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Chapter 14

Extremality, maximality, and
defectless fields

14.1 Extremality

Take a valued field (K, v) with valuation ring O. If f is a polynomial in n variables with
coefficients in K, then we will say that (K, v) is K-extremal with respect to f if the
set

v imK(f) := {vf(a1, . . . , an) | a1, . . . , an ∈ K} ⊆ vK ∪ {∞} (14.1)

has a maximum, and we we will say that (K, v) is O-extremal with respect to f if the
set

v imO(f) := {vf(a1, . . . , an) | a1, . . . , an ∈ O} ⊆ vK ∪ {∞} (14.2)

has a maximum. The former means that

∃Y1, . . . , Yn∀X1, . . . , Xn : vf(X1, . . . , Xn) ≤ vf(Y1, . . . , Yn)

holds in (K, v). For the latter, one has to build into the sentence the condition that the Xi

and Yj only run over elements of O. It follows that being K-extremal or O-extremal with
respect to f is an elementary property in the language of valued fields with parameters
from K. Note that in the first case the maximum is ∞ if and only if f admits a zero in
Kn; in the second case, this zero has to lie in On. A valued field (K, v) is called extremal
if for all n ∈ N, it is O-extremal with respect to every polynomial f in n variables with
coefficients in K. This property can be expressed by a countable scheme of elementary
sentences (quantifying over the coefficients of all possible polynomials of degree at most n
in at most n variables). Hence, it is elementary in the language of valued fields.

If we would have chosen K-extremality for the definition of “extremal valued field”
(as Yu. Ershov in [Er2]), then we would have obtained precisely the class of algebraically
closed valued fields. Using O-extremality instead yields a much more interesting class of
valued fields. See [A–Ku–Pop] for details.

The properties “algebraically maximal”, “separable-algebraically
maximal” and “inseparably defectless” are each equivalent to K- or O-extremality re-
stricted to certain (elementarily definable) classes of polynomials, as we will see in the
following sections.
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14.2 Inseparably defectless fields

In this section, we shall give a characterization of inseparably defectless fields. Recall that
a valued field is called inseparably defectless if each of its purely inseparable extensions
is defectless. Recall also that every purely inseparable algebraic extension admits a unique
extension of the valuation, cf. Corollary 6.57. Every defectless field and in particular
every trivially valued field is inseparably defectless. A valued field is called inseparably
maximal if it does not admit proper immediate purely inseparable extensions. Note that
a valued field can be inseparably maximal without being inseparably defectless. The field
(F, v) of Example 11.64 is of this kind.

Let us observe that for an inseparably defectless field (K, v), every immediate extension
is separable. Indeed, it follows from Lemma 6.8 that every immediate extension of (K, v) is
linearly disjoint from the defectless extension (K1/p∞|K, v). In the literature, one can find
the expression excellent for those fields for which all immediate extensions are separable
(cf. [DEL1], Définition 1.41). But there are also other properties of certain valuation rings
for which this expression is used.

By definition, (K, v) is an inseparably defectless field if and only if the extension
(K1/p∞|K, v) is defectless. For this to hold, it is sufficient that the subextension (K1/p|K, v)
is defectless:

Lemma 14.1 (K, v) is an inseparably defectless field if and only if (K1/p|K, v) is a de-
fectless extension, and this holds if and only if (K|Kp, v) is a defectless extension.

Proof: The first implication “⇒” follows from the fact that every subextension of
a defectless extension is again defectless. Now assume that (K1/p|K, v) is a defectless
extension. The Frobenius endomorphism sends the extension (K1/p2 |K1/p, v) onto the
extension (K1/p|K, v) and is valuation preserving. Consequently, also the former extension
is defectless (cf. Lemma 6.27). By induction, we find that (K1/pm|K1/pm−1

, v) is defectless
for every m ≥ 1. Hence by the transitivity of defectless extensions (Lemma 6.5), also
(K1/pm|K, v) is defectless. Since every finite subextension of K1/p∞|K is already contained
in K1/pm for some m, it follows that (K1/p∞|K, v) is defectless.

The second equivalence is proved again by use of the Frobenius endomorphism. �

We can now give a characterization of inseparably defectless fields in terms of extremal-
ity.

Theorem 14.2 A valued field K of positive characteristic is inseparably defectless if and
only if it is K-extremal with respect to every p-polynomial of the form

b−
n∑
i=1

biX
p
i (14.3)

with n ∈ N, b, b1, . . . , bn ∈ K such that b1, . . . , bn form a basis of a finite extension of Kp

(inside of K). If the value group vK of K is divisible or a Z-group, then K is inseparably
defectless if and only if it is O-extremal with respect to every p-polynomial (14.3) with
n ∈ N, b, b1, . . . , bn ∈ O such that b1, . . . , bn form a valuation basis of a finite defectless
extension of Kp and vb1, . . . , vbn are smaller than every positive element of vK.
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Proof: The first assertion is an easy consequence of the last lemma. Given L and b
as in that lemma, we take b1 . . . , bn to be a Kp-basis of L. Then c ∈ L if and only if
c =

∑n
i=1 bic

p
i for some c1, . . . , cn ∈ K. Hence, v(b − L) has a maximum if and only if

(K, v) is K-extremal with respect to the polynomial (14.3).
To prove the second assertion of Theorem 14.2, we assume that vK is divisible or a

Z-group. The same is then true for vKp and for vL for every L as in the previous lemma.
Further, we note that in the previous lemma, we can restrict the scope to all b ∈ O. As
well, we can restrict the scope to all defectless extensions (L|Kp, v). So we can choose
b1, . . . , bn to be a valuation basis of (L|Kp, v). If vKp is divisible, then vL = vKp and
we can assume in addition that vb1 = . . . = vbn = 0. If vKp is a Z-group with least
positive element α, then we can assume in addition that for 1 ≤ i ≤ n, vbi = `i

pm
α for

some `i ∈ {0, . . . , pm − 1}, with m ≥ 0 fixed; so 0 ≤ vbi < α. Now it remains to show
that v(b − L) has a maximal element if and only if (K, v) is O-extremal with respect to
the polynomial (14.3). We observe that 0 ≤ v(b − 0) ∈ v(b − L). Take c ∈ L such that
v(b− c) ≥ 0. We write c =

∑n
i=1 bic

p
i with c1, . . . , cn ∈ K. It follows that

0 ≤ vc = v

n∑
i=1

bic
p
i = min

i
vbic

p
i .

Hence for 1 ≤ i ≤ n, vbi + vcpi ≥ 0, and by our assumptions on the values vbi, this implies
that vcpi ≥ 0 and hence ci ∈ O. This shows that the image of On under the polynomial
(14.3) is a final segment of v(b − L), hence one of the sets has a maximal element if and
only if the other has. �

Corollary 14.3 Every extremal field with value group a divisible or a Z-group is insepa-
rably defectless.

Corollary 14.4 The property “inseparably defectless” is elementary in the language of
valued fields.

Proof: The property can be axiomatized by an infinite scheme of axioms where n runs
through all powers pν of p. Each of the axioms quantifies over all b ∈ K and all bases of
finite extensions of Kp. The latter is done by quantifying over all choices of a1, . . . , aν ∈ K
such that the elements ae11 · . . . · aeνν , 0 ≤ ei < p are linearly independent over Kp (which
can be expressed by an elementary sentence). Also the additional conditions concerning
the values of these elements and that they form a valuation basis are elementary in the
language of valued fields. �

For a valued field of finite degree of inseparability, one knows several properties which
are equivalent to “inseparably defectless”. The following theorem is due to F. Delon [DEL1]:

Theorem 14.5 Let K be a field of characteristic p > 0 and finite degree of inseparability
[K : Kp]. Then for the valued field (K, v), the property of being inseparably defectless is
equivalent to each of the following properties:

a) [K : Kp] = (vK : pvK)[K : K
p
], i.e., (K|Kp, v) is a defectless extension

b) (K1/p|K, v) is a defectless extension

c) every immediate extension of (K, v) is separable

d) there is a separable maximal immediate extension of (K, v).
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Proof: The equivalence of “(K, v) inseparably defectless” with properties a) and b)
follows readily from Lemma 14.1. We have already seen at the beginning of this section
that for an inseparably defectless field, every immediate extension is separable. This proves
that “(K, v) inseparably defectless” implies property c). Since every valued field admits a
maximal immediate extension by Theorem 8.22, it follows that property c) implies property
d).

It now suffices to show that property d) implies property a). Let (L, v) be a separable
maximal immediate extension of (K, v). According to Corollary 24.42, the separability
implies that [L : Lp] ≥ [K : Kp]. On the other hand, we have that vL = vK and Lv = Kv.
By our choice of (L, v), it is a maximal field. Theorem ?? thus shows that (L, v) is a
defectless field. Hence, the extension (L1/p|L, v) is defectless, and by Lemma 14.1 we
conclude that also (L|Lp, v) is defectless. Since (vL : pvL) = (vK : pvK) and [Lv : Lvp] =
[Kv : Kvp] are finite, it follows that [L : Lp] is finite and equal to (vL : pvL)[Lv : Lvp].
Consequently, using also the fundamental inequality for (K|Kp, v), we obtain that

[L : Lp] = (vL : pvL)[Lv : Lvp] = (vK : pvK)[Kv : Kvp] ≤ [K : Kp] ≤ [L : Lp] .

Thus, equality holds everywhere, showing that a) holds. �

From the proof, we also obtain:

Corollary 14.6 A given maximal immediate extension of a valued field (K, v) has the
same degree of inseparability as K if and only if (K, v) is an inseparably defectless field.

The very useful upward direction of the following lemma was also stated by F. Delon
([DEL1], Proposition 1.44):

Lemma 14.7 Let (L|K, v) be a finite extension of valued fields. Then (K, v) is an insep-
arably defectless field and of finite degree of inseparability if and only if (L, v) is.

Proof: By Lemma 24.32, the degree of inseparability of a field does not change under
finite extensions. Assume that one and hence both fields have finite degree of inseparability.
Since [L : K] is finite, also (vL : vK) and [Lv : Kv] are finite, by virtue of Lemma 6.13.
Hence, also the degree of inseparability of Lv is equal to that of Kv. The same can be shown
for ordered abelian groups: (vL : pvL) = (vK : pvK) (the details are left to the reader). It
follows that [K : Kp] = (vK : pvK)[Kv : Kvp] if and only if [L : Lp] = (vL : pvL)[Lv : Lvp],
which by Theorem 14.5 means that (K, v) is inseparably defectless if and only if (L, v) is.

�

In Lemma 15.36 in Section ?? we will generalize the upward direction to the case of
arbitrary degree of inseparability.

If a p-basis of the fieldK is at the same time a valuation basis of the extension (K|Kp, v),
then we will call it a valuation p-basis. Since by Lemma 6.17 every finite defectless
extension admits a valuation basis and every valuation basis is a basis, we obtain from the
foregoing theorem:

Corollary 14.8 A valued field of finite degree of inseparability is inseparably defectless if
and only if it admits a valuation p-basis.
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The following very useful lemma was also proved by F. Delon ([DEL1], Proposition
1.44):

Lemma 14.9 For valued fields of finite degree of inseparability, the property of being in-
separably defectless is inherited by every finite extension.

Proof: By Lemma 24.32, the degree of inseparability of a field does not change under
finite extensions. On the other hand, if (L|K, v) is finite, then also vL|vK and L|K are finite
by virtue of Lemma 6.13. Hence, also the degree of inseparability of L is equal to that of K.
The same can be shown for abelian groups: (vL : pvL) = (vK : pvK) (the details are left to
the reader). It follows that [L : Lp] = [K : Kp] = (vK : pvK)[K : K

p
] = (vL : pvL)[L : L

p
],

which by Theorem 14.5 means that (L, v) is inseparably defectless. �

Theorem 14.10 Let (K, v) be an inseparably defectless field. Assume that the valued field
extension (F |K, v) admits a (not necessarily finite) standard valuation transcendence basis
T such that F = K(T ). Then also (F, v) and (F, v)h are inseparably defectless fields.

Proof: We prove our assertion for the case of T finite; the general case then follows by
Lemma 11.96. In view of Theorem 11.12, it suffices to prove that (F, v) is an inseparably
defectless field.

We write T = {xi , yj | i ∈ I , j ∈ J} ⊂ F such that the values vxi , i ∈ I, are rationally
independent over vK, and that the residues yi , j ∈ J , are algebraically independent over
K. Every finite purely inseparable extension L of K(T ) is contained in an extension
E = K ′(T 1/pm) = K ′(t1/p

m | t ∈ T ) for a suitable m ∈ N and some finite purely inseparable
extension K ′ of K. Since K ′|K is algebraic, we know from Corollary 6.15 that vK ′/vK

is a torsion group and K ′|K is algebraic. Consequently, the values vx
1/pm

i = vxi
pm

, i ∈ I,

are still rationally independent over vK ′, and the residues y1/pm
i = y

1/pm

i , j ∈ J , are
still algebraically independent over K ′. This proves that T 1/pm is a standard valuation
transcendence basis of (E|K ′, v). Now Lemma 6.35 shows that

vE = vK ′ ⊕ Zvx1/pm

1 ⊕ . . .⊕ Zvx1/pm

r = vK ′ ⊕ Z
vx1

pm
⊕ . . .⊕ Z

vxr
pm

and that

E = K ′
(
y

1/pm

1 , . . . , y
1/pm
s

)
= K ′(y1

1/pm , . . . , ys
1/pm) ,

whence

[E : K(T )] = [K ′(T 1/pm) : K ′(T )] · [K ′(T ) : K(T )] = pm(r+s) · [K ′ : K]

= pmr · pms · (vK ′ : vK) · [K ′ : K] = pmr · (vK ′ : vK) · pms · [K ′ : K]

= (vE : vK(T )) ·
[
E : K(T )

]
since (K ′|K, v) is defectless by hypothesis. This equation shows that (E|K(T ), v) and thus
also its subextension (L|K(T ), v) is defectless. �

Every valuation on the finite field Fp is trivial and thus defectless. Hence we can apply
the foregoing theorem to (Fp(t), vt) to obtain that (Fp(t), vt) and (Fp(t), vt)h are inseparably
defectless fields. Let us note:
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Corollary 14.11 Let (K, v) be one of the fields (Fp(t), vt), (Fp(t), vt)h or (Fp((t)), vt).
Then (K, v) is an inseparably defectless field with degree of inseparability p and valuation
p-basis 1, t, . . . , tp−1. In particular,

Fp((t))1/p∞ = Fp((t))(t1/p
i | i ∈ N) .

Proof: It follows from the foregoing theorem that (Fp(t), vt) and (Fp(t), vt)h are in-
separably defectless fields. Corollary 11.28 tells us that (Fp((t)), vt) is a defectless and
hence also inseparably defectless field. From Corollary 14.6 we know that the degree of
inseparabilitys of Fp(t) and Fp((t)) are equal. Since Fp is perfect and Fp(t) is a function
field in one variable over Fp, its degree of inseparability is p. Since Fp(t)h is a separable
extension of Fp(t), Lemma 24.32 shows that its degree of inseparability is again p. Since
the values v1, vt, . . . , (p−1)vt belong to distinct cosets modulo vKp = pvK, it follows that
1, t, . . . , tp−1 is a valuation p-basis for all three fields.

By definition, K1/p∞ =
⋃
i∈NK

1/pi for every field K of characteristic p. Since the degree
of inseparability of Fp((t)) is p, we know that Fp((t))1/p = Fp((t))(t1/p) and by induction,

Fp((t))1/pi = Fp((t))(t1/p
i
). It follows that Fp((t))1/p∞ =

⋃
i∈N Fp((t))(t1/p

i
) = Fp((t))(t1/p

i |
i ∈ N). �

Now we see that the field K of Example 11.47 is indeed equal to Fp((t))1/p∞ . We
conclude:

Corollary 14.12 For every element a ∈ F̃p(t) such that ap − a = 1/t, the Artin-Schreier
extension of Fp((t))1/p∞ generated by a is immediate with dist (a,Fp((t))1/p∞) = 0.

We leave it to the reader to prove the assertions of the last two corollaries for the case that
Fp is replaced by any perfect field k of characteristic p (the valuation vt being trivial on k).

For the conclusion of this section, let us consider an example of an immediate Artin-
Schreier extension which is not a defect extension.

Example 14.13 We consider the Artin-Schreier polynomial Xp −X − t over the valued
field (Fp(t), vt) and over its perfect hull. Extend vt to the algebraic closure of Fp(t).
Let a be a root of Xp − X − t. Then a /∈ Fp(t)1/p∞ . To show this, we observe that
Fp(t) = Fp(1/t). So we set s = 1/t and consider Fp(t) with the s-adic valuation. Then
we can infer from the foregoing corollary that the root a of the polynomial Xp −X − 1/s
generates a proper immediate extension of (Fp((s))1/p∞ , vs). In particular, a can not lie in
Fp(s)1/p∞ = Fp(t)1/p∞ . So Xp −X − t is irreducible over Fp(t) and Fp(t)1/p∞ . So all roots
of Xp −X − t are conjugate to a over these fields. But they are all of the form aj = a+ j
with j = 0, 1, . . . , p− 1. It is impossible that vta < 0 since then vt(a

p − a− t) = vta
p < 0

in contradiction to ap − a − t = 0. Hence, vtaj ≥ 0, and all elements of Fp appear as the
residue of some root aj . Without loss of generality, we can choose our enumeration of the
roots such that a = 0. Let σj denote the automorphism in Gal Fp(t) which sends a to aj .
Then if j 6= `, then vtσj(a− j) = vt(σja− j) = vt(a + j − j) = vta > 0 = vt(a + `− j) =
vt(σ`a − j) = vtσ`(a − j). This proves that vt admits p distinct extensions from Fp(t) to
Fp(t, a) and from Fp(t)1/p∞ to Fp(t)1/p∞(a). That is, (Fp(t, a), vt) lies in the henselization

of (Fp(t), vt) in (F̃p(t), vt) and in particular, (Fp(t, a)|Fp(t), vt) is an immediate extension.
The same holds for the extension (Fp(t)1/p∞(a)|Fp(t)1/p∞ , vt).
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We define bi := a + t + tp + . . . + tp
i
. Since vta > 0, we obtain that also vtbi > 0 for

every i. We compute

0 = ap − a− t = (bi − t− tp − . . .− tp
i

)p − bi + t+ tp + . . .+ tp
i − t

= bpi − bi − tp
i

.

Since vtbi > 0, we have that vtb
p
i > vtbi and consequently, vtbi = vtt

pi = pivtt. Since the
values pivtt are cofinal in Zvtt = vtFp(t), we find that at (a,Fp(t)) is a completion type. ♦

Trivially, every perfect field is inseparably defectless. Hence, our example shows that there
are perfect and thus also inseparably defectless fields which are not henselian. See also
Example 9.3 and Section ?? for a discussion of Artin-Schreier polynomials of the above
type over henselian fields.

14.3 Classification of Artin-Schreier defect extensions

We will consider the following situation:

• (L|K, v) an Artin-Schreier defect extension of valued fields of characteristic p > 0,
• ϑ ∈ L \K an Artin-Schreier generator of L|K,
• a = ℘(ϑ) = ϑp − ϑ ∈ K,
• δ = dist (ϑ,K).

Since (L|K, v) is immediate and non-trivial, we know that v(ϑ − K) = ΛL(ϑ,K) has no
maximal element and that δ > vϑ (cf. Theorem ??). An element ϑ′ ∈ L is another
Artin-Schreier generator of L|K if and only if

ϑ′ = iϑ+ c with c ∈ K and 1 ≤ i ≤ p− 1. (14.4)

(cf. Lemma ??). Consequently, using Lemma ?? we see that δ is an invariant of the
extension (L|K, v):

Lemma 14.14 The distance δ does not depend on the choice of the Artin-Schreier gener-
ator ϑ.

So we can call δ the distance of the Artin-Schreier defect extension (L|K, v). From
Corollary ?? we know that

δ ≤ 0− .

We will now distinguish two types of Artin-Schreier defect extensions. We will call
(L|K, v) a dependent Artin-Schreier defect extension if there exists an immediate
purely inseparable extension K(η)|K of degree p such that

η ∼K ϑ . (14.5)

Otherwise, we will speak of an independent Artin-Schreier defect extension. For the
definition and properties of the equivalence relation “∼K”, see Section ??. We will now
show that independent Artin-Schreier defect extensions are characterized by idempotent
distances δ. See Lemma ?? for a bunch of different criteria which are all equivalent to “δ
is idempotent”.
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Proposition 14.15 In the situation as described above, the Artin-Schreier defect exten-
sion (L|K, v) is independent if and only if its distance δ is idempotent:

δ = pδ .

Proof: Assume that K(η)|K is purely inseparable of degree p, that is, ηp ∈ K \Kp. By
definition, (15.17) is equivalent to v(ϑ− η) > δ. Since v(ϑp− ηp) = v(ϑ− η)p = pv(ϑ− η),
this in turn is equivalent to

v(ϑp − ηp) > pδ .

Here, the left hand side is equal to v(ϑ + a − ηp) = v(ϑ − (ηp − a)) which is a value in
ΛL(ϑ,K) and hence is≤ δ. Consequently, if (15.17) holds with K(η)|K a purely inseparable
extension of degree p, then pδ < δ, that is, δ is not idempotent.

For the converse, assume that δ is not idempotent. Since δ ≤ 0−, this implies that
pδ < δ. Then there is c ∈ K such that pδ < v(ϑ − c) ≤ δ. Choose η ∈ K̃ such that
ηp = a + c. Then v(ϑp − ηp) = v(ϑ + a − ηp) = v(ϑ − c) > pδ. Hence, v(ϑ − η) > δ,
and it follows that η ∼K ϑ. Consequently, η /∈ K, and we obtain that K(η)|K is a purely
inseparable extension of degree p. Finally, we deduce from Lemma 19.26 that this extension
is immediate. �

Corollary 14.16 If K admits no proper immediate purely inseparable extension, then K
admits no dependent Artin-Schreier defect extension. �

The converse of this corollary is not true: every separable-algebraically closed non-
trivially valued field K of characteristic p > 0 which is not algebraically closed is a coun-
terexample. Indeed, its value group is divisible and its residue field is algebraically closed
(see, e.g., [Ku2], Lemma 2.16) and hence, the proper purely inseparable extension K̃|K
is immediate. But a closer look shows that the irreversibility comes only from immediate
purely inseparable extensions which lie in the completion Kc of K:

Proposition 14.17 Assume that K admits an immediate purely inseparable extension
K(η)|K of degree p such that η /∈ Kc, and set

ε := dist (η,K) .

Then K admits a dependent Artin-Schreier defect extension K(ϑ)|K. More precisely, given
any b ∈ K×, then

(p− 1)vb+ vη > pε (14.6)

if and only if there is an Artin-Schreier generator ϑ such that ϑp − ϑ = (η/b)p and

ϑ ∼K
η

b
vϑ = vη − vb

dist (ϑ,K) = dist (η,K)− vb .

All Artin-Schreier defect extensions obtained in this way are dependent.
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Proof: Let ϑ be a root of the polynomial

Xp −X −
(η
b

)p
∈ K[X]. (14.7)

Assume that (14.6) holds. Then we have

(p− 1)vb+ vη > pε > pvη (14.8)

where the last inequality holds since ε > vη by Theorem ??. This gives vb > vη, showing
that

v
(η
b

)p
< 0 .

Hence by Lemma ??,

vϑ = v
η

b
= vη − vb . (14.9)

Putting Y = bX we find that bϑ is a root of the polynomial

Y p − bp−1Y − ηp ∈ K[Y ] (14.10)

and thus satisfies
ηp + bpϑ = ηp + bp−1bϑ = (bϑ)p .

Let c be an arbitrary element of K. By (14.9), (14.6) and the definition of ε,

vbpϑ = pvb+ vη − vb = (p− 1)vb+ vη ≥ pε > pv(η − c) = v(ηp − cp)

which yields, using the ultrametric triangle inequality,

v(η − c) =
1

p
v(ηp − cp) =

1

p
min{v(ηp − cp) , vbpϑ}

=
1

p
v(ηp + bpϑ− cp) =

1

p
v((bϑ)p − cp) = v(bϑ− c) .

By Lemma ?? this implies that bϑ ∼K η, which by Lemma ?? implies that

ϑ ∼K
η

b
.

From this, the assertion on the distance of ϑ follows by virtue of Lemma ??, while the
value vϑ has already been determined in (14.9). By Lemma ??, the extension of v from K
to K(ϑ) is unique and (K(ϑ)|K, v) is an Artin-Schreier defect extension. By definition, it
is dependent.

For the converse, assume that (14.6) does not hold, i.e., (p − 1)vb + vη ≤ pε. If
v
(
η
b

)p
> 0, then by Lemma ??, vϑ = v

(
η
b

)p
= pv η

b
> v η

b
and we cannot have ϑ ∼K η

b
. If

v
(
η
b

)p ≤ 0, then again by Lemma ??, (14.9) holds, and so we have

vbpϑ = pvb+ vη − vb = (p− 1)vb+ vη ≤ pε .

Therefore, and since ΛL(η,K) has no last element, there is some c ∈ K such that vbpϑ <
pv(η − c) = v(ηp − cp). But then, by the ultrametric triangle inequality,

v(η − c) >
1

p
vbpϑ =

1

p
v(ηp + bpϑ− cp) = v(bϑ− c) ,

which again shows that ϑ ∼K η
b

cannot be true. �

The following proposition shows an even stronger independence property than what is
expressed in the definition:
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Proposition 14.18 Let (L|K, v) be an independent Artin-Schreier defect extension, and
take any element ζ ∈ L \ K. Then there exists no purely inseparable extension K(η)|K
such that ζ ∼K η . In particular, it follows that

dist (ζ,K) = dist (ζ,K1/p∞) . (14.11)

Proof: Since ζ ∈ L \ K, [K(ζ) : K] = p = [K(ϑ) : K] and therefore, there is
a polynomial f ∈ K[X] of degree smaller than p such that ϑ = f(ζ). Suppose that
there exists a purely inseparable extension K(η)|K such that ζ ∼K η . But then by
Lemma ??, ϑ = f(ζ) ∼K f(η) . Since also K(f(η))|K is a purely inseparable extension,
this is impossible since (L|K, v) is assumed to be independent.

Equation (15.21) is deduced as follows. If it does not hold, then dist (ζ,K) < dist (ζ,K1/p∞)
in view of K ⊂ K1/p∞ . But then by virtue of Lemma ??, there would exist some η ∈ K1/p∞

such that ζ ∼K η , which we have just shown not to be the case. �

14.4 Deformation of Artin-Schreier defect extensions

For the proof of Proposition 14.17, we have transformed an immediate purely inseparable
extension into an immediate separable extension. This was done by changing the minimal
polynomial Y p − ηp to the minimal polynomial (15.20) of bϑ through addition of the
summand bp−1Y . The hypothesis on the value of b just means that it is large enough to
guarantee that bϑ ∼K η. For this hypothesis, it is necessary that η is not contained in the
completion of K. On the other hand, an immediate purely inseparable extension with a
generator η in the completion of K cannot be transformed into any immediate separable
extension with a generator ϑ such that ϑ ∼K η. Indeed, if η ∈ Kc and η ∼K η′, then
v(η−η′) > ṽK, that is, η = η′. Moreover, every henselian field K is separable-algebraically
closed in its completion (cf. [W], Theorem 32.19).

The general idea of the transformation of the minimal polynomial can be expressed
as follows: if y /∈ Kc is a root of the polynomial f ∈ K[X], then for a given polynomial
g ∈ K[X], a root z of g will satisfy y ∼K z as soon as the coefficients of the polynomial
f − g have large enough values. This follows in general from the principle of Continuity
of Roots. But we wanted to give a self-contained proof for our special case, because it is
particularly simple and explicit and leads to the following deformation theory.

For any fixed a ∈ K, we consider the following family of polynomials defined over K:

fa,b(Y ) := Y p − bp−1Y − a , b ∈ K× . (14.12)

This family can be viewed as a deformation of the polynomial Y p−a, with this polynomial
as its limit for vb→∞:

Y p − bp−1Y − a −→ Y p − a
vb −→ ∞ .

But it is not necessarily true that the ramification theoretical properties are preserved in
the limit, as Example 14.30 in Section 14.9 will show.
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Associated with this family through the transformation Y = bX is the family

ga,b(X) := Xp −X − a

bp
, b ∈ K× , (14.13)

where ϑa,b is a root of ga,b if and only if bϑa,b is a root of fa,b .
We summarize the properties of these families in the following theorem:

Theorem 14.19 a) If pvb ≥ va, then the polynomial ga,b(X) induces a Artin-Schreier
extension for which equality holds in the fundamental inequality (7.26); if pvb > va, then
this extension lies in the henselization of K.
b) Suppose that the polynomial Y p − a induces an immediate extension which does not
lie in the completion of K. Then for each b ∈ K× of large enough value, the polynomial
ga,b(X) induces a dependent Artin-Schreier defect extension; every root bϑa,b of fa,b(X) will
then satisfy

bϑa,b ∼K a1/p .

“Large enough value” means that

(p− 1)vb+
va

p
> p dist (a1/p, K) . (14.14)

If this condition is violated, then bϑa,b ∼K a1/p does not hold.
c) Suppose that a root ϑa,1 of the polynomial fa,1(X) = Xp −X − a satisfies

vϑa,1 > p dist (ϑa,1, K) . (14.15)

Then the polynomial Xp − a induces an immediate extension which does not lie in the
completion, and for every b in the valuation ring O of K and every root ϑa,b of ga,b,
K(ϑa,b)|K is a dependent Artin-Schreier defect extension with bϑa,b ∼K a1/p. If condition
(14.15) is violated, then ϑa,1 ∼K a1/p does not hold.

Proof: a): Both assertions follow from Lemma ??.

b): All assertions follow from Proposition 14.17 where η = a1/p.

c): Assume that condition (14.15) holds. Then it follows from the second part of the proof
of Proposition 15.22, where we set c = 0 and ϑ = ϑa,1 , that the polynomial Xp−a induces
an immediate extension which does not lie in the completion, and that ϑa,1 ∼K a1/p. The
latter implies that vϑa,1 = va1/p = va

p
and that dist (ϑa,1, K) = dist (a1/p, K); hence, it

implies that (14.15) is equivalent to

va

p
> p dist (a1/p, K) . (14.16)

Consequently, (14.14) will hold for every b ∈ O, so it follows from part b) that for every root
ϑa,b of ga,b, K(ϑa,b)|K is a dependent Artin-Schreier defect extension with bϑa,b ∼K a1/p.

The last assertion of part c) is seen as follows. We have shown that if ϑa,1 ∼K a1/p

holds, then (14.15) and (14.16) are equivalent. But if (14.16) is violated, then by part b),
ϑa,1 ∼K a1/p cannot hold. �

Note that
p dist (a1/p, K) = dist (a,Kp) . (14.17)
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A deformation which at first sight seems to be different from the above has been used
by B. Teissier in [T]. Starting from the Artin-Schreier polynomial Xp − X − a, we set
X = aY and then divide the polynomial by ap, which leads to the polynomial

Y p − a1−pY − a1−p = Y p − a1−p(1 + Y ) .

Hence, ϑp − ϑ = a if and only if for ϑ̃ = ϑ/a,

ϑ̃p − a1−p(1 + ϑ̃) = 0 . (14.18)

We assume that va < 0. Then ϑp − ϑ = a implies that va = pvϑ < vϑ and therefore,

vϑ̃ = vϑ− va > 0 .

That is, 1 + ϑ̃ is a 1-unit in O. Reducing this 1-unit to 1 deforms equation (14.18) to

ϑ
p − a1−p = 0 ,

viewed as an equation in an associated graded ring. In fact, we have reduced equation
(14.18) modulo the O-ideal

a1−pϑ̃O = a−pϑO = ϑ1−p2O .

Analyzing the above transformation, one sees that its advantage is that it leeds to equations
with integral coefficients. However, if we multiply the polynomial Y p−a1−p by ap and then
set X = aY , we obtain the polynomial Xp − a. So we have just replaced the polynomial
Xp−X−a by Xp−a. From Theorem 14.19 together with (14.17) we see that this procedure
preserves the valuation theoretical behaviour of the associated roots if and only if

va > p dist (a,Kp) .

14.5 Fields without dependent Artin-Schreier defect

extensions

If K admits any immediate purely inseparable extension that does not lie in the completion
Kc of K, then K satisfies the hypothesis of Proposition 14.17. To show this, suppose that
η̃ ∈ K1/p∞ \Kc such that K(η̃)|K is an immediate extension. We may assume that η̃p ∈ Kc

(otherwise, we replace η̃ by a suitable pν-th power). Since η̃ /∈ Kc, we have that ΛL(η̃, K)
is bounded from above in vK and ΛL(η̃p, Kp) = pΛL(η̃, K) is bounded from above in
vKp = pvK. On the other hand, since η̃p ∈ Kc, there is some b ∈ K such that v(η̃p− b) >
ΛL(η̃p, Kp). We choose η ∈ K1/p such that ηp = b. Then v(η̃−η) = 1

p
v(η̃p− b) > ΛL(η̃, K),

that is,
η ∼K η̃ .

By Lemma 19.26, this shows that K(η)|K is an immediate extension; since ΛL(η,K) =
ΛL(η̃, K) 6= vK, it is not contained in Kc. We may now apply Proposition 14.17 to obtain:

Corollary 14.20 Assume that K does not admit any dependent Artin-Schreier defect ex-
tension. Then every immediate purely inseparable extension lies in the completion of K.

�
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Lemma 14.21 If K is Artin-Schreier closed, then so is Kc. If K admits no dependent
(or no independent) Artin-Schreier defect extension, then the same holds for Kc.

Proof: Assume that Kc(ϑ)|K is an Artin-Schreier extension generated by a root ϑ of
the polynomial Xp −X − a over Kc. Since ϑ /∈ Kc, we have that dist (ϑ,Kc) <∞. Since
a ∈ Kc, we may choose an element ã ∈ K such that v(a−ã) > dist (ϑ,Kc) with v(a−ã) ≥ 0.
Let ϑ̃ be a root of the polynomial Xp −X − ã ∈ K[X]. By Lemma ??, the root ϑ− ϑ̃ of
the polynomial Xp−X− (a− ã) has value v(ϑ− ϑ̃) = v(a− ã) > dist (ϑ,Kc) ≥ dist (ϑ,K).
Thus, dist (ϑ̃, K) = dist (ϑ,K) ≤ dist (ϑ,Kc) <∞, which shows that K(ϑ̃)|K is non-trivial
and hence an Artin-Schreier extension. This proves the first assertion of our lemma.

Now assume that (Kc(ϑ)|K, v) is an Artin-Schreier defect extension. By Corollary ??
we have that dist (ϑ,Kc) ≤ 0−. With ϑ̃ as before, we obtain that dist (ϑ̃, K) = dist (ϑ,K) ≤
0−. By Lemma ??, this shows that also (K(ϑ̃)|K, v) is an Artin-Schreier defect extension.
The equality of the distances shows that Kc(ϑ)|Kc is independent if and only if K(ϑ̃)|K
is. �

An immediate consequence of this lemma and the preceding corollary is:

Corollary 14.22 If K does not admit any dependent Artin-Schreier defect extension, then
Kc does not admit any proper immediate purely inseparable extension. In particular, this
holds if K is separable-algebraically maximal. �

We can now give the

Proof of Theorem ??: Every Artin-Schreier closed non-trivially valued field K of char-
acteristic p > 0 has p-divisible value group and perfect residue field (cf. Corollary 2.17 of
[Ku2]). Therefore, every purely inseparable extension of K is immediate. Hence by the
last corollary, the perfect hull of K lies in the completion of K, i.e., K lies dense in its
perfect hull.

An alternative proof of this fact can be given in the following way. We represent the
extension K1/p∞|K as an infinite tower of purely inseparable extensions Kµ+1|Kµ (µ < ν
where ν is some ordinal). Then we only have to show that (Kµ+1, v) lies in (Kµ, v)c for
every µ < ν. In view of Proposition 14.17, it suffices to show that Kµ is Artin-Schreier
closed. But this holds by Lemma ??.

Since Kc has the same value group and the same residue field as K, also every purely
inseparable extension of Kc is immediate. By the preceding corollary, this yields that Kc

must be perfect. �

14.6 Persistence results

Another property of independent Artin-Schreier defect extensions is their persistence in
maximal immediate extensions, in the following sense:

Lemma 14.23 If K admits an independent Artin-Schreier defect extension (K(ϑ)|K, v)
with Artin-Schreier generator ϑ of distance δ = 0−, then every algebraically maximal imme-
diate extension (and in particular, every maximal immediate extension) M of K contains
also an independent Artin-Schreier defect extension of K with an Artin-Schreier generator
ϑ̃ of distance 0− such that ϑ̃ ∼K ϑ.
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Proof: If ϑ ∈ M , there is nothing to show. Assume that ϑ /∈ M . Then M(ϑ)|M is
also an Artin-Schreier extension with Artin-Schreier generator ϑ. Since M is algebraically
maximal, Corollary ?? shows that there exists an element u ∈M satisfying

v(ϑ− u) ≥ ΛL(ϑ,M) .

On the other hand, K ⊆M implies

ΛL(ϑ,K) ⊆ ΛL(ϑ,M) .

Since vM = vK, this shows that v(ϑ− u) ≥ 0. We put

au := ℘(ϑ− u) = ℘(ϑ)− ℘(u) ∈M

and note that vau ≥ 0. Since M |K is immediate, there exists b ∈ K such that

v(au − b) > v(au) ≥ 0

and vb = vau ≥ 0. Consequently, the polynomial Xp−X − (au− b) ∈M [X] admits a root
ϑ′ in the henselian field M . But then,

ϑ̃ := ϑ′ + u ∈M

is a root of the polynomial Xp −X − (℘(ϑ)− b) ∈ K[X]. We compute:

℘(ϑ− ϑ̃) = ℘(ϑ)− ℘(ϑ′ + u) = ℘(ϑ)− (℘(ϑ)− b) = b .

This shows v(ϑ − ϑ̃) ≥ 0, whence ϑ̃ ∼K ϑ. In particular, this shows that ϑ̃ /∈ K so that
K(ϑ̃)|K is non-trivial and hence an Artin-Schreier extension. By Lemma ??, the extension
of v from K to K(ϑ̃) is unique and K(ϑ̃)|K is an Artin-Schreier defect extension. Finally,
ϑ̃ ∼K ϑ implies that dist (ϑ̃, K) = dist (ϑ,K) = 0− (Lemma ??) and therefore, K(ϑ̃)|K is
an independent Artin-Schreier defect extension. �

From this lemma, we deduce the following:

Corollary 14.24 If there exists a maximal immediate extension in which K is separable-
algebraically closed, then K admits no independent Artin-Schreier defect extension of dis-
tance 0−.

We will now consider independent Artin-Schreier defect extensions (K(ϑ)|K, v) with
Artin-Schreier generator ϑ of distance δ < 0−. In this case, Lemma ?? shows that δ = H−

for some non-trivial convex subgroup H of ṽK. This means that v(ϑ−K) = ΛL(ϑ,K) is

cofinal in (ṽK)<0 \H. We denote by vδ the coarsening of v on K̃ with respect to H. Then

vδ(ϑ −K) is cofinal in (ṽK)<0/H = (ṽδK)<0. Thus, vδ(ϑ −K) has no maximal element.
Since the extension of v from K to K(ϑ) is unique, the same must hold for vδ; cf. the proof
of Lemma ??. Now Lemma 19.26 shows that also (K(ϑ)|K, vδ) is an immediate Artin-
Schreier extension. As its distance is 0−, it is covered by the case treated in Lemma 15.30.
From this, we obtain:
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Lemma 14.25 Assume that for every coarsening w of v (including v itself), there exists
a maximal immediate extension (Mw, w) of (K,w) such that K is separable-algebraically
closed in Mw. Then K admits no independent Artin-Schreier defect extensions. �

The condition of Lemma 15.33 is preserved under finite defectless extensions:

Lemma 14.26 Assume that for every coarsening w of v (including v itself), K0 admits a
maximal immediate extension (Nw|K0, w) such that K0 is relatively algebraically closed (or
separable-algebraically closed) in Nw. If the extension (K|K0, v) is finite and defectless,
then for every coarsening w of v (including v itself), (Mw, w) = (Nw.K, w) is a maximal
immediate extension of (K,w) such that K is relatively algebraically closed (or separable-
algebraically closed, respectively) in Mw.

Proof: Since (K|K0, v) is defectless by hypothesis, the same is true for the extension
(K|K0, w) by Lemma ??. We note that (K0, w) is henselian since it is assumed to be
separable-algebraically closed in the henselian field (Nw, w). So we may apply Lemma ??:
since (Nw|K0, w) is immediate and (K|K0, w) is defectless, (Nw.K|K,w) is immediate
and Nw is linearly disjoint from K over K0. The latter shows that K is relatively alge-
braically closed (or separable-algebraically closed, respectively) in Nw.K. On the other
hand, (Mw, w) = (Nw.K, w) is a maximal field, being a finite extension of a maximal field.

�

Proposition 14.27 If K0 is a separable-algebraically maximal field and K|K0 is a finite
defectless extension, then K admits no independent Artin-Schreier defect extensions.

Proof: Let w be any coarsening of v. Since (K0, v) is separable-algebraically maximal, the
same is true for (K0, w) since every finite separable immediate extension of (K0, w) would
also be immediate for the finer valuation v. Now let (Nw, w) be a maximal immediate
extension of (K0, w). Since (K0, w) is separable-algebraically maximal, it is separable-
algebraically closed in Nw. Hence, K0 satisfies the condition of Lemma 15.35. So our
proposition is a consequence of Lemma 15.35 together with Lemma 15.33. �

14.7 Finite extensions of inseparably defectless fields

For the generalization of Lemma 14.7 to the case of infinite degree of inseparability, we
will need the following result:

Lemma 14.28 Let K ⊂ K1 ⊂ K2 be extensions of valued fields of characteristic p > 0
such that K1|K is finite and purely inseparable and K2|K1 is an independent Artin-Schreier
defect extension. Then there exists an Artin-Schreier extension L|K such that K2 = K1.L,
and every such extension L|K is an independent Artin-Schreier defect extension.

Proof: Let ϑ̃ be an Artin-Schreier generator of K2|K1 and choose ν ≥ 1 such that

Kpν

1 ⊆ K .
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Then
℘(ϑ̃p

ν

) = (℘(ϑ̃))p
ν ∈ K ,

hence
K(ϑ̃p

ν

)|K

is an Artin-Schreier extension: it is non-trivial since K(ϑ̃)|K is not purely inseparable.
Comparing degrees, we see that K2 = K1(ϑ̃

pν ) = K1.K(ϑ̃p
ν
).

Now let L|K be any such Artin-Schreier extension. Let ϑ be an Artin-Schreier generator
of L|K and hence of K2|K1 too. Using ϑp = ϑ+ a with a ∈ K, we compute

ϑp
ν

= ϑ+ a′ where a′ = a+ . . .+ ap
ν−1 ∈ K . (14.19)

Hence,
dist (ϑp

ν

, K1) = dist (ϑ,K1) .

Further,
δ := dist (ϑ,K1) = pνδ = dist (ϑp

ν

, Kpν

1 )

since δ is idempotent by hypothesis;

dist (ϑp
ν

, Kpν

1 ) ≤ dist (ϑp
ν

, K) ≤ dist (ϑp
ν

, K1)

because Kpν

1 ⊆ K ⊂ K1. Putting these three equations together, we find that equality
holds everywhere. In particular,

dist (ϑ,K1) = dist (ϑp
ν

, K) = dist (ϑ,K) ,

where the second equality again holds because of (14.19). This shows that ΛL(ϑ,K) is
cofinal in ΛL(ϑ,K1). Since K1(ϑ)|K1 is immediate, we know from Theorem ?? that
ΛL(ϑ,K1) = v(ϑ−K1) has no maximal element. Now we have that ΛL(ϑ,K) ⊆ v(ϑ−K) ⊆
v(ϑ −K1) and that ΛL(ϑ,K) is cofinal in v(ϑ −K1); this yields that v(ϑ −K) is cofinal
in v(ϑ−K1) and thus has no maximal element. Now Lemma 19.26 shows that K(ϑ)|K is
immediate. Since dist (ϑ,K) = dist (ϑ,K1) is idempotent, K(ϑ)|K is independent. �

Here is the promised generalization of Lemma 14.7:

Lemma 14.29 Every finite extension of an inseparably defectless field of characteristic
p > 0 is again an inseparably defectless field.

Proof: From Corollary 11.9 it follows that every finite purely inseparable extension of an
inseparably defectless field is again an inseparably defectless field. Thus it remains to show
the lemma in the case of a finite separable extension L of an inseparably defectless field
K. We fix an extension of v to Ksep and consider the ramification fields Kr and Lr of K
and L with respect to that extension. By Proposition 13.4, we know that K is inseparably
defectless if and only if Kr is inseparably defectless, and the same holds for L and Lr. By
Lemma ??, we have Lr = L.Kr, and therefore Lr|Kr is a finite separable extension. The
same proposition shows that Ksep|Kr is a p-extension, so Lr|Kr is a tower of Artin-Schreier
extensions (cf. Lemma 7.17). Hence, replacing K and L by their ramification fields, we may
assume from the start that they are henselian and that L|K is a tower of Artin-Schreier
extensions. Now it suffices to prove that L is inseparably defectless under the additional
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assumption that L|K itself is an Artin-Schreier extension since then, our assertion will
follow by induction. Since L1/p∞ = L.K1/p∞ , it suffices to show for every finite purely
inseparable extension K1|K (which itself is defectless by hypothesis), that K2 = K1.L is a
defectless extension of L. This follows immediately if K2|K1 and thus K2|K are defectless.
Now assume that K2|K1 is immediate. Note that K1 is an inseparably defectless field, being
a finite purely inseparable extension of the inseparably defectless field K. In particular,
this yields that K1 admits no immediate purely inseparable extension and hence by virtue
of Proposition 15.22, no dependent Artin-Schreier defect extension. The immediate Artin-
Schreier extension K2|K1 is thus independent. An application of Lemma 15.29 now shows
that L|K is immediate. But then, it follows already from Corollary ?? that K2|L is
defectless. Hence we have proved that L is an inseparably defectless field. �

In both of the preceding lemmas, the finiteness conditions cannot be dropped, as Exam-
ples 14.30 and 14.33 in the next section will show.

14.8 A characterization of henselian defectless fields

We are now able to give the

Proof of Theorem 15.38:
Assume that the valued field K of characteristic p > 0 is separable-algebraically maximal
and inseparably defectless. We note that K is henselian since it is separable-algebraically
maximal. Let (L|K, v) be a finite extension. We want to show that it is defectless. Since
any subextension of a defectless extension is defectless too, we may assume w.l.o.g. that
L|K is normal. Hence there exists an intermediate field K1 such that L|K1 is separable and
K1|K is purely inseparable. By hypothesis, we know that K1|K is defectless. It remains
to prove that L|K1 is defectless.

Using Lemma 7.17, choose a finite tame extension N of K1 such that L.N |N is a
tower of Artin-Schreier extensions. By Proposition 13.4, L|K1 is defectless if and only if
L.N |N is defectless. Since K1|K is defectless and N |K1 is tame and hence defectless, both
extensions being finite, N |K is finite and defectless. Using Lemma 15.36 we conclude that
N is inseparably defectless too and therefore does not admit immediate purely inseparable
extensions. By Corollary 15.23, this shows that every immediate Artin-Schreier extension
of the henselian field N must be independent. Moreover, from Proposition 15.34 we infer
that N does not admit independent Artin-Schreier defect extensions. Consequently, given
an Artin-Schreier extension L′|N contained in L.N |N , this extension must be defectless.
In view of Lemma 15.36 and Proposition 15.34, L′ will again be inseparably defectless and
will not admit any independent Artin-Schreier defect extension. By induction, we conclude
that all Artin-Schreier extensions in the tower L.N |N are defectless, hence L.N |N and thus
L|K1 and L|K are defectless, as asserted.

Conversely, every defectless field is immediately seen to be separable-algebraically max-
imal and inseparably defectless. �

14.9 Examples

Example 14.30 (for an independent Artin-Schreier defect extension with dis-
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tance 0−): Let k be an algebraically closed field of characteristic p > 0, and K = k(t)1/p∞

the perfect hull of the rational function field k(t). Further, let v = vt be the unique exten-
sion of the t-adic valuation from k(t) to K; we write vt = 1. Note that vK is p-divisible
and Kv = k is algebraically closed.

We consider the Artin Schreier extension L0 = k(t, ϑ) of k(t) generated by a root ϑ of
the polynomial

Xp − X − 1

t
.

As vϑ = −1/p /∈ Z = vk(t), we see that [L0 : k(t)] = p = (vL0 : vk(t)). Thus, the
extension of v from k(t) to L0 is unique. Further, the extension of v from L0 to its perfect
hull is unique. But the latter is equal to L0.K, so we find that the extension of v from K
to L := L0.K is unique. On the other hand, the extension L|K is immediate since vK is
p-divisible and Kv = k is algebraically closed. Therefore, L|K is an Artin-Schreier defect
extension. Since K is perfect, it is independent by definition.

For

an :=
n∑
i=1

1

tp−i

we have

apn − an =
1

t
− 1

tp−n
,

whence

(ϑ− an)p − (ϑ− an) = ϑp − ϑ − (apn − an) =
1

t
−
(

1

t
− 1

tp−n

)
=

1

tp−n
.

By Lemma ?? this yields

v(ϑ− an) =
1

p
v

1

tp−n
= − 1

pn+1
.

Since this increases with n, we see that (an)n∈N is a pseudo Cauchy sequence with limit ϑ.
By Corollary ??, dist (ϑ,K) ≤ 0−. On the other hand, the values v(ϑ− an) are cofinal in

ṽK
<0

. Therefore,
dist (ϑ,K) = 0− .

This example shows that the condition in Lemma 15.29 that K1|K be finite cannot
be dropped. Indeed, it is known that (k(t), vt) is a defectless field (for instance, this is a
consequence of the Generalized Stability Theorem, cf. [Ku4]). So it does not admit any
Artin-Schreier defect extension. But the infinite extension K of k(t) admits an independent
Artin-Schreier defect extension.

The example also shows that ramification theoretical properties of a polynomial are not
necessarily preserved in the limit. As above, one shows that for every n ∈ N, a root of the
polynomial

Xp −X − 1

tnp+1

generates a non-trivial immediate extension of K. The same is true for a root of the
polynomial

Y p − tn(p−1)Y − 1

t
.



14.9. EXAMPLES 377

Under n→∞ (which implies vtn(p−1) →∞), the limit of this polynomial is

Y p − 1

t
.

But this polynomial does not induce a non-trivial extension of K since K is perfect. ♦

This example works even for non-algebraically closed fields k. In [Ku2] we presented it
with k = Fp. See also [Ku5].

Example 14.31 (for an independent Artin-Schreier defect extension with dis-
tance smaller than 0−): In the previous example, we may choose k such that it admits a
non-trivial valuation v. Now we consider the valuation v′ := v◦v on L. As (L|K, v) is imme-
diate and Lv = k = Kv, it follows that also (L|K, v′) is immediate. The value group vk is
canonically isomorphic to a non-trivial convex subgroup H of v′L (such that v′L/H ∼= vL).
If there would exist some c ∈ K and an element β ∈ H such that v′(ϑ − c) ≥ β, then
v(ϑ − c) ≥ 0 which is impossible. On the other hand, the values v′(ϑ − an) are cofinal in

{α ∈ ṽ′K | α < H} since the values v(ϑ − an) are cofinal in vK<0. This shows that the
distance dist (ϑ,K) with respect to v′ is the cut

H− = ({α ∈ ṽ′K | α < H} , {α ∈ ṽ′K | ∃β ∈ H : β ≤ α})

which is smaller than 0− since H is non-trivial. ♦

Example 14.32 (for a dependent Artin-Schreier defect extension): With k(t) as
before, we take K0 to be the separable-algebraic closure of k(t), with any extension vt of
the t-adic valuation of k(t). Being separable-algebraically closed, K0 does in particular
not admit any Artin-Schreier extension. But we can build a field admitting a dependent
Artin-Schreier defect extension by taking K = K0(x) and endowing it with the (unique)
extension v of vt such that vx > vK0. (This means that K has the x-adic valuation
vx with residue field K0, and v = vx ◦ vt is the composition of vx with vt .) We take
any η ∈ K̃0 \ K0. Since η lies in the completion of (K0, v) by Theorem ??, we have
ΛL(η,K0) = vtK0 = vK0 . It follows that ΛL(η,K) is the least initial segment of vK

containing vK0. That is, the cut dist (η,K) is the cut (vK0)
+ induced in ṽK by the upper

edge of the convex subgroup vK0 of vK. In particular, η does not lie in the completion
of (K, v). Now Proposition 14.17 shows that K admits a dependent Artin-Schreier defect
extension. According to this proposition, it can for instance be generated by a root ϑ of
the polynomial Xp − X − (η/x)p, as vx > dist (η,K) = p dist (η,K). Then dist (ϑ,K) =
dist (η,K)−vx = (vK0)

+−vx = (−vx+vK0)
+ is the cut induced by the upper edge of the

coset −vx+ vK0 in ṽK. Note that in vK, which is the lexicographic product Zvx× vK0 ,
the cut (−vx + vK0)

+ is equal to the cut vK−0 induced by the lower edge of the convex

subgroup vK0 of vK. Nevertheless, the cut dist (ϑ,K) in ṽK is not equal to H− or H+ for

any convex subgroup H of vK or of ṽK (cf. Example ?? in Section ??). ♦

Enlarging the rank of the valuation in order to obtain a dependent Artin-Schreier defect
extension may appear to be a dirty trick. Therefore, we add a further example which shows
that such extensions can also appear for valuations of rank one.
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Example 14.33 (for a dependent Artin-Schreier defect extension in rank 1):
With (k(t), v) as before, we take a1 to be a root of the Artin-Schreier polynomial Xp −
X − 1/t. Then va1 = −1/p < 0. By induction on i, we take ai+1 to be a root of the
Artin-Schreier polynomial Xp −X + ai , for all i ∈ N. Then vai = −1/pi < 0. Note that
t, a1, . . . , ai ∈ k(ai+1) for every i, because ai = ai+1 − api+1. We have 1/p ∈ vk(a1) \ vk(t).
Since p ≤ (vk(a1) : vk(t)) ≤ [k(a1) : k(t)] ≤ p, equality holds everywhere and we find
that vk(a1) = 1

p
vk(t). Repeating this argument by induction on i > 1, we obtain 1/pi ∈

vk(ai) \ vk(ai−1) and thus, vk(ai) = 1
p
vk(ai−1) = 1

pi
vk(t). Therefore, the value group of

K := k(ai | i ∈ N) is the p-divisible hull 1
p∞

Z of Z (an ordered abelian group of rank 1).

Finally, we choose η such that ηp = 1/t. Since vK is p-divisible and Kv = k is
algebraically closed, the extension K(η)|K with the unique extension of the valuation v is
immediate. We wish to determine dist (η,K). We set ci := a1 + . . . + ai−1 ∈ k(ai−1) for
i > 1. Using that ap1 = 1

t
+ a1 and api+1 = ai+1 − ai for i ∈ N, we compute:

0 = ηp − 1

t
= (η − ci + a1 + . . .+ ai−1)

p − 1

t

= (η − ci)p + ap1 + . . .+ api−1 −
1

t
= (η − ci)p + ai−1 .

It follows that v(η − ci)
p = vai−1 , that is, v(η − ci) = 1

p
vai−1 = vai = −1/pi. Hence,

−1/pi ∈ ΛL(η,K) for all i. Assume that there is some c ∈ K such that v(η − c) > −1/pi

for all i. Then v(c − ci) = min{v(η − ci), v(η − c)} = −1/pi for all i. On the other hand,
there is some i such that c ∈ k(ai−1) and thus, c − ci ∈ k(ai−1). But this contradicts the
fact that v(c − ci) = −1/pi /∈ vk(ai−1). This proves that the values −1/pi are cofinal in
ΛL(η,K). Hence, ΛL(η,K) = vK<0 and dist (η,K) = 0−.

Now Proposition 14.17 shows that K admits a dependent Artin-Schreier defect ex-
tension. According to this proposition, it can for instance be generated by a root ϑ
of the polynomial Xp − X − (η/t)p, as vt = 1 > dist (η,K) = p dist (η,K). Then
dist (ϑ,K) = dist (η,K)− 1 = 0− − 1 = (−1)−.

This example shows that the condition in Lemma 15.36 that the extension be finite
cannot be dropped. Indeed, as we have noted in Example 14.30, (k(t), vt) is a defectless
and hence inseparably defectless field. But the infinite extension K of k(t) is not an
inseparably defectless field. ♦

Example 14.34 (for a field having a dependent but no independent Artin-
Schreier defect extension): We do not know whether the field K of the last example
admits any independent Artin-Schreier defect extension; this an open problem. But in
any case, we can construct from it a field which has a dependent but no independent
Artin-Schreier defect extension. Indeed, by Zorn’s Lemma there is an extension field of K
within its algebraic closure not admitting any independent Artin-Schreier defect extension;
such an extension field can be found by a (possibly transfinitely) repeated extension by
independent Artin-Schreier defect extensions. We choose such an extension field and call it
L. Since it is a separable algebraic extension of K, the extension L(η)|L is still non-trivial
and purely inseparable, and by our hypothesis on the value group and residue field of K,
it is also immediate.

We wish to show that dist (η, L) = dist (η,K). Assume that this is not true. Then
there is an element ζ ∈ L such that v(η − ζ) > dist (η,K). We write L =

⋃
µ<ν Kµ where
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ν is some ordinal, Kµ+1|Kµ is an independent Artin-Schreier defect extension whenever
0 ≤ µ < ν, and Kλ =

⋃
µ<λKµ for every limit ordinal λ < ν. Let µ0 be the minimal

ordinal for which Kµ0 contains such an element ζ. Then µ0 must be a successor ordinal,
and we have that dist (η,K) = dist (η,Kµ0−1). Hence, v(η − ζ) > dist (η,Kµ0−1), that is,
ζ ∼Kµ0−1 η. But this is a contradiction since by construction, Kµ0 |Kµ0−1 is an independent
Artin-Schreier defect extension. This proves that

dist (η, L) = dist (η,K) = 0− .

Now Corollary 15.27 shows that L admits a dependent Artin-Schreier defect extension L′|L.
On the other hand, by construction it does not admit any independent Artin-Schreier defect
extension.

This example shows once more that Lemma 15.29 becomes false if the finiteness con-
dition is dropped. To see this, note that L′.L1/p∞|L1/p∞ is still an Artin-Schreier defect
extension, since L′|L is linearly disjoint from L1/p∞|L, vL1/p∞ is p-divisible and L1/p∞v is
algebraically closed, and the extension of v from L to L′.L1/p∞ and thus also the exten-
sion of v from L1/p∞ to L′.L1/p∞ is unique. On the other hand, L1/p∞ admits no purely
inseparable extensions at all, so by Corollary 15.23, such an Artin-Schreier defect exten-
sion can only be independent. We have thus shown that L1/p∞ admits an independent
Artin-Schreier defect extension whereas L does not. In view of Lemma 15.29, this is only
possible since L1/p∞ |L is an infinite extension. In contrast to Example 14.30, here we have
the case where the lower field is not defectless. ♦

Example 14.35 (for a field which is not relatively algebraically closed in any
maximal immediate extension, but has no independent Artin-Schreier defect
extension): If we replace k(t) by its absolute ramification field k(t)r (with respect to an
arbitray extension of v to the separable-algebraic closure of k(t)), then the constructions
of Example 14.33 and 14.34 can be taken over literally. Since vk(t)r is divisible by every
prime different from p, the value groups of K, L and L′ will then be divisible. Since their
residue fields are algebraically closed and all fields are henselian, it follows that K, L and
L′ are equal to their ramification fields.

Observe that now L′ will be contained in every maximal immediate extension of L.
This is true because vL is divisible and Lv is algebraically closed, which implies that every
maximal immediate extension of L is algebraically closed. We have thus shown that L is
not separable-algebraically closed in any of its maximal immediate extensions, whereas it
doesn’t admit independent Artin-Schreier defect extensions.

Since L′|L is linearly disjoint from Lc|L, we may replace L by its completion Lc. By
Lemma 14.21, Lc still cannot admit independent Artin-Schreier defect extensions. As
the completion of a henselian field is again henselian (cf. [W], Theorem 32.19) and is an
immediate extension, it follows that the completion of a field which is equal to its absolute
ramification field has the same property. The same argument as before shows that again,
L′.Lc will be contained in every maximal immediate extension of Lc. Hence, Lc is an
example of a complete field, equal to its absolute ramification field, which is not relatively
algebraically closed in any maximal immediate extension, but has no independent Artin-
Schreier defect extension. ♦
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14.10 Another characterization of defectless fields

Theorem 14.36 Let (K, v) be a separably defectless field of characteristic p > 0. If in
addition Kc|K is separable, then (K, v) is a defectless field.

Proof: Assume that Kc|K is separable, but that (K, v) is not a defectless field. We have
to show that (K, v) is not separably defectless. Let (F |K, v) be a finite defect extension of
minimal degree of inseparability. If this extension is separable, then we are done. Suppose
it is not. We wish to deduce a contradiction by constructing a defect extension of smaller
degree of inseparability. Let E|K be the maximal separable subextension. By assumption,
it is defectless, so the purely inseparable extension (F |E, v) must be a defect extension.
Using the arguments of the proof of Theorem 14.2 (with K replaced by E), one shows
that there exists a subextension L|E of F |E and an element η ∈ L1/p \ L such that the
extension (L(η)|L, v) is immediate.

Since a finite extension of a complete field is again complete and since Lc must contain
both Kc and L, we find that Lc = L.Kc. Together with the fact that Kc|K is separable,
this yields that also Lc|L is separable (see [L], Chapter X, $6, Corollary 4). It follows that
η /∈ Lc. By an application of Proposition 14.17, we now obtain an immediate separable
extension (L(ϑ)|L, v). Altogether, we have constructed a defect extension (L(ϑ)|K, v)
which has smaller degree of inseparability than (F |K, v). This is the desired contradiction.

�

We use this theorem to show:

Theorem 14.37 Let K be a henselian field of characteristic p > 0. Then K is a separably
defectless field if and only if Kc is a defectless field.

Proof: Since K is henselian, the same holds for Kc (cf. [W], Theorem 32.19). By virtue
of the preceding Theorem, Kc is a defectless field if and only if it is a separably defectless
field. Thus it suffices to prove that Kc is a separably defectless field if and only if K is.

Let L|K be an arbitrary finite separable extension. The henselian field K is separable-
algebraically closed in Kc (cf. [W], Theorem 32.19). Consequently, every finite separable
extension of K is linearly disjoint from Kc over K, whence

[L.Kc : Kc] = [L : K] . (14.20)

On the other hand, L.Kc = Lc is the completion of L and thus an immediate extension of
L. Consequently,

(vL.Kc : vKc) · [L.Kcv : Kcv] = (vLc : vKc) · [Lcv : Kcv]

= (vL : vK) · [Lv : Kv] . (14.21)

Assume that Kc is a separably defectless field. Then L.Kc|Kc is defectless, i.e., [L.Kc :
Kc] = (vL.Kc : vKc) · [L.Kcv : Kcv]. Hence, [L : K] = (vL : vK) · [Lv : Kv], showing that
L|K is defectless. Since L|K was an arbitrary finite separable extension, we have shown
that K is a separably defectless field.

Now assume that Kc is not a separably defectless field. Then there exists a finite
Galois extension L′|Kc with non-trivial defect. Take an irreducible polynomial f = Xn +
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cn−1X
n−1 + . . .+ c0 ∈ Kc[X] of which L′ is the splitting field. For every α ∈ vK there are

dn−1, . . . , d0 ∈ K such that v(ci − di) ≥ α. If α is large enough, then by Theorem 32.20
of [W], the splitting fields of f and g = Xn + dn−1X

n−1 + . . . + d0 over the henselian
field Kc are the same. Consequently, if L denotes the splitting field of g over K, then
L′ = L.Kc = Lc. We obtain

[L : K] ≥ [L.Kc : Kc] = [L′ : Kc]

> (vL′ : vKc)[L′v : Kcv] = (vLc : vKc)[Lcv : Kcv]

= (vL : vK)[Lv : Kv] .

That is, the separable extension L|K is not defectless. Hence, K is not a separably defect-
less field. �

14.11 Algebraically maximal fields

We will now give a characterization of algebraically maximal fields which has been presented
by F. Delon [D1]. We need the following fact, which was proved by Yu. Ershov in [Er1] by
a different method. Note that the proof in [D1] has gaps since it is not immediately clear
that if

∑n
i=1 αi,ν is increasing with ν, then there is an increasing cofinal subsequence of

(αi,ν)ν for some i. Ershov solves this problem by invoking Ramsey theory. We will avoid
this by further analyzing the valuation theoretical situation.

Lemma 14.38 Let (K, v) be any valued field with valuation ring O, and f ∈ K[X] a
polynomial in one variable.
1) If v imK(f) has no maximum, then there is a pseudo Cauchy sequence (cν)ν<λ of
algebraic type in (K, v) without limit in K but admitting a root of f as a limit, and such
that (vf(cν))ν<λ is a strictly increasing cofinal sequence in v imK(f).

2) If v imO(f) has no maximum, then there is a pseudo Cauchy sequence (cν)ν<λ of
algebraic type in O without limit in K but admitting a root of f as a limit, and such that
(vf(cν))ν<λ is a strictly increasing cofinal sequence in v imO(f).

Proof: 1): We choose a sequence (cν)ν<λ of elements in K such that the values vf(cν)
are strictly increasing and cofinal in v imK(f). We write f(X) =

∏n
i=1(X − ai) with

a1, . . . , an ∈ K̃ and choose some extension of v to K̃.
We introduce a symbol −∞ and define −∞ < α for all α ∈ vK̃. Now we consider all

balls B◦α(ai) = {a ∈ K̃ | v(ai − a) > α} with center a root ai of f , 1 ≤ i ≤ n, and radius
α in the finite set D := {v(ai − aj) | 1 ≤ i < j ≤ n} ∪ {−∞}; note that B◦−∞(ai) = K̃.

These are finitely many balls, with K̃ one of them, so there is at least one among them
with α maximal in which there lies some cofinal subsequence of (cν)ν<λ. After renaming
our elements if necessary, we may assume that this ball is B◦α(a1), that the subsequence is
again called (cν)ν<λ, and that exactly a1, . . . , am (m ≤ n) are the roots of f which lie in
B◦α(a1). Then for every ν < λ and m < i ≤ n, we have that

v(cν − ai) = min{v(cν − a1), v(a1 − ai)} = v(a1 − ai) .

On the other hand, by the maximality of α we have the following: if D contains elements
> α (which is the case if B◦α(a1) contains at least two roots of f) and if β is the least of
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these elements, then there is no cofinal subsequence of (cν)ν<λ which lies in any of the balls
B◦β(ai). This even remains true if we replace B◦β(ai) by Bβ(ai) = {a ∈ K̃ | v(ai − a) ≥ β}.
Indeed, by our choice of β we have for 1 ≤ i ≤ m that Bβ(ai) contains a1, . . . , am and thus,
c ∈ Bβ(ai) implies v(c− aj) ≥ β for 1 ≤ j ≤ m. If in addition c does not lie in any B◦β(aj),
then v(c − aj) = β for 1 ≤ j ≤ m. Hence if a cofinal subsequence of (cν)ν<λ would lie in
Bβ(ai), then the value

vf(cν) = v
n∏
i=1

(cν − ai) =
n∑
i=1

v(cν − ai) = mβ +
n∑

i=m+1

v(a1 − ai)

would be fixed for all cν in this subsequence, a contradiction.
After deleting elements from (cν)ν<λ, we may thus assume that v(cν − ai) < β ≤

v(a1−ai) for all ν and 1 ≤ i ≤ m. It follows that v(cν−ai) = min{v(cν−a1), v(a1−ai)} =
v(cν − a1) for all ν and 1 ≤ i ≤ m. Now we compute:

vf(cν) =
n∑
i=1

v(cν − ai) = mv(cν − a1) +
n∑

i=m+1

v(a1 − ai) .

If µ < ν < λ, then vf(cµ) < vf(cν) and hence we must have v(cµ − a1) < v(cν − a1). This
shows that (cν)ν<λ is a pseudo Cauchy sequence with limit a1 .

Any limit a ∈ K̃ of this sequence satisfies v(a − a1) > v(cν − a1) and hence also
v(a− ai) ≥ min{v(a− a1), v(a1 − ai)} > v(cν − a1) for 1 ≤ i ≤ m and all ν. Thus,

vf(a) =
n∑
i=1

v(a− ai) > mv(cν − a1) +
n∑

i=m+1

v(a1 − ai) = vf(cν) .

for all ν. This shows that a cannot lie in K. Hence, (cν)ν<λ is a pseudo Cauchy sequence
without limit in K, and by construction, it is of algebraic type.

2): We proceed as in 1), but choose the sequence (cν)ν<λ in O such that the values vf(cν)
are strictly increasing and cofinal in v imO(f). We only have to note in addition that if
a ∈ K would be a limit of the sequence, than it would also lie in O. �

Corollary 14.39 Assume that (K, v) is not K-extremal with respect to the polynomial
f(X) ∈ K[X]. Then for all c ∈ K of large enough value, (K, v) is not O-extremal with
respect to the polynomial f(c−1X). Hence, if (K, v) is O-extremal with respect to every
polynomial in one variable, then (K, v) is K-extremal with respect to every polynomial in
one variable. The same holds for “separable polynomial” in the place of “polynomial”.

Proof: Take the pseudo Cauchy sequence (cν)ν<λ as in Lemma 14.38. For large enough
ν0 < λ, the values of the cν with ν0 < ν < λ are constant, say, α. For every c of value
≥ −α, we have that ccν ∈ O for ν0 < ν < λ. Hence, (K, v) is not O-extremal with respect
to the polynomial f(c−1X). �

The first part of the following result was proved by Yu. Ershov in [Er1]:

Proposition 14.40 A valued field is algebraically maximal if and only if it is henselian
and K-extremal with respect to every polynomial in one variable. The same holds with
“O-extremal” in the place of “K-extremal”.
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Proof: Suppose that (K, v) is henselian, but not algebraically maximal. Then there is a
proper immediate algebraic extension L|K. Take a ∈ L \K. By Theorem 1 of [Ka], there
is a pseudo Cauchy sequence in K without limit in K, having a as a limit. Let f ∈ K[X]
be the minimal polynomial of a over K. Since K is henselian, the extension of v from K
to K(a) is unique. Now it follows from Lemma ?? that v imK(f) has no maximal element.
That is, K is not K-extremal with respect to f . Hence by Corollary 14.39, K is also not
O-extremal with respect to every polynomial in one variable.

For the converse, suppose that there is a polynomial f ∈ K[X] such that v imK(f) or
v imO(f) has no maximal element. Then by Lemma 14.38, (K, v) admits a pseudo Cauchy
sequence of algebraic type in (K, v) without limit in K. Now Theorem 3 of [Ka] shows that
there is a proper immediate algebraic extension of (K, v), i.e., (K, v) is not algebraically
maximal. �

Theorem ?? and its “K-extremal” version follow from this proposition once we have
proved the following proposition:

Proposition 14.41 If a valued field is K- or O-extremal with respect to every separable
polynomial in one variable, then it is henselian.

Proof: In view of Corollary 14.39 we only have to prove the assertion for “K-extremal”.
Suppose that the valued field (K, v) with valuation ring O is not henselian. Then there is
a polynomial f ∈ O[X] and an element b ∈ O such that vf(b) > 2vf ′(b), but f has no root
in K. We take K0 to be a finitely generated subfield of K containing b and all coefficients
of f , and K1 to be the relative algebraic closure of K0 in K. Then f has no root in K1 ,
which shows that K1 is not henselian. Since K1 has finite transcendence degree over its
prime field, it has finite rank, which means that v|K1 is a composition v|K1 = v1 ◦ . . .◦ vk of
valuations vi with archimedean value groups. By a repeated application of Theorem 32.15
of [W], it follows that (K1, v1) is not henselian or for some i ≤ k and vi := v1 ◦ . . . ◦ vi−1,
(K1v

i, vi) is not henselian. In the first case, there is a monic separable and irreducible
polynomial g ∈ K1[X] with v1-integral coefficients and a v1-integral element c ∈ K1 such
that v1g(c) > 2v1g

′(c), but g does not have a zero in K1 . It follows that vg(c) > 2vg′(c).
In the second case, there is a monic separable and irreducible polynomial g ∈ K1v

i[X]
with vi-integral coefficients and a vi-integral element c ∈ K1v

i such that vig(c) > 2vig
′(c),

but g does not have a zero in K1v
i. We take some monic polynomial g ∈ K1[X] with

vi-integral coefficients such that its vi-reduction is equal to g. Also, we pick a vi-integral
element c ∈ K1 whose vi-reduction is c. Then it follows that vi+1g(c) > 2vi+1g′(c), whence
vg(c) > 2vg′(c).

It is well known that if w is any valuation for which the polynomial g has w-integral
coefficients and wg(c) > 2wg′(c) holds, then a repeated application of the Newton algorithm

cn+1 := cn −
g(cn)

g′(cn)
,

starting with c0 = c, leads to a strictly increasing sequence of values wg(cn); this sequence
is cofinal in the value group of w in case this value group is archimedean. Hence in the first
case, we obtain a sequence of elements cn ∈ K1 such that the sequence v1g(cn) is cofinal
in v1K1 . This implies that if d ∈ K is such that vg(d) is the maximum of v imK(g) and
H denotes the convex subgroup of vK generated by v1K1, then vg(d) > H. Let vH be the
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coarsening of v with respect to H. Then vHg(d) > 0, i.e., g(d)vH = 0. On the other hand,
the reduction modulo vH induces an isomorphism on K1 , and since g was chosen to be
separable and irreducible, we thus have that g′(d)vH 6= 0, i.e., vHg

′(d) = 0. But then by
the Newton algorithm, if g(d) 6= 0, then there is some d′ ∈ K such that vHg(d′) > vHg(d)
and hence, vg(d′) > vg(d). This contradiction shows that g(d) = 0. But this contradicts
our choice of g. Hence, v imK(g) does not have a maximum.

In the second case, the Newton algorithm provides elements cn such that the sequence
vig(cn) is cofinal in vi(K1v

i) . We choose vi-integral elements cn ∈ K1 whose vi-reductions
are cn . Then it follows that the values vg(cn) are cofinal in a convex subgroup H of
vK which is the convex hull of the convex subgroup of vK1 which corresponds to the
coarsening vi of v|K1 . This implies that if d ∈ K is such that vg(d) is the maximum of
v imK(g), then vg(d) > H. Let vH be the coarsening of v with respect to H. Then again,
vHg(d) > 0 and g(d)vH = 0. On the other hand, the reduction of g modulo vH is g, so
0 = g(d)vH = g(dvH). Since g was chosen to be separable and irreducible, we thus have
that g′(d)vH = g′(dvH) 6= 0, i.e., vHg

′(d) = 0. Arguing as in the first case, we show that
v imK(g) does not have a maximum. Hence we find that K is not K-extremal with respect
to every separable polynomial in one variable. �

The following are corollaries to Theorem ??:

Corollary 14.42 The property “algebraically maximal” is elementary in the language of
valued fields.

Corollary 14.43 Every extremal field is algebraically maximal.

We will now give the

Proof of Theorem ?? and its “K-extremal” version:
In view of Theorem ??, it suffices to prove that if K is a henselian but not algebraically
maximal field, then there is a p-polynomial f in one variable with coefficients in K with
respect to which K is not K-extremal. By Corollary 14.39, for suitable c ∈ K, K is then
also not O-extremal with respect to the p-polynomial f(c−1X).

Take a proper immediate algebraic extension of K. Since K is assumed henselian,
it follows that this extension is purely wild and hence linearly disjoint over K from the
absolute ramification field Kr of K. We may assume that this extension is minimal, that is,
it does not admit any proper subextension. Then by Theorem 13 of [Ku3], it is generated
by a root of a p-polynomial f . As in the first part of the proof of Proposition 14.40 it
follows that v imK(f) has no maximal element, that is, K is not K-extremal with respect
to the p-polynomial f . By Corollary 14.39, for suitable c ∈ K, K is not O-extremal with
respect to the p-polynomial f(c−1X). �

14.12 Separable-algebraically maximal fields

The following is a further consequence of Proposition 14.17:

Corollary 14.44 Take a separable-algebraically maximal field (K, v). Every immediate
algebraic extension of (K, v) is purely inseparable and lies in its completion. Every pseudo
Cauchy sequence of algebraic type in (K, v) without limit in K has breadth {0}, and its
unique limit in K̃ is purely inseparable over K.
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Proof: Every immediate algebraic extension of K must be purely inseparable since
otherwise, it would contain a proper immediate separable-algebraic subextension. Since
K in particular does not admit any dependent Artin-Schreier defect extensions, we thus
obtain from Corollary 15.25 that every immediate algebraic extension of K must lie in Kc.

Take a pseudo Cauchy sequence (cν)ν<λ of algebraic type in (K, v) without limit in
K. By Theorem 3 of [Ka], this pseudo Cauchy sequence gives rise to a proper immediate
algebraic extension of K, in which it has a limit. By what we have just shown, this
extension is purely inseparable and lies in the completion of K. The latter shows that
(cν)ν<λ has breadth {0} and therefore has a unique limit in the algebraic closure of K.
The former shows that this limit must be purely inseparable over K. �

The following result has been presented by F. Delon in [D1]:

Corollary 14.45 The completion of a separable-algebraically maximal field is algebraically
maximal.

Proof: Take any valued field (K, v) and suppose that Kc admits a proper immediate
algebraic extension. Then by Corollary ?? there is a pseudo Cauchy sequence (cν)ν<λ of
algebraic type in Kc without limit in Kc. This must have non-trivial breadth, that is,
there is some γ ∈ vK such that v(cν+1− cν) < γ for all ν (because otherwise, Theorem 3 of
[Ka] would render a proper immediate extension of Kc within Kc, which is absurd). Since
cν ∈ Kc, there is c∗ν ∈ K such that v(cν − c∗ν) ≥ γ and hence v(c∗ν+1 − c∗ν) = v(cν+1 − cν)
for all ν. It follows that (c∗ν)ν<λ is a pseudo Cauchy sequence in K without limit in K and
with the same non-trivial breadth as (cν)ν<λ.

Let f ∈ Kc[X] be a polynomial such that for some µ < λ, the sequence (vf(cν))µ<ν<λ
is strictly increasing. Such a polynomial must exist since by assumption, (cν)ν<λ is of
algebraic type. Since (cν)ν<λ has non-trivial breadth, it follows from Lemma 8 of [Ka]
that the sequence (vf(cν))µ<ν<λ is bounded from above in vK. Hence, we can choose a
polynomial f ∗ ∈ K[X] with coefficients so close to the corresponding coefficients of f that
vf ∗(cν) = vf(cν) whenever µ < ν < λ. This shows that also (c∗ν)ν<λ is of algebraic type.
Hence by the foregoing corollary, K cannot be separable-algebraically maximal. �

Now we give the

Proof of Theorem ?? and its “K-extremal” version:
Assume that (K, v) isK-extremal orO-extremal with respect to every separable polynomial
in one variable. Then by Proposition 14.41, K is henselian. Suppose that (K, v) is not
separable-algebraically maximal. Then there is a proper immediate separable-algebraic
extension L|K. Take a ∈ L \K, and let f ∈ K[X] be the minimal polynomial of a over K.
By Theorem 1 of [Ka], there is a pseudo Cauchy sequence in K without limit in K, having a
as a limit. Since K is henselian, the extension of v from K to K(a) is unique. Now it follows
from Lemma ?? that v imK(f) has no maximal element, that is, K is not K-extremal with
respect to f . By Corollary 14.39, it follows that K is not O-extremal with respect to the
separable polynomial f(c−1X) for some c ∈ K. This contradicts our assumption that K
is K-extremal or O-extremal with respect to every separable polynomial in one variable.
Hence, K is separable-algebraically maximal.

For the converse, assume that (K, v) is separable-algebraically maximal. Suppose that
there is a separable polynomial f ∈ K[X] such that v imK(f) or v imO(f) has no maximal
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element. Then by Lemma 14.38, (K, v) admits a pseudo Cauchy sequence (cν)ν<λ of
algebraic type in (K, v) without limit in K, but with a root a /∈ K of f as a limit. By
Corollary 14.44, a is purely inseparable over K. But this contradicts the fact that a is
a root of a separable polynomial over K. Hence, K is K-extremal and O-extremal with
respect to every separable polynomial in one variable. �

Corollary 14.46 The property “separable-algebraically maximal” is elementary in the lan-
guage of valued fields.

We turn to the

Proof of Theorem ??: The proof is the same as for Theorem ??, except that the imme-
diate algebraic extension of K can be taken to be separable, and hence the p-polynomial
f is separable. �

Finally, we note that Theorem ?? has also been proved, as our above proof of Theo-
rems ??, ??, ?? and ?? have all dealt simultaneously with both K- and O-extremality.

14.13 Henselian-by-finite and maximal-by-finite fields

We call a valued field (K, v) henselian-by-finite if it is not henselian, but there is a
finite extension (L|K, v) such that (L, v) is henselian. Since the henselization of (K, v) is
contained in (L, v), it is consequently also a finite extension.

Theorem 14.47 Let (K, v) be a henselian-by-finite field. Then K is formally real, but v
is not compatible with the ordering of K. The henselization of (K, v) is K(

√
−1), and it

admits precisely two distinct extensions of v. With both of them, it is a defectless field.
Further, KvKh is real closed and if vKh < w ≤ v, then Kw is algebraically closed. Moreover,
vKc ≤ vKh , and vKc is the finest of all coarsenings w of vKh such that Kw is real closed.

Proof: Assume that (Kh|K, v) is a finite non-trivial extension. Then v/vKh is non-trivial
and not henselian on KvKh . Let L be the normal hull of Kh over K. Then also L|K is
finite. Since v is henselian on Kh, it is henselian on L and by ??, v/vKh is henselian on
KhvKh and on LvKh . By Lemma 9.49, there is an extension of v/vKh from KvKh to LvKh which
is independent from v/vKh on LvKh . Since it is conjugate to v/vKh (cf. ??) and LvKh |KvKh
is normal by ??, this extension is also non-trivial and henselian on LvKh . Now it follows
from Theorem 9.44 that LvKh is separable-algebraically closed. Since LvKh |KvKh is finite,
Artin-Schreier Theory shows that KvKh is real closed and LvKh is algebraically closed. As
v/vKh is henselian on KhvKh but not on KvKh , the extension KhvKh |KvKh must be non-trivial.
This proves that KhvKh is algebraically closed. Consequently, vKc ≤ vKh .

We also conclude that KhvKh = KvKh (
√
−1) = K(

√
−1)vKh . Since v/vKh is henselian

on KhvKh and vKh is henselian already on K, we find that v is henselian on K(
√
−1).

So Kh ⊂ K(
√
−1), but as the latter is an extension of K of degree 2 and (K, v) is not

henselian, we see that Kh = K(
√
−1). So there is one further extension v′ of v from K to

Kh.
As an extension of the real closed field KvKh , the field KhvKh has characteristic 0. Hence,

(Kh, vKh ) is a defectless field. Since KhvKh is algebraically closed, also (KhvKh , v/v
K
h ) is a
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defectless field. From ?? it follows that (Kh, v) is a defectless field. The same is true for
(Kh, v′) since v′ is conjugate to v and K(

√
−1)|K is normal.

Assume that vKh < w ≤ v. As v/vKh has two independent extensions to LvKh =
KhvKh , the extension of its non-trivial coarsening w/vKh from KvKh to KhvKh can not
be unique. By the fundamental inequality and since [KhvKh : KvKh ] = 2, we find that
Kw = (KvKh )(w/vKh ) = (KhvKh )(w/vKh ) = Khw. The latter is algebraically closed since
already KhvKh is (cf. ??). This proves that Kw is algebraically closed.

Since KvKh is formally real, also K is formally real by ??. Similarly, if w ≤ vKh , then
KvKh = (Kw)(vKh /w) shows that Kw is formally real. If vKc ≤ w, then by definition of the
core valuation, Khw is separable-algebraically closed. Since 2 = [Kh : K] ≥ [Khw : Kw], it
follows again by Artin-Schreier Theory that Kw is real closed. Now assume that w < vKc .
That means that Khw is not separable-algebraically closed. Since [Khw : Kw] ≥ [KhvKh :
KvKh ] = 2, it implies that Kw is not real closed. �

Corollary 14.48 If (L|K, v) is a finite extension such that v is henselian on L but not on
K, then vKc and vLc are henselian on K.

Exercise 14.1 Prove: If K is a real closed field and v is not compatible with the ordering on K, then
the henselian part of v is trivial. If (K, v) is a henselian field and (L|K, v) is a finite extension, such that
vL

c < vK
c , then K and Kv are real closed, vK

c = v and vL
c is trivial.

14.14 Maximal-by-finite and defectless-by-finite fields

For the decomposition theory of modules over valuation domains, the following notions are
of importance. We will say that (K, v) is maximal-by-finite if it is not maximal, but
there is a finite extension (L|K, v) such that (L, v) is maximal. Further, (K, v) is said to
be almost maximal if the completion of (K, v) is maximal. See [VA ] for the background
and recent results. Since maximal fields are henselian, we can apply the foregoing theorem
to the case where (K, v) is not henselian. The following is proved in [VA ]:

Theorem 14.49 Suppose that (K, v) is maximal-by-finite, but not henselian. Then (K(
√
−1), v)

is a maximal immediate extension of (K, v). Further, (K, vKh ) is maximal. Consequently,
(K, v) is complete if vKh is non-trivial. If vKh is trivial, then (K, v) is almost maximal.

Proof: Let (L|K, v) be a finite extension such that (L, v) is maximal and (K, v) is not
henselian. In particular, (L, v) is henselian and thus, (K, v) is henselian-by-finite. By the
foregoing theorem, K(

√
−1), v) is the henselization of (K, v) in (L, v), and it is a defectless

field. Hence, (L|K(
√
−1), v) is vs-defectless and it follows from Corollary 6.10 that also

(K(
√
−1), v) is maximal. By Theorem ??, it follows that also (K(

√
−1), vKh ) is maximal.

Again by the foregoing theorem, KvKh is real closed and thus of characteristic 0. Since
(K, vKh ) is henselian, it follows that (K(

√
−1)|K, vKh ) is vs-defectless. Hence again by

Corollary 6.10, (K, vKh ) is maximal. In particular, (K, vKh ) is complete. If vKh is non-trivial,
then also (K, v) is complete by virtue of Lemma ??.

Now assume that vKh is trivial. Then by Lemma 9.49, v admits two independent ex-
tensions to Kh. From [BOU], Chapter VI, §8.2, Corollary 1 we infer that (K, v) cannot be
complete. Being maximal, (K(

√
−1), v) is complete, and since [K(

√
−1) : K] = 2, it must

be the completion of (K, v), i.e., (K, v) is almost complete. �
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Examples 14.50 Let us give examples of finite immediate extensions (L|K, v), where
(L, v) is maximal and (K, v) is not henselian. We take K = R and L = C and equip C
with non-trivial maximal valuations. Their restrictions to R are not compatible with the
order and thus not henselian (cf. Corollary 10.17). Consider the rational function field
Q(x) with the following two valuations: let v1 be the x-adic valuation, having residue field
Q, and v2 the p-adic valuation induced by some embedding of Q(x) into Qp. Extend v1

and v2 to the algebraic closure of Q(x) and let (K1, v1) and (K2, v2) be maximal immediate
extensions of the respective algebraically closed valued fields. By Corollary 6.45, they are
algebraically closed too. We leave it to the reader to compute that their transcendence
degree over Q is 2ℵ0 in both cases (see also Lemma ??). Hence as fields, they are isomorphic
to C. This isomorphism induces two maximal valuations on C, one of them having residue
characteristic 0, the other having mixed characteristic.

In these examples, the henselian parts of v1 and v2 are trivial because these are non-
henselian valuations of rank 1. Examples with non-trivial henselian part can be obtained
by constructing an arbitrary non-trivially valued maximal field (K ′, v′) with residue field R.
Then (K ′(

√
−1)|K1, v

′ ◦ v1) and (K ′(
√
−1)|K1, v

′ ◦ v1) are such examples with non-trivial
henselian part v′. ♦

Now it remains to consider the case of a finite extension (L|K, v) where (L, v) is maximal
and (K, v) is henselian but not maximal. Then in view of Corollary 6.10, we find that
(L|K, v) cannot be defectless. Hence, (K, v) is not a defectless field. On the other hand,
(L, v) is a defectless field, being maximal. So let us discuss the following more general
situation (in which we may call (K, v) defectless-by-finite):

(L|K, v) a finite extension of henselian fields with
(L, v) defectless and (K, v) not defectless.

}
(14.22)

By Lemma 7.28 we have that Lr = L.Kr, hence (Lr|Kr, v) is again finite. It follows from
Lemma 13.4 that the absolute ramification field (L, v)r is defectless and that (K, v)r is
not defectless. Thus, (Lr|Kr, v) cannot be defectless. By Corollary 24.56, it is a tower of
extensions of degree p = charexpK. Consequently, there exist intermediate fields Kr ⊂
K ′ ⊂ L′ ⊂ Lr such that (Lr|L′, v) is defectless and (L′, v)|(K ′, v) is immediate of degree
p. This implies that (L′, v) is a defectless field and (K ′, v) is not a defectless field. (If
in addition (L, v) is maximal, then so is (L′, v).) Hence, every extension (14.22) yields
another such extension which in addition is immediate.

The next theorem shows that in (14.22), (L, v) cannot be a tame field.

Theorem 14.51 If (L|K, v) is a finite extension of henselian fields and (L, v) is a tame
field, then also (K, v) is a tame field and (L|K, v) is defectless.

Proof: As shown above, Lr|Kr is a finite extension. Since (L, v) is assumed to be
a tame field, we have that Lr = L̃ = K̃. By Artin-Schreier Theory, either L̃ = Kr or
Kr is real closed. The latter is not possible: Since v is henselian on Kr, it would have
to be compatible with the ordering, and in particular, of residue characteristic 0. But
then, (Kr, v) would be a tame field and thus algebraically closed. We conclude that Kr is
algebraically closed, showing that (K, v) is a tame field. By definition, it follows that the
finite extension (L|K, v) is defectless. �
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If (K, v) is a henselian perfect field of finite characteristic or a henselian Kaplansky field,
then the same is true for every algebraic extension (L, v). Hence if (L, v) is algebraically
maximal or even defectless, then it follows from Corollary 13.38 resp. Lemma 13.53 that
(L, v) is a tame field. So the above theorem yields the following

Corollary 14.52 Let (K, v) be a henselian perfect field of finite characteristic or a henselian
Kaplansky field. If there exists a finite extension (L|K, v) such that (L, v) is algebraically
maximal, then (K, v) is a tame field.

Note that if L|K is a finite extension, then L is perfect if and only if K is. If in addition
charL > 0, then (L, v) is a Kaplansky field if and only if (K, v) is; this follows from our
definition of Kaplansky fields. Indeed, vL|vK being a finite extension, vL is p-divisible if
and only if vK is. Further, L|K being a finite extension, L is perfect if and only if K is.
For condition (KAP3), one uses the fact that the p-Sylow subgroups of the absolute Galois
group of the field K of characteristic p are p-free (cf. [SER], page II–5, cor. 1). Hence, they
are either trivial or infinite. Consequently, L admits a finite extension of degree divisible
by p = charL if and only if K does.

Corollary 14.53 In the situation of (14.22), (K, v) as well as (L, v) cannot be a tame
field, a Kaplansky field or a perfect field of positive characteristic.

Having treated the case of perfect fields of positive characteristic, we turn to fields with
non-trivial degree of inseparability [K : Kp].

Example 14.54 There is a discretely valued field (K, v) of characteristic p > 0 admitting
a finite immediate extension (L, v) which is complete and hence maximally valued. To
construct (K, v), we take a field k of characteristic p > 0 and infinite degree of inseparability
[k : kp], e.g. k = Fp(ti|i ∈ N) where the ti are algebraically independent elements over Fp.
Taking t to be another transcendental element over k we consider the power series fields
k((t)) and kp((t)) = kp((tp))(t) = k((t))p(t). Since [k : kp] is not finite, we have that
k((t))|kp((t)).k is a non-trivial immediate purely inseparable algebraic extension. In fact,
a power series in k((t)) is an element of kp((t)).k if and only if its coefficients generate a
finite extension of kp. Since kp((t)).k contains k((t))p, this extension is generated by a set
X = {xi | i ∈ I} ⊂ k((t)) such that xpi ∈ kp((t)).k for every i ∈ I. Assuming this set to be
minimal, or in other words, the xi to be p-independent over kp((t)).k, we pick some element
x ∈ X and put K := kp((t)).k(X \ {x}). Then k((t))|K is a purely inseparable extension
of degree p. Moreover, it is an immediate extension; in fact, k((t)) is the completion of
K. ♦

Let us note that one can derive two other examples where L|K is separable of degree
p, one where K,L are fields of characteristic p and one where K,L are characteristic 0
with residue characteristic p. To do so, choose (L|K,w) to be any extension of degree p
of defectless fields whose corresponding residue field extension is just the extension of the
above example; here, L|K may always be chosen to be separable. If v is the composition of
w with the valuation on the residue fields given by the above example, we get that (L, v) is
defectless and (L|K, v) is an immediate extension of degree p. However, it is not possible
to get (L, v) to be complete while (K, v) is not, and moreover, the constructed valuations
are of rank at least 2. This leads to the following
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Open Problem 14.1 Does there exist an extension (14.22) with a rank 1 discrete valua-
tion v of mixed characteristic?

In the above example, bothK and L have infinite degree of inseparability. This is indeed
necessary, in view of Corollary ??, which tells us that if (L|K, v) is a finite extension of
valued fields of finite degree of inseparability, then (L, v) is inseparably defectless if and only
if (K, v) is. Hence if L|K is purely inseparable in (14.22), then (K, v) is not inseparably
defectless and thus, neither K nor L have finite degree of inseparability.

Open Problem 14.2 Does there exist a (separable) extension (14.22) where (K, v) is
inseparably defectless and of positive characteristic? Can we obtain in addition that (L, v)
is maximal?

Exercise 14.2 Prove: If there exists an extension (14.22) with (K, v) inseparably defectless of positive
characteristic, then there also exists an extension (14.22) which is an independent immediate Artin-Schreier
extension.


