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Chapter 2

Valued abelian groups

2.1 Definition and basic properties

Let G be an abelian group and Γ∞ as defined in section 1.1. A map

v : G 3 x 7→ vx ∈ Γ∞

from G onto Γ∞ is called a valuation of G if for all x, y ∈ G,

(V 0) vx =∞⇐⇒ x = 0 ,

(VT) v(x− y) ≥ min{vx, vy} .

Axiom (VT) can be viewed as the ultrametric triangle inequality for valued abelian
groups. If we set x = 0 in (VT) and then replace y once by x and once by −x, we obtain
v(−x) ≥ vx ≥ v(−x), whence we obtain the “symmetry”:

(VS) v(−x) = vx

for all x ∈ G. Using this and axiom (VT), the following axiom scheme can be deduced by
induction:

(VZ) v(nx) ≥ vx (0 6= n ∈ Z) .

We will frequently omit the brackets and write “vnx”. We will always omit brackets if the
range of the symbol “v” is sufficiently clear.

If v is a valuation on the abelian group G, then we will write (G, v) and call it a valued
abelian group, or shorter a valued group. Also, we will use G to denote a valued group,
if the valuation was already specified before and there is no danger of confusion. We set
vG := Γ and call it the value set of G. Note that by our definition, vG does not contain
the element ∞; by axiom (V 0), vG = {va | 0 6= a ∈ G}. Following our above definition,
we write vG∞ for the ordered set {va | a ∈ G} = vG ∪ {∞}.

For torsion elements, we can improve (VZ) as follows:

Lemma 2.1 Let (G, v) be a valued abelian group with a torsion element a. Let m ∈ N be
such that ma = 0 and assume n ∈ N to be prime to m. Then vna = va.
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34 CHAPTER 2. VALUED ABELIAN GROUPS

Proof: Since n is prime to m, we can find integers r, s such that 1 = rn + sm. It
follows that va = v(rn + sm)a = v(rna + sma) ≥ vrna ≥ vna ≥ va. So equality must
hold everywhere, and we obtain that vna = va. �

Two valuations v : G→ Γ∞ and v′ : G→ Γ′∞ (resp. ultrametrics u : X ×X → Γ∞
and u′ : X×X → Γ′∞) are called equivalent if there is an order isomorphism ρ : Γ→ Γ′

such that ρ ◦ v = v′ (resp. ρ ◦ u = u′). See our remark in section 0.1. We will say that v′

is coarser than v or a coarsening of v if v′a > v′b implies that va > vb, for all a, b ∈ G.
In this case, v is said to be finer than v′.

Lemma 2.2 Let G be an abelian group. If v : G → Γ∞ is a valuation on G, then
u(x, y) := v(x − y) is an ultrametric on G, satisfying u(x + z, y + z) = u(x, y) for all
x, y, z ∈ G. Conversely, if u : G×G→ Γ∞ is an ultrametric on G satisfying

(UMG) u(x− y, 0) = u(x, y)

for all x, y ∈ G, then vx := u(x, 0) is a valuation on G.

Proof: Let v be a valuation on G and set u(x, y) := v(x − y). Then (UM 0) follows
immediately from (V 0), and (UMS) follows from (VS). Further, (VT) and (VS) give

v(x− y) = v((x− z)− (y − z)) ≥ min{v(x− z), v(y − z)} = min{v(x− z), v(z − y)} ,

which translates to (UMT). Finally, u(x + z, y + z) = u(x, y) is a trivial consequence of
u(x, y) = v(x− y).

For the converse, let u be an ultrametric on G satisfying u(x − y, 0) = u(x, y), and
set vx := u(x, 0). Then (V 0) follows immediately from (UM 0). Further, v(x − y) =
u(x− y, 0) = u(x, y) ≥ min{u(x, 0), u(0, y)} = min{u(x, 0), u(y, 0)} = min{vx, vy} , which
is (VT). �

One may call the axiom (UMG) the compatibility of the ultrametric with the group
structure. As a consequence of this lemma and Lemma 1.5, where we set z = 0, we
obtain:

(V 6=) vx 6= vy =⇒ v(x− y) = min{vx, vy} ,

(V=) v(x− y) > min{vx, vy} =⇒ vx = vy .

From (V6=), replacing y by −y and using (VS), we deduce by induction:

(VM) v(
∑

1≤i≤n xi) = min1≤i≤n vxi if all nonzero xi have distinct values.

Axiom (UMG) can be equivalently interpreted as to say that addition by an arbitrary
element of G is a automorphism of the ultrametric space (G, u); that is, it preserves the
ultrametric: u(x, y) = u(x+ z, y + z).

Furthermore, (UMG) implies homogeneity (UMH). Indeed, since addition by an arbi-
trary element of G preserves the ultrametric, it shifts maximal equilateral polygons onto
maximal equilateral polygons of the same distance. If α ∈ vG and x1 and x2 are members
of two maximal equilateral polygons which reduce to different α-polygons, then addition
of x2− x1 shifts the first onto the second polygon, showing that the respective α-polygons
are of equal cardinality. Consequently, in view of the above lemma, every valuation of an
abelian group has the homogeneity property (UMH).

A subset S of a valued group G = (G, v) will be called v-convex if it satisfies
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(vCONV) x, y ∈ S ∧ v(x− y) ≤ v(x− z) =⇒ z ∈ S .

Viewing G as an ultrametric space as we have done above, we see that all balls in G are
v-convex. A subset S of G is v-convex if and only if for all a, b ∈ S, the ball Bv(a−b)(a)
is contained in S. Given a subgroup H of G, the reader may show that H is a v-convex
subgroup of G if H is the preimage v−1(S) of a final segment S of vG∞. Let γ be an
initial segment of vG∞ (recall that we identify an element γ of vG with the initial segment
having γ as its maximal element, cf. section 1.1). We will consider

OγG := {a ∈ G | va ≥ γ} and Mγ
G := {a ∈ G | va > γ} . (2.1)

which are v-convex subgroups of G, except for M∞
G = ∅. (The definition works equally

well for any subset of vG in the place of γ.) If γ does not represent an element of vG,
then it contains no maximal value, implying that every element of OγG has value > γ and
consequently, OγG =Mγ

G. If γ is an element of vG∞, then we can take γ′ to be the initial

segment {α ∈ vG | α < γ} and obtain OγG = Mγ′

G. More generally, this works for every

v-convex subgroup (H, v): if we take γ′ = vG \ vH , then we get H = Mγ′

G. We have
thus shown that all v-convex subgroups can be represented in the formMγ

G. Nevertheless,
also the notation OγG will be useful. If a ∈ G, then we set OG(a) := OvaG and call it a
principal subgroup. Similarly, we set MG(a) :=Mva

G . In particular, OG(0) = {0} and
MG(0) = ∅.

Lemma 2.3 The set v-Conv(G) of all v-convex subgroups of G is ordered by inclusion.
The map γ 7→ Mγ

G is an order reversing bijection between the ordered set of initial segments
of vG and v-Conv(G), with inverse H 7→ vG \ vH. In particular, it induces an order
reversing bijection between initial segments of the form {α ∈ vG | α < γ} with γ ∈ vG and
the principal subgroups of G.

The proof is straightforward. Just recall that for initial segments γ1, γ2 of T , γ1 < γ2 implies
that γ2 contains an element α such that α > γ1 and thus, Mγ1

G contains all elements of
value α while Mγ2

G does not. This shows the injectivity of the map.

The balls with center 0 in G appear as v-convex subgroups: For γ ∈ vG, Bγ(0) = OγG
and Bγ(0) =Mγ

G. By virtue of addition, we actually know all balls: For every a ∈ G,

Bγ(a) = a+OγG and Bγ(a) = a+Mγ
G

(and B∞(a) = a+O∞G = {a}), which are cosets modulo the respective v-convex subgroups.
Indeed, b ∈ Bγ(a) ⇔ u(b, a) = u(a, b) ≥ γ ⇔ b − a ∈ OγG ⇔ b ∈ a + OγG, and similarly
for the balls Bγ(a). Further, the equivalence relation ∼γ now has an easy interpretation:
a ∼γ b ⇔ a− b ∈Mγ

G.

Lemma 2.4 Let γ be an initial segment of vG. The group G/∼γ = G/Mγ
G carries a

valuation v/γ : G/∼γ→ γ which for all a ∈ G satisfies

va ∈ γ =⇒ v/γ (a/∼γ) = va . (2.2)

If u(a, b) = v(a − b) is the ultrametric associated with v, then v/γ c = u/∼γ (c, 0) is the
valuation associated with the ultrametric u/∼γ.

In particular, the value set of (OγG/M
γ
G, v/γ) consists just of the one element γ if

γ ∈ vG; the group is trivial if γ /∈ vG.
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Proof: Let v/γ on G/∼γ be given as the valuation associated with u/∼γ. We know that
u satisfies axiom (UMG). Now u/∼γ(a/∼γ− b/∼γ, 0) = u/∼γ((a− b)/∼γ, 0) = u(a− b, 0) =
u(a, b) = u/∼γ (a/∼γ, b/∼γ), showing that also u/∼γ satisfies axiom (UMG). Hence by
Lemma 2.2, v/γ is a valuation. Assertion (2.2) follows directly from our construction.

Now consider the subgroup OγG of G. Every element of it has value ≥ γ. If γ does not
represent a value in vG, then it contains no maximal value, implying that every element
of OγG has value > γ; in this case, OγG = Mγ

G and the factor group is trivial. If on the
other hand, γ ∈ vG, then the elements in OγG which are not equivalent to zero modulo ∼γ
are precisely those of value γ. By the first part of the lemma, this yields that γ is the only
element in v/γ (OγG/M

γ
G) . �

2.2 The skeleton

Let us have a look at the polygons in G. By virtue of addition, we can shift them around
without loosing the property of being equilateral (since v((a + c) − (b + c)) = v(a − b) ).
In particular, if α ∈ vG and Pα is an equilateral polygon of distance α, then for every
a ∈ Pα, the set Pα − a is an equilateral polygon of distance α whose nonzero elements all
have value α. Moreover, Pα − a is maximal if and only if Pα is. That is, every maximal
equilateral polygon of distance α can be shifted onto some maximal equilateral polygon
P 0
α of distance α which is entirely contained in OαG. Its reduction P 0

α modulo ∼α (that is,
modulo Mα

G ) is a maximal equilateral polygon in OαG/Mα
G . But the last lemma shows

that the value set of this group contains but one element, which yields that every maximal
equilateral polygon in the group is equal to the group itself. It follows that P 0

α is a set of
representatives for the factor group OαG/Mα

G , and that any maximal equilateral polygon
of distance α containing x is of the form x+R where R is some set of representatives. We
see that in our search for “horizontal” invariants, we can now replace the α-polygons by
the factor group OαG/Mα

G . This leads to the following definitions.

Let α ∈ vG. The α–component of (G, v) is the factor group

CαG := OαG/Mα
G ,

which again is a non-trivial abelian group. Further, we define C∞G := {0}. For a ∈ G,
the va-component CG(a) := CvaG will be called the component of a. The natural
epimorphism OαG → CαG will be denoted by co α and called the α-coefficient map of G.
If γ is an initial segment of vG not representing an element of vG, then OγG/M

γ
G is the

trivial group and co γ the trivial epimorphism. A direct consequence of our definition is:

if va = vb = α <∞ , then co αa = co αb ⇐⇒ v(b− a) > α . (2.3)

For simplicity, we set co a := co vaa and call co the coefficient map of G = (G, v). It
satisfies

(CO<) vx < vy =⇒ co (x+ y) = co x ,

(CO+) vx = vy = v(x+ y) =⇒ co (x+ y) = co x+ co y .
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The pair (va, co a) will be called the bone of a. In view of (2.3) and (V=), we have
the following criterion for the equality of bones:

b 6= 0 ∧ (va, co a) = (vb, co b) ⇐⇒ v(b− a) > vb . (2.4)

The collection

sk G :=
⋃

α∈vG∞

{α} × CαG

of all bones of G is called the skeleton of G and is also denoted by sk (G, v). We use
skG if there is no danger of confusion. In general,

⋃
γ∈Γ{γ}×Cγ will be called a skeleton

if Γ is an ordered set and all Cγ are abelian groups. We write shortly sk γ∈ΓBγ for such a
skeleton. In the literature, the reader will also find notations like Bγ for the components
and [Γ ; Bγ , γ ∈ Γ] for the skeleton. We will not use “Bγ” in order not to get confused
with balls.

The sum of two bones (γ, ζ) and (γ′, ζ ′) is defined whenever γ′ = γ and is then equal
to (γ, ζ + ζ ′), according to (CO+). We will frequently identify {γ} ×CγG with the group
CγG and call it the γ-component of the skeleton. Note that the ∞–component is the
trivial group, it consists of the single element (∞, 0).

Let S = sk γ∈ΓCγ and S ′ = sk γ∈Γ′B′γ be two skeletons. If Γ ⊂ Γ′ and for every
γ ∈ Γ, the γ–component Cγ is a subgroup of the γ–component B′γ, then we say that S is
a subskeleton of S ′ and write S ⊂ S ′ . If γ ∈ Γ′ \ Γ then we define the γ-component of
S to be the trivial group 0. In this way, we obtain that Cγ is a subgroup of B′γ for every
γ ∈ Γ′. An isomorphism of S onto S ′ is a system σ = (σΓ, {σγ | γ ∈ Γ}) such that
σΓ : Γ → Γ′ is an isomorphism of ordered sets and σγ : Cγ → B′σΓγ

is an isomorphism of
abelian groups for every γ ∈ Γ. An embedding of S in S ′ is an isomorphism of S onto a
subskeleton of S ′.

At this point, we should discuss the possible definitions for what we will call an embed-
ding resp. isomorphism of valued groups. The meaning of “preserve the valuation”
actually depends on the language that we use for valued groups (cf. 20.15). Let us use a
binary predicate which expresses the relation vx < vy. Then ι : (G, v) → (G′, v′) is an
embedding of valued abelian groups if it is an embedding of G in G′ and satisfies

vx < vy ⇔ v′ιx < v′ιy .

The reader may show that such an embedding induces an embedding σ : sk G → sk G′

satisfying

(vιa, co ιa) = σ(va, co a) for all a ∈ G .

If this holds, then we say that ι preserves σ (or induces σ). If ι is an isomorphism, then
so is σ. An embedding (resp. isomorphism) of valued abelian groups is at the same time
an embedding (resp. isomorphism) of the underlying ultrametric spaces.

On the other hand, we could take v as a map. In this case, we would work with
embeddings of structures of the form (G, vG, v) or, if we add the coefficient map, of the form
(G, skG, (v, co )). But our above consideration shows that this is only a formal difference;
in all cases, we obtain the same class of group embeddings.

The following lemma determines the skeleton of a v-convex subgroup and the corre-
sponding valued factor group:
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Lemma 2.5 Let H be a v-convex subgroup of G. Then sk H = sk α∈vH∞CαG. Up to
isomorphism, the skeleton of the factor group G/H endowed with the valuation induced by
v, is the subskeleton sk α∈(vG\vH)∞CαG of sk G.

Proof: Let us first consider H. For every α ∈ vH, we have OαG = OαH and Mα
G =Mα

H

and consequently, CαG = CαH. This proves our first assertion.
Now we compute the skeleton of G/H. By Lemma 2.3, we can write H = Mγ

G for
some initial segment γ of vG. Then the valuation induced by v on G/H is v/γ. We know
already from Lemma 2.4 that v/γ (G/H) = γ = vG \ vH. To determine the components
of (G/H, v/γ) , let α ∈ vG \ vH = γ. Then Mγ

G ⊂ Mα
G ⊂ OαG. Since the α-component

of (G/H, v/γ) is just (OαG/M
γ
G)/ (Mα

G/M
γ
G) , it is thus equal to CαG = OαG/Mα

G by the
isomorphism theorem. �

The valued factor group (G/H, v/γ) may also be denoted by G/H. Let H,H ′ be subgroups
of (the additively written abelian group) G. Then H ′ is called a group complement for H
in G if G is the direct sum of H and H ′, or equivalently, if G = H +H ′ and H ∩H ′ = {0}.
The reader may show the following: If the v-convex subgroup H of G admits a group
complement H ′ in G, then with the restriction of the valuation from G to H ′, the latter is
isomorphic to G/H. Given two valued groups (H, v) and (H ′, v′), we let (H ′, v′) q (H, v)
be the direct sum of H ′ and H with the uniquely determined valuation w having value set
v′H ′ + vH and satisfying wa′ = v′a′ < va = wa for all a′ ∈ H ′ and a ∈ H. Then (H, v) is
a v-convex subgroup of (H ′, v′) q (H, v). The α-component of (H ′, v′) q (H, v) is that of
(H ′, v′) if α ∈ v′H ′, and that of (H, v) if α ∈ vH. We leave it to the reader to show: If the
v-convex subgroup H of G admits a group complement H ′ in G, then with the restriction
of the valuation v from G to H ′, we have G ∼= (H ′, v)q (H, v).

Let H ⊂ G be an extension of valued groups. Then vH ⊂ vG and for every α ∈ vH,
we have OαH ⊂ OαG and Mα

G ∩H =Mα
H , showing that we have a canonical embedding

CαH −→ CαG , a+Mα
H 7→ a+Mα

G (2.5)

of groups. We have proved that sk H ⊂ sk G. Observe that because of vH ⊂ vG we can
form OαH and Mα

H also for all α ∈ vG, and if α ∈ vG \ vH then OαH = Mα
H, which gives

that CαH = 0, in accordance with our convention just introduced for abstract skeletons.

Given an arbitrary extension H ⊂ G of valued groups, the question arises whether we
can give an estimate for (G : H) in terms of the indices of the corresponding components.

Lemma 2.6 Let H ⊂ G be an extension of valued groups. Reading the indices as finite
or infinite cardinals,

(G : H) ≥
∑
α∈vG

(CαG : CαH) .

Proof: For every α ∈ vG, take representatives for the different cosets of CαG modulo
CαH. We have to show that the representatives so obtained all belong to different cosets
of G modulo H. It suffices to show the following: if a, b ∈ G satisfy co a /∈ CvaH and
co b /∈ CvbH and va = vb ⇒ co vaa − co vab /∈ CvaH, then a − b /∈ H. But this is almost
trivial: if va 6= vb, say va < vb, then (v(a−b), co (a−b)) = (va, co a) and a−b /∈ H because
of co a /∈ CvaH; if va = vb, then a− b /∈ H because of co (a− b) = co vaa− co vab /∈ CvaH.

�
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An extension H ⊂ G of abelian groups will be called algebraic if G/H is a torsion
group. The extension is called finite if the index (G : H) is finite. A finite extension is
algebraic. An extension is algebraic if and only if it is the union of finite extensions. By
the foregoing lemma, all extensions CαH ⊂ CαG are finite if (G : H) is finite. If G is the
union of finite extensions of H then for every α ∈ vG, the component CαG is the union of
finite extensions of CαH. We have thus proved:

Corollary 2.7 If H ⊂ G is an algebraic extension of valued groups, then CαH ⊂ CαG is
an algebraic extension of abelian groups, for every α ∈ vG.

Exercise 2.1 Discuss the possible definitions for “homomorphism of valued groups”.

2.3 Immediate extensions and maximal groups

The extension H ⊂ G is called immediate if for every α ∈ vG, the canonical embedding
(2.5) is onto, that is, if the induced embedding sk H ⊂ sk G is actually an isomorphism.
Loosely speaking, “immediate” means that the skeletons are equal. At this point, we have
to distinguish between “isomorphic” and “equal”; non-immediate extensions may still have
isomorphic skeletons, the isomorphism not being the induced embedding (see Exercise 2.9).
If H ⊂ G is an immediate extension, then for every α ∈ vG, the component CαH = CαG,
which says that α ∈ vH. Hence, vH = vG for every immediate extension H ⊂ G. As a
direct consequence of our definition, we obtain:

Lemma 2.8 Let G ⊂ G1 ⊂ H be valued groups. Then G ⊂ H is immediate if and only if
G ⊂ G1 and G1 ⊂ H are.

Observe that this result is stronger than the corresponding result for ultrametric spaces.
(It is actually axiom (UMG) that gives this stronger result). Since the above definition of
immediate extensions is quite different from that of immediate extensions of ultrametric
spaces, we will now show the relation between them. Let b ∈ G. Assume that there is
some a ∈ H such that v(b− a) > vb. Then by (2.4), the bone of b is equal to the bone of
a and thus lies in sk H. Conversely, if the latter holds, then there is some a ∈ H such that
a and b have equal bones. Again by (2.4), this yields that v(b− a) > vb. We have shown:

∀b ∈ G \ {0} : (vb, co b) ∈ sk H ⇐⇒ ∃a ∈ H : v(b− a) > vb . (2.6)

This gives the following important characterization of immediate extensions:

Lemma 2.9 The extension H ⊂ G is immediate if and only if for every b ∈ G \ {0} there
is some a ∈ H such that v(b− a) > vb.

A valued group is called maximal or maximally valued if it does not admit a proper
immediate extension. It is called a spherically complete group if its underlying ultra-
metric space is spherically complete.

Corollary 2.10 The extension H ⊂ G is immediate if and only if the underlying extension
of ultrametric spaces is immediate. Consequently, a spherically complete valued group is
maximal.
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Proof: Assume y ∈ G and x′ ∈ H and set b := y − x′. If a ∈ H is chosen such that
v(b − a) > vb, then for x := x′ + a we have that v(y − x) = v(b − a) > vb = v(y − x′).
For the converse, given b ∈ G, then set y := b and x′ = 0. If x ∈ H is chosen such that
v(y − x) > v(y − x′), then for a := x we have that v(b− a) = v(y − x) > v(y − x′) = vb.

From Lemma 1.19 it follows that a spherically complete ultrametric space does not
admit proper immediate extensions. We conclude that a spherically complete valued group
does not admit proper immediate valued group extensions and is thus a maximal group.

�

By an approximation type over G we mean an approximation type over the under-
lying ultrametric space. We know from section 2.1 that in the underlying ultrametric space
of a valued group, the balls are cosets with respect to suitable v-convex subgroups. We
find that for an approximation type A over G, every nonempty Aα can just be presented
as the coset Aα = cα + OαG for an arbitrary cα ∈ Aα, and every nonempty A◦α can be
presented as the coset A◦α = c◦α +Mα

G for an arbitrary c◦α ∈ A◦α.
The following lemma is just the transposition of (ATVI) and (ATRI) to the case where

A = appr(x,G) is an approximation type over the valued group G.

Lemma 2.11 Let A = appr(x,G). A is value-immediate if and only if

∀c ∈ G : v(x− c) ∈ vG∞ .

A is residue-immediate if and only if

∀c ∈ G : v(x− c) ∈ vG ⇒ ∃c′ ∈ G : v(x− c′) > v(x− c) .

This in turn is equivalent to:

∀c ∈ G : v(x− c) = α ∈ vG ⇒ co (x− c) ∈ CαG .

Consequently, A is immediate if and only if

∀c ∈ G : ∃c′ ∈ G : v(x− c′) > v(x− c) .

This lemma together with Lemma 2.9 shows that H ⊂ G is immediate if and only if
every element in G has an immediate approximation type over H. But this is already a
consequence of Lemma 1.36, which is the corresponding assertion for ultrametric spaces.

As we are dealing with the ultrametric space underlying a valued group (G, v), the
question arises whether its completion also carries the structure of a valued group. To
show this, we will employ the following simple observation: if Bα(xα) and Bα(x′α) are balls
in a valued group, then the same holds for the sum Bα(xα) + Bα(x′α) since it is equal to
xα + OαG + x′α + OαG = xα + x′α + OαG = Bα(xα + x′α). The same holds for balls of the
form B◦α. Given two completion types A and A′, we define the sum A + A′ by setting
(A + A′)α := Aα + A′α and (A + A′)◦α := A◦α + A′◦α (if B is some ball, then B + ∅ = ∅).
Now A + A′ is again an approximation type. Since A and A′ are completion types, all
values in vG appear as radii of balls in A + A′, which proves that it is also a completion
type. We leave it to the reader to verify that Gc with this addition is an abelian group
extension of G.
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Now recall how we extend the ultrametric to the completion. We set u(A,A′) =
u(xα, x

′
α) if Aα 6= A′α and xα ∈ Aα, x′α ∈ A′α (cf. page 26). But Aα 6= A′α is equivalent to

Bα(xα−x′α) 6= Bα(0), that is, (A−A′)α 6= at (0, X)α. Moreover, u(xα, x
′
α) = u(xα−x′α, 0)

since the ultrametric is induced by the group valuation v. This shows that the extension
of u to Gc again satisfies (UMG), proving that vx := u(x, 0) is a group valuation on Gc

which extends the valuation of G. The valued group (Gc, v) is called the completion of
(G, v) and is also denoted by (G, v)c. Furthermore, (G, v) is dense in (G, v)c in the sense
of ultrametric spaces, which is equivalent to ∀y ∈ Gc ∀β ∈ vGc ∃x ∈ G : v(x− y) ≥ β. In
particular, by the previous corollary, (Gc, v) is an immediate extension of (G, v).

Maximal immediate extensions of a valued group are maximal. Let us show their
existence. The idea is to apply Zorn’s Lemma. Indeed, if we have an increasing chain of
valued abelian groups which are immediate extensions of G, with index set an ordinal,
then the union is again a valued group which is an immediate extension of G (this holds
since valued abelian groups can be axiomatized by universal axioms). To obtain that every
increasing chain of immediate extensions of G admits a union (which is a set and not a
proper class), we just need to know that the cardinality of the extension groups is bounded
from above. As a corollary to Lemma ??, we get such a bound depending on |vG| and the
size of the polygons in G. But we have obtained by our above arguments that for every
α ∈ vG, all α-polygons of G are of equal size, namely |CαG| . This shows:

Lemma 2.12 Let κ be a cardinal which is an upper bound for the cardinality of all com-
ponents of the valued group G. Then

|G| ≤ κ|vG| .

Since immediate extensions do not enlarge the value set or the components, this lemma
yields:

Corollary 2.13 For every valued group there exists a maximal immediate extension.

Given an ordered index set Γ and for every γ ∈ Γ an arbitrary abelian group Cγ , we can
form the Hahn sum

∐
γ∈ΓCγ . As an abelian group, this is the direct sum of the groups

Cγ , represented as the set of all tuples (ζγ)γ∈Γ with only finitely many of the ζγ ∈ Cγ
nonzero. For a given 0 6= c = (ζγ)γ∈Γ , let γ0 be the smallest index such that ζγ0 6= 0 ; we
let vc = γ0 . This defines the valuation on

∐
γ∈ΓCγ .

In a similar way, we define a group called the Hahn product, denoted by Hγ∈ΓCγ .
Consider the product

∏
γ∈ΓCγ and an element c = (ζγ)γ∈Γ of this group. Then the support

of c is the set of all γ ∈ Γ for which ζγ 6= 0 . As a set, the Hahn product is the subset of∏
γ∈ΓCγ containing all elements whose support is a well-ordered subset of Γ. In particular,

the support of every element c in the Hahn product has a minimal element γ0 , which again
enables us to define vc = γ0 . Finally, the Hahn product is a subgroup of the product
group. Indeed, the support of the sum of two elements is contained in the union of their
supports, and the union of two wellordered sets is again wellordered.

Let us take G to be the Hahn sum or the Hahn product as defined above. In both cases,
for arbitrary γ ∈ Γ, the group OγG consists of all elements whose minimal element in the
support is γ, whereas Mγ

G contains all elements whose support “starts later”. At γ, the
tuples assume values in Cγ . This shows that OγG/M

γ
G is isomorphic to Cγ . Consequently,

the skeleton of the Hahn sum
∐

γ∈ΓCγ and of the Hahn product Hγ∈Γ Cγ (and of every
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group in between) is just sk γ∈ΓCγ . Consequently, they are also called the Hahn sum
(resp. Hahn product) over the skeleton sk γ∈ΓCγ . Note that we have just constructed
an example of an immediate extension. (It may happen that Hahn sum and Hahn product
coincide, e.g. if Γ is finite, but in general, the extension is non-trivial.)

Lemma 2.14 Every Hahn product is spherically complete (as an ultrametric space). Con-
sequently, it is a maximal group.

Proof: Let B be a nest of balls in the Hahn product Hγ∈Γ Cγ. We have to show that
its intersection is nonempty. Since B is ordered by inclusion, we can choose a coinitial
decreasing sequence (Bν)ν<λ of balls Bν = Bαν (aν) ∈ B. Then (αν)ν<λ will be a cofinal
increasing sequence in Λ(B). Let us write aν = (ζν,γ)γ∈Γ with ζν,γ ∈ Cγ .

Suppose that ν < µ < λ. Since Bµ ⊂ Bν , we have v(aν −aµ) ≥ αν . That is, ζν,γ = ζµ,γ
for all γ < αν . So we can define an element a = (aγ)γ∈Γ ∈

∏
γ∈Γ Cγ by setting aγ = ζν,γ

if there exists ν < λ with γ < αν , and setting aγ = 0 otherwise. The latter guarantees
that every subset of the support of a which is (strictly) bounded from above by some αν ,
is already a subset of the support of aν ∈ Hγ∈Γ Cγ . This shows that the support of a is
wellordered and a ∈ Hγ∈Γ Cγ . By our construction, v(a − aν) ≥ αν for every ν < λ and
thus, a ∈ Bν . Consequently, a is an element of

⋂
B =

⋂
ν Bν . �

This lemma shows that the Hahn product is a maximal immediate extension of every
valued group which lies between the Hahn sum and the Hahn product over the same
skeleton. With this pair of valued groups, we can give some examples for immediate
approximation types and immediate extensions. In particular, we are now able to show
that the maximal immediate extensions of valued groups are not necessarily unique up to
isomorphism.

Example 2.15 Consider the Hahn sum
∐

i∈NCi and the Hahn product Hi∈NCi where
all Ci are equal to Z. We will write shorter:

∐
N Z and HN Z. Since every subset of N

is well-ordered, HN Z is the full product over the Ci, or in other words, it consists of all
maps from N into Z. Let us denote by b the element in HN Z which has a 1 at every
entry. (Note: b is not an element of

∐
N Z ). Further, let bi be the element of

∐
N Z which

has a 1 at the first i entries and 0 everywhere else. We have
∐

N Z ⊂ HN Z, so we can
consider the approximation type of b over

∐
N Z. Since v(b − bi) = i + 1, we have that

bi is a center of every ball at (b,
∐

N Z)j for j ≤ i + 1, but it is not contained in the balls
at (b,

∐
N Z)◦i+1 and at (b,

∐
N Z)i+2. We find that dist (b,

∐
N Z) is∞; which is not assumed

since b /∈
∐

N Z. Further, for every element c ∈
∐

N Z there is some j such that c is not
contained in at (b,

∐
N Z)j . We only have to choose j so big that the finitely many nonzero

entries of c lie below j − 1, then it will follow that v(b− c) ≤ j − 1. Hence by Lemma ??,
at (b,

∐
N Z) is a non-trivial approximation type. Its distance being ∞, it is even a non-

trivial completion type. In the same way, replacing b by any element of HN Z, it is seen
that

∐
N Z is dense in HN Z. If we replace the index set N by the ordinal ω + 1 and

define b as above, then the approximation type of b will still be a non-trivial immediate
approximation type, but its distance is not any longer ∞ (in fact, it is ω); so it is not a
completion type.

All this remains true if we replace the components Z by, say, Z/2Z. The element b
as defined above now satisfies 2b = 0 like any other element in the group. But we can
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also construct elements which realize the same immediate approximation type as b but do
not have the same torsion. Indeed, let us take index set ω + 1; note that Hω+1 Z/2Z ∼=
(HN Z/2Z) q Z/2Z. Let a be a generator of Z/4Z. We can embed Z/2Z in Z/4Z by
sending the 1 of Z/2Z to 2a. This induces an embedding of (HN Z/2Z) q Z/2Z over

HN Z/2Z in (HN Z/2Z) q Z/4Z. In the latter group, we define b′ to be the element
which has a (or 3a) at the last entry and 1 everywhere else (so b′ = b− a′ or b′ = b+ a′ for
a′ = (0, . . . , 0, . . . , a) ). Now at (b′,

∐
ω+1 Z/2Z) = at (b,

∐
ω+1 Z/2Z); this can be verified by

a direct computation, but it also follows from the fact that at (b,
∐

ω+1 Z/2Z) is immediate
and v(b − b′) = ω > Λ(b,

∐
ω+1 Z/2Z) (cf. Lemma 1.30). Since 2b′ = 2a′ ∈

∐
ω+1 Z/2Z,

the fact that at (b′,
∐

ω+1 Z/2Z) is immediate implies that for H :=
∐

ω+1 Z/2Z and G :=∐
ω+1 Z/2Z + Zb′, the extension H ⊂ G is immediate (cf. Exercise 2.3). In spite of this, G

has an element of order 4 whereas H does not.
We know already that Hω+1 Z/2Z is an immediate extension of H =

∐
ω+1 Z/2Z. By

the last lemma, this group is maximal, and so it is a maximal immediate extension of H. On
the other hand, Corollary 2.13 asserts the existence of a maximal immediate extension G′

of G, which is consequently also a maximal immediate extension of H. While G′ contains
an element of order 4, the group Hω+1 Z/2Z does not, and it is even a vector space over
the field F2 of two elements. So these two maximal immediate extensions of H are not
isomorphic at all, even if one drops the condition that the isomorphism fixes the subgroup
H. In some sense, Hω+1 Z/2Z is the “sound” maximal immediate extension of H, when
one considers the additional vector space structure of H. ♦

If S is a v-convex subset of the valued group G, then every ball in S is a ball in G.
This implies:

Lemma 2.16 Every v-convex subset S of a spherically complete group G is spherically
complete.

For the conclusion of this section, we note the following lemma whose proof we leave
to the reader:

Lemma 2.17 a) Let H be a v-convex subgroup of the valued group G. Then G is spher-
ically complete if and only if H and G/H are spherically complete.
b) Let H and H′ be two valued groups. Then H′ qH is maximal if and only if H and H′

are, and it is spherically complete if and only if H and H′ are.

Exercise 2.2 Under which condition is the completion of a Hahn sum equal to the Hahn product?

Exercise 2.3 Let H ⊂ G be an extension of valued groups. Given b ∈ G and at (b,H), compute at (y +
a,H) for a ∈ H. Show that at (y + a,H) is immediate if and only if at (b,H) is immediate. Conclude that
the extension H ⊂ G is immediate if in a given set of representatives for the cosets of G modulo H every
element has an immediate approximation type over H.

2.4 p-valuations of abelian groups

For the field theorist, examples of valued abelian groups are easily obtained by taking
valued fields (see Chapter 4) and forgetting the multiplication. But this is not only a
procedure to produce examples. It will be one aim of this book to show its various useful
applications.
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For the abelian group theorist, the first and main example is that of a p-valuation,
where p is a prime. A map v from the abelian group G onto Γ∞ is called a p-valuation
if Γ is a set of ordinals and v satisfies (VT) together with

(pV) vx 6=∞ =⇒ vpx > vx .

A valuated group is an abelian group together with a p-valuation for every prime p. The
prototype of a p-valuation is the p-height function. By induction (possibly transfinite),
we define the following filtration of G. Let p0G := G and pG := {pa | a ∈ G}; this is a
subgroup of G. Having defined pµG for an ordinal µ, we set pµ+1G := p(pµG). If λ is a limit
ordinal and we have defined pµG for all µ < λ, we set pλG :=

⋂
µ<λ p

µG. This definition
establishes a descending chain of subgroups, which must eventually become constant (see
Exercise 2.6). That is, there is some minimal ordinal ν such that p(pνG) = pνG. Hence,
H := pνG is p-divisible, i.e., for every a ∈ H there is some b ∈ H such that a = pb. In
fact, H is the maximal p-divisible subgroup of G. If G is a p-group, i.e., the order of every
element is a power of p, then H is even divisible, i.e., for every a ∈ H and every n ∈ N,
there is some b ∈ H such that a = nb (see Exercise 2.5). A p-group is called reduced if
its maximal divisible subgroup is {0}. The ordinal ν is called the p-height of G.

The p-height function is introduced as follows. Given an element a ∈ G \ pνG, there
is a minimal ordinal α < ν such that a ∈ pαG \ pα+1G; we set hG,p(a) = α (we may say
that a is divisible by pα but not by pα+1; in the case of α being a natural number, this
indeed holds in the usual sense). For a ∈ pνG we set hG,p(a) =∞. Then hG,p : G→ ν∞ is
onto (here, the ordinal ν is interpreted as the set of all ordinals µ < ν). We leave it to the
reader to verify (VT) and (pV). Further, we see that (V 0) holds if and only if pνG = {0}.
In particular, we find that the height function in a reduced p-group G is a valuation of G.

Now p-valuations appear as the restrictions of height functions to subgroups; in that
sense, they are a generalization of height functions. Indeed, if the height function is re-
stricted to a subgroup, it may not coincide with the height function of that subgroup since
the height of an element in a subgroup H of G may be lower than in G. An element which
is divisible by p in G may not be so in H. We can only say that hG,p(a) ≥ hH,p(a) for all
a ∈ H. The following properties of the height function may be lost in a subgroup:

(pH1) hG,p(x) > hG,p(y) ∧ x 6= 0 =⇒ ∃z : hG,p(y) ≤ hG,p(z) < hG,p(x) ∧ pz = x ,

(pH2) hG,p(x) = hG,p(z) + 1 =⇒ ∃z : hG,p(y) = hG,p(z) ∧ pz = x .

Nevertheless, the restriction of hG,p still satisfies (VT) and (pV) (since these axioms are
universal). Conversely, it was shown that every p-valuation arises in this way: every abelian
group H with a p-valuation v can be embedded in an abelian group G in a way that v
coincides with the restriction of hG,p to H (cf. [RIC–WA]).

Remark 2.18 For the development of the theory of valuated groups see [RIC], [RIC–WA], [HU–WA]. A
slightly different definition of a p-valuation was given in [HI–ME].

As we have seen, the p-height function hG,p is a valuation if and only if G is reduced.
If G is not reduced, then it does not satisfy (V0). This is bad in view of the notion of
valuation independence that will be developed in the next chapter (if (V0) does not hold,
then we loose the fact that valuation independent elements are Z-independent). So let us
modify the definition of the height function in order to obtain a valuation v. Suppose that
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the value set of the p-height function of G is ν∞, that is, ν is the height of G. For a ∈ G,
we set va = hG,p(a) if hG,p(a) <∞. If a 6= 0 and hG,p(a) =∞, then we set va = ν. Finally,
we let v0 = ∞. Then v is a valuation on G, and we will call it the p-height valuation
of G. Its value set is still ν if G is reduced, and it is ν + 1 if G is not reduced. In the
latter case, v does not satisfy (pV) since then there are divisible elements a 6= 0 such that
pa 6= 0. But v will satisfy the modified axiom

(pV′) vx 6= ν,∞ =⇒ vpx > vx .

Since our valuation v on G is derived from the p-height function on G, it satisfies

(pH1′) ∞ > vx > vy =⇒ ∃z : vy ≤ vz < vx ∧ pz = x ,

(pH2′) vx = vy + 1 =⇒ ∃z : vy = vz ∧ pz = x .

Since descending sequences in ordinals are finite, axiom (pH1′) yields that for every element
a of value va < ν there is some element b of value vb = 0 (this is, hG,p(b) = 0) and some
n ∈ N such that a = pnb. Further, if vx is a limit ordinal and vy < vx, then there exists
some y′ such that vy < vy′ < vx and it follows from (pH1′) that there exists z such that
vy < vz < vx and pz = x.

There is a further p-valuation on a p-group. It is induced by the order ord(a) of the
elements a ∈ G in the following way. We set va := −n if ord(a) = pn for a 6= 0, and
v0 = ∞. Then (V0) and (VT) hold. For convenience, we identify ∞ with the integer 0.
Then the following stronger form of (pV) is true:

x 6= 0 =⇒ vpx = vx+ 1 .

In view of this, all components of (G, v) are Fp-vector spaces. The value set of v is either
−N or {m ∈ −N | −n ≤ m < 0} for some natural number n. We will call v the order
valuation of G.

In section 3.5, we will discuss applications of the p-height valuation and the order
valuation of a p-group.

Exercise 2.4 Prove (pH1) and (pH2). Give examples where these properties of the p-height function are
not inherited by subgroups. For which p-groups can the conditions “x 6= 0” in (pH1) and “∞ > vx” in
(pH1′) be omitted?

Exercise 2.5 Show that a p-group is q-divisible for every prime q 6= p (hint: write 1 = rpn + sq with
r, s ∈ Z). Conclude that a p-divisible p-group is divisible. For a p-valuation v, prove that v(nx) = vx
whenever n 6= 0 is not divisible by p (same hint).

Exercise 2.6 Show that the height of a p-group G is smaller than |G|+.

2.5 Ordered abelian groups and their natural valua-

tions

For the ordered mathematician who is considering ordered abelian groups and ordered
fields, the main example of a valuation is the “natural” one, which represents the archimedean
classes.

An ordered abelian group is an abelian group (G,+) equipped with an ordering <
which is compatible with the addition, that is, it satisfies
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(OG) x < y =⇒ x+ z < y + z

for all x, y, z ∈ G. We will write (G,<) to indicate an ordered abelian group. From (OG)
it follows that a < b ⇔ 0 < b− a . Hence, the ordering on G is already determined by the
set P = {a ∈ G | 0 ≤ a}, which we call the positive cone of (G,<). The positive cone
satisfies

(PC+) P + P ⊂ P

(PC∩) P ∩ −P = {0}
(PC∪) P ∪ −P = G .

Conversely, if a subset P of an abelian groups G satisfies these axioms, then it is called
a positive cone in G and indeed, it is the positive cone of an ordering on G which is
defined by a ≤ b ⇔ b− a ∈ P (cf. Exercise 2.7).

We set sign(0) = 0 and for a ∈ G, we set sign(a) = 1 if a > 0, and sign(a) = −1
if a < 0. If we use the sign with respect to the positive cone P, then we will also write
signP. Further, we set |a| := max{a,−a} = sign(a) · a. Two elements a, b ∈ G are called
archimedean equivalent if there is some n ∈ N such that n|a| ≥ |b| and n|b| ≥ |a|. The
reader may show that this is indeed an equivalence relation. The ordered group (G,<) is
called archimedean if all nonzero elements are archimedean equivalent. Let va denote
the equivalence class of a. The set of equivalence classes is ordered as follows: va < vb
if and only if |a| > |b| and a and b are not archimedean equivalent; in this case, we will
say that b is archimedean smaller than a. We write ∞ := v0 ; this is the maximal
element in the ordered set of equivalence classes. The map a 7→ va is a valuation on G,
called the natural valuation (cf. Exercise 2.8). Here, the elements of the value set have
a concrete interpretation as archimedean classes, but modulo order isomorphism, it looses
this meaning. Since we are identifying equivalent valuations, it is better to define the
natural valuation in the following way: “va = vb if a and b are archimedean equivalent,
and va < vb if b is archimedean smaller than a”. With this definition, it is immediately
seen that the restriction of the natural valuation v to a subgroup H of G is (equivalent to)
the natural valuation of (H,<). (Although the equivalence class of x ∈ H may be smaller
in H than in G, there is an order isomorphism between v|H (H) and the value set of the
natural valuation of (H, v) .)

Alternatively, we define the natural valuation by the axiom

(NV) vx ≤ vy ⇐⇒ ∃n ∈ N : n|x| ≥ |y| .

This actually defines the valuation in terms of a relation rather than a map. (See the
remarks in section 20.1.) We leave it to the reader to verify that a map v : G → vG∞
is the natural valuation if and only if it satisfies (NV); the only thing to prove is that
the right side of (NV) expresses the fact that y is archimedean equivalent or archimedean
smaller than x. Note that for every a ∈ G and every n ∈ Z \ {0}, the element na ∈ G is
archimedean equivalent to a and so, the natural valuation satisfies the axiom scheme

(NVZ) v(nx) = vx (0 6= n ∈ Z) .

In particular, this shows that every ordered abelian group is torsion free. Further, it follows
from (NV) that the natural valuation satisfies

∀x, y : (vx < vy ⇒ |x| > |y|) ∧ (|x| > |y| ⇒ vx ≤ vy) . (2.7)
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Observe that a valuation v of G is coarser than the natural valuation if and only
if it satisfies the implication “⇐” of (NV). In this case, v is called compatible with
the ordering or a convex valuation of (G,<), and < will be called a v-compatible
ordering. Hence, the convex valuations of (G,<) are precisely the coarsenings of its
natural valuation. The reader may show that a valuation v of (G,<) is convex if and only
if for every γ ∈ vG, the subset {a ∈ G | a > 0 ∧ va = γ} of the positive cone is convex.

In the following, let v be the natural valuation of the ordered group G. Then the order
type of vG will be called the principal rank of the ordered group G. In particular, G
is archimedean if and only if its principal rank is 1, that is, vG consists of just one element.

Let (H,<) be a subgroup of (G,<). It will be called a convex subgroup if it is
convex as a subset of the ordered set G. We leave it to the reader to show that this is
equivalent to: ∀x ∈ H ∀y ∈ G : |x| ≥ |y| ⇒ y ∈ H. Here, we can replace “|x| ≥ |y|” by
“∃n ∈ N : n|x| ≥ |y|”. Indeed, since H is assumed to be a subgroup, x ∈ H implies that
nx ∈ H; moreover, n|x| = |nx|. By virtue of (NV), it now follows that the condition is
equivalent to

∀x ∈ H ∀y ∈ G : vx ≤ vy ⇒ y ∈ H , (2.8)

that is, (H, v) is a v-convex subgroup of (G, v). On the one hand, this shows that for every
initial segment γ of vG, the subgroups OγG and Mγ

G of G are convex subgroups. On the
other hand, we deduce that every convex subgroup (H,<) of (G,<) is of the formMγ

G for
some initial segment γ of vG. The reader may show that a valuation w of (G,<) is convex
if and only if for every γ ∈ wG, the subgroup Oγw is convex.

Let a be an element in the ordered abelian group (G,<) with natural valuation v. Then
OG(a) is called a principal convex subgroup. It is the set of all elements in (G,<) which
are archimedean smaller or equivalent to a. It is contained in every convex subgroup that
contains a and thus, it is equal to the intersection of all convex subgroups containing a.
Similarly, MG(a) is the set of all elements which are archimedean smaller than a, and it
is equal to the union of all convex subgroups not containing a. The following lemma is a
consequence of Lemma 2.3:

Lemma 2.19 The set Conv(G,<) of proper convex subgroups of (G,<) is ordered by in-
clusion. The map γ 7→ Mγ

G induces an order reversing bijection between the ordered set of
nonempty initial segments of vG and Conv(G,<). Similarly, the map α 7→ OαG induces an
order reversing bijection between vG∞ and the set of principal convex subgroups of (G,<).

The order type of Conv(G,<) is called the rank of (G,<) and denoted by rk (G,<).
If Conv(G,<) is finite, then the rank is equal to the number of elements of Conv(G,<).
The lemma shows that the principal rank is equal to the reversed order type of the nonzero
principal convex subgroups of (G,<) . If this is finite, then vG is finite and every convex
subgroup is already principal convex. Hence if rank or principal rank are finite, they are
both equal to |vG|.

Let (G,<) and (G′, <) be two ordered groups and ρ : G→ G′ a group homomorphism.
Then we say that ρ preserves ≤ if g ≤ h implies ρg ≤ ρh , for all g, h ∈ G. This holds if
and only if ρ maps the positive cone of (G,<) into the positive cone of (G′, <). Note that
a group monomorphism preserving ≤ also preserves the order. If ρ preserves ≤ and g and
h lie in the kernel of ρ and if a ∈ G such that g ≤ a ≤ h, then 0 = ρg ≤ ρa ≤ ρh = 0,
showing that a also lies in the kernel of ρ. This proves:
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Lemma 2.20 If ρ : G → G′ is a group homomorphism of ordered groups (G,<) and
(G′, <) and if ρ preserves ≤ , then its kernel kerρ is a convex subgroup of (G,<).

Every convex subgroup is the kernel of a homomorphism which preserves ≤ . Indeed,
as an analogue to Lemma 2.4, we have

Lemma 2.21 Let (H,<) be a convex subgroup of (G,<) and let P be the positive cone
of (G,<). Then < induces an ordering on the factor group G/H whose positive cone is
P/H . The canonical epimorphism G→ G/H preserves ≤ , that is,

(OFG) x ≤ y =⇒ x+H ≤ y +H .

Note that this ordering on G/H is in fact the one that you obtain when you read x+H , y+H
as subsets of the ordered set G and interpret x+H < y +H in the usual way.

If a, b ∈ G \H, then a and b are archimedean equivalent in G if and only if a+H and
b+H are archimedean equivalent in G/H.

Proof: We have P/H+P/H = (P+P)/H ⊂ P/H and P/H∪−P/H = (P∪−P)/H =
G/H. So it remains to prove property (PC∩) for P/H. Assume that a+H is an element
of P/H ∩ −P/H, that is, there is b ∈ −P such that a+H = b+H. But then a− b ∈ H,
and since a,−b ∈ P , we have 0 ≤ a ≤ a − b. By the convexity of H, we obtain a ∈ H
showing that a+H is the zero in G/H, as required.

Further, we have a ≤ b ⇒ b− a ∈ P ⇒ b− a+H ∈ P/H ⇒ a+H ≤ b+H, which
is (OFG). Since H is convex, so are the subsets a + H and b + H of G. If they are not
equal, they are disjoint and by convexity, it follows that a+H < b+H or a+H > b+H
as sets. But if a+H < b+H holds, then by (OFG), we have a+H < b+H as elements
of (G/H,<). Conversely, if a + H < b + H does not hold for sets, then by what we have
shown, we have a + H = b + H or a + H > b + H as sets and thus, a + H = b + H or
a + H > b + H as elements of (G/H,<). This shows that both interpretations of “<”
coincide.

For our final assertion, note that a and b are archimedean equivalent in G if and only if
n|a|−|b| ∈ P and n|b|−|a| ∈ P. This in turn holds if and only if n|a|−|b|+H ∈ P/H and
n|b|− |a|+H ∈ P/H . Since na+H = n(a+H) and |a|+H = |a+H| (interpreting a+H
as an element of G/H, not as a set), the latter is equivalent to n|a+H| − |b+H| ∈ P/H
and n|b+H|−|a+H| ∈ P/H , which says that a+H and b+H are archimedean equivalent
in G/H. �

The factor group G/H with its induced ordering will be denoted by (G,<)/H.

Corollary 2.22 Let (G,<) and (G′, <) be two ordered groups and ρ : G → G′ a group
homomorphism which preserves ≤ . Then the embedding G/kerρ → G′ induced by ρ is
order preserving, that is, an embedding (G,<)/kerρ→ (G′, <) .

Proof: If η denotes the canonical epimorphism G → G/kerρ, then the embedding
ρ : G/kerρ → G′ may be written as ρ ◦ η−1. This maps the positive cone of (G,<)/kerρ
into that of (G′, <), hence ρ preserves ≤ . Since ρ is injective, it thus preserves the order.

�

We can determine the natural valuation of the factor group:
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Corollary 2.23 If we write H =Mγ
G according to Lemma 2.3, then the natural valuation

of (G/H,<) is v/γ . If a ∈ G \H, then the component of a in G is isomorphic to that of
a+H in G/H, as ordered abelian groups.

Proof: The fact that v/γ is the natural valuation of (G/H,<) follows from the last
assertion of Lemma 2.21 and formula (2.2) of Lemma 2.4. The isomorphism between the
components follows from Lemma 2.5. We only have to show that it preserves the ordering.
Let Pα be the positive cone of OαG. Applying Lemma 2.21 several times, we find that
(Pα/Mγ

G)/ (Mα
G/M

γ
G) is the positive cone of (OαG/M

γ
G)/ (Mα

G/M
γ
G) , and that Pα/Mα

G

is the positive cone of OαG/Mα
G. Both sets are sent onto each other by the isomorphism

theorem, showing that the isomorphism preserves the ordering. �

Let α ∈ vG. Then all elements in OαG \Mα
G have value α and are thus archimedean

equivalent. Since they are precisely those elements which are not reduced to 0 modulo
Mα

G, we can deduce from the foregoing lemma:

Corollary 2.24 Every component of an ordered abelian group carries an induced ordering,
and this ordering is archimedean.

This fact gives rise to the following definition. The skeleton sk γ∈ΓCγ is called an ordered
skeleton if every component Cγ is an ordered abelian group. An isomorphism (resp.
embedding) {σΓ, σγ | γ ∈ Γ} of skeletons is called isomorphism (resp. embedding) of
ordered skeletons if σγ preserves the ordering of Cγ for every γ ∈ Γ. The natural
skeleton of an ordered abelian group (G,<) is the skeleton of G with respect to
the natural valuation where the components CαG carry the induced ordering, and these
components are called the archimedean components of (G,<). So the natural skeleton
is an ordered skeleton, and if we say that natural skeletons are isomorphic we will mean that
they are isomorphic as ordered skeletons. Every isomorphism of ordered groups induces
an isomorphism of their natural skeletons.

As a consequence of the definition of the induced ordering, we obtain that the ordering
of a group G is uniquely determined by its ordered skeleton:

Corollary 2.25 Let (G, v) be a valued abelian group whose skeleton sk α∈vGCαG is an
ordered skeleton with archimedean groups CαG. Then there is a unique ordering on G
whose natural valuation is v and which satisfies, for all a ∈ G,

a > 0 ⇐⇒ co a > 0 .

In particular, there is a unique extension of this ordering to every immediate extension of
(G, v).

Corollary 2.26 Let (G,<) and (G′, <) be ordered abelian groups and let v be their natural
valuation. Assume σ is an isomorphism of their natural skeletons and ι is an isomorphism
of the valued groups G and G′ which preserves σ . Then ι also preserves the ordering.

Proof: Since ι preserves σ, which is an isomorphism of ordered skeletons, we have
(vιa, co ιa) = (σvGva, σvaco a). Now we compute: a > 0 ⇔ co a > 0 ⇔ σvaco a > 0 ⇔
co ιa > 0 ⇔ ιa > 0. �
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Remark 2.27 The value set of the natural valuation reflects the archimedean incomparability of elements,
while the components reflect the ordering between archimedean equivalent elements. Thinking of the “size”
of elements (for example “nonstandard big”, “standard”, “infinitesimally small”) we may thus say that the
value set encodes the “vertical structure” of the ordered group, while the components encode its “horizontal
structure”.

Remark 2.28 The author has learned the above systematic treatment of ordered abelian groups with
their natural valuation from S. Kuhlmann (cf. [KUS1], [KUS2]). In particular, her notion of an “ordered
skeleton” and her characterization of order preserving isomorphisms (Corollary 2.26) turned out to be very
useful.

The theory of ordered groups with their natural valuations and ordered skeletons was extensively ex-
ploited by S. Kuhlmann in the investigation of the structure of non-archimedean ordered exponential fields
(cf. [KUS1], [KUS2], [KU–KUS1], [KU–KUS2], [KU–KUS–SH1]). Some of the results will be presented in
section 10.1 below.

Given two ordered abelian groups G1 and G2, the lexicographic product of G1 and
G2, denoted by G1qG2, is the direct sum G1⊕G2, endowed with the lexicographic product
of their orderings. We leave it to the reader to show that this ordering is compatible with
the addition of the product group. Then G2 is a convex subgroup of G1 qG2 , and G1

is isomorphic to the ordered group (G1 q G2)/G2 . For the groups endowed with their
natural valuations, G1 qG2 coincides with the definition that we have already given for
valued groups. Hence, the value set of G1 qG2 is the sum vG1 + vG2 of ordered sets, and
the α-component of G1 qG2 is that of G1 if α ∈ vG1 and that of G2 if α ∈ vG2 . (We
may call sk G1 qG2 the sum of sk G1 and sk G2 .) The reader may prove the following:
If the convex subgroup G2 of an ordered group G admits a group complement G1 in G
(which is always the case if G is divisible), then with the induced ordering on G1 , we have
G = G1 qG2 .

Example 2.29 The groups Z, Q and R, endowed with the usual ordering are archimedean
ordered groups. Every archimedean ordered group admits an order preserving embedding
in R (cf. Lemma 3.55). The lexicographic products Z qQ, Q q Z and R q R are ordered
groups of rank 2. In the densely ordered group ZqQ, Q is a proper convex subgroup. In
the discretely ordered group Qq Z, Z is a proper convex subgroup.

By induction, we form lexicographical products Zn, Qn, Rn. The two latter groups are
divisible ordered abelian groups. Groups of the form Zn are sometimes called discrete
groups or generalized discrete groups (cf. [ZA–SA2]). ♦

More generally, we can form the ordered Hahn sum, also called lexicographical
sum, again denoted by

∐
γ∈ΓCγ , if the components Cγ are arbitrary (not necessarily

archimedean) ordered abelian groups. Similarly, we obtain the ordered Hahn product,
also called lexicographical product, again denoted by Hγ∈Γ Cγ . As abelian groups,
these are the Hahn sum and the Hahn product as introduced in section 2.3. The ordering
is then defined as follows. Given an element c = (ζγ)γ∈Γ , let γ0 be the minimal element
of its support. Then we let c > 0 if and only if ζγ0 > 0 (which is the same as defining
sign(c) := sign(ζγ0) ). If all Cγ are archimedean ordered, then the valuation v of the Hahn
sum (resp. the Hahn product), as defined in section 2.3, is indeed the natural valuation of
the ordered Hahn sum (resp. ordered Hahn product). But if there are non-archimedean
ordered groups among the Cγ , then v will be a proper coarsening of the natural valuation.
In this case, the natural skeleton will be obtained by replacing every non-archimedean
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ordered component Cγ in sk γ∈ΓCγ by the natural skeleton of Cγ (where we omit the ∞-
component).

Every torsion free abelian group G admits a divisible extension group G̃ which has the
universal property that it admits a unique embedding in every other divisible extension
group. It is consequently unique up to isomorphism and is called the divisible hull of G.
It is an algebraic extension of G. It can be represented as the tensor product Q⊗ZG. Like
every torsion free divisible abelian group, it is a Q-vector space, and its Q-dimension is
called the rational rank of G (which can be a finite or infinite cardinal), denoted by rrG.
It is equal to the cardinality of every maximal set of rationally independent elements in G.
Recall that elements ai, i ∈ I, in an abelian group G are called rationally independent, if
for every choice of integers ni, only finitely many of them nonzero,

∑
niai = 0 implies that

all ni are zero. If H is a subgroup of G, then ai, i ∈ I, are called rationally independent
over H, if for every choice of integers ni, only finitely many of them nonzero, and every
a ∈ H, we have that a +

∑
niai = 0 implies that a and all ni are zero. We will see later

(cf. Corollary 3.29) that the cardinality of the rank of an ordered abelian group can not
exceed its rational rank.

Example 2.30 The ordered Hahn sum
∐

N Q and the ordered Hahn product HN Q have
rank and principal rank ω, which is the order type of N; all proper convex subgroups are
principal. Both ordered groups have no smallest nonzero convex subgroup. The rational
rank of

∐
N Q is the countable cardinal ℵ0 , and the rational rank of HN Q is 2ℵ0 . If

we replace N by any ordinal ν then it still follows that all proper convex subgroups are
principal (and the group admits a smallest nonzero convex subgroup if and only if ν is a
successor ordinal). In contrast to this, the ordered Hahn sum

∐
Z+Z Q and the ordered

Hahn product HZ+Z Q both contain precisely one proper non-principal convex subgroup,
which is of the form

∐
Z+Z Q , resp. HZ+Z Q. Their principal rank is Z+Z, while their rank

is Z+1+Z. In the ordered Hahn sum
∐

R Q and the ordered Hahn product HR Q, for Λ a
cofinal segment of R the convex subgroups of the form

∐
Λ Q resp. HΛ Q are non-principal

if and only if Λ has no smallest element.
There are natural order preserving isomorphisms

∐
Z+Z Q ∼=

∐
Z Qq

∐
Z Q and

∐
Z(Qq

Q) ∼=
∐

Z Q. In a natural way,
∐

Z Q is an ordered subgroup of the ordered groups
∐

Z R,∐
Q Q,

∐
Q R and

∐
R R. The same holds for the respective Hahn products. The reader

should determine in which sense these isomorphisms and embeddings also preserve the
natural valuation. Observe that on the valued Hahn sum

∐
Z(Q q Q) whose components

are all equal to the group Q q Q of rank 2, the valuation is a proper coarsening of the
natural valuation. ♦

At present, we are interested in the extension of the ordering to the divisible hull.

Lemma 2.31 Every ordered group (G,<) admits a unique extension of the ordering to its
divisible hull G̃. Under this ordering, every element of G̃ is archimedean equivalent to some
element of G and thus, vG = vG̃ for the natural valuation v. Moreover, the α-component
of G̃ is precisely the divisible hull of the α-component of G, for every α ∈ vG.

Proof: Let P be the positive cone of (G,<). We leave it to the reader to show that
P := {a ∈ G̃ | ∃n ∈ N : na ∈ P} is a positive cone in G̃ and that in view of (PC+), it is
the only one containing P. Given a ∈ G̃, there is an integer n 6= 0 such that na ∈ G, and
a and na are archimedean equivalent; in particular, va = v(na).
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Now consider an element in the α-component of G̃; we can represent it as co αa with
suitable a ∈ G̃. Let n 6= 0 such that na ∈ G; then we have nco αa = co αna ∈ CαG showing
that co αa lies in the divisible hull of CαG. Conversely, since G̃ is divisible, the same holds
for the subgroup Mα

G and its factor group CαG. �

Using that a and na are archimedean equivalent for n 6= 0, we can also deduce that
every convex subgroup H of G is pure in G; that is, for every a ∈ G, na ∈ H implies
that a ∈ H. The converse is certainly not true: Q is pure but not convex in R. For every
subgroup H of G, {a ∈ G | ∃n 6= 0 : na ∈ H} is a pure subgroup of G, called the relative
divisible closure of H in G. Since it is a subgroup of the divisible hull of H, it also has
the same natural value set as H, and its α-component is contained in the divisible hull of
the α-component of H. However, it may be smaller than the relative divisible closure of
the α-component of H in the α-component of G:

Example 2.32 Let r be a real number /∈ Q. Consider H = ZqZ and G = H + Z(1
2
, r) ⊂

R q R. Then for α = v(1, 0), we have that CαH = Z is not pure in CαG = 1
2
Z, although

H is pure in G. ♦

The relative divisible closure is an algebraic extension. By the previous lemma, every
algebraic extension of an ordered abelian group admits a unique extension of the ordering.

While Z is an ordered subgroup of every non-trivial ordered abelian group, it may not
be a convex subgroup, as already the examples Q and R show. In fact, Z is a convex
subgroup of the ordered group G if and only if G admits a smallest positive element
(here, we mean “positive” in the sense “> 0”), and this is the case if and only if G is
discretely ordered. Indeed, if g ∈ G is the smallest positive element, then Zg (the cyclic
group generated by g) is a convex subgroup of G. If moreover, the factor group G/Zg
is divisible, then G is called a Z-group. In some sense that will be made precise by
model theory in section 20.11, the Z-groups are the groups which are similar to Z (cf.
Theorem 20.69). The prototype of a Z-group of rank 2 is QqZ. It is the smallest Z-group
of rank 2 since its rational rank is 2. The largest Z-group of rank 2 is R q Z. But note:
it is not the case that the convex subgroup Z is a direct summand in every Z-group. The
reason for this is the fact that Ext(Q,Z) is non-trivial and that every extension of Z by Q
can be ordered such that it is a Z-group; see [HI–MO], Theorem 3.1 and Proposition 3.2.

Let v be the natural valuation of the Z-group G. Then vG contains a largest element,
namely the archimedean class vg of g. Further, co vg is an isomorphism of Zg onto the
vg-component CvgG (as ordered groups).

The relative divisible closure of an ordered abelian group in a divisible ordered abelian
group is again a divisible ordered abelian group. Z-groups have a similar property:

Lemma 2.33 Let G be a Z-group with least positive element g. Then for every n ∈ N
and a ∈ G there is some m ∈ N such that a + mg is divisible by n in G. In particular, if
H is a subgroup of G containing g, then the relative divisible closure of H in G is again a
Z-group. On the other hand, if H ⊂ G is an extension of Z-groups, both having the same
least positive element, then G/H is torsion free.

Proof: Let n ∈ N and a ∈ G. Since G/Zg is divisible, there is some b ∈ G such that
nb + Zg = a + Zg. Hence, nb = a + mg ∈ G for some m ∈ Z, showing that a + mg is
divisible by n in G. Writing m = m′ + kn with m′, k ∈ Z and 0 ≤ m′ < n, we find that
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also a + m′g = a + mg − kng is divisible by n. Thus, we can replace m by m′ to obtain
that 0 ≤ m < n.

Denote by H′ the relative divisible closure of H in G. Suppose that in addition to the
previous assumption, we have that a ∈ H. Since g ∈ H and hence a+mg ∈ H, we obtain
b ∈ H ′. This shows that a + Zg is divisible by n in H ′/Zg. We have thus proved that
H ′/Zg is divisible.

Now assume that H ⊂ G is an extension of Z-groups, both having the same least
positive element g. Let a ∈ G and n ∈ N such that na ∈ H. Choose m ∈ N such that
0 ≤ m < n and na + mg is divisible by n in H. Write na + mg = nb with b ∈ H. Then
0 ≤ b − a = m

n
g < g shows that a = b ∈ H. We have thus proved that G/H is torsion

free. �

When we consider ℘-adically closed fields, we will need:

Lemma 2.34 Let (H,<) be an ordered abelian group with least positive element g. Then
there is an algebraic extension (G,<) of (H,<) such that (G,<) is a Z-group with least
positive element g.

Proof: Let (G,<) be a subgroup of the divisible hull of (H,<) containing (H,<) and
maximal with the property that g is the least positive element in (G,<). (Such maximal
subgroups exist by Zorn’s Lemma). Suppose that G/Zα is not divisible, and choose a ∈ G
and a prime p such that a + Zg is not divisible by p. Take b ∈ H̃ = G̃ such that pb = a.
Then (G + Zb : G) = p = ((G + Zb)/Zg : G/Zg). This yields that Zg is still a convex
subgroup of G+ Zb, contrary to the maximality of G. This proves that G/Zα is divisible,
i.e., (G,<) is a Z-group. �

Ordered abelian groups play an important role as value groups of valued fields. The
relation between a valued field and its value group is a “one level higher analogue” to the
relation between a valued group and its value set. Consequently, initial segments of ordered
abelian groups will also play a role. For later use, let us state some auxiliary results.

Lemma 2.35 Let Λ be an initial segment of the ordered abelian group Γ.

a) For every Λ′ ⊂ Γ, Λ + Λ′ = {α + β | α ∈ Λ , β ∈ Λ′} is again an initial segment of Γ.

b) For every natural number n > 0, the set n · Λ = {n · α | α ∈ Λ} is cofinal in the n–fold
sum Λ + Λ + . . .+ Λ (which is an initial segment by part a) ).

c) If ∆ is a subgroup of Γ, then Λ ∩∆ is an initial segment of ∆.

Proof: a): Let α ∈ Λ, β ∈ Λ′ and γ ∈ Γ such that γ < α + β. Then γ − β < α, and
since Λ is an initial segment of Γ, we have γ − β ∈ Λ. Hence, γ = γ − β + β ∈ Λ + Λ′.

b): Given αi ∈ Λ, 1 ≤ i ≤ n, let α = maxi αi. Then α1 + . . . + αn ≤ nα. Since the latter
is again an element of the n–fold sum of Λ’s, this shows our assertion.

c): An easy exercise. �

Exercise 2.7 Let P be a positive cone of G. Show that the relation defined by x ≤ y ⇔ y− x ∈ P is an
ordering on G.
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Exercise 2.8 Let v denote the natural valuation that we have defined above. We wish to show that v is
indeed a valuation.

a) Show that no nonzero element is archimedean equivalent to 0 and deduce that v satisfies (V 0).

b) Prove that |a + b| ≤ |a|+ |b|. Use this and (NV) to show that v satisfies (VT).

c) Deduce the following properties of the natural valuation:

(NV1) ∀x, y ∈ G : v(x− y) > vx⇒ sign(x) = sign(y) ,

(NV2) sign(
∑

1≤i≤n

xi) = sign(xm) if vxm < vxi for all i 6= m ,

(NV3) xm < x′m ⇒
∑

1≤i≤n

xi <
∑

1≤i≤n

x′i if vxm < vxi and vx′m < vx′i for all i 6= m .

Exercise 2.9 Show that Z qZ does not admit proper immediate extensions. On the other hand, prove
that every finite extension is again isomorphic to ZqZ and thus, their skeletons are isomorphic. Do the
same with QqZ and other examples of ordered groups of different ranks.

Exercise 2.10 Show that the lexicographic product of two Hahn sums (resp. Hahn products) is a Hahn
sum (resp. a Hahn product).

2.6 Immediate maps on valued abelian groups

Observe that in a valued abelian group, any ball around 0 is a subgroup. Since balls are
unions of closed balls, this has only to be proved for closed balls. Note that

Bα(0) = {z ∈ G | u(0, z) ≥ α} = {z ∈ G | vz ≥ α}

since u(0, z) = v(0 − z) = v(−z) = vz. Take a, b ∈ Bα(0). Then va ≥ α and vb ≥ α,
whence v(a − b) ≥ α by (V2), that is, a − b ∈ Bα(0). This proves that every Bα(0) and
every other ball B containing 0 is a subgroup of G. Let us note that since every ball B
containing 0 is a union of closed balls Bα(0), it follows that

y ∈ B and vz ≥ vy ⇒ z ∈ B .

Every ball B̃ in (G, v) can be written in the form b+B where b ∈ B̃ and B = {a− b |
a ∈ B̃} is a ball around 0. Hence the balls in (G, v) are precisely the cosets with respect
to the subgroups that are balls.

2.6.1 Immediate homomorphisms

In this section we will give a handy criterion for group homomorphisms to be immediate.
Throughout, let (G, v) and (G′, v′) be valued abelian groups.

Proposition 2.36 Let f : G → G′ be a map such that f0 = 0. If f is immediate, then
for every a′ ∈ G′ \ {0} there is some a ∈ G such that

(IH1) v′(a′ − fa) > v′a′,
(IH2) for all b ∈ G, va ≤ vb implies v′fa ≤ v′fb .

The converse is true if f is a group homomorphism.



2.6. IMMEDIATE MAPS ON VALUED ABELIAN GROUPS 55

Proof: Suppose first that f is immediate, and take any a′ ∈ G′, a′ 6= 0. Set z′ := a′

and y := 0. Take z ∈ G such that conditions (AT1) and (AT2) hold, and set a := z. Then
v′(a′ − fa) = u′(z′, fz) > u′(z′, fy) = v′(a′ − f0) = v′a′. Hence, (IH1) holds. Also, we
obtain from the ultrametric triangle law that v′a′ = v′fa. Further, condition (AT2) shows
that

f({b | vb ≥ va}) = f(B(0, a)) = f(B(y, z))

⊆ B(fy, z′) = B(0, a′) = {b′ | v′b′ ≥ v′a′ = v′fa}.

That is, va ≤ vb⇒ v′fa ≤ v′fb, i.e., (IH2) holds.

For the converse, take any y ∈ G and z′ ∈ G′ \ {fy}. Set a′ := z′ − fy 6= 0. Choose
a ∈ G such that conditions (IH1) and (IH2) hold, and set z := y + a. Then u′(z′, fz) =
v′(z′ − fz) = v′(z′ − fy − fa) = v′(a′ − fa) > v′a′ = v′(z′ − fy) = u′(z′, fy). So (AT1)
holds. Also, we obtain from the ultrametric triangle law that v′fa = v′(z′ − fy). To show
that (AT2) holds, take any x ∈ B(y, z). Then v(x− y) ≥ v(z − y) = va. Hence by (IH2),
v′(fx− fy) = v′f(x− y) ≥ v′fa = v′(z′ − fy), so fx ∈ B(fy, z′). �

By Theorem 1.26, we obtain:

Theorem 2.37 Let f : G→ G′ a group homomorphism which satisfies (IH1) and (IH2).
Assume further that (G, v) is spherically complete. Then f is surjective and (G′, v′) is
spherically complete.

Lemma 2.38 Let f, f̃ : G → G′ be group homomorphisms. Suppose that f is immediate
and for all a ∈ G,

v′(f̃a− fa) > v′fa or f̃a = fa = 0 . (2.9)

Then also f̃ is immediate.

Proof: If f satisfies (IH1) of Proposition 2.36, then

v′(a′ − f̃a) ≥ min{v′(a′ − fa), v′(f̃a− fa)} > v′f̃a = v′a′ ,

showing that also f̃ satisfies (IH1). Since (2.9) implies that v′f̃a = v′fa, f̃ will satisfy
(IH2) whenever f does. Hence by Proposition 2.36, f̃ is immediate whenever f is. �

For an arbitrary map f : G→ G′ we will say that a ∈ G is f-regular if it is non-zero
and satisfies condition (IH2). We will denote the set of all f -regular elements by Reg (f).
Then the following holds:

Proposition 2.39 If f : G→ G′ is an immediate group homomorphism, then

va 7→ v′fa

for a ∈ Reg (f) induces a well defined and ≤-preserving map from {va | a ∈ Reg (f)} onto
v′G′.

Proof: If a, b ∈ Reg (f) such that va = vb, then by (IH2), v′fa ≤ v′fb and v′fa ≥ v′fb,
whence v′fa = v′fb. This shows that the map is well defined. Again because of (IH2), it
preserves ≤. Now take any a′ ∈ v′G′, a′ 6= 0. Then by (IH1), there is a ∈ G such that
v′(a′ − fa) > v′a′, whence v′a′ = v′fa by the ultrametric triangle law. This proves that
the map is onto. �
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2.6.2 Basic criteria

Even if the map f that we consider on a valued abelian group is not a homomorphism,
the presence of addition helps us to give handy and natural criteria for the map to be
immediate. We just have to work a little harder. In this section, we present basic criteria
that will cover all our applications in the non-additive case.

Proposition 2.40 Take valued abelian groups (G, v) and (G′, v′), an element b ∈ G, a ball
B around 0 in G, a ball B′ around 0 in G′, and a map f : b+B → fb+B′. Assume that
φ : B → B′ is a map such that for all a′ ∈ B′ \ {0} there is a ∈ Reg (φ) with the following
properties:

v′(a′ − φa) > v′a′ = v′φa , (2.10)

and {
v′(fy − fz − φ(y − z)) > v′φa
for all y, z ∈ b+B such that v(y − z) ≥ va .

(2.11)

Then f is immediate.

If φ0 = 0 then (2.11) needs to be checked only for y 6= z.

Proof: Take z′ ∈ fb + B′ and y ∈ b + B such that z′ 6= fy. Applying our assumption
to a′ := fy − z′ we find that there is some a ∈ Reg (φ) such that by (2.10),

v′(fy − z′ − φa) > v′(fy − z′) = v′φa , (2.12)

and such that (2.11) holds. Set z := y − a ∈ y −B = y +B = b+B. Then y − z = a and
hence by (2.11) and (2.12),

v′(fy − fz − φ(y − z)) > v′φa = v′(fy − z′) .

Consequently,

v′(z′ − fz) ≥ min{v′(z′ − fy + φa) , v′(fy − fz − φa)}
= min{v′(fy − z′ − φa) , v′(fy − fz − φ(y − z))}
> v′(fy − z′) = v′(z′ − fy) .

Hence (AT1) holds. Now take x ∈ B(y, z) ⊆ b + B, i.e., v(y − x) ≥ v(y − z) = va. Then
v′φ(y − x) ≥ v′φa because a ∈ Reg (φ), and v′(fy − fx − φ(y − x)) > v′φa by (2.11).
Therefore,

v′(fy − fx) ≥ max{v′(fy − fx − φ(y − x)) , v′φ(y − x)}
≥ v′φa = v′(fy − z′) ,

whence fx ∈ B(fy, z′). Hence (AT2) holds.
Assume that φ0 = 0. Observe that φa 6= 0 since a′ 6= 0 and v′a′ = v′φa. Hence if y = z

then v′(fy − fz − φ(y − z)) = v′0 = ∞ > v′φa, which shows that (2.11) need only be
checked for y 6= z. �

Note that by the ultrametric triangle law, the equality in (2.10) is a consequence of the
inequality. Further, observe that this proposition proves the direction “⇐” of Proposi-
tion 2.36: if we take B = G, B′ = G′ and φ = f , then (IH1) implies (2.10) and (IH2)
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implies that a ∈ Reg (φ), while (2.11) is trivially satisfied. Hence if for every a′ ∈ G′ \ {0}
there is a ∈ G such that (IH1) and (IH2) hold, then the above proposition shows that f is
immediate.

The following is a special case of the above criterion, with nicer properties.

Proposition 2.41 Take valued abelian groups (G, v) and (G′, v′), an element b ∈ G, a
ball B in G around 0, a ball B′ in G′ around 0, and a map f : b+B → G′. Assume that

(PC1) φ : B → B′ is immediate,
(PC2) for all y, z ∈ b+B, fy − fz = φ(y − z) = 0 or

v′(fy − fz − φ(y − z)) > v′(fy − fz) = v′φ(y − z) .

Then f(b+B) ⊆ fb+B′, and f : b+B → fb+B′ is immediate.

If in addition φ is injective, then so is f , and if φ is an embedding of ultrametric spaces
with value map ϕ, then so is f .

Proof: Taking y = z, we obtain from (PC2) that φ(0) = 0. So we can apply Propo-
sition 2.36 to find that φ satisfies (IH1) and (IH2). Therefore, for a′ ∈ B′ \ {0} we can
choose a ∈ Reg (φ) \ {0} such that v′(a′ − φa) > v′a′.

Take y, z ∈ b + B such that v(y − z) ≥ va . By the regularity of a, v′φ(y − z) ≥ v′φa .
Hence by (PC2), v′(fy − fz − φ(y − z)) > v′φ(y − z) ≥ v′φa. Now it follows from
Proposition 2.40 that f is immediate. If in addition, φ is injective, it follows from (PC2)
that also f is injective. If φ is an embedding of ultrametric spaces with value map ϕ, then
v′φ(y − z) = ϕv(y − z) shows that also f is an embedding with value map ϕ. �

If the map φ satisfies the conditions (PC1) and (PC2) of the foregoing proposition, it
will be called a pseudo-companion of f on b+B.

We will later need the following fact:

Lemma 2.42 Let the situation be as in Proposition 2.41 and let φ, φ̃ : B → B′ be group
homomorphisms. Suppose that v′(φ̃a− φa) > v′φa or φ̃a = φa = 0 for all a ∈ G. If φ is
a pseudo companion for f on b+B, then so is φ̃.

Proof: Assume that φ is a pseudo-companion of f on b+B. Then by Proposition 2.38,
also φ̃ is immediate. Now take y, z ∈ b+B. If φ(y−z) = 0 then by assumption, φ̃(y−z) = 0.
Otherwise, v′(fy− fz− φ̃(y− z)) ≥ min{v′(fy− fz−φ(y− z)), v′(φ(y− z)− φ̃(y− z))} >
v′φ(y− z) = v′(fy− fz). This shows that also φ̃ is a pseudo-companion of f on b+B. �

2.7 Sums of spherically complete valued abelian groups

Let (A, v) be a valued abelian group and A1, . . . , An be subgroups of A. The restrictions of
v to every Ai will again be denoted by v. We call the sum A1+. . .+An ⊆ A pseudo-direct
if for every a′ ∈ A1 + . . .+ An , a′ 6= 0, there are ai ∈ Ai such that

v

n∑
i=1

ai = min
1≤i≤n

vai and v

(
a′ −

n∑
i=1

ai

)
> va′ . (2.13)
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Proposition 2.43 The sum A1 + . . . + An ⊆ A is pseudo-direct if and only if the group
homomorphism f : A1× . . .×An → A1 + . . .+An defined by f(a1, . . . , an) := a1 + . . .+ an
is immediate.

Proof: ⇒: Assume that the sum A1 + . . . + An is pseudo-direct. Take any a′ ∈
∑

iAi
and choose ai ∈ Ai such that (2.13) holds. Then a := (a1, . . . , an) ∈ A1× . . .×An satisfies
(IH1). If b = (b1, . . . , bn) ∈ A1 × . . .× An such that vb ≥ va, then

vfb = v
∑
i

bi ≥ min
i
vbi = vb ≥ va = min

i
vai = v

∑
i

ai = vfa .

This shows that a also satisfies (IH2).

⇐: Assume that f is immediate. Take any a′ ∈
∑

iAi , a
′ 6= 0. Choose a := (a1, . . . , an) ∈

A1 × . . . × An such that (IH1) and (IH2) hold. Then v (a′ −
∑

i ai) = v(a′ − fa) > va′.
Now choose some j such that vaj = mini vai . Then set bj = aj ∈ Aj and bi = 0 ∈ Ai for
i 6= j. For b = (b1, . . . , bn), we thus have that va = mini vai = vaj = vbj = mini vbi = vb.
Hence by (IH2), v

∑
i ai = vfa ≤ vfb = vbj = mini vai . We have proved that the elements

ai satisfy (2.13). �

If the groups (Ai, v) are spherically complete, then by Proposition 1.11, the same is
true for their direct product A := A1× . . .×An , endowed with the minimum valuation as
defined in (??). Hence, the foregoing proposition, Theorem 1.26 and Corollary ?? show:

Theorem 2.44 Assume that the subgroups (Ai, v) of (A, v), 1 ≤ i ≤ n, are spherically
complete. If the sum A1 + . . . + An is pseudo-direct, then it is also spherically complete.
and has the optimal approximation property.

Recall that when the sum A1+. . .+An is spherically complete, it follows that it is spherically
closed and has the optimal approximation property in (A, v).

Open Problem 2.1 Is the sum of spherically complete subgroups always spherically com-
plete? Under which conditions does a sum of subgroups with the optimal approximation
property again have the optimal approximation property?


