
Chapter 11

Defect

11.1 The (henselian) defect

We want to measure how far the fundamental inequality is from being an equality. Hence,
we have to measure how much the left hand side in (7.25) exceeds the right hand side.
This can be done for every (L|K, v) algebraic extension (L|K, v) such that (Lh|Kh, v) is
finite. In this case, we will call (L|K, v) an h-finite extension, and we set

d(L|K, v) :=
[Lh : Kh]

(vL : vK) ·
[
L : K

] . (11.1)

Since the henselization is an immediate extension by virtue of Theorem 7.42, we have that
vKh = vK, vLh = vL, Khv = Kv and Lhv = Lv. Consequently,

e(Lh|Kh, v) = e(L|K, v) = (vL : vK) and f(Lh|Kh, v) = f(L|K, v) = [L : K] .

Further, (Kh)h = Kh and (Lh)h = Lh. Hence,

d(L|K, v) = d(Lh|Kh, v) =
[Lh : Kh]

e(Lh|Kh, v) · f(Lh|Kh, v)

which is > 0, in view of inequality (7.28). We will see later (Lemma 11.17) that d(L|K, v)
is a natural number and a power of the characteristic exponent of the residue field. It
is called the henselian defect or just defect of (L|K, v). Also the name ramification
deficiency is used in the literature.

Lemma 11.1 If (K, v) is henselian, then every h-finite extension (L|K, v) is finite, and

d(L|K, v) =
[L : K]

(vL : vK) ·
[
L : K

] .

More generally, this holds whenever the extension of v from K to L is unique.

Proof: Assume that (L|K, v) is h-finite and the extension of v from K to L is unique.
In this case, L|K is linearly disjoint from Kh|K by Theorem 7.41. Consequently, [L :
K] = [L.Kh : Kh]. By Corollary 7.40, Lh = L.Kh. This shows that L|K is finite and
[L : K] = [Lh : Kh]. �
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From the definition of the defect and equality (7.24), we obtain the following equality
version of the fundamental inequality:

[L : K] =
∑

1≤i≤g

d(L|K, vi) · e(L|K, vi) · f(L|K, vi) (11.2)

(if L|K is finite). Although this is an equality, we will not call it “fundamental equality”,
unless all d(L|K, vi) are equal to 1 (see the next section). We can formulate the fundamental
inequality also by using only one valuation:

Lemma 11.2 Let (K, v) be a valued field and L a finite extension of K. Let g be the
number of distinct extensions of v from K to L and ι1, . . . , ιg as in Lemma 7.47. Fix an
extension of v to K̃. Then [Lh(vi) : Kh(vi)] = [ιiL.K

h : Kh] and

d(L|K, vi) = d(ιiL.K
h|Kh, v) , e(L|K, vi) = e(ιiL.K

h|Kh, v) , f(L|K, vi) = f(ιiL.K
h|Kh, v)

for 1 ≤ i ≤ g, and

[L : K] =
∑

1≤i≤g d(ιiL.K
h|Kh, v) · e(ιiL.Kh|Kh, v) · f(ιiL.K

h|Kh, v)

=
∑

1≤i≤g d(ιiL|K, v) · e(ιiL|K, v) · f(ιiL|K, v) .
(11.3)

If f ∈ K[X] is an arbitrary polynomial and L = K(a) for some root a ∈ K̃ of f , then
ιiL.K

h = Kh(ιia) and f = f1 · . . . · fg where the fi are irreducible polynomials over Kh

such that ιia is a root of fi .

Proof: Since ιi sends ι−1
i Kh onto Kh and L.ι−1

i Kh onto ιiL.K
h, we have the equality of

the degrees as well as e(L|K, vi) = (vLh(vi) : vKh(vi)) = e(ιiL.K
h|Kh, v) and f(L|K, vi) =

[Lh(vi)v : vKh(vi)v] = f(ιiL.K
h|Kh, v). Hence also d(L|K, vi) = d(ιiL.K

h|Kh, v) by the
definition of the defect. Now the first equation of (11.3) follows from equation (11.2).
By Corollary 7.40, ιiL.K

h = (ιiL)h and thus, d(ιiL.K
h|Kh, v) = d(ιiL|K, v). Further,

e(ιiL.K
h|Kh, v) = e((ιiL)h|Kh, v)e(ιiL|K, v), and the same holds for the inertia degree.

This proves the second equation of (11.3). The last assertion of the corollary follows in
view of part d) of Lemma 7.46. �

For finite normal extensions (L|K, v), we can also write inequality (7.27) in the form of
an equality:

Lemma 11.3 Let (L|K, v) be a finite normal extension. Let v1 = v, v2, . . . , vg be the
distinct extensions of v to L. Then all local degrees [Lh(vi) : Kh(vi)] are equal to [L.Kh : Kh],
all defects d(L|K, vi) are equal, all ramification indeces e(L|K, vi) are equal, and all inertia
degrees f(L|K, vi) are equal. With n = [L : K], d = d(L|K, v), e = e(L|K, v) and
f = f(L|K, v),

n = d · e · f · g . (11.4)

Proof: We use the notation of the foregoing lemma. If L|K is normal, then ιiL = L
for all i. Hence, [Lh(vi) : Kh(vi)] = [ιiL.K

h : Kh] = [L.Kh : Kh]. We know already that all
e(L|K, vi) are equal and all f(L|K, vi) are equal. Consequently, all defects d(L|K, vi) =
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[Lh(vi) : Kh(vi)] e(L|K, vi)−1 f(L|K, vi)−1 are equal. Now equation (11.4) follows from equa-
tion (11.2). �

For finite extensions of henselian fields (whether normal or not), the fundamental equal-
ity in mnemonic form reads as

n = d · e · f .

From the multiplicativity of extension degree, ramification index and inertia degree we
obtain the multiplicativity of the defect:

Lemma 11.4 If (L|K, v) is an h-finite extension and E|K is a subextension of L|K, then
also (L|E, v) and (E|K, v) are h-finite, and

d(L|K, v) = d(L|E, v) · d(E|K, v) .

The following lemma gives the connection of the defect with the vector space defect:

Lemma 11.5 If (L|K, v) is a finite extension of henselian fields, then

d(L|K, v) = dvs(L|K, v) .

For the proof of this lemma, cf. [GRE–MAT–POP1], . Since the proof is difficult and uses
tools that do not seem to be closely connected with the situation, we ask:

Open Problem 11.1 Give an alternative and more clarifying proof for Lemma 11.5.

11.2 Defectless extensions and defectless fields

If equality holds in (7.26), then we call it the fundamental equality and we will say that
(K, v) is defectless in L; otherwise, we will call L a defect extension of (K, v). The
property “defectless in” is transitive:

Lemma 11.6 Let (K, v) be an arbitrary valued field, L|K a finite extension and E|K a
subextension of L|K. Let v1, . . . , vg be all extensions of v from K to E. Then (K, v) is
defectless in L if and only if (K, v) is defectless in E and (E, vi) is defectless in L for
1 ≤ i ≤ g.

Proof: Every extension of v from K to E is the extension of precisely one valuation vi
of E. So the distinct extensions of v from K to E may be denoted by vij with 1 ≤ i ≤ g,
1 ≤ i ≤ gi , such that vij|E = vi . By virtue of the multiplicativity of ramification index
and inertia degree (Lemma 6.16),∑
i,j

(vijL : vK) · [Lvij : Kv] =
∑

1≤i≤g

(viE : vK) · [Evi : Kv] ·
∑

1≤j≤gi

(vijL : viE) · [Lvij : Evi] .

Now apply the fundamental inequality (7.26) to E over (K, v) and to L over (E, vi) for
every i. In view of [L : K] = [L : E] · [E : K], this shows that the fundamental equality
[L : K] =

∑
i,j(vijL : vK) · [Lvij : Kv] will hold if and only if

∑
1≤i≤g(viE : vK) · [Evi :

Kv] = [E : K], and
∑

1≤j≤gi
(vijL : viE) · [Lvij : Evi] = [L : E] for 1 ≤ i ≤ g. �
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We see that if (K, v) is defectless in L, then it is defectless in every subextension of
L|K. This yields that the following definition coincides with the already given definition
in the case of finite extensions: If L|K is an arbitrary algebraic extension, then we will say
that (K, v) is defectless in L if it is defectless in every finite subextension. If (K, v) is
defectless in every finite extension, that is, if (K, v) is defectless in K̃, then we call (K, v) a
defectless field. Similarly, (K, v) is called a separably defectless field if it is defectless
in Ksep, and (K, v) is called an inseparably defectless field if it is defectless in K1/p∞ .
Every perfect field is an inseparably defectless field. Every perfect separably defectless
field is a defectless field. If (K, v) is a defectless field, then it is separably defectless and
inseparably defectless. At the first glimpse, the converse to this assertion may seem to be
trivially true. But it isn’t since it is not clear why a proper finite separable extension of
an inseparably defectless field should again be an inseparably defectless field, even if this
extension is defectless. But this converse is even true if we replace “inseparably defectless”
by a weaker property, cf. Theorem ??.

In view of equation (11.3), applied to all finite subextensions of a given extension
(L|K, v), we can note:

Corollary 11.7 Let (K, v) be an arbitrary valued field and (L|K, v) an immediate algebraic
extension. Assume that the extension of v from K to L is unique and that (K, v) is
defectless in L. Then L = K.

The property of being a defectless field is preserved under isomorphisms of valued
fields. Indeed, every such isomorphism ι : (K, v) → (ιK, vι−1) can be extended to a field
isomorphism ι̃ : L → ι̃L for every given extension field L of K. Then, to every extension
w of v from K to L there is a corresponding extension wι̃−1 of vι−1 from ι̃K to ι̃L, so
that ι̃ : (L,w)→ (ι̃L, wι̃−1) is an isomorphism of valued fields which extends ι. Since the
situation is symmetrical, this correspondence is a bijection. By part c) of Lemma 6.27,
ramification index and inertia degree of (L|K,w) are equal to that of (ι̃L|ιK,wι̃−1)) for
every extension w; so (K, v) is defectless in L if and only if (ιK, vι−1) is defectless in ι̃L.
It follows that (K, v) is a defectless field if and only if (ιK, vι−1) is. Since the isomorphism
also preserves properties like “separable” and “purely inseparable”, we find that also the
properties of being a separably defectless field and of being an inseparably defectless field
are preserved. Every finite extension L|K is contained in a finite normal extension, namely
the normal hull of L|K, and if L|K is separable, then also the normal hull is a separable
and thus a Galois extension of K. In view of the foregoing lemma, this proves:

Corollary 11.8 (K, v) is a defectless field if and only if it is defectless in every finite
normal extension. Similarly, (K, v) is a separably defectless field if and only if it is defectless
in every finite Galois extension.

By virtue of this corollary, (K, v) is a defectless field if and only if d(L|K, v) = 1 for every
finite normal extension L|K. With the help of Lemma 11.6, we can also prove:

Every finite valued field extension of a defectless field is again a defectless field.

More precisely,

Lemma 11.9 a) If v1, . . . , vg are all extensions of the valuation v from K to a finite
extension L, then (K, v) is a defectless field if and only if (K, v) is defectless in L and
(L, vi) are defectless fields for all i = 1, . . . , g.
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b) Assume that (L|K, v) is a finite extension. If L|K is normal or admits only one
extension of v from K to L, then (K, v) is a defectless field if and only if (L, v) is a
defectless field and (K, v) is defectless in L.

Both assertions also hold for “separably defectless” if L|K is separable, and for “inseparably
defectless” if L|K is purely inseparable.

Proof: Let (K, v) be a valued field, L|K a finite field extension and v1, . . . , vg all
extensions of v from K to L. If L′|L is a finite extension such that (L, vi) is not defectless
in L′, then by the foregoing lemma, (K, v) is not defectless in L′. Hence, if (K, v) is a
defectless field, then (L, vi) must be a defectless field, for every i, and moreover (K, v)
must be defectless in L. Conversely, if (K, v) is a defectless field, then it is defectless in
every finite extension L′ of L (since it is also a finite extension of K), and again by the
foregoing lemma, (L, vi) will then be defectless in L′, for every i.

If in addition L|K is separable, then every finite separable extension L′ of L is a finite
separable extension of K, and every finite separable extension L′ of K containing L is
a finite separable extension of L. The same holds for “purely inseparable” in the place
of “separable ”. Hence, the above arguments also work for “separably defectless” in the
place of “defectless” if L|K is separable, and for “inseparably defectless” in the place of
“defectless” if L|K is purely inseparable. This proves part a).

If there is only one extension of v from K to L, then the assertion of part b) follows
trivially from part a). If there is more than one extension and if L|K is normal, then every
other extension is of the form vι for ι ∈ GalL|K, and ι−1 is an isomorphism of (L, v) onto
(L, vι). Hence (L, v) is a defectless field if and only if (L, vι) is. Thus, part b) follows from
part a). �

From equation (11.3) we see that (K, v) is defectless in a finite extension L if and only
if d(ιiL|K, v) = 1 for every i = 1, . . . , g. This proves:

Lemma 11.10 (K, v) is a defectless field if and only if d(L|K, v) = 1 for every finite
extension (L|K, v). More generally, (K, v) is defectless in the normal extension L if and
only if d(E|K, v) = 1 for every finite subextension E|K of L|K.

Suppose that (L|K, v) is a normal extension. If (K, v)h is defectless in L.Kh, then the
lemma tells us that d(E ′|Kh, v) = 1 for every finite subextension E ′|Kh of L.Kh|Kh. Then
in particular, d(E|K, v) = d(E.Kh|Kh, v) = 1 for every finite subextension E|K of L|K.
Note that also extensions of the form ιiE|K are finite subextensions of L|K since the latter
is normal. We conclude that if (K, v)h is defectless in L.Kh, then (K, v) is defectless in L.

For the converse, assume that (K, v) is defectless in L. Let E ′|Kh be a finite extension
of L.Kh|Kh. Then by Lemma 24.37 there is some finite extension E|K of L|K such
that E.Kh ⊃ E ′. Since L|K is normal, we can also choose E|K to be normal. Then
d(E.Kh|Kh, v) = d(E|K, v) = 1 because (K, v) is defectless in E and ιiE = E. Since
g(E.Kh|Kh, v) = 1, d(E.Kh|Kh, v) = 1 means that (K, v)h is defectless in E.Kh. By
Lemma 11.6 it follows that (K, v)h is also defectless in E ′. This proves that (K, v)h is
defectless in L.Kh. We summarize:

Lemma 11.11 Let (L|K, v) be a normal extension. Then (K, v) is defectless in L if and
only if (K, v)h is defectless in L.Kh.
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We apply this lemma to the special cases L = K̃ (then L.Kh = K̃ = K̃h), L = Ksep

(then L.Kh = Ksep = (Kh)sep) and L = K1/p∞ (then L.Kh = (Kh)1/p∞ by ??). We obtain:

Theorem 11.12 The valued field (K, v) is defectless if and only if its henselization (K, v)h

is defectless. The same holds for “separably defectless” and “inseparably defectless” in the
place of “defectless”.

If (L|K, v) is an h-finite extension, then we call it an h-defectless extension if
d(L|K, v) = 1, that is, if (K, v) is defectless in L.Kh. From equation (11.3) and Lemma 11.3,
we infer:

Corollary 11.13 Let (L|K, v) be a finite extension such that L|K is normal or the exten-
sion of v from K to L is unique. Then (K, v) is defectless in L if and only if d(L|K, v) = 1.

In view of this fact, we will call a finite extension (L|K, v) of henselian fields just a de-
fectless extension, if d(L|K, v) = 1. Hence, a henselian field (K, v) is defectless if and
only if d(L|K, v) = 1 for every finite extension E|K.

However, the reader should note that if L|K is not normal and there are more than one
extension of v from K to L, then d(L|K, v) = 1 does not imply that (K, v) be defectless
in L. It may happen that for one extension the henselian defect is 1 while for another
extension it is > 1 (cf. Example ??). In this case, the henselian defect depends on the
chosen extension of v from K to L. If L|K is normal, then the henselian defect does not
depend on this extension.

From the multiplicativity of the defect (Lemma 11.4), we obtain:

Corollary 11.14 Let (L|K, v) be an h-finite extension and E|K a subextension of L|K.
Then (L|K, v) is an h-defectless extension if and only if (L|E, v) and (E|K, v) are h-
defectless extensions.

In section 6.3 we have already introduced the notion “(L|K, v) is vs-defectless” for
the case that the extension (K, v) ⊂ (L, v) of valued K-vector spaces has no vector space
defect. The following lemma shows that for finite extensions of henselian fields, it coincides
with the notion “(L|K, v) is a defectless extension”.

Lemma 11.15 An algebraic extension (L|K, v) is vs-defectless if and only if the extension
of v from K to L is unique and (K, v) is defectless in L. Consequently, a finite extension
(L|K, v) of a henselian field (K, v) is vs-defectless if and only if it is defectless.

Proof: From Lemma 6.6 we know that (L|K, v) is vs-defectless if and only if every finite
subextension (E|K, v) is vs-defectless. By Lemma 6.17 (E|K, v) is vs-defectless if and only
if it satisfies the fundamental equality [E : K] = (vL : vK) · [Kv : Lv]. In view of (7.26),
this in turn holds if and only if (E|K, v) is vs-defectless and there is only one extension of
v from K to E. But this holds for every finite subextension of L|K if and only if v admits
a unique extension from K to L and (K, v) is defectless in L. �

By Lemma 6.17, a finite extension (E|K, v) is vs-defectless if and only if it admits a
valuation basis. Hence, (K, v) is defectless in L with unique extension of v from K to L
if and only if every finite subextension (E|K, v) of (L|K, v) admits a valuation basis. In
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particular, an arbitrary field (K, v) is a henselian defectless field if and only if every finite
extension (L|K, v) admits a valuation basis.

From the foregoing lemma together with Lemma 11.11 and Lemma 6.5, we can deduce
the transitivity of defectless extensions also for infinite normal extensions.

Corollary 11.16 Let (L|K, v) be an arbitrary normal extension and E|K a normal subex-
tension of L|K. If (K, v) is defectless in E and (E, v) is defectless in L, then (K, v) is
defectless in L. Consequently, if (K, v) is defectless in E and (E, v) is a defectless field,
then (K, v) is a defectless field.

11.3 The Lemma of Ostrowski

We shall now investigate what ramification theory can say about the defect. The following
is a key lemma for the theory of the defect:

Lemma 11.17 (Lemma of Ostrowski)

Let (L|K, v) be an h-finite extension. Then d(L|K, v) is a natural number which is a power
of the characteristic exponent of K.

Proof: Since d(L|K, v) = d(Lh|Kh, v), we can assume from the start that (K, v)
be henselian. Then L|K must be finite. Let p denote the characteristic exponent of
K. We use the notation of (7.10). First, assume (L|K, v) to be a normal extension.
By part e) of Theorem 7.9, [Z : K] = g(L|K, v) = 1. Theorem 7.13 has shown that
[L : K]sep = [T : Z] = [T : Z], and that [L : K]insep = [L : V ]. Hence, the inertia degree
f(L|K, v) = [L : K] may be written as pν [T : Z] = pν [T : Z] with ν ≥ 0 an integer such that
pν = [L : K]insep = [L : V ]. Similarly, we know from Theorem 7.19 that | (vL/vK)p′ | is
equal to (vV : vT) = [V : T], and that (vL/vK)p ∼= vL/vV. Hence, the ramification index
e(L|K, v) = (vL : vK) can be written as pµ(vV : vT) = pµ[V : T] with µ ≥ 0 an integer such
that pµ = | (vL/vK)p | = | vL/vV |. Finally, we know from Theorem 7.16 that [L : V] = pλ

with λ ≥ 0 an integer. We find that [L : K] = [L : V][V : T][T : Z][Z : K] = pλ−µ−νef .
From the fundamental inequality (7.26) we know that [L : V] ≥ [L : V ](vL : vV) = pµ+ν .
Hence, λ− µ− ν is an integer ≥ 0. This proves our assertion in the first case.

Now assume that L|K is an arbitrary finite extension. Let N be the normal hull of L
overK. Then by what we have already proved, d(N |K, v) = [N : K] e(N |K, v)−1f(N |K, v)−1g(N |K, v)−1

and d(N |L, v) = [N : L] e(N |L, v)−1f(N |L, v)−1g(N |L, v)−1 are powers of p. Since the ex-
tension of v from K to L is unique by assumption, we have that g(N |K, v) = g(N |L, v).
Hence,

d(N |K, v)d(N |L, v)−1 = [N : K][N : L]−1 e(N |L, v)e(N |K, v)−1 f(N |L, v)f(N |K, v)−1

= [L : K] e(L|K, v)−1f(L|K, v)−1 = d(L|K, v) .

On the other hand, d(L|K, v) ≥ 1 since [L : K] ≥ e(L|K, v)f(L|K, v) by Lemma 6.13.
This again proves that d(L|K, v) is a natural number and a power of p. �
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Corollary 11.18 Let (L|K, v) be an algebraic extension and assume that L|K is normal
or that the extension of v from K to L is unique. Then there is d(L|K, v) a power of the
characteristic exponent of K, such that

[L : K] = d(L|K, v) · e(L|K, v) · f(L|K, v) · g(L|K, v) . (11.5)

In particular, d(L|K, v), e(L|K, v), f(L|K, v) and g(L|K, v) are divisors of [L : K]. In the
case of an infinite extension L|K, this has to be understood in the sense of supernatural
numbers.

In the literature, it is common to define the defect to be the integer δ ≥ 0 if d(L|K) = pδ.
(In this version, the multiplicativity of the defect turns into additivity). However, we
suggest our use of the defect because it makes formulas easier and allows the comparison
with the vector space defect.

Corollary 11.19 Let (K, v) be a henselian field and p the characteristic exponent of K.
If (L|K, v) is an immediate algebraic extension, then [L : K] is a power of p. Similarly, if
A is an immediate algebraic approximation type over (K, v), then its degree is a power of
p.

Proof: If (L|K, v) is a finite immediate extension, then the assertion follows directly
from the foregoing lemma. If L|K is infinite algebraic, then every finite subextension
is also immediate, and the assertion thus holds when we understand the degree to be a
supernatural number.

If A is an immediate algebraic approximation type over (K, v) then by Theorem 8.18
there is an immediate extension of (K, v) of degree equal to deg A. Hence by what we have
already shown, deg A is a power of p. �

We can also derive the following easy observation. Suppose that (L|K, v) is an exten-
sion of degree p a prime. If it is not immediate, then e(L|K, v) > 1 or f(L|K, v) > 1.
Assume that L|K is normal or that (K, v) is henselian. Then by the Lemma of Ostrowski
(Lemma 11.17), e(L|K, v) · f(L|K, v) divides [L : K] = p. It follows that e(L|K, v) = p or
f(L|K, v) = p. And in both cases, g(L|K, v) = 1. We have proved:

Corollary 11.20 Let (L|K, v) be an extension of degree p a prime. Assume that (K, v)
is henselian or that L|K is normal. If (L|K, v) is not immediate, then it is defectless and
the extension of v from K to L is unique.

The proof of the lemma of Ostrowski actually shows that the extension to the ramifica-
tion field of a finite normal extension does not contribute to the defect. Let us make this
more precise. Dividing (11.5) by [Z : K] = g(L|K, v), we obtain that

[L : Z] = d(L|K, v) · e(L|K, v) · f(L|K, v) = d(L|K, v) · e(L|Z, v) · f(L|Z, v) .

This shows that d(L|K, v) = d(L|Z, v). Similarly, dividing the last equation by [T : Z] =
f(T|Z, v), we obtain

[L : T] = d(L|K, v) · e(L|Z, v) · f(L|T, v) = d(L|K, v) · e(L|T, v) · f(L|T, v) .

This shows that d(L|K, v) = d(L|T, v). Dividing further by [V : T] = e(V|T, v), we obtain

[L : V] = d(L|K, v) · e(L|V, v) · f(L|T, v) = d(L|K, v) · e(L|V, v) · f(L|V, v) .

This shows that d(L|K, v) = d(L|V, v). We have proved:
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Lemma 11.21 Let (L|K, v) be a finite normal extension with decomposition field Z, inertia
field T and ramification field V. Then

d(L|K, v) = d(L|Z, v) = d(L|T, v) = d(L|V, v) .

Using this lemma, we can provide important examples for h-defectless extensions,
namely the h-finite extensions within the ramification field of a given normal extension.

Lemma 11.22 Let (Ω|K, v) be a normal extension and K ⊂ K0 ⊂ K1 ⊂ (Ω|K, v)r such
that (K1|K0, v) is h-finite. Then (K1|K0, v) is h-defectless.

Proof: Extend v from Ω to K̃ and let Kh
0 and Kh

1 be the henselizations with respect
to this extension. We have to show that d(Kh

1 |Kh
0 , v) = 1. Since (Ω|K, v)r ⊂ (K̃|K, v)r by

Lemma 7.20, and Kh
0 = K0 .K

h = K0 .(K̃|K, v)d as well as Kh
0 = K0 .K

h = K0 .(K̃|K, v)d

by Corollary 7.40 and the definition of the henselization, we find that Kh
0 ⊂ Kh

1 ⊂
(K̃|K, v)r. Let L be the normal hull of Kh

1 |Kh
0 . Then L|Kh

0 is a finite normal exten-
sion. By Lemma 7.7 and Lemma 7.20, V0 := (L|Kh

0 , v)r = (K̃|K, v)r ∩ L ⊃ Kh
1 . From

Lemma 11.21 we infer that d(L|Kh
0 , v) = d(L|V0, v). Now the multiplicativity of the defect

yields d(V0|Kh
0 , v) = 1 and d(Kh

1 |Kh
0 , v) = 1. �

11.4 More about defectless fields

By the Lemma of Ostrowski, the defect d(L|K, v) is a power of the characteristic exponent
p of the residue field K. If the residue characteristic of (K, v) is 0, that is, if p = 1, then
d(L|K, v) = 1 for every finite normal extension L|K. Hence:

Theorem 11.23 Every valued field of residue characteristic zero is a defectless field.

If (K, v) is a valued field such that vK is divisible and K is algebraically closed, then
by virtue of Lemma 6.44, the extension (K̃, w)|(K, v) is immediate for every extension w
of v from K to K̃. The same then holds for every henselization of (Kh(w), w) in the place
of (K, v). So if the residue characteristic of (K, v) and thus also that of (Kh(w), w) is zero,
then the foregoing theorem shows that the immediate extension (K̃, w)|(Kh(w), w) must be
trivial. We have proved:

Corollary 11.24 If (K, v) is a valued field of residue characteristic zero such that its value
group vK is divisible and its residue field K is algebraically closed, then every henseliza-
tion of (K, v) is algebraically closed. If in addition (K, v) is henselian, then K is itself
algebraically closed.

The last assertion of this corollary can be generalized as follows:

Lemma 11.25 Let (K, v) be a henselian field of residue characteristic zero. If (L|K, v)
is a normal extension with vL = vK, then GalL|K ∼= GalL|K. In particular, if vK is
divisible, then GalK ∼= GalK.
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Proof: Since v admits a unique extension from K to L, it follows by Theorem 7.9
that (L|K, v)d = K. On the other hand, charK = 0 implies that L|K is separable and
that (L|K, v)r = L (cf. Theorem 7.16). Further, vL = vK implies that (L|K, v)i = L (cf.
Theorem 7.19). Now Theorem 7.13 shows that GalL|K = Gal (L|K, v)i |Gal (L|K, v)d ∼=
GalL|K.

The second assertion follows from the first since if vK is divisible, then vK = vK̃ in
view of Corollary 6.15. �

We shall now prove a theorem that provides examples of henselian defectless fields,
independently of their residue characteristic. Recall the definition of (K, v)-vector spaces
that we have given in Section 6.3. If (L|K, v) is an extension of valued fields, then (L, v)
is a (K, v)-vector space.

Lemma 11.26 Let (K, v) be a spherically complete field. Then every finite dimensional
(K, v)-vector space is spherically complete and admits a valuation basis (over the zero
subspace).

Proof: By virtue of Lemma 3.21, there is a K-subvector space VB of V such that (VB, v)
admits a valuation basis B (over the zero subspace), and (VB, v) ⊂ (V, v) is immediate. By
the definition of a (K, v)-vector space, for every b ∈ B the 1-dimensional subvectorspace
(Kb, v) of (VB, v) is isomorphic to (K, v) (as a valued K-vector space). Since (K, v) is
spherically complete and this property is preserved under isomorphisms (already under
those of ultrametric spaces), it follows that every (Kb, v) is spherically complete. Further,
the subspaces (Kb, v), b ∈ B are valuation independent. Hence by Lemma ??, their
sum (VB, v) is spherically complete. (Alternatively, this is proved by showing that the
ultrametric space (VB, v) is isomorphic to the product of the ultrametric spaces (Kb, v),
cf. Lemma 3.11, and then applying Lemma 1.11.) From Lemma 1.19 it now follows that
(VB, v) ⊂ (V, v) can not be a proper immediate extension of valued vector spaces. Hence
VB = V , showing that (V, v) is spherically complete and admits a valuation basis over the
zero subspace. �

We apply this lemma to a finite valued field extension (L, v) of a spherically complete
field (K, v). (In this case, we can take VB to be the K-subvector space of L which is
generated by a standard valuation independent set B = {ziuj, | 1 ≤ i ≤ e(L|K, v) , 1 ≤ j ≤
f(L|K, v)}.) We obtain that (L, v) is spherically complete and that (L|K, v) is defectless.
Moreover, from Lemma 11.15 we infer that the extension of v from K to L is unique. This
proves:

Theorem 11.27 Every spherically complete field is a henselian defectless field. In particu-
lar, power series fields are henselian defectless fields. Every finite extension of a spherically
complete field is again spherically complete.

In view of Theorem 7.44 and Lemma ??, we obtain the following special cases:

Corollary 11.28 For every prime p, the valued fields (Qp, vp) and (Fp((t)), vt) are henselian
defectless fields.

From Theorem 8.28 and Theorem 11.27, we obtain
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Corollary 11.29 Every maximal field is henselian defectless.

Recall that a valued field is algebraically maximal if it admits no proper immedi-
ate algebraic extensions. Similarly, we call it separable-algebraically maximal if it
admits no proper immediate separable algebraic extensions. Since the henselization is an
immediate separable algebraic extension (Theorem 7.42), we conclude:

Lemma 11.30 Every separable-algebraically maximal field is henselian.

The converse is not true in general (see Theorem 11.42 and Theorem 11.45 below). But if a
field is henselian defectless, then it satisfies n = e ·f for every finite extension, showing that
every finite immediate extension must be trivial. Since every proper algebraic immediate
extension admits a proper finite immediate subextension, this yields that every henselian
defectless field is algebraically maximal. Adding the assertion of Theorem 11.23, we now
obtain:

Corollary 11.31 Every henselian defectless field is algebraically maximal, and every alge-
braically maximal field is henselian. Hence for valued fields of residue characteristic zero,
these three notions are equivalent.

Let us give a very important application of this corollary together with Theorem 7.39,
Theorem 7.44 and the results of Section ??.

Theorem 11.32 Let (K, v) be a valued field of residue characteristic zero. Then the fol-
lowing assertions hold:

a) The maximal immediate extension of (K, v) is unique up to valuation preserving iso-
morphism over K.

b) Every maximal field containing (K, v) also contains a maximal immediate extension of
(K, v).

Proof: a): Let (L1, v1) and (L2, v2) be two maximal immediate extensions of (K, v).
By the usual argument using Zorn’s Lemma it is shown that there exists a maximal subex-
tension (L1|L, v1) of (L1|K, v1) with the property that there is a valuation preserving
embedding of (L, v1) in (L2, v2) over K. We can identify (L, v1) with its image in L2

and denote by (L, v) the so-obtained common subfield of (L1, v1) and (L2, v2). By Theo-
rem 7.44, the maximal fields (L1, v1) and (L2, v2) are henselian. Hence by Theorem 7.39,
there are henselizations of (L, v) in (L1, v1) and (L2, v2) which are isomorphic over (L, v).
This contradicts our choice of (L, v) if the henselizations are proper extensions of (L, v).
We thus find that (L, v) must be henselian. Since (L, v) has residue characteristic 0 like
(K, v), we can infer from Corollary 11.31 that (L, v) is algebraically maximal. Hence by
Theorem ??, every non-trivial immediate approximation type over (L, v) is transcendental.

Now suppose that there is some x ∈ L1 \L. Since (L1|L, v1) is immediate, Corollary ??
shows that the approximation type at (x,K) is non-trivial and immediate. By what we have
shown before, it is transcendental. Since (L2, v2) is a maximal valued field, it is spherically
complete by Theorem 8.28. Hence, at (x,K) is realized in (L2, v2) (cf. Lemma 1.40), that
is, there is some y ∈ L2 such that at (x,K) = at (y,K). Now Theorem 8.17 shows that
(L(x), v1) and (L(y), v2) are isomorphic over K. But this again contradicts our choice of
(L, v). Consequently, L1 = L, and (L, v) is a maximal valued field. Thus, the immediate
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extension (L2|L, v2) is trivial, and we have that L1 = L = L2 . This proves that (L1, v1)
and (L2, v2) are isomorphic over (K, v).

b): Assume (M, v) to be a maximal field containing (K, v). Let (L, v) be the maximal
immediate extension within (M, v). As above, one deduces that (L, v) must be henselian
and that every immediate approximation type A over (L, v) is transcendental. But by
Corollary 8.25, every immediate approximation type A over (L, v) is algebraic. This proves
that every immediate approximation type over (L, v) is trivial. By Corollary 8.19, this
means that (L, v) is maximal. �

Besides the henselian fields of residue characteristic zero, there is a second important
class of defectless fields. Later, when we have treated the composition of valuations, then
we will combine both classes to obtain further important examples of defectless fields,
namely the formally p-adic and the finitely ramified fields (cf. Section 4.2.5).

Theorem 11.33 Let (K, v) be a valued field with value group vK ∼= Z. Then (K, v) is a
separably defectless field. If in addition charK = 0, then (K, v) is a defectless field.

Proof: Since the henselization is an immediate extension (Theorem 7.42), its value
group is the same as that of (K, v). In view of Theorem 11.12, it thus suffices to prove our
assertion in the case of (K, v) being henselian.

Let (L|K, v) be a finite normal extension. We wish to show that it is defectless. Let
V denote the ramification field of (L|K, v). By Lemma 11.21, d(L|K, v) = d(L|V, v). By
Lemma 7.17, the extension L|V is a tower of normal extensions of degree p. In view of
the multiplicativity of the defect, it suffices to show that every of these is defectless. Let
V ⊂ K0 ⊂ K1 ⊂ L such that [K1 : K0] = p. Then K0|K is a finite extension, hence by the
fundamental inequality, (vK0 : vK) is finite. This implies that vK0 is again isomorphic to
Z. Since we assume (K, v) to be henselian, the same holds for (K0, v). Theorem ?? now
shows that the separable extension (K1|K0, v) is not immediate. Hence by Corollary 11.20,
it is defectless. It follows that (L|K, v) is defectless. We have proved that (K, v) is a
separably defectless field.

Our second assertion follows from the fact that every perfect separably defectless field
is a defectless field. �

Now let us state some important properties of finitely ramified and formally ℘-adic
fields.

Theorem 11.34 Every finitely ramified field is a defectless field. Hence for finitely ram-
ified fields, these notions “henselian”, “algebraically maximal” and “henselian defectless”
are equivalent.

Proof: Let (K, v) be a finitely ramified field. If P is the place associated with v, then
by the foregoing lemma, it admits a decomposition P = P1P2 (where P1 may be trivial)
such that char(KP1) = 0 and P2 is a place on KP1 with value group ∼= Z and residue
characteristic p > 0. By Theorem 11.23, (K,P1) is a defectless field. Theorem 11.33 shows
that also (KP1, P2) is a defectless field. Now it follows by Theorem ?? that (K, v) is a
defectless field. �
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Theorem 11.35 Assertions a) and b) of Theorem 11.32 also hold for every finitely ram-
ified field (K, v).

Proof: Let (L, v) be any henselian immediate extension field of (K, v). Then by
Lemma 6.2, (L, v) is again a finitely ramified field. By the foregoing theorem, it is a
defectless field. Consequently, (L, v) is algebraically maximal. This being said, the further
proof is similar to that of Theorem 11.32. �

Using Theorem 11.34, it is easy to prove a characterization of ℘-adically closed fields
which is similar to that given for real closed fields in Theorem 10.18.

Theorem 11.36 A formally ℘-adic field (K, v) is ℘-adically closed if and only if vK is
a Z-group and (K, v) is henselian. Every formally ℘-adic field (K, v) admits an algebraic
extension which is ℘-adically closed and has the same prime element and residue field as
(K, v).

Proof: Assume that (K, v) is a formally ℘-adic field. Suppose first that vK is a Z-
group and (K, v) is henselian, and let L|K be a proper finite extension. Since (K, v) is
henselian and defectless by Theorem 11.34, we obtain that (vL : vK) > 1 or [L : K] > 1.
In the first case, the least positive element α in vK is not anymore the least positive
element in vL. This is seen as follows. Let ∆ be the convex hull of Zα in vL. Since
vK/Zα is divisible and vL|vK is finite, it follows that also vL/∆ is divisible and that
1 < (vL : vK) = (∆ : Zα) < ∞. This yields that α is not anymore the least positive
element of ∆ and of vL. In the second case where [L : K] > 1, we obtain that (K, v) and
(L, v) do not have the same residue field. We have proved that (K, v) is ℘-adically closed.

Now suppose that (K, v) is not henselian. Then the henselization is a proper immediate
extension, thus having the same prime element and the same residue field as (K, v). So
(K, v) is not ℘-adically closed. Suppose that vK is not a Z-group. By Lemma 2.34, there is
a proper algebraic extension Γ|vK such that Γ is a Z-group having the same least positive
element as vK. By Theorem 6.42, there is a proper algebraic extension (L|K, v) such that
vL = Γ and L = K. This again shows that (K, v) is not ℘-adically closed.

The last argument also shows how to find an algebraic extension of (K, v) which is
℘-adically closed: If (K, v) is not henselian, replace (K, v) by its henselization. Then, if
vK is not a Z-group, choose (L, v) as above. �

11.5 Examples for non-trivial defect

In this section, we shall give examples for extensions with defect > 1. There is one basic
example which is quick at hand; it is due to F. K. Schmidt.

Example 11.37 We consider Fp((t)) with its canonical valuation v = vt . By Lemma ??,
we can choose some element s ∈ Fp((t)) which is transcendental over Fp(t). Since (Fp((t))|Fp(t), v)
is an immediate extension, the same holds for (Fp(t, s)|Fp(t), v) and thus also for (Fp(t, s)|Fp(t, sp), v).
The latter extension is purely inseparable of degree p (since s, t are algebraically indepen-
dent over Fp , the extension Fp(s)|Fp(sp) is linearly disjoint from Fp(t, sp)|Fp(sp) ). Hence,
Corollary 6.57 shows that there is only one extension of the valuation v from Fp(t, sp) to
Fp(t, s). So we have e = f = g = 1 for this extension and consequently, its defect is p. ♦
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Remark 11.38 This example is the easiest one used in commutative algebra to show that the integral
closure of a noetherian ring of dimension 1 in a finite extension of its quotient field need not be finitely
generated.

In some sense, the field Fp(t, sp) is the smallest possible admitting a defect extension.
We will see later that a field of transcendence degree 1 over its prime field is defectless
under every valuation. More generally, a valued function field of transcendence degree 1
over a subfield on which the valuation is trivial is always a defectless field; this follows from
Theorem 17.1 below.

A defect can appear “out of nothing” when a finite extension is lifted through another
finite extension:

Example 11.39 In the foregoing example, we can choose s such that vs > 1 = vt. Now
we consider the extensions (Fp(t, sp)|Fp(tp, sp), v) and (Fp(t + s, sp)|Fp(tp, sp), v) of degree
p. Both are defectless: since vFp(tp, sp) = pZ and v(t+s) = vt = 1, the index of vFp(tp, sp)
in vFp(t, sp) and in vFp(t+ s, sp) must be (at least) p. But Fp(t, sp).Fp(t+ s, sp) = Fp(t, s),
which shows that the defectless extension (Fp(t, sp)|Fp(tp, sp), v) does not remain defectless
if lifted up to Fp(t+ s, sp) (and vice versa). ♦

We can use Theorem 7.39 to derive from Example 11.37 an example of a defect extension
of henselian fields.

Example 11.40 We consider again the immediate extension (Fp(t, s)|Fp(t, sp), v) of Ex-
ample 11.37. By Theorem 7.39, there is a henselization (Fp(t, s), v)h of (Fp(t, s), v) in
Fp((t)) and a henselization (Fp(t, sp), v)h of (Fp(t, sp), v) in (Fp(t, s), v)h. We find that
(Fp(t, s), v)h|(Fp(t, sp), v)h is again a purely inseparable extension of degree p. Indeed,
Fp(t, s)|Fp(t, sp) is linearly disjoint from the separable extension Fp(t, sp)h|Fp(t, sp), and by
virtue of Corollary 7.40, Fp(t, s)h = Fp(t, s).Fp(t, sp)h. Also for this extension, we have
that e = f = g = 1 and again, the defect is p. Note that by Theorem 11.33, a proper
immediate extension over a henselian discretely valued field like (Fp(t, sp), v)h can only be
purely inseparable. ♦

The next example is easily found by considering the purely inseparable extension
K̃|Ksep. In comparison to the last example, the involved fields are “much bigger”, for
instance, they do not have value group Z anymore.

Example 11.41 Let K be a field which is not perfect. Then the extension K̃|Ksep is
non-trivial. For every non-trivial valuation v on K̃, we have by Lemma 6.44 that vK̃ and

vKsep are both equal to the divisible hull of vK, and that K̃ and Ksep are both equal to
the algebraic closure of K. Consequently, (K̃|Ksep, v) is an immediate extension. Since
the extension of v from Ksep to K̃ is unique (cf. Corollary 6.57), we find that the defect of
every finite subextension is equal to its degree.

Recall that K̃ admits a non-trivial valuation as soon as it is not the algebraic closure
of a finite field (cf. Corollary 4.13). ♦

Note that the separable-algebraically closed field Ksep is henselian for every valuation.
Hence, our example shows:
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Theorem 11.42 There are henselian valued fields of positive characteristic which admit
proper purely inseparable immediate extensions. Hence, the property “henselian” does not
imply the property “algebraically maximal”.

We can refine the previous example as follows.

Example 11.43 In order that every purely inseparable extension of the valued field (K, v)
be immediate, it suffices that vK be p-divisible and Kv be perfect. But these conditions
are already satisfied for every non-trivially valued Artin-Schreier closed field K (see Corol-
lary 6.46). Hence, the perfect hull of every non-trivially valued Artin-Schreier closed field
is an immediate extension. ♦

Until now, we have only presented purely inseparable defect extensions. But our last
example can give an idea of how to produce a separable defect extension by interchanging
the role of purely inseparable extensions and Artin-Schreier extensions.

Example 11.44 Let (K, v) be a valued field of characteristic p > 0 whose value group
is not p-divisible. For example, we can choose (K, v) to be (Fp(t), vt) or (Fp((t)), vt). Let
c ∈ K such that vc < 0 is not divisible by p. Let a be a root of the Artin-Schreier polynomial
Xp−X−c. Then it follows from Lemma 6.39 that va = vc/p, and it is shown as in the proof
of Lemma 6.40 that [K(a) : K] = p = (vK(a) : vK). The fundamental inequality shows
that K(a)v = Kv and that the extension of v from K to K(a) is unique. By Theorem ??,
also the extension to K(a)1/p∞ = K1/p∞(a) is unique. It follows that the extension of v
from K1/p∞ to K1/p∞(a) is unique. On the other hand, [K1/p∞(a) : K1/p∞ ] = p since the
separable extension K(a)|K is linearly disjoint from K1/p∞|K. By Lemma 6.47, vK1/p∞(a)
is the p-divisible hull of vK(a) = vK + Zva. Since pva ∈ vK, this is the same as the p-
divisible hull of vK, which in turn is equal to vK1/p∞ . Again by Lemma 6.47, the residue
field of K1/p∞(a) is the perfect hull of K(a)v = Kv. Hence it is equal to the residue field of
K1/p∞ . It follows that the extension (K1/p∞(a)|K1/p∞ , v) is immediate and that its defect
is p like its degree.

Similarly, one can start with a valued field (K, v) of characteristic p > 0 whose residue
field is not perfect. In this case, the Artin-Schreier extension K(a)|K is constructed as in
the proof of Lemma 6.41. We leave the details to the reader. ♦

In the previous example, we can always choose (K, v) to be henselian (since passing
to the henselization does not change value group and residue field). Then all constructed
extensions of (K, v) are also henselian, since they are algebraic extensions. Hence, our
example shows:

Theorem 11.45 There are henselian valued fields of positive characteristic which admit
immediate Artin-Schreier defect extensions. Hence, “henselian” does not imply “separable-
algebraically maximal”. There are spherically complete fields of positive characteristic ad-
mitting an infinite purely inseparable extension which is not even separable-algebraically
maximal.

If the perfect hull of a given valued field (K, v) is not an immediate extension, then
vK is not p-divisible or Kv is not perfect, and we can apply the procedure of our above
example. This shows:
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Theorem 11.46 If the perfect hull of a given valued field of positive characteristic is not
an immediate extension, then it admits an immediate Artin-Schreier extension.

An important special case of Example 11.44 is the following:

Example 11.47 We choose (K, v) to be (Fp(t), vt) or (Fp((t)), vt) or any intermediate

field, and set L := K(t1/p
i | i ∈ N), the perfect hull of K. By Theorem ??, v = vt has a

unique extension to L. In all cases, L can be viewed as a subfield of the power series field
Fp((Q)). The power series

ϑ :=
∞∑
i=1

t−1/pi ∈ Fp((Q)) (11.6)

is a root of the Artin-Schreier polynomial

Xp −X − 1

t

because

ϑp − ϑ− 1

t
=

∞∑
i=1

t−1/pi−1 −
∞∑
i=1

t−1/pi − t−1

=
∞∑
i=0

t−1/pi −
∞∑
i=1

t−1/pi − t−1 = 0 .

By Example 11.44, the extension L(ϑ)|L is an immediate Artin-Schreier defect extension.
The above power series expansion for ϑ was presented by Shreeram Abhyankar in []. It
became famous since it shows that there are elements algebraic over Fp(t) with a power
series expansion in which the exponents do not have a common denominator. This in turn
shows that Puiseux series fields in positive characteristic are in general not algebraically
closed (see Section ??). With p = 2, the above was also used by Irving Kaplansky in [] for
the construction of an example that shows that if his “hypothesis A” is violated, then the
maximal immediate extension of a valued field may not be unique up to isomorphism. See
Section ?? for more information on this subject.

Let us compute v(ϑ− L). For the partial sums

ϑk :=
k∑
i=1

t−1/pi ∈ L (11.7)

we see that v(ϑ−ϑk) = −1/pk+1 < 0. Assume that there is c ∈ L such that v(ϑ−c) > −1/pk

for all k. Then v(c − ϑk) = min{v(ϑ − c), v(ϑ − ϑk)} = −1/pk+1 for all k. On the other
hand, there is some k such that c ∈ K(t−1/p, . . . , t−1/pk

) = K(t−1/pk
). But this contradicts

the fact that v(c− t−1/p − . . .− t−1/pk
) = v(c− ϑk) = −1/pk+1 /∈ vK(t−1/pk

). This proves
that the values −1/pk are cofinal in v(ϑ−L). Since vL is a subgroup of the rationals, this
shows that the least upper bound of v(ϑ − L) in vL is the element 0. As v(ϑ − L) is an
initial segment of vL by Lemma ??, we conclude that v(ϑ − L) = (vL)<0. It follows that
(L(ϑ)|L, v) is immediate without (L, v) being dense in (L(ϑ), v). ♦
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A version of this example with (K, v) = (F̃p((t)), vt) was given by S. K. Khanduja in []
as a counterexample to Proposition 2′ on p. 425 of []. That proposition states that if (K, v)
is a perfect henselian valued field of rank 1 and a ∈ K̃ \K, then there is c ∈ K such that

v(a− c) ≥ min{v(a− a′) | a′ 6= a conjugate to a over K} .

But for a = ϑ in the previous example, we have that a − a′ ∈ Fp so that the right hand
side is 0, whereas v(ϑ− c) < 0 for all c in the perfect hull L of Fp((t)). The same holds if

we take L to be the perfect hull of K = F̃p((t)). In fact, it is Corollary 2 to Lemma 6 on
p. 424 in [] which is in error; it is stated without proof in the paper.

In a slightly different form, the above example was already given by A. Ostrowski in
[OS3], Section 57.

Example 11.48 Ostrowski takes (K, v) = (Fp(t), vt), but works with the polynomial Xp−
tX − 1 in the place of the Artin-Schreier polynomial Xp −X − 1/t. After an extension of
K of degree p− 1, it also can be transformed into an Artin-Schreier polynomial. Indeed, if
we take b to be an element which satisfies bp−1 = t, then replacing X by bX and dividing
by bp will transform Xp − tX − 1 into the polynomial Xp − X − 1/bp. Now we replace
X by X + 1/b. Since we are working in characteristic p, this transforms Xp − X − 1/bp

into Xp − X − 1/b. (This sort of transformation plays a crucial role in the proofs of
Theorem 17.1 and Theorem ?? as well as in Abhyankar’s and Epp’s work.). Now we see
that the Artin-Schreier polynomial Xp − X − 1/b plays the same role as Xp − X − 1/t.
Indeed, vb = 1

p−1
and it follows that (vFp(b) : vFp(t)) = p − 1 = [Fp(b) : Fp(t)], so that

vFp(b) = Z 1
p−1

. In this value group, vb is not divisible by p. ♦

Interchanging the role of purely inseparable and Artin-Schreier extensions in Exam-
ple 11.47, we obtain:

Example 11.49 We proceed as in Example 11.47, but replace t−1/pi
by ai, where we define

a1 to be a root of the Artin-Schreier polynomial Xp − X − 1/t and ai+1 to be a root of
the Artin-Schreier polynomial Xp − X + ai . Now we choose η such that ηp = 1/t. Note
that also in this case, a1, . . . , ai ∈ K(ai) for every i, because ai = api+1 − ai+1 for every i.
By induction on i, we again deduce that va1 = −1/p and vai = −1/pi for every i. We
set L := K(ai | i ∈ N), that is, L|K is an infinite tower of Artin-Schreier extensions. By
our construction, vL is p-divisible and Lv = Fp is perfect. On the other hand, for every
purely inseparable extension L′|L the group vL′/vL is a p-group and the extension L′v|Lv
is purely inseparable. This fact shows that (L(η)|L, v) is an immediate extension.

In order to compute v(η − L), we set

ηk :=
k∑
i=1

ai ∈ L . (11.8)

Bearing in mind that api+1 = ai+1 − ai and ap1 = a1 + 1/t for i ≥ 1, we compute

(η − ηk)p = ηp − ηpk =
1

t
−

k∑
i=1

api =
1

t
−

(
k∑
i=1

ai −
k−1∑
i=1

ai +
1

t

)
= ak .

It follows that v(η − ηk) = vak

p
= −1/pk+1 . The same argument as in Example 11.47 now

shows that again, v(η − L) = (vL)<0. ♦
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We can develop Examples 11.47 and 11.49 a bit further in order to treat complete fields.

Example 11.50 Take one of the immediate extensions (L(ϑ)|L, v) of Example 11.47 and
set ζ = ϑ, or take one of the immediate extensions (L(η)|L, v) of Example 11.49 and set
ζ = η. Consider the completion (L, v)c = (Lc, v) of (L, v). By Lemma 6.25, (Lc(ζ), v) =
(L(ζ).Lc, v) is the completion of (L(ζ), v) for every extension of the valuation v from
(Lc, v) to L(ζ).Lc. Consequently, the extension (Lc(ζ)|L(ζ), v) and thus also the extension
(Lc(ζ)|L, v) is immediate. It follows that (Lc(ζ)|Lc, v) is immediate. On the other hand,
this extension is non-trivial since v(ζ − L) = (vL)<0 shows that ζ /∈ Lc. ♦

This example proves:

Theorem 11.51 There are complete fields of rank 1 which admit immediate separable-
algebraic and immediate purely inseparable extensions. Consequently, not every complete
field of rank 1 is spherically complete.

From Corollary ?? we know that if (K, v) is henselian and (K(a)|K, v) is a proper
separable immediate extension, then dist (a,K) < ∞. This argument does not hold if
K(a)|K is purely inseparable. Hence, it is worthwile to note that in Example 11.49 we
constructed an immediate purely inseparable extension not contained in the completion of
the field. We have:

Theorem 11.52 There exists a henselian field (K, v) admitting an immediate purely in-
separable extension (K(a)|K, v) of degree p such that a does not lie in the completion of
(K, v).

Such extensions can be transformed into immediate Artin-Schreier defect extensions, as we
will show in the next section. Let us give a preliminary example here:

Example 11.53 In the situation of Example 11.49, extend v from L(η) to L̃. Take d ∈ L
with vd ≥ 1/p, and ϑ0 a root of the polynomial Xp − dX − 1/t. It follows that

−1 = v
1

t
= v(ϑp0 − dϑ0) ≥ min{vϑp0, vdϑ0} = min{pvϑ0, vd+ vϑ0}

which shows that we must have vϑ0 < 0. But then

pvϑ0 < vϑ0 < vd+ vϑ0 ,

so

vϑ0 = −1

p
.

We compute:

pv(ϑ0 − η) = v(ϑ0 − η)p = v(ϑp0 − ηp) = v(dϑ0 + 1/t− 1/t) = vd+ vϑ0 ≥ 0 .

Hence v(ϑ0 − η) ≥ 0, and thus for all c ∈ L,

v(ϑ0 − c) = min{v(ϑ0 − η), v(η − c)} = v(η − c) .
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In particular, v(ϑ0−L) = v(η−L) = (vL)<0. The extension (L(ϑ0)|L, v) is immediate and
has defect p ; however, this is not quite as easy to show as it has been before. To make things
easier, we choose (K, v) to be henselian, so that also (L, v), being an algebraic extension, is
henselian. So there is only one extension of v from L to L(ϑ0). Since v(ϑ0 − c) < 0 for all
c ∈ L, we have that ϑ0 /∈ L. We also choose d = bp−1 for some b ∈ L. Then we will see below
that L(ϑ0)|L is an Artin-Schreier extension. If it were not immediate, then e= p or f= p. In
the first case, we can choose some a ∈ L(ϑ0) such that 0, va, . . . , (p−1)va are representatives
of the distinct cosets of vL(ϑ0) modulo vL. Then 1, a, . . . , ap−1 are L-linearly independent
and thus form an L-basis of L(ϑ0). Writing ϑ0 = c0 + c1a + . . . + cp−1a

p−1, we find
that v(η − c0) = v(ϑ0 − c0) = min{vc1 + va, . . . , vcp−1 + (p − 1)va} /∈ vL as the values
vc1 + va, . . . , vcp−1 + (p−1)va lie in distinct cosets modulo vL. But this is a contradiction.
In the second case, f = p, one chooses a ∈ L(ϑ0) such that 1, av, . . . , (av)p−1 form a basis of
L(ϑ0)v|Lv, and derives a contradiction in a similar way. (Using this method one actually
proves that an extension (L(ζ)|L, v) of degree p with unique extension of the valuation is
immediate if and only if v(ζ − L) has no maximal element.)

Now consider the polynomial Xp−dX−1/t = Xp−bp−1X−1/t and set X = bY . Then
Xp−dX−1/t = bpY p−bpY −1/t, and dividing by bp we obtain the polynomial Y p−Y −1/bpt
which admits ϑ0/b as a root. So we see that (L(ϑ0)|L, v) is in fact an immediate Artin-
Schreier defect extension. But in comparison with Example 11.49, something is different:

v(
ϑ0

b
− L) = {v(

ϑ0

b
− c) | c ∈ L} = {v(

ϑ0

b
− c

b
) | c ∈ L}

= {v(ϑ0 − c)− vb | c ∈ L} = {α ∈ vL | α < vb} ,

where vb > 0. ♦

A similar idea can be used to turn the defect extension of Example 11.37 into a separable
extension. However, in the previous example we made use of the fact that η was not an
element of the completion of (L, v), that is, v(η − L) was bounded from above. We use
a “dirty trick” to first transform the extension of Example 11.37 to an extension whose
generator does not lie in the completion of the base field.

Example 11.54 Taking the extension (Fp(t, s)|Fp(t, sp), v) as in Example 11.37, we adjoin
a new transcendental element z to Fp(t, s) and extend the valuation v in such a way
that vs � vt, that is, vFp(t, s, z) is the lexicographic product Z × Z. The extension
(Fp(t, s, z)|Fp(t, sp, z), v) is still purely inseparable and immediate, but now s does not lie
anymore in the completion Fp(t, sp)((z)) of Fp(t, sp, z). In fact, v(s − Fp(t, sp, z)) = {α ∈
vFp(t, sp, z) | ∃n ∈ N : nvt ≥ α} is bounded from above by vz.

Taking ϑ0 to be a root of the polynomial Xp−zp−1X−sp we obtain that v(ϑ0−c) = v(s−
c) for all c ∈ Fp(t, sp, z) and that the Artin-Schreier extension (Fp(t, ϑ0, z)|Fp(t, sp, z), v) is
immediate with defect p. We leave the proof as an exercise to the reader. Note that one
can pass to the henselizations of all fields involved, cf. Example 11.40. ♦

The interplay of Artin-Schreier extensions and radical extensions that we have used
in the last examples can also be transferred to the mixed characteristic case. There are
infinite algebraic extensions of Qp which admit immediate Artin-Schreier defect extensions.
To present an example, we need a lemma which shows that there is some quasi-additivity
in the mixed characteristic case.
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Lemma 11.55 Let (K, v) be a valued field of characteristic 0 and residue characteristic
p > 0, and with valuation ring O. Further, let c1, . . . , cn be elements in K of value ≥ −vp

p
.

Then

(c1 + . . .+ cn)p ≡ cp1 + . . .+ cpn (mod O) .

Proof: Every product of p many ci’s has value ≥ −vp. In view of the fact that every

binomial coefficient

(
p
i

)
is divisible by p for 1 ≤ i ≤ p−1, we find that (c1+c2)

p ≡ cp1+cp2

(mod O). Now the assertion follows by induction on n. �

Example 11.56 We choose (K, v) to be (Q, vp) or (Qp, vp) or any intermediate field. Note
that we write vp = 1. We construct an algebraic extension (L, v) of (K, v) with a p-divisible
value group as follows. By induction, we choose elements ai in the algebraic closure of K
such that ap1 = 1/p and api+1 = ai . Then va1 = −1/p and vai = −1/pi for every i. Hence,
the field L := K(ai | i ∈ N) must have p-divisible value group under any extension of v
from K to L. Note that a1, . . . , ai ∈ K(ai) for every i. Since (vK(ai+1) : vK(ai)) = p,
the fundamental inequality shows that K(ai+1)v = K(ai)v and that the extension of v is
unique, for every i. Hence, Lv = Qpv = Fp and the extension of v from K to L is unique.

Now we let ϑ be a root of Xp − X − 1/p. It follows that vϑ = −1/p. We define
bi := ϑ − a1 − . . . − ai . By construction, vai ≥ −1/p for all i. It follows that also
vbi ≥ −1/p for all i. With the help of the foregoing lemma, and bearing in mind that
api+1 = ai and ap1 = 1/p, we compute

0 = ϑp − ϑ− 1

p
= (bi + a1 + . . .+ ai)

p − (bi + a1 + . . .+ ai)− 1/p

≡ bpi − bi + ap1 + . . .+ api − a1 − . . .− ai − 1/p = bpi − bi − ai (mod O) .

Since vai < 0, we have that vbi = 1
p
vai = −1/pi+1 . Hence, (vK(ϑ, ai) : vK(ai)) = p =

[K(ϑ, ai) : K(ai)] and K(ϑ, ai)v = K(ai)v = Fp for every i. If [L(ϑ) : L] < p, then there
would exist some i such that [K(ϑ, ai) : K(ai)] < p. But we have just shown that this is not
the case. Similarly, if vL(ϑ) would contain an element that does not lie in the p-divisible
hull of Z = vK, or if L(ϑ)v would be a proper extension of Fp , then the same would
already hold for K(ϑ, ai) for some i. But we have shown that this is not the case. Hence,
(L(ϑ)|L, v) is an Artin-Schreier defect extension.

For the partial sums ϑk =
∑k

i=1 ai we obtain v(ϑ−ϑk) = vbk = −1/pk+1, and the same
argument as in Example 11.47 shows again that v(ϑ− L) = (vL)<0. ♦

Recall that (Qp, vp) is spherically complete (cf. Lemma ??). Hence, our example shows:

Theorem 11.57 There are henselian valued fields of characteristic 0 with positive residue
characteristic which admit immediate Artin-Schreier extensions. There are spherically
complete fields admitting an infinite separable-algebraic extension which is not even separable-
algebraically maximal.

From the last example, we can derive a special case which was given by A. Ostrowski
in [OS3], Section 39.
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Example 11.58 In the last example, we take K = Q2. Then (K(
√

3)|K, v) is an imme-
diate extension of degree 2. Indeed, this is nothing else than the Artin-Schreier extension
that we have constructed. If one substitutes Y = 1−2X in the minimal polynomial Y 2−3
of
√

3 and then divides by 4, one obtains the Artin-Schreier polynomial Xp −X − 1/2.
This is Ostrowski’s original example. A slightly different version was presented by

P. Ribenboim in [] (cf. Exemple 2 of Chapter G, p. 246): The extension (K(
√
−1)|K, v)

is immediate. Indeed, the minimal polynomial Y 2 + 1 corresponds to the Artin-Schreier
polynomial Xp −X + 1/2 which does the same job as Xp −X − 1/2. ♦

Let us come back to Example 11.56 to determine the approximation type and the
distance of a over (K, v).

Example 11.59 Let the notation be as in Example 11.56. Since (K(a)|K, v) is immediate,
part d) of Lemma 8.1 shows that at (a,K) is an immediate approximation type. Set
ci := a1 + . . .+ ai−1 for i > 1. We showed that the value of bi−1 = a− ci is vai = −(vp)/pi.
Hence, at (a,K)vai

= Bvai
(ci). If we are able to show that the values −(vp)/pi are cofinal in

ΛL(a,K), then we know that at (a,K) is uniquely determined by these balls (cf. Lemma ??).
Assume that there is c ∈ K such that v(a − c) > −(vp)/pi for all i. Then v(c − ci) =

−(vp)/pi for all i. On the other hand, there is some i such that c ∈ Qp(a1, . . . , ai−1) =
Qp(ai−1). But this contradicts the fact that v(c− a1− . . .− ai−1) = v(c− ci) = −(vp)/pi /∈
Qp(ai−1). This proves that the values −(vp)/pi are indeed cofinal in ΛL(a,K). Since vK
is a subgroup of the rationals, the least upper bound of the values −(vp)/pi in vK is the
element 0. Hence, dist (a,K) = 0. It follows that (K(a)|K, v) is immediate without (K, v)
being dense in (K(a), v). ♦

As in the equal characteristic case, we can interchange the role of radical extensions
and Artin-Schreier extensions:

Example 11.60 We proceed as in Example 11.56, with the only difference that we define
a1 to be a root of the Artin-Schreier polynomial Xp−X − 1/p and ai+1 to be a root of the
Artin-Schreier polynomial Xp − X + ai , and that we choose η such that ηp = 1/p. Note
that also in this case, a1, . . . , ai ∈ K(ai) for every i, because ai = api+1 − ai+1 for every
i. By use of Lemma 6.39 and induction on i, we again deduce that va1 = −1/p and that
vai = −1/pi for every i. As before, we define bi := η − a1 − . . .− ai . Using Lemma 11.55
and bearing in mind that api+1 = ai+1 − ai and ap1 = a1 + 1/p, we compute

0 = ηp − 1

p
= (bi + a1 + . . .+ ai)

p − 1/p

≡ bpi + ap1 + . . .+ api − 1/p = bpi + ai (mod O) .

It follows that v(bpi + ai) ≥ 0 > vai . Consequently, vbpi = vai , that is, vbi = 1
p
vai = vai+1 .

As before, we set K := Qp(ai | i ∈ N). Now the same argument as in Example 11.56 shows
that (K(a)|K, v) is an immediate extension. For the approximation type at (η,K), one can
take over literally the arguments of our last example. In particular, the values −(vt)/pi,
i ∈ N, are cofinal in ΛL(η,K). ♦

As examples for immediate extensions which do not lie in the completion, we have
constructed extensions generated by elements of distance 0. But the distance has to be
handled with much caution. The same element can have a quite different distance if we
blow up our ground field. So “distance 0” is not implicit in the construction principle that
we have used.
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Example 11.61 We let Γ be the lexicographic product Z q Z and replace Fp((t)) by
Fp((Γ)) in Example 11.47. Let v be its canonical valuation. Let the elements s, t ∈ Fp((Γ))
be chosen such that vs = (0, 1) and vt = (1, 0). Then Zvs is a convex subgroup of
vFp((Γ)) = Γ. Again taking a to be a root of the Artin-Schreier polynomial Xp−X − 1/t,
we find that everything works as before, except for the determination of the distance. As
before, the values −(vt)/pi, i ∈ N, are cofinal in ΛL(a,K). But now, 0 is not the least value
of K which is bigger than ΛL(a,K). In fact, we have that Zvs > ΛL(a,K), and there is
no least upper bound for ΛL(a,K). That is, dist (a,K) can not be an element of vK, and
since there are elements of vK which are smaller than 0 bigger than ΛL(a,K), we obtain
that dist (a,K) < 0. ♦

It can happen that it takes just a finite defect extension to make a field defectless and
even maximal. The following example is due to Masuyoshi Nagata ([NAG2], Appendix,
Example (E3.1), pp. 206-207):

Example 11.62 We take a field k of characteristic p > 0 and such that [k : kp] is infinite,
e.g. k = Fp(ti|i ∈ N) where the ti are algebraically independent elements over Fp. Taking t
to be another transcendental element over k we consider the power series fields k((t)) and
kp((t)) = kp((tp))(t) = k((t))p(t). Since [k : kp] is not finite, we have that k((t))|kp((t)).k
is a non-trivial immediate purely inseparable algebraic extension. In fact, a power series
in k((t)) is an element of kp((t)).k if and only if its coefficients generate a finite extension
of kp. Since kp((t)).k contains k((t))p, this extension is generated by a set X = {xi | i ∈
I} ⊂ k((t)) such that xpi ∈ kp((t)).k for every i ∈ I. Assuming this set to be minimal, or
in other words, the xi to be p-independent over kp((t)).k, we pick some element x ∈ X and
put K := kp((t)).k(X \ {x}). Then k((t))|K is a purely inseparable extension of degree
p. Moreover, it is an immediate extension; in fact, k((t)) is the completion of K. As an
algebraic extension of kp((t)), K is henselian. ♦

This example proves:

Theorem 11.63 There is a henselian discretely valued field (K, v) of characteristic p > 0
admitting a finite immediate purely inseparable extension (L|K, v) of degree p such that
(L, v) is complete, hence maximal and thus defectless.

For the conclusion of this section, we shall give an example which is due to F. Delon (cf.
[DEL1], Exemple 1.51). It is based on Example 24.52. It shows that an algebraically max-
imal field is not necessarily a defectless field, and that a finite extension of an algebraically
maximal field is not necessarily again algebraically maximal.

Example 11.64 We consider Fp((t)) with its t-adic valuation v = vt . According to
Lemma ?? we can choose elements x, y ∈ Fp((t)) which are algebraically independent
over Fp(t). As in Example 24.52, we define

L := Fp(t, x, y) , s := xp + typ and K := Fp(t, s) .

The elements t, s are algebraically independent over Fp. Consequently, the degree of insep-
arability of K is p2. We define F to be the relative algebraic closure of K in Fp((t)). From
Example 24.52 we know that F |K is separable and that the degree of inseparability of F
is p2. That is, [F (t1/p, s1/p) : F ] = p2. On the other hand, we have that

L.F (t1/p, s1/p) = F.L(t1/p, s1/p) = F.L(t1/p) ⊂ Fp((t))(t1/p) .
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Now
(vFp((t))(t1/p) : vFp((t)) ) = p = [Fp((t))(t1/p) : Fp((t))]

and thus, Fp((t))(t1/p) = Fp((t)). It follows that

e(F (t1/p, s1/p)|F, v) = p and f(F (t1/p, s1/p)|F, v) = 1 .

Hence,
d(F (t1/p, s1/p)|F, v) = p .

Like (Fp(t), v), also (F, v) is dense in (Fp((t)), v) and has value group Z. Hence by
Corollary ??, (Fp((t)), v) is the unique maximal immediate extension of (F, v) (up to valu-
ation preserving isomorphism over F ). If (F, v) would admit a proper immediate algebraic
extension (F ′, v), then a maximal immediate extension of (F ′, v) would also be a maximal
immediate extension of (F, v) and would thus be isomorphic over F to Fp((t)). But we
have chosen F to be relatively algebraically closed in Fp((t)). This proves that (F, v) must
be algebraically maximal.

As (F, v) is algebraically maximal, the extension F 1/p|F cannot be immediate. There-
fore, the defect of F 1/p|F implies that both F 1/p|F (s1/p) and F 1/p|F (t1/p) must be non-
trivial immediate extensions. Consequently, F (s1/p) and F (t1/p) are not algebraically max-
imal.

Let us add to Delon’s example by analyzing the situation in more detail and proving
that F is the henselization of K. Since F is relatively algebraically closed in the henselian
field Fp((t)), it is itself henselian and thus contains the henselization Kh of K. Now Fp((t))
is the completion of Kh since it is already the completion of Fp(t) ⊆ Kh. Since a henselian
field is relatively separable-algebraically closed in its completion (see ??), it follows that
F |Kh is purely inseparable. But we know from Example 24.52 that F |K is separable.
Hence, F = Kh.

The defect of the extension (F (t1/p, s1/p)|F, v) comes from the fact that (F (s1/p), v)
is not algebraically maximal. Note that the maximal immediate extension (Fp((t)), v) of
(F, v) is not a separable extension since it is not linearly disjoint from K1/p|K. ♦

This example proves:

Theorem 11.65 There are algebraically maximal fields which are not inseparably defect-
less. Hence, “algebraically maximal” does not imply “defectless”. There are algebraically
maximal fields admitting a finite purely inseparable extension which is not an algebraically
maximal field.

Exercise 11.1 Prove Lemma ??, replacing the condition that vK be archimedean by the condition that
the cofinality of vK be ω. Try to generalize the result to other cofinalities and other cardinalities.

Exercise 11.2 Show that (K, v) has residue characteristic 0 if and only if every valued field extension of
(K, v) is a defectless field.

11.6 Puiseux series fields revisited

From Theorem 9.8 we know that Puiseux series fields are henselian. In view of Theo-
rem 11.23 and Corollary 11.24, we may conclude:
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Corollary 11.66 Let k be a field of characteristic 0 and K a Puiseux series field over k
with canonical valuation vt . Then (K, vt) is a henselian defectless field. Further, K is the
algebraic closure of k((t)) if and only if k is algebraically closed.

The assertion of this corollary does not hold if k has positive characteristic, as our next
example will show.

Example 11.67 In Example 11.47, we replace Fp by an arbitrary field k of characteristic
p > 0. Again, we let a be a root of the polynomial Xp −X − 1/t. Everything works the
same, and we again obtain that (k((t))1/p∞(a)|k((t))1/p∞ , vt) is non-trivial and immediate
and that the distance of a is 0. A straightforward modification of the procedure of Exam-
ple 11.47 shows that k((t))1/p∞ can be replaced by te Puiseux series field K over k and
still, (K(a)|K, vt) will be immediate with v(a−K) = vK<0. In fact, it is obvious that the
power series

∞∑
i=1

t−1/pi

is not an element of K, because the exponents do not admit a common denominator. Note
that this also shows that even the completion of K is not algebraically closed. ♦

Our example proves:

Theorem 11.68 Let k be a field of characteristic p > 0 and K be a Puiseux series field
over k with canonical valuation vt . Then (K, vt) is not defectless. In particular, K is not
algebraically closed, even if k is algebraically closed.

We can further conclude that the union over an ascending chain of power series fields
of positive characteristic may not be defectless and thus not spherically complete. Conse-
quently, such a union can have quite different properties than the fields in the chain.

On the other hand, if k is of characteristic 0, then the Puiseux series fields over k are well
behaved, and they are nice examples for fields having henselian places with divisible value
group. For instance, Theorem 9.8 in combination with Theorem 10.18 and Theorem 10.19
shows:

Theorem 11.69 Let k be a field of characteristic 0 and K a Puiseux series field over k.
Then K is real closed if and only if k is.

One can always construct henselian defectless fields having residue field k and divisible
value group, even if k has positive characteristic. By Corollary 11.29, it suffices to take a
maximal immediate extension of the field (k(tn | n ∈ N), vt). But this field is “very large”:
it has uncountable transcendence degree over k((t)).

The following ℘-adic counterpart of Theorem 11.69 was proved by G. Cherlin in [CHER1].

Theorem 11.70 Let (k, v) be a valued field and K a Puiseux series field over k with
canonical valuation vt . Then (K, vt ◦ v) is a ℘-adically closed field if and only if (k, v) is.
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Proof: The residue field of (K, vt) is k. Hence, vt ◦ vK ∼= vtK q vk. So if π is a prime
element in (k, v), then it is also a prime element in (K, vt ◦ v). Conversely, if (K, vt ◦ v) has
a prime element π, then (k, v) has a prime element of the same value (for instance, πvt).
It follows that (K, vt ◦ v) is formally ℘-adic if and only if (k, v) is.

Since vtK ∼= Q by Theorem 9.8, we find that vt ◦ vK is a Z-group if and only if vk
is. Again by Theorem 9.8, (K, vt) is henselian. Hence, part a) of Theorem ?? shows that
(K, vt ◦ v) is henselian if and only if (k, v) is. Now our assertion follows from the foregoing
theorem. �

Remark 11.71 It can be shown that if a field K admits a valuation v such that (K, v) is ℘-adically
closed, then this valuation is uniquely determined. Thus, let us call K ℘-adically closed if it admits such
a valuation. Then the theorem can also be stated without mentioning the valuations: Let K be a Puiseux
series field over k. Then K is ℘-adically closed if and only if k is.

11.7 Transformation of defect extensions

We have seen in the last section that there exist proper purely inseparable immediate
extensions which do not lie in the completion (cf. Theorem 11.52). We wish to show in
this section that such extensions can be transformed into immediate separable extensions.
Let us start with a “simple” observation.

Lemma 11.72 Let p be any prime, (K, v) a henselian field and (K(a)|K, v) an extension
of degree p. Assume that at (a,K) is an immediate approximation type. Then (K(a)|K, v)
is immediate and p is the characteristic exponent of K.

Proof: Suppose that p is not the characteristic exponent of K. Then by the Lemma
of Ostrowski (Lemma 11.17), the extension (K(a)|K, v) is defectless. Since it is of degree
p, we know that a /∈ K. From Lemma 8.2 we infer that at (a,K) is not immediate. This
contradiction to our assumption shows that p is indeed the characteristic exponent of K.

From Corollary ?? we know that the degree of at (a,K) is smaller or equal to [K(a) : K].
But Corollary 11.19 tells us that this degree is a power of p. Suppose that it is 1. By
Lemma ?? this means that at (a,K) is trivial. But then a ∈ K (cf. Lemma ??), which
is a contradiction. Consequently, the degree of at (a,K) is p. In view of Lemma 8.16, we
conclude that (K(a)|K, v) is immediate. �

Now suppose that (K(a)|K, v) is an arbitrary extension such that dist (a,K) < ∞.
Let f ∈ K[X] be the minimal polynomial of a over K. Then by the Continuity of Roots
(Theorem 5.11 or Corollary 5.13), there is some value α ∈ vK with the following property:
If g ∈ K[X] such that v(f − g) > α with respect to the Gauß valuation on K(X), then g
admits a root a′ ∈ K̃ such that v(a − a′) > ΛL(a,K). It then follows from Lemma 1.30
that at (a,K) = at (a′, K).

If we start with an immediate extension (K(a)|K, v), then by part d) of Lemma 8.1,
at (a,K) = at (a′, K) is an immediate approximation type. This will in general not tell too
much about the extension (K(a′)|K, v). For instance, if we take g of higher degree than
f , then K(a′)|K may be of higher degree than K(a)|K, and it can not be expected that
(K(a′)|K, v) be immediate. But even if [K(a′) : K] = [K(a) : K], it still lacks an argument
for (K(a′)|K, v) to be immediate. If we know that deg A = [K(a) : K] = [K(a′) : K],
then this will follow from Lemma 8.16. So we have to make sure that deg A = [K(a) : K].
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For this, we employ the foregoing lemma. It tells us that if we start with a henselian field
(K, v) and an immediate extension (K(a)|K, v) of prime degree p, then we obtain that
deg A = p = [K(a) : K]. Let us treat the special case where a is purely inseparable of
degree p over K, where p > 0 is the characteristic of K. We want to derive an Artin-
Schreier extension. We choose some c ∈ K such that (p − 1)vc > α, where α is as
above. Then we let g(X) := Xp − cp−1X − ap. Since f(X) := Xp − ap is the minimal
polynomial of a over K, v(f − g) = vcp−1 > α yields that there is a root a′ ∈ K̃ of g
such that at (a,K) = at (a′, K). Consequently, (K(a′)|K, v) is immediate by our above
arguments (since (K, v) is assumed to be henselian, we have a unique extension of v). This
extension is an Artin-Schreier extension since a′/c is a root of the Artin-Schreier polynomial
Xp−X− (a/c)p. (The element a′ may not itself be an Artin-Schreier root. For example, if
va′ > 0, then Example 9.3 in the next chapter will show that an Artin-Schreier polynomial
with root a′ must split over every henselian field. If va′ = 0, then an extension by an
Artin-Schreier root a′ will always be tame and in particular defectless (cf. Chapter 13.1).
We have proved:

Lemma 11.73 Let (K, v) be a henselian field of characteristic p > 0 and (K(a)|K, v) a
purely inseparable immediate extension of degree p such that dist (a,K) < ∞. Then there
exists an immediate Artin-Schreier extension (K(a′)|K, v) such that at (a′, K) = at (a,K).
(But it may not be possible to choose a′ as an Artin-Schreier root.)

In the following, assume that (K, v) is a henselian Artin-Schreier closed field. Then from
Example 11.41 we know that the perfect hull of (K, v) is an immediate extension. Since
K admits no Artin-Schreier extensions at all, the above lemma shows that there exist no
purely inseparable immediate extensions (K(a)|K, v) such that dist (a,K) < ∞. That is,
every purely inseparable immediate extension of (K, v) of degree p lies in the completion
of (K, v). It follows that (K1/p, v) lies in (K, v)c. Now we observe that the Frobenius
sends the extension K1/p2 |K1/p onto the extension K1/p|K. It is valuation preserving since
va < vb ⇔ vap < vbp. Thus, since (K1/p, v) lies in (K, v)c, we find that (K1/p2 , v) lies
in (K1/p, v)c = (K, v)c (cf. Lemma 6.27). By induction, one shows that (K1/pm

, v) lies in
(K, v)c for every m ∈ N. Consequently, (K1/p∞ , v) lies in (K, v)c. This proves:

Theorem 11.74 Let (K, v) be a henselian Artin-Schreier closed field. Then it is dense
in its perfect hull (endowed with the unique extension of v). In particular, a separable-
algebraically closed field (K, v) is dense in its algebraic closure.

The first assertion can also be proven in the following way. We represent the extension
K1/p∞|K as an (infinite) tower of purely inseparable extensions Kν+1|Kν (ν < ν0 where
ν0 is some ordinal). Then we only have to show that (Kν+1, v) lies in (Kν , v)c for every
ν < ν0 . Since (Kν , v) is henselian being an algebraic extension of (K, v), it just remains
to show that Kν is Artin-Schreier closed. This is the content of the next lemma:

Lemma 11.75 Let K be an Artin-Schreier closed field of characteristic p > 0. Then also
every purely inseparable extension of K is Artin-Schreier closed.

Proof: If charK = 0 then every purely inseparable extension is trivial and there is
nothing to show. So let charK = p > 0. Assume L to be a purely inseparable extension of
the Artin-Schreier closed field K. Let a ∈ L and b ∈ L̃ be a root of Xp−X − a. Choose a
minimal integer m ≥ 0 such that ap

m ∈ K. Then (bp
m

)p− bpm
= (bp− b)pm

= ap
m

. Since K
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is Artin-Schreier closed by assumption, it follows that bp
m ∈ K. The field K(b) contains

a = bp − b and thus, [K(b) : K] ≥ [K(a) : K] = pm. On the other hand, pm ≥ [K(b) : K]
since bp

m ∈ K. Consequently, [K(b) : K] = [K(a) : K], showing that b ∈ K(a) ⊂ L. �

To prove our next theorem, we also have to transform purely inseparable defectless
extensions into separable defectless extensions. This is done by an iterated application of
Theorem 5.11.

Lemma 11.76 Let (L|K, v) be a purely inseparable defectless extension with valuation ba-
sis a1, . . . , am . Further, let r1(a1, . . . , am), . . . , rn(a1, . . . , am) ∈ L with ri ∈ K(X1, . . . , Xm).
Then for every γ ∈ vK there is a separable defectless extension with valuation basis
b1, . . . , bm such that ri(b1, . . . , bm) 6= ∞ and v(ri(a1, . . . , am) − ri(b1, . . . , bm)) > γ for
1 ≤ i ≤ n.

Proof: Let fj be the minimal polynomial of aj over K(a1, . . . , aj−1) (note that some
fj may be linear). Without loss of generality, we can assume that all coefficients of the
fj are among the ri(a1, . . . , am). By the continuity of addition and multiplication, for
every δ there is a value α(δ) ∈ vK such that if v(aj − bj) > α(γ) for 1 ≤ j ≤ m, then
ri(b1, . . . , bm) 6= ∞ and v(ri(a1, . . . , am) − ri(b1, . . . , bm)) > δ (cf. ??). Now take α to be
the maximum of α(γ) and the values vaj , 1 ≤ j ≤ m. By Theorem 5.11 there is βn ∈ vK
such that if gn ∈ K(a1, . . . , an−1) with v(fn − gn) > βn , then there is a root bn of gn such
that v(an − bn) > α. Now we set αn := max{α, α(βn)}.

We repeat the procedure for n − 1 in the place of n and αn in the place of α to
find αn−1 := max{αn, α(βn−1)}. By a finite repetition we will arrive at β1 . We add
the monomial c1X with c1 ∈ K a suitable element of value > β1 to obtain a separable
polynomial f1(X) + c1X. This polynomial has a root b1 such that ri(b1, a2, . . . , am) 6= ∞
and v(ri(a1, . . . , am) − ri(b1, a2, . . . , am)) > γ for all i. We iterate this procedure to find
separable polynomials fi(X) + ciX with roots bi that satisfy v(ai − bi) > α for all i.
Since deg fi = deg(f1(X) + ciX), it follows that [K(b1, . . . , bn) : K] ≤ [L : K]. But
v(ai − bi) > α ≥ vai for every i, which by Lemma 6.20 shows that b1, . . . , bn are valuation
independent over (K, v), which yields that [K(b1, . . . , bn) : K] = n = [L : K] and that
b1, . . . , bn is a valuation basis. �

Theorem 11.77 Let (K, v) be a separably defectless field of characteristic p > 0. If in
addition Kc|K is separable, then (K, v) is a defectless field.

Proof: Assume that Kc|K is separable, but that (K, v) is a defectless field. We have to
show that (K, v) is not separably defectless. Let (F |K, v) be a finite defect extension, and
let E|K be the maximal separable subextension. If it is not defectless, then we are done.
So assume that it is defectless. Consequently, (F |E, v) must be a defect extension. Since
F |E is purely inseparable and every such extension is a tower of extensions of degree p, it
follows that there exists a finite defectless purely inseparable extension L|E and an element
a ∈ L1/p such that the extension (L(a)|L, v) is immediate. Without loss of generality,
we can assume that va ≥ 0. By Corollary ?? we know that at (a, L) is non-trivial and
immediate.



290 CHAPTER 11. DEFECT

Since Ec = E.Kc by Lemma 6.25 and since Kc|K is separable by hypothesis, we know
that also Ec|E is separable. It follows that

[L(a).Kc : L.Kc] = p .

Again by Lemma 6.25, we have that Kc.L = Lc, which shows that the distance of a from
Lc can not be ∞:

dist(a, L) <∞ .

We choose some δ ∈ vK such that δ ≥ 0 and δ > dist(a, L). Since L|E is purely inseparable,
the extension of v from E to L is unique. Since in addition (L|E, v) is defectless, it admits
a valuation basis a1, . . . , an . Let r ∈ E(X1, . . . , Xn) such that a = r(a1, . . . , an). By the
foregoing lemma, there is a separable algebraic extension (L′|E, v) generated by a valuation
basis b1, . . . , bn such that with b := r(b1, . . . , bn)1/p,

v(ap − bp) > pδ and ∀i : v(ai − bi) > δ + vai (11.9)

It follows that the approximation type of b over (L′, v) is immediate with distance dist(a, L).
To show this, let c1, . . . , cn ∈ K be arbitrary. If vcjbj < 0 ≤ vb for some j, then

v(b−
n∑
i=1

cibi) = vcjbj = vcjaj = v(b−
n∑
i=1

ciai) .

If on the other hand ∀i : vcibi ≥ 0, then

v(b−
n∑
i=1

cibi) = v(a−
n∑
i=1

ciai + b− a−
n∑
i=1

ci(bi − ai))

= min(v(b−
n∑
i=1

ciai), v(b− a), v(
n∑
i=1

ci(bi − ai))) = v(b−
n∑
i=1

ciai))

since v(b− a) > δ and

vci(bi − ai) = vci + v(bi − ai) ≥ −vai + δ + vai = δ > v(a−
n∑
i=1

ciai) .

In view of Lemma 1.36, this shows that at (b, L′) is non-trivial and immediate, because the
same holds for at (a, L). From Lemma 11.72 we conclude that (L(b)|L, v) is immediate.

By an application of Lemma 11.73, we now obtain an immediate separable extension
(L′(b′)|L′, v). Altogether, we have constructed a finite separable extension (L′(b′)|K, v)
which is not defectless. But this contradicts our assumption on (K, v). Hence we have
shown (K, v) to be defectless. �

Exercise 11.3 Assume the situation as in the proof of Theorem ??. Show that the map ca+
∑n

i=1 ciai 7→
cb +

∑n
i=1 cibi (c, ci ∈ K) is an isomorphism of ultrametric spaces fixing K and sending L onto L′. Hence,

if at (a, L) is immediate, then so is at (b, L′).
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11.8 Shifting the defect through extensions

An important question in the theory of the defect is the following: if a given h-finite
extension E|K is lifted up through some extension L|K to an extension E.L|L, in which
way will the defect change? In special cases, it remains unchanged:

Lemma 11.78 Let (Ω|K, v) be a normal extension and K ⊂ L ⊂ (Ω|K, v)r. Let (E|K, v)
be an arbitrary finite subextension of (Ω|K, v). Then

d(E|K, v) = d(E.L|L, v) .

Proof: Let F ⊂ Ω be the normal hull of E|K, and let V := (Ω|K, v)r and V′ :=
(F |K, v)r. By Lemma 7.20, V′ = V ∩ F . Hence, F |V′ is linearly disjoint from V|V′. By
Lemma 7.7, (F |E, v)r = E.V′. Since d(E.V′|E, v) = 1 by virtue of Lemma 11.22, we
find that d(E.V′|K, v) = d(E|K, v). By assumption, L ⊂ V, showing that L′ := L.V′ ⊂
V. Hence by Lemma 11.22, d(L′|L, v) = 1. On the other hand, Lemma 7.7 shows that
(Ω|E.L, v)r = E.V ⊃ E.L′ . Hence again by Lemma 11.22, d(E.L′|E.L, v) = 1. We find
that

d(E.L|L, v) = d(E.L′|E.L, v) · d(E.L|L, v) = d(E.L′|L, v)

= d(E.L|L, v) · d(L′|L, v) = d(E.L′|L′, v) .

We see that it suffices to prove our lemma with E replaced by E.V and L replaced by
L.V′ and K replaced by V′. After this replacement, we can assume that (F |E, v) is a finite
normal extension with ramification field K and that F |K is linearly disjoint from V|K.
The latter implies that [E.L : L] = [E : K], and it follows from Lemma 24.12 that F.L|L is
linearly disjoint from V|L, that is, F.L∩V = L. Hence L is equal to (F.L|L, v)r by virtue
of Lemma 7.20. Since E.L ⊂ F.L, we can infer from Theorem 7.16 that v(E.L)/vL is a p-
group (where p is the characteristic exponent of K), and that E.L|L is purely inseparable.
On the other hand, Lemma 7.7 shows that (Ω|E, v)r = E.V. Since E.L ⊂ E.V, we can
thus conclude from Theorem 7.19 and Theorem 7.13 that v(E.L)/vL is a p′-group and that
E.L|E is separable. This yields that v(E.L)/(vE + vL) is at the same time a p-group and
a p′-group, i.e., v(E.L) = (vE + vL). Similarly, we obtain that E.L|E.L is at the same
time a purely inseparable and a separable extension, i.e., E.L = E.L.

Furthermore, Theorem 7.16 shows that vE/vK is a p-group and that E|K is purely
inseparable. On the other hand, Theorem 7.19 and Theorem 7.13 show that vL/vK is a p′-
group and L|K is separable. Consequently, vE/vK is disjoint from vL/vK and (vE+ vL :
vL) = (vE : vK). Similarly, E|K is linearly disjoint from L|K and [E.L : L] = [E : K].

Since the ramification field of (F |K, v) is K, Theorem 7.9 shows that the extension of
v from K to F and thus also to E is unique. The same holds for the extension of v from
L to E.L because L is the ramification field of (F.L|L, v). In view of Lemma ??, we can
now compute:

d(E|K, v) =
[E : K]

(vE : vK)[E : K]
=

[E.L : L]

(vE + vL : vL)[E.L : L]

=
[E.L : L]

(v(E.L) : vL)[E.L : L]
= d(E.L|L, v) .

�
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Contrary to the property “henselian field”, the property “defectless field” is in general
not inherited by infinite algebraic extensions (cf. Theorem 11.45 and Theorem 11.57). But
we can apply the foregoing lemma to obtain an important class of algebraic extensions
which always preserve this property (cf. also Corollary 13.36):

Theorem 11.79 Let (Ω|K, v) be a normal extension and K ⊂ L ⊂ (Ω|K, v)r. Then (L, v)
is a defectless field if and only if (K, v) is. The same holds for “separably defectless” and
“inseparably defectless” in the place of “defectless”.

Proof: From Lemma 7.20 we know that (Ω|K, v)r = (K̃|K, v)r∩Ω. Hence we can assume
from the start that Ω = K̃. Suppose that (L, v) is a defectless field, and let (E|K, v) be
an arbitrary finite extension. Then by the foregoing lemma, d(E|K, v) = d(E.L|L, v) = 1.
This shows that (K, v) is a defectless field.

For the converse, suppose that (K, v) is a defectless field, and let (F |L, v) be a finite
extension. Then there is a finite extension (E|K, v) such that F ⊂ E.L . We have that
d(E.L|L, v) = d(E|K, v) = 1. By the multiplicativity of the defect, it follows that also
d(F |L, v) = 1. �

In general, the defect can increase or decrease if an h-finite extension is lifted up through
another extension. A defectless extension may become a defect extension after lifting up
through an algebraic extension (cf. Example 11.44 and Example 11.39). On the other hand,
every h-finite defect extension of a valued field (K, v) becomes trivial and thus defectless
if lifted up to the algebraic closure K̃. At least we can show that if the defect decreases,
then there is no further descent after a suitable finitely generated extension.

Lemma 11.80 Let (L|K, v) and (E|K, v) be subextensions of a valued field extension
(Ω|K, v) such that E|K is finitely generated and E.L|L is h-finite. Then there exists a
finitely generated subextension L0|K of L|K such that for every two subfields L1 ⊂ L2 of
L containing L0, the following holds:

1. [(E.L)h : Lh] = [(E.L1)
h : Lh1 ] = [(E.L2)

h : Lh2 ],

2. (v(E.L) : vL) ≤ (v(E.L1) : vL1) ≤ (v(E.L2) : vL2),

3.
[
E.L : L

]
≤
[
E.L1 : L1

]
≤
[
E.L2 : L2

]
,

4. d(E.L|L, v) ≥ d(E.L1|L1, v) ≥ d(E.L2|L2, v).

Proof: Since [(E.L)h : (L)h] is finite, (v(E.L) : vL) and [E.L : L.F ] are finite too.
Hence there exist β1, . . . , βr ∈ v(E.L) such that

v(E.L) = vL+ Zβ1 + . . .+ Zβr ,

and there exist b1, . . . , bs ∈ E.L such that

E.L = L.F (b1, . . . , bs) .

Whenever L1 is such that β1, . . . , βr ∈ v(E.L1) and b1, . . . , bs ∈ E.L1 , then

(v(E.L1) : vL1) ≥ (v(E.L) : vL) (11.10)[
E.L1 : L1

]
≥

[
E.L : L

]
, (11.11)
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the left hand sides not necessarily being finite. If L1 also satisfies

[(E.L1)
h : Lh1 ] = [(E.L)h : Lh] , (11.12)

then the left hand sides of (11.10) and (11.11) have to be finite, and we will have that

d(E.L1|L1) =
[(E.L1)

h : Lh1 ]

(v(E.L1) : vL1) ·
[
E.L1 : L1

]
≤ [(E.L)h : Lh]

(v(E.L) : vL) ·
[
E.L : L

] = d(E.L|L, v) .

By ??, there exists a finitely generated field of definition K0 ⊂ L for (E.L)h|Lh, i.e.
every extension field L1 of K0 within L satisfies (11.12). Further, let us choose elements
a1, . . . , ar ∈ E.L whose values are α1, . . . , αr respectively, and elements b1, . . . , bs ∈ E.L
with residues b1, . . . , bs. To write down these finitely many elements ai, bj , one only needs
finitely elements from L and E. Adjoining all the necessary elements from L to K0.K, we
obtain a finitely generated subextension L0|K. Every extension field L1 of L0 will satisfy
(11.12) and contain the elements ai, bj and thus will satisfy all above equations. �

In Section 6.7 below, we will study conditions which exclude an increase of the defect.

Exercise 11.4 Show that Lemma 11.22 also holds for h-finite extensions (K1|K0, v).

11.9 Valuation disjoint extensions and the defect

Valuation disjoint extensions are particularly interesting in combination with defectless
extensions:

Lemma 11.81 Let (Ω|K, v) be a valued field extension. Further, let (L|K, v) be a defectless
algebraic and (F |K, v) an arbitrary subextension of (Ω|K, v). Assume that (L|K, v) is
valuation disjoint from (F |K, v). Then L|K is linearly disjoint from F |K, the extension
of v from F to L.F is unique and (L.F |F, v) is defectless. Furthermore,

v(L.F ) = vL+ vF and L.F = L.F . (11.13)

Proof: We prove our assertion first under the assumption that L|K is finite. The
main point of the proof is to determine v(L.F ) and L.F . Certainly, v(L.F ) contains both
vL and vF , and L.F contains both L and F . Since (L|K, v) is assumed to be valuation
disjoint from (F |K, v), we have that L|K is linearly disjoint from F |K and that every set
of vK-independent elements of vL is also vF -independent. It follows that

(v(L.F ) : vF ) ≥ (vL+ vF : vF ) = (vL : vK)

[L.F : F ] ≥ [L.F : F ] = [L : K] .

By assumption, (L|K, v) is defectless, i.e. [L : K] = [L : K] · (vL : vK). Consequently,

[L.F : F ] ≥ (v(L.F ) : vF ) · [L.F : F ]

≥ (vL : vK) · [L : K] = [L : K] ≥ [L.F : F ] ,
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showing that in all of these inequalities, “=” holds everywhere. The equality [L.F : F ] =
[L : K] shows that L|K is linearly disjoint from F |K. The equality [L.F : F ] = (v(L.F ) :
vF ) · [L.F : F ] shows that the extension (L.F |F, v) is defectless. It follows from the
fundamental inequality (7.26) (cf. Theorem 7.49) that there exists only one extension of
the valuation v from F to L.F . Further, we find that (11.13) holds.

Now assume that L|K is infinite. By what we have already shown, it follows that every
finite subextension is linearly disjoint from F |K, hence L|K is itself linearly disjoint from
F |K. Since every finite subextension of L.F |F is contained in some subextension of the
form L′.F |F where L′|K is a finite subextension of L|K, we also obtain that (L.F |F, v)
is defectless. Finally, for every element α ∈ v(L.F ) there is already a finite extension
L′|K such that α ∈ v(L′.F ) = vL′ + vF , showing that α ∈ vL + vF and consequently,
v(L.F ) = vL+ vF . A similar argument works for the residue fields. �

The condition that (L|K, v) be defectless is indispensable:

Example 11.82 In Example 11.49, replace Fp by a field k of characteristic p > 0 which is
not perfect. Everything works the same, and we obtain an immediate purely inseparable
extension (K(a)|K, v) of degree p such that ap = 1/t and dist (a,K) = 0. Now let c ∈ k\kp
and b be such that bp = c + 1/t. Then the extension (K(b)|K, vt) is immediate like
(K(a)|K, vt) (observe that a and b have the same approximation type over (K, vt) by
virtue of Lemma 1.30 since vt(a − b) = 0 ≥ ΛL(a,K) ). Consequently, (K(a)|K, vt) is
valuation disjoint from (K(b)|K, vt) in (K(a, b), vt). But K(a).K(b) = K(a, b) = k(c1/p) 6=
k = K(a).K(b) . There are similar but slightly more complicated examples which show the
same phenomenon at the value groups. ♦

Since every finite extension (L|K, v) is defectless if (K, v) is a henselian defectless field,
we obtain directly from the foregoing lemma:

Corollary 11.83 Let (K, v) be a henselian defectless field and (F |K, v) a valuation regular
extension. Then there exists a unique extension of v from F to K̃.F . With this extension,
(K̃.F |F, v) is defectless, and for every algebraic extension L|K we have that v(L.F ) =
vL+ vF and L.F = L.F .

Assume that (F |K, v) is valuation separable. If a given finite purely inseparable exten-
sion (L|K, v) is defectless, then L|K is linearly disjoint from F |K by the foregoing lemma.
Hence if (K, v) is inseparably defectless, then F |K is linearly disjoint from every purely
inseparable extension of K, that is, F |K is separable.

Now assume that (F |K, v) is valuation regular. If a given finite extension (L|K, v) is
defectless, then again, L|K is linearly disjoint from F |K by the foregoing lemma. If (K, v)
is henselian defectless, then every finite extension (L|K, v) is defectless, which shows that
F |K is linearly disjoint from every finite extension of K, i.e., F |K is regular. Let us note:

Corollary 11.84 Every valuation separable extension of an inseparably defectless field is
separable, and every valuation regular extension of a henselian defectless field is regular.

In view of Lemma 6.65 and Lemma 6.66, we find:

Corollary 11.85 Every immediate extension is valuation regular. Consequently, every
immediate extension of an inseparably defectless field is separable, and every immediate
extension of a henselian defectless field is regular.
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As a further corollary to Lemma 11.81, we obtain the full analogue of Lemma 24.12 for
defectless algebraic extensions in the following sense:

Lemma 11.86 Let (Ω|K, v) be an extension of valued fields and L|K and F ⊃ E ⊃ K
subextensions of Ω|K. Assume that (L|K, v) or (E|K, v) is defectless algebraic. Then
(L|K, v) is valuation disjoint from (F |K, v) if and only if (L|K, v) is valuation disjoint
from (E|K, v) and (L.E|E, v) is valuation disjoint from (F |E, v).

The assertion of Lemma 11.81 on the defect can be generalized in the following way:

Lemma 11.87 Let (F |K, v) be an arbitrary valued field extension, and extend v from F
to F̃ . Further, let (L|K, v) be an h-finite subextension of (F̃ |K, v). If (L|K, v) is valuation
disjoint from (F |K, v) in (F̃ , v), then d(L|K, v) ≥ d(L.F |F, v).

Proof: Since vL|vK is disjoint from vF |vK and L|K is linearly disjoint from F |K, we
find that

(v(L.F ) : vF ) ≥ (vL+ vF : vF ) = (vL : vK)

[L.F : F ] ≥ [L.F : F ] = [L : K] .

Now our assertion follows from the definition of the henselian defect and the fact that
[(L.F )h : F h] = [Lh.F h : Kh.F h] ≤ [Lh : Kh]. �

Corollary 11.88 Let (K, v) be a defectless field and (F |K, v) a valuation regular exten-
sion. Then (F, v) is defectless in K̃.F . If (K̃.F, v) is a defectless field, then also (F, v) is
a defectless field.

Proof: Let L|K be a normal extension. Since (K, v) is assumed to be a defectless field,
we know that d(L|K, v) = 1. Since (F |K, v) is assumed to be a valuation regular extension,
it follows from the foregoing lemma that d(L.F |F, v) = 1. Since every normal subextension
of K̃.F |F is contained in an extension L.F |F for L|K a normal extension, it follows by
Lemma 11.1 that (F, v) is defectless in K̃.F . If in addition (K̃.F, v) is a defectless field,
then it follows from the transitivity of defectless extensions (Lemma 11.16) that (F, v) is a
defectless field. �

Lemma 11.89 Let (K ′|K, v) be a valuation regular extension. Further, let (L′|K ′, v) and
(L|K, v) be normal extensions such that L ⊂ L′. Then (L∩K ′ |K, v) and also the extensions

(L |L ∩K ′, v)d ⊂ (L ∩ (L′|K ′, v)d, v)

(L |L ∩K ′, v)i ⊂ (L ∩ (L′|K ′, v)i, v)

(L |L ∩K ′, v)r ⊂ (L ∩ (L′|K ′, v)r, v)

are immediate. If (K, v) is a defectless field, then equalities hold:

resL(Gd(L′|K ′, v)) =Gd(L |L ∩K ′, v) and L ∩ (L′|K ′, v)d = (L |L ∩K ′, v)d

resL(Gi(L′|K ′, v)) =Gi(L |L ∩K ′, v) and L ∩ (L′|K ′, v)i = (L |L ∩K ′, v)i

resL(Gr(L′|K ′, v)) =Gr(L |L ∩K ′, v) and L ∩ (L′|K ′, v)r = (L |L ∩K ′, v)r .
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Proof: The field L1 := L ∩ (L′|K ′, v)d is contained in the field (L′|K ′, v)d which by
Lemma 7.12 is an immediate extension of (K ′, v). Hence, vL1 ⊂ vK ′ and L1 ⊂ K ′.
But vL1/vK is a torsion group and L1|K is algebraic. Since (K ′|K, v) is assumed to be
valuation regular, this implies that vL1 = vK and L1 = K, which yields our first assertion
for the decomposition fields and that (L ∩K ′ |K, v) is immediate.

The field L2 := L ∩ (L′|K ′, v)i is contained in the field L′2 := (L′|K ′, v)i. By The-
orem 7.13, the latter has the same value group as (K ′, v), so as before it follows that
vL2 = vK. Since (K ′|K, v) is valuation regular, K ′|K is separable. By Theorem 7.13, also
L′2|K ′ is separable. Hence, L2|K is an algebraic subextension of the separable extension
L′2|K. Since by Theorem 7.13, L2 is a purely inseparable extension of the residue field of
(L |L ∩K ′, v)i, it must be equal to the latter. We have proved that (L ∩ (L′|K ′, v)i, v) ⊃
(L |L ∩K ′, v)i is immediate.

The field L3 := L ∩ (L′|K ′, v)r is contained in the field L′3 := (L′|K ′, v)r. The equality
of the residue fields is shown as in the case of the inertia fields. Since (K ′|K, v) is valuation
regular, vK ′/vK is torsion free. By Theorem 7.19, vL′3/vK

′ is a p′-group. Hence also
the torsion subgroup of vL′3/vK is a p′-group. It follows that its subgroup vL3/vK is a
p′-group. But by Theorem 7.16, vL3/v(L |L ∩ K ′, v)r is a p-group, which consequently
must be trivial. We have proved that (L ∩ (L′|K ′, v)r, v) ⊃ (L |L ∩K ′, v)r is immediate.

Now assume that (K, v) is a defectless field. Then by Theorem 11.79, also (L |L∩K ′, v)d,
(L |L ∩K ′, v)i and (L |L ∩K ′, v)r are defectless fields. On the other hand, the extensions
(L ∩ (L′|K ′, v)d, v) ⊃ (L |L ∩ K ′, v)d and (L ∩ (L′|K ′, v)i, v) ⊃ (L |L ∩ K ′, v)i and also
(L ∩ (L′|K ′, v)r, v) ⊃ (L |L ∩K ′, v)r admit a unique extension of the valuation since they
all lie between L and (L |L∩K ′, v)d (cf. Theorem 7.9). Since they are immediate, it follows
by Corollary 11.7 that they must be trivial. This proves our last assertion.

Finally, let us show that (L |L∩K ′, v)d = (L|K, v)d. By Lemma 7.7, (L |L∩K ′, v)d ⊃
(L|K, v)d. By what we have shown already, it is immediate. On the other hand, it admits
a unique extension of the valuation. Hence, equality must hold. �

With L = Ksep and L′ = K ′ sep, we obtain from this lemma:

Theorem 11.90 Let (K, v) be a defectless field and (K ′|K, v) a valuation regular exten-
sion. Then the relative algebraic closure of (K, v) in (K ′, v)h is precisely (K, v)h.

11.10 Extensions generated by valuation transcenden-

ce bases

To illustrate the use of the results of the foregoing section, we apply them to extensions
generated by not necessarily finite standard algebraically valuation independent sets.

Lemma 11.91 Let (L|K, v) be a finite subextension of (Ω|K, v) and T a standard al-
gebraically valuation independent set in (Ω|L, v). Further, let v1 = v, v2, . . . , vg be the
extensions of v from K(T ) to L(T ) (which by Lemma 6.35 are uniquely determined by
their restrictions to L). Then g = g(L(T )|K(T ), v) = g(L|K, v) and for 1 ≤ i ≤ g,

d(L(T )|K(T ), vi) = d(L|K, vi) (11.14)

e(L(T )|K(T ), vi) = e(L|K, vi) (11.15)

f(L(T )|K(T ), vi) = f(L|K, vi) (11.16)
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Moreover, for 1 ≤ i ≤ g,

viL(T ) = viL+ vK(T ) and L(T )vi = Lvi . K(T )v . (11.17)

Proof: Lemma 6.35 shows that g(L(T )|K(T ), v) = g(L|K, v). Further, if T is given
as in that lemma, then vK(T ) = vK ⊕

⊕
i∈I Zvxi and viL(T ) = viL ⊕

⊕
i∈I Zvxi.

Hence, vL(T )/vK(T ) ∼= viL/vK, which proves equation (11.15). Again by Lemma 6.35,
K(T )v = Kv(yjv | j ∈ J) and L(T )vi = Lvi(yjv | j ∈ J). Since the elements yjv are
algebraically independent over Kv and Lvi|Kv is algebraic, Kv(yjv | j ∈ J)|Kv is linearly
disjoint from Lvi|Kv, which yields (11.16). Also, (11.17) follows immediately from the
above described form of the value groups and residue fields.

Since the elements of T are algebraically independent over K, the extension K(T )|K
is regular and thus, [L(T ) : K(T )] = [L : K]. In view of Corollary 7.40, we have that

[L(T )h(vi) : K(T )h] = [Lh(vi).K(T )h : K(T )h] ≤ [Lh(vi) : Kh] . (11.18)

But from (7.24) we obtain that

∑
1≤i≤g

[L(T )h(vi) : K(T )h] = [L(T ) : K(T )] = [L : K] =
∑

1≤i≤g

[Lh(vi) : Kh]

which shows that equality must hold in (11.18). Now (11.14) follows from the definition of
the henselian defect. �

By use of this lemma, we can improve Lemma 11.89 for our special situation:

Lemma 11.92 Let (L′|K ′, v) and (L|K, v) be normal extensions such that L ⊂ L′. Fur-
ther, suppose that T is a (not necessarily finite) standard algebraically valuation indepen-
dent set in the extension (K ′|K, v) such that K ′ = K(T ). Then

resL(Gd(L′|K(T ), v)) =Gd(L|K, v) and L ∩ (L′|K(T ), v)d = (L|K, v)d

resL(Gi(L′|K(T ), v)) =Gi(L|K, v) and L ∩ (L′|K(T ), v)i = (L|K, v)i

resL(Gr(L′|K(T ), v)) =Gr(L|K, v) and L ∩ (L′|K(T ), v)r = (L|K, v)r .

Proof: First note that L∩K(T ) = K since K(T )|K is regular. Now if one of the asserted
equalities would not hold, then one of the immediate extension described in Lemma 11.89
would be non-trivial and would thus contain a finite non-trivial immediate subextension,
which we will call (E2|E1, v). Since all these extensions lie between L and (L|K, v)d,
they admit unique extensions of the valuation v. Thus, d(E2|E1, v) > 1 and by the last
lemma, also d(E2(T )|E1(T ), v) > 1. But E2(T )|E1(T ) is a subextension of (L′|K(T ), v)r,
and Lemma 11.22 shows that it must be h-defectless. This contradiction shows that all
asserted equalities hold. �

Corollary 11.93 Let (K(T )|K, v) be as before. Then the relative algebraic closure of
(K, v) in (K(T ), v)h is precisely (K, v)h.
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We have already seen that (K(T )|K, v) is valuation regular (Lemma 6.67) and that
K(T )|K is regular (see the last proofs). Since vKh = vK, vK(T )h = vK(T ), Kh = K
and K(T )h = K(T ), we immediately see from Lemma 6.66 that also the extension
(K(T )h|Kh, v) is valuation regular. The preceding lemma shows that Kh is relatively al-
gebraically closed in K(T )h. On the other hand, Kh(T )|Kh is regular and K(T )h|Kh(T )
is separable algebraic, hence K(T )h|Kh is separable. By Lemma 24.48 we find that
K(T )h|Kh is regular. Let us summarize:

Corollary 11.94 Let (K(T )|K, v) be as before. Then the extensions (K(T )|K, v) and
(K(T )h|Kh, v) are valuation regular and regular.

In our special situation, the analogue of Lemma 24.12 reads as follows:

Lemma 11.95 Let (Ω|K, v) be an arbitrary valued field extension and (E|K, v) a subexten-
sion containing a standard algebraically valuation independent set T . Suppose that (L|K, v)
is a subextension of (Ω|K, v) such that T remains algebraically valuation independent over
(L, v). Then (E|K, v) is valuation disjoint from (L|K, v) if and only if (E|K(T ), v) is
valuation disjoint from (L|K(T ), v).

Proof: By Lemma 6.67, (K(T )|K, v) is valuation disjoint from (L|K, v) because T is
valuation independent over (L, v). Hence in view of (11.17), our assertion follows from
Lemma 6.64. �

Finally, let us give a criterion for (K(T ), v) to be a defectless field, in the case where
T is infinite.

Lemma 11.96 Let (Ω|K, v) be an arbitrary valued field extension and T a (not necessarily
finite) standard algebraically valuation independent set in this extension. If for every n ∈ N
and every choice of elements t1, . . . , tn ∈ T the field (K({t1, . . . , tn}), v) is defectless, then
also (K(T ), v) is defectless. The same holds with “separably defectless” or “inseparably
defectless” in the place of “defectless”.

Proof: Let L|K(T ) be a finite extension. Then there are elements t1, . . . , tn ∈ T and a
finite extension L′|K(t1, . . . , tn) such that L = L′.K(T ) and that L′|K(t1, . . . , tn) is separa-
ble resp. purely inseparable if L|K(T ) is. Observe that T ′ := T \{t1, . . . , tn} is a standard
valuation transcendence basis of (K(T )|K(t1, . . . , tn), v). Hence by Lemma 6.67, this ex-
tension is valuation regular. From Lemma 11.87 we infer that (L|K(T ), v) is defectless if
(L′|K(t1, . . . , tn), v) is. This implies our assertion. �

11.11 Completion defect and the defect quotient

In this subsection, we will define and investigate the completion defect and the de-
fect quotient, the quotient of henselian defect and completion defect. For every h-finite
extension (L|K, v) we define the completion defect by

dc(L|K, v) := d((Lh)c|(Kh)c, v) =
[(Lh)c : (Kh)c]

(vL : vK) · [L : K]
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(where the last equation holds since henselization and completion are immediate exten-
sions). Further, we define the defect quotient by

dq(L|K, v) :=
d(L|K, v)

dc(L|K, v)
,

hence by definition
d(L|K, v) = dc(L|K, v) · dq(L|K, v) . (11.19)

An h-finite extension (L|K, v) will be called c-defectless if dc(L|K) = 1, and it will be
called q-defectless if dq(L|K, v) = 1. Accordingly, a valued field K will be called c-
defectless if every h-finite (or equivalently, every finite) extension (L|K, v) is c-defectless,
and q-defectless if every h-finite (or equivalently, every finite) extension (L|K, v) is q-
defectless. Thus for h-finite extensions of q-defectless fields, the completion defect equals
the ordinary defect.

The following observations are immediate from the definitions. Every h-finite extension
(L|K, v) satisfies:

dc(L|K, v) = dc(L
h|Kh, v) and dq(L|K, v) = dq(L

h|Kh, v) .

Hence, K is a c-defectless resp. a q-defectless field if and only if its henselization Kh is a
c-defectless resp. a q-defectless field. A similar assertion for subhenselian function fields
over K will be shown later.

If also (M |L, v) is h-finite, then we have the following multiplicativity:

dc(M |K, v) = dc(M |L, v) · dc(L|K, v) and dq(M |K, v) = dq(M |L, v) · dq(L|K, v) .

From this multiplicativity, one derives:

Lemma 11.97 Let (L|K, v) be an h-finite extension. Then (K, v) is a q-defectless field if
and only if (L|K, v) is q-defectless and (L, v) is a q-defectless field. The same holds for
“c-defectless” instead of “q-defectless”.

To shorten our formulas, we set

Khc := (Kh)c .

The correspondence K 7→ (Kh)c = Khc may look a bit weird, but at least it has the nice
property to be idempotent:

(Khc)hc = Khc .

Indeed, by Theorem ?? the completion of a henselian field is again henselian. Hence,
(Khc)h = Khc. Since a completion is complete, it follows that (Khc)hc = (Khc)c = Khc.
Observe that for an h-finite extension (L|K, v) we have that Lh = L.Kh by virtue of
Corollary 7.40 and that (L.Kh)c = L.(Kh)c by Lemma 6.25, hence

Lhc = L.Khc .

The completion defect dc(L|K) and the defect quotient dq(L|K) are integers dividing
d(L|K) and hence are powers of p. To see this, we use that [Lhc : Khc] = [L.Khc : Khc] ≤
[L.Kh : Kh] = [Lh : Kh] . This gives

dc(L|K, v) =
[(Lh)c : (Kh)c]

(vL : vK) · [L : K]
≤ [Lh : Kh]

(vL : vK) · [L : K]
= d(L|K) . (11.20)
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Since on the other hand, dc(L|K) is the defect of the extension Lhc|Khc, it is a power of p
and consequently a divisor of d(L|K). This yields that also dq(L|K) = d(L|K)dc(L|K)−1

is an integer dividing d(L|K) and a power of p.

In (11.20), equality holds if and only if

[L.Khc : Khc] = [L.Kh : Kh] , (11.21)

which means that L.Kh is linearly disjoint from Khc over Kh. Since the henselian field
Kh is relatively separable-algebraically closed in its completion, equation (11.21) holds for
every finite separable extension L|K. This proves:

Lemma 11.98 Every h-finite separable extension is q-defectless. In general, an h-finite
extension (L|K, v) is q-defectless if and only if equation (11.21) holds.

We deduce:

Lemma 11.99 Let (L|K, v) be an h-finite separable extension. Then d(L|K, v) = d(Lc|Kc, v).

Proof: Observe that (Kc)h lies in (Khc. Indeed, (Khc contains Kc since vK = vKh.
On the other hand, since (Khc is henselian, it contains (Kc)h by virtue of Theorem 7.39.
Hence, [L.Khc : Khc] ≤ [L.(Kc)h : (Kc)h] ≤ [Lh : Kh]. But L.Khc = Lhc, and Lh.(Kc)h =
L.Kh.(Kc)h = L.(Kc)h = (L.Kc)h = (Lc)h by Corollary 7.40 and Lemma 6.25 and in
view of Kh ⊂ (Kc)h. Hence, [Lhc : Khc] ≤ [(Lc)h : (Kc)h] ≤ [Lh : Kh]. On the other
hand, d(Lc|Kc, v) = [(Lc)h|(Kc)h] (vLc : vKc)−1 [Lc : Kc]−1 with (vLc : vKc) = (vL : vK)
and [Lc : Kc] = [L : K] (because (Lc|L, v) and (Kc|K, v) are immediate extensions).
Consequently, in view of (11.20),

dc(L|K, v) ≤ d(Lc|Kc, v) ≤ d(L|K, v) . (11.22)

Thus, dc(L|K, v) = d(L|K, v) will imply that d(Lc|Kc, v) = d(L|K, v). So our assertion
follows from the foregoing lemma. �


