v(c− raν) and v(c′− r′aν) are constant for all large enough ν. But
this can only be the case if v(r′′c0 − r′′r0aν) > v(c − raν) for large enough ν. Since this
means that v(c − raν − (c′ − r′aν)) > v(c − raν), it follows that the bones of c − raν and
c′ − r′aν are equal for all large enough ν, as in the second case. Note that if c′ − r′aν is
constantly 0 for all large enough ν, then we must have the first case and also c − raν is
constantly 0 for all large enough ν.

Now if r, r′ /∈ JA , then c, c′ are not limits of Sr resp. Sr′ . Hence by Lemma 1.48,
v(c−raν) and v(c′−r′aν) are constant for all large enough ν, and we obtain the equality of
the bones of c−raν and c′−r′aν are equal for large enough ν. If in addition deg r < deg r0 ,
then we know already that the bone of c− rx is equal to the bone of c− raν and thus also
to the bone of c′− r′aν for large enough ν. If we assume further that deg r′ < deg r0 , then
we obtain that v(c− rx) = v(c− raν) = v(c′− r′aν) = v(c′− r′x) for large enough ν, which
proves that v(c− rx) is well-defined.

Having proved this, the triangle inequality follows as in the proof of the last lemma,
with one additional provision: We have to take the representation of the elements c − rx
and c′− r′x in such a way that r = 0 if r ∈ Rr0 and r′ = 0 if r′ ∈ Rr0; and if r− r′ ∈ Rr0,
then we take r′ = r. The proof for the fact that x realizes A can be taken over literally.

To prove that (N, v) is finitely exceptional, we need an additional argument. Assume
that c − rx ∈ N with deg r < deg r0 . Let s ∈ R and assume that the bone of c − raν
is ordinary in M for s. Then by Lemma 3.72, sr /∈ JA , or sc is a limit of Ssr and
sc = sraν for all large enough ν. In the first case, by what we have shown above, the
bone of sc − srx is equal to the bone of sc − sraν for large enough ν. In the second
case, let r̃ ∈ R and c̃ ∈ M be such that deg r̃ < deg r0 and that sc − srz and c̃ − r̃z are
equivalent modulo R(c0 − r0z). Since r̃ /∈ JA , we know that v(c̃− r̃aν) is constant for all
large enough ν. In view of sc − sraν = 0, we can infer from our above computation that
sc− srx = c̃− r̃aν = c− raν = 0 for all large enough ν. So also in this case, the bones of
sc− sraν and c− rx are equal. But the bone of sc− sraν only depends on s and the bone
of c − raν since this is assumed to be ordinary in M for s. Hence (M ⊕ Rx, v) is finitely
exceptional, with the same exceptional bones as M.

Now assume that y realizes A. The map c− rx 7→ c− ry is well-defined by virtue of our
assumption that r0y = c0 . We leave it to the reader to show that it is value preserving.
Consequently, c − ry 6= 0 if c − rx 6= 0, showing that this map is an isomorphism of R-
modules over M . �

As a consequence of Lemma 3.73 and Lemma 3.74, and in view of Theorem 3.6 and
Lemma 1.38, we obtain:

Theorem 3.75 Let R be a left euclidean domain. Then a finitely exceptional valued left
R-module M is maximal if and only if every immediate approximation type over M is
trivial; that is, if and only if M is spherically complete.
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As a consequence, every finitely exceptional valued left R-module admits an immediate
extension which is spherically complete, provided that R is a left euclidean domain.

Let M ⊂ N be an extension of left R-modules and b ∈ R. We will call b R-algebraic
over M if there is some r ∈ R \ {0} such that rb ∈ M , and we will call M ⊂ N an R-
algebraic extension if N is generated over M by a set of elements which are R-algebraic
over M . If R is commutative, then this implies that every element of N is R-algebraic
over M . If R = Z, then our definition coincides with our notion of “algebraic extension”
for abelian groups. We say that a valued R-module M is algebraically maximal if it
does not admit a proper immediate R-algebraic extension. Now let M be a component-
compatible resp. a finitely exceptional valued left R-module and A a non-trivial immediate
approximation type over M. Let us call A a transcendental immediate approxima-
tion type if IA = {0} resp. JA = {0}; otherwise, we call it an algebraic immediate
approximation type. Lemma 3.68 and Lemma 3.68 have shown that if M admits a non-
trivial algebraic approximation type, then it admits an immediate R-algebraic extension.
Let us show the converse. Let (M, v) ⊂ (M + Rx, v) be immediate and 0 6= r0 ∈ R such
r0x = c0 ∈ M . Then by Lemma 1.36, A := at (x,M) is immediate. On the other hand,
v(c0 − r0x) =∞ ≥ α for all α ∈ Λ(x,M), showing that r0 ∈ IA. We have proved:

Theorem 3.76
a) Let R be a left principal ideal domain. Then a component-compatibly valued left R-
module M is algebraically maximal if and only if every algebraic immediate approximation
type over M is trivial.
b) Let R be a left euclidean domain. Then a finitely exceptional valued left R-module M
is algebraically maximal if and only if every algebraic immediate approximation type over
M is trivial.

Example 3.77 Let G be a Z-group and v its natural valuation. Then (G, v) is an ordinary
valued Z-module. If 0 6= n ∈ Z, then nG is again a Z-group. According to Lemma 3.50,
nG is spherically closed in its divisible hull and thus also in G. In fact, this was verified
directly in the argument preceding that lemma. Now it follows from the above theorem
that (G, v) is algebraically maximal. ♦

If R is a field or a skew field, then IA = {0} (resp. JA = {0}) for every non-trivial
approximation type A over M, because IA is an ideal of R (resp. 1 /∈ RJA ). In particular,
we obtain:

Corollary 3.78 Every ordinary valued vector space (V, v) is algebraically maximal. Its
maximal immediate extensions are spherically complete and unique up to valuation pre-
serving isomorphism over V .

Proof: Only the uniqueness remains to be proved. Let (V1, v1) and (V2, v2) be two
ordinary valued K-vector spaces which are maximal immediate extensions of the ordinary
valued K-vector space (V, v), and let (V ′, v) be a maximal valued subspace of (V1, v1)
which admits a valuation preserving embedding in (V2, v2) over V . We identify (V ′, v)
with its image in (V2, v2). Suppose that V ′ 6= V1 . Then we choose x ∈ V1 \ V ′. Since
(V ′, v) ⊂ (V1, v1) is immediate like (V, v) ⊂ (V1, v1), we know by Lemma 1.36 that A :=
at (x, V ′) is immediate. Since (V ′, v1) is algebraically maximal, this approximation type is
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transcendental. Since (V2, v2) is maximal, it must contain an element y which realizes A.
Now Lemma 3.73 shows that there is a valuation preserving isomorphism of (V ′ +Kx, v1)
and (V ′ + Ky, v2) over V ′. This contradicts the maximality of V ′ and thus shows that
V ′ = V1 . Let V ′2 denote the isomorphic image of V1 in V2 . Then (V ′2 , v2) is maximal (cf.
Exercise 3.10). On the other hand, the extension (V ′2 , v2) ⊂ (V2, v2) is immediate. This
proves that V ′2 = V2 and that (V1, v1) and (V2, v2) admit a valuation preserving isomorphism
over V . �

Exercise 3.10 Show that maximality (of valued abelian groups, valued modules etc.) is preserved under
valuation preserving isomorphisms.

Exercise 3.11 Show that every component-compatibly (resp. finitely exceptional) valued module has an
immediate extension which does not admit any transcendental immediate approximation type.

Exercise 3.12 Let G be a valued group such that only finitely many of its components are not divisible.
Assume that vna = va for all n ∈ Z \ {0}. Prove that G is algebraically maximal. Try to do the same
without the latter hypothesis.


