
Chapter 10

Orderings and valuations

10.1 Ordered fields and their natural valuations

One of the main examples for group valuations was the natural valuation of an ordered
abelian group. Let us upgrade ordered groups. A field K together with a relation < is
called an ordered field and < is called an ordering of K if its additive group together
with < is an ordered abelian group and the ordering is compatible with the multiplication:

(OM) 0 < x ∧ 0 < y =⇒ 0 < xy .

For the positive cone of an ordered field, the corresponding additional axiom is:

(PC·) P ·P ⊂ P .

Since −P·−P = P·P ⊂ P, all squares of K and thus also all sums of squares are contained
in P. Since −1 ∈ −P and P ∩ −P = {0}, it follows that −1 /∈ P and in particular, −1
is not a sum of squares. From this, we see that the characteristic of an ordered field must
be zero (if it would be p > 0, then −1 would be the sum of p − 1 1’s and hence a sum of
squares).

Since the correspondence between orderings and positive cones is bijective, we may
identify the ordering with its positive cone. In this sense, XK will denote the set of all
orderings resp. positive cones of K.

Let us consider the natural valuation of the additive ordered group of the ordered field
(K,<). Through the definition va+vb := vab, its value set vK becomes an ordered abelian
group and v becomes a homomorphism from the multiplicative group of K onto vK. We
have obtained the natural valuation of the ordered field (K,<). The place associated
with the natural valuation will be called natural place of the ordered field (K,<).
Since the natural valuation of an ordered field is in fact the natural valuation of its ordered
additive group, it inherits the properties of the latter. In particular, the natural valuation
of an ordered field is trivial if and only if the ordering is archimedean. We have seen in the
last section that if we consider a field valuation as a group valuation, then the components
in its associated skeleton are all isomorphic to the additive group of the residue field. Since
the components of natural group valuation are archimedean, it follows that the residue
field of the natural valuation is an archimedean ordered group. We leave it to the reader
to show that the so induced ordering is compatible with the multiplication (we will prove
this fact later in a more general setting), and that the residue field is thus an archimedean
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244 CHAPTER 10. ORDERINGS AND VALUATIONS

ordered field. By a theorem of D. Hilbert, which is an analogue of the Theorem of Hölder
(Theorem 3.55), every archimedean ordered field can be embedded into the reals R, as an
ordered field (cf. [HILB]; see also S. Prieß-Crampe [PC1], Chapter II, §3, or L. Fuchs [FU1],
Chapter VIII, §1, for the proof in the more general case of archimedean rings). So if P is
the natural place of (K,<), then there is an embedding σ of KP in R. Since σ ◦ P and
P are equivalent places (which we usually identify), we can always assume without loss of
generality that

The residue field of the natural valuation resp. the natural place) is a subfield of R.
A field K is called formally real if it can be ordered. The ordering may not be unique,

so there may be a variety of natural valuations on K. An arbitrary place P of K is called
a real place if its residue field KP is formally real. Every subfield of R is formally real,
so every natural place is a real place. We are going to state some basic facts about these
valuations and places.

Remark 10.1 The natural valuation was introduced by R. Baer under the name “Ordnungsbewertung”
(cf. [BAER]). For W. Krull, the main reason for the introduction of general valuations was the investigation
of the formally real fields, as introduced by E. Artin and O. Schreier [AR–SCHR]. In his far-sighted article
“Allgemeine Bewertungstheorie” ([KRU7]), Krull says:

Nachdem nun durch Artin und Schreier der Begriff der allgemeinen reellen Körper rein al-
gebraisch eingeführt wurde, liegt die Frage nahe, ob es nicht möglich ist, den Bewertungs-
begriff so zu verallgemeinern, daß er zu einer — ihrer Natur nach halb algebraischen, halb
analytischen — Behandlung der reellen Körper brauchbar wird. . . . Im Rahmen dieses Pro-
gramms erscheint die Weiterentwicklung der Theorie der geordneten Körper als ein — sogar
verhältnismäßig einfacher — Spezialfall der Theorie der allgemein bewerteten Körper. Im
übrigen können auch die “transzendentesten” geordneten Körper mit . . . unsrer allgemeinen
Bewertungstheorie behandelt werden. Das erscheint mir, wie bereits zu Beginn der Einleitung
hervorgehoben, als das wichtigste Ergebnis und die eigentliche Rechtfertigung der Einführung
des verallgemeinerten Bewertungsbegriffes.

For the further development of the valuation theoretical approach to formally real fields, see S. Lang
[LANG2] (1953), R. Brown [BRW2] (1971), M. Knebusch [KN1] (1972) and [KN2] (1973), A. Prestel [PR1]
(1975), M. Knebusch and M. Wright [KN–WR] (1976), T. Y. Lam [LAM1] (1980) and [LAM2] (1983),
S. Prieß-Crampe [PC1] (1983).

The algebraic theory of formally real fields is known as the Artin-Schreier-Theory.
One of its basic results is the following: A field is formally real if and only if −1 is not a sum
of squares in that field, and this holds if and only if non-trivial sums of squares in K never
equate to zero (cf. [PR1] Theorem 1.8 or [JAC], Chapter VI). Using this characterization,
the following is easy to prove:

Lemma 10.2 If the field K admits a real place, then it is formally real.

Proof: Let P be real place of K and
∑

i a
2
i a non-trivial finite sum of squares in K, that

is, there is at least one nonzero summand. We may assume that all ai lie in OP and that at
least one of them lies in O×P ; otherwise, we pick some aj with vPaj minimal, and we divide
the whole sum by a2

j , thereby replacing the ai by the elements ai/aj which satisfy our
assumption. Now we apply P and obtain the finite sum (

∑
i a

2
i )P =

∑
i(aiP )2 of squares

in KP . By our assumption on the ai , this sum has at least one nonzero summand. Since
KP is formally real by assumption, the sum is nonzero. Hence, the sum

∑
i a

2
i is nonzero

(and it lies in O×P ). This proves that K is formally real. �
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The question arises whether an ordering of K can be found such that the real place P is
the natural place with respect to this ordering. But this can not be true if the formally
real residue field KP has no archimedean ordering (e.g., if its cardinality is bigger than
|R|, then it can not be embedded in R and thus can not admit an archimedean ordering).
Instead of “natural place”, we have to use the notions compatible with the ordering,
convex valuation and v-compatible ordering which we define as in the group case (cf.
page 47). We note:

Lemma 10.3 Let (K,<) be an ordered field and v a valuation of K. Then v is compatible
with the ordering if and only if it satisfies

(COMP) ∀x, y ∈ K : 0 < x ≤ y ⇒ vx ≥ vy .

This in turn is equivalent to each of the following assertions:
1) the valuation ring Ov is a convex subset of (K,<),
2) the valuation ideal Mv (or equivalently, 1 +Mv) is a convex subset of (K,<),
3) the positive cone P of (K,<) contains 1 +Mv ,
4) Mv < 1 .

Proof: If v is compatible with the ordering then by definition, it satisfies (COMP). Now
assume (COMP) and let 0 ≤ a ≤ b with b ∈ Ov . Then va ≥ vb and hence, a ∈ Ov . Since
Ov is closed under x 7→ −x, this yields that Ov is convex.

Assume that Ov is convex and let 0 ≤ a ≤ b with b ∈ Mv . Then 0 ≤ b−1 ≤ a−1 and
b−1 /∈ Ov . By the convexity of Ov , we find a−1 /∈ Ov , that is, a ∈Mv . SinceMv is closed
under x 7→ −x, this yields that Mv is convex.

Assume that Mv is convex. Recall that in an ordered abelian group (G,<) for every
g ∈ G, a subset M ⊂ G is convex if and only if g+M is. Hence,Mv is convex if and only
if 1 +Mv is. If the latter is the case, then 1 +Mv ⊂ P since otherwise, it would contain
an element < 0 and in view of 1 ∈ 1 +Mv and convexity, it would follow that 0 ∈ 1 +Mv ,
which is impossible.

Assume that 1 +Mv ⊂ P. Since 1 /∈Mv and Mv is closed under x 7→ −x, this yields
that 1− a > 0 for all a ∈Mv , that is, Mv < 1 .

Assume that Mv < 1 , and let a, b ∈ K such that va < vb. Then b/a ∈ Mv, hence
also n|b|/|a| ∈ Mv for every n ∈ N. Our assumption then yields that n|b|/|a| < 1, i.e.
n|b| < |a|. We have thus proved that |a| ≤ n|b| ⇒ va ≥ vb, showing that v is compatible
with the order, by our original definition given for the group case. �

We let Xv
K denote the set of all v-compatible orderings (resp. positive cones) of K.

Recall from the group case that a valuation is compatible with the order if and only
if it is a coarsening of the natural valuation. If v is the natural valuation of (K,<), then
by definition, Mv is precisely the set of all a ∈ K which satisfy |a| < 1/n for all n ∈ N;
such an element a is called infinitesimal. We see that precisely the infinitesimals are
sent to 0 by the natural place. The existence of nonzero infinitesimals characterizes the
non-archimedean ordered fields (in particular, every nonstandard model of the reals has
a non-trivial natural valuation and nonzero infinitesimals). Observe that every convex
valuation v of (K,<) will satisfy Mv < 1/n for all n ∈ N; this follows from Mv < 1. We
thus find that a valuation is convex if and only if its valuation ideal is contained in the
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valuation ideal of the natural valuation. Hence, it is a coarsening of the natural valuation
(cf. Section ??).

Let v be a convex valuation of (K,<) with associated place P = Pv . Then by the
foregoing lemma,Mv is a convex subset of (K,<). Hence, the ordered additive groupMv

is a convex subgroup of the ordered additive group Ov . By Lemma 2.21, the ordering of Ov
thus induces an ordering of the additive group of K = Ov/Mv . If P denotes the positive
cone of (K,<), then P ∩ Ov is the positive cone of (Ov, <), and P := (P ∩ Ov)/Mv =
(P ∩ Ov)P is the positive cone of the induced ordering of K. Observe that for a ∈ Ov ,
a ∈ P if and only if a ∈ P. Since (ab)P = aP · bP , we have P ·P ⊂ P, which shows that
the induced ordering is in fact an ordering of the field K. In particular, we conclude:

Lemma 10.4 The place associated with a convex valuation is a real place.

The ordering (resp. the positive cone P) of (K,<) induces also some structure on the
value group of the convex valuation v, which we will describe now. The ordering induces
the character (that is, a multiplicative group homomorphism) signP : K× → {1,−1}
sending a to 1 if and only if a > 0. Since all squares are positive, K×2 lies in the kernel of
this homomorphism, and we obtain a character χP: K×/K×2 → {1,−1} (observe that P is
uniquely determined by χP). On the other hand, composing the valuation v with the canon-
ical epimorphism vK → vK/2vK, we obtain an epimorphism K× → vK/2vK. Again,
the squares are in the kernel, so we obtain an epimorphism hv: K

×/K×2 → vK/2vK.
Both groups K×/K×2 and vK/2vK are F2-vector spaces. Hence there is an embedding
s : vK/2vK → K×/K×2 such that hv ◦ s = id . Now σP := χP ◦ s: vK/2vK → {1,−1}
is a character induced by P. Note that it depends on our choice of s. With a fixed s, the
following holds:

Theorem 10.5 Let v be a valuation of the field K. The map

Xv
K 3 P 7→ (P, σP) ∈ XK × Hom(vK/2vK, {1,−1}) (10.1)

is a bijection.

Proof: We choose B ⊂ K× such that the elements bK×2, b ∈ B, form an F2-basis of
s(vK/2vK). It follows that the elements hv(bK

×2) = vb + 2vK, b ∈ B, form an F2-basis
of vK/2vK. Hence, for every element a ∈ K \ {0}, there are elements b1, . . . , bn ∈ B and
c ∈ K \ {0} such that va = vb1 + . . . + vbn + 2vc, with b1, . . . , bn uniquely determined.
Consequently, a = b1 · . . . ·bnuc2 with a unit u ∈ O×v . Since c2 is positive for every ordering,
the sign of a only depends on the signs of b1, . . . , bn and u. By our definition of σP, we
have σP(vb + 2vK) = 1 ⇔ χP(bK×2) = χP ◦ s(vb + 2vK) = 1 ⇔ b ∈ P. For a positive
cone P compatible with v, the sign of u with respect to P is the same as the sign of u with
respect to P. We conclude that P is uniquely determined by (P, σP).

It remains to show the surjectivity of (10.1). Given a character σ : vK/2vK → {1,−1}
and a positive cone PK of K, we define

sign(b1 · . . . · bnuc2) = σ(b1) · . . . · σ(bn) · signPK
(u) .

This is well-defined since it does not depend on the choice of u and c. To show that
P = {a ∈ K | sign(a) = 1}∪{0} is a positive cone of K, it suffices to show P+P ⊂ P and
P ·P ⊂ P. The latter is immediate since the above defined sign function is multiplicative.
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To show the former, let a, a′ ∈ P \ {0} and let a be represented as above. If va < va′,
then a + a′ = a(1 + a′/a) = b1 · . . . · bnu(1 + a′/a)c2 where (1 + a′/a) is a 1-unit; since u
and u(1 + a′/a) have the same residue, it follows that sign(a+ a′) = sign(a), showing that
a+a′ ∈ P. Now assume that va = va′. Then there is a representation a′ = b1·. . .·bnu′c2, and
u and u′ have the same sign with respect to PK . Since PK is a positive cone, signPK

(u+u′)

is equal signPK
(u) = signPK

(u′). Consequently, sign(u+u′) = signPK
(u+ u′) = signPK

(u+

u′) = signPK
(u) = sign(u). Hence again, sign(a+ a′) = sign(a), and a+ a′ ∈ P.

Further, P contains all 1-units since signPK
(u) = 1 for every 1-unit u. This proves that

P is compatible with v. By our definition, sign(u) = signPK
(u), showing that P = PK .

Finally, σP = σ since σP and σ are uniquely determined by their action on the basis
elements vb+ 2vK, b ∈ B. �

There are the following special cases of this theorem. If K admits a unique ordering
(e.g. if K = R), then (10.1) is in fact a bijection between Xv

K and Hom(vK/2vK, {1,−1}).
If on the other hand, vK is 2-divisible, then Hom(vK/2vK, {1,−1}) contains only the
trivial character, and (10.1) is a bijection between Xv

K and XK . If K admits a unique
ordering and vK is 2-divisible, then K admits precisely one v-compatible ordering. In any
case, we have the following answer to our initial question:

Corollary 10.6 If v is a valuation of the field K such that K is formally real, then there
exists a v-compatible ordering of K. In other words, if P is a real place of K, then vP is
compatible with some ordering of K.

A further consequence of our theorem is the following. Assume that (L, v) is an immedi-
ate extension of (K, v), that is, value group and residue field remain unchanged. If B and s
are as above, we observe that the values vb, b ∈ B, remain F2-independent over 2vK = 2vL.
Hence, the elements b ∈ B will also be F2-independent over L×2. Consequently, s remains
to be an embedding of vK/2vK in L×/L×2. The same construction as in the proof of
the theorem then gives a bijection between Xv

L and XK × Hom(vK/2vK, {1,−1}). This
proves:

Corollary 10.7 Let (L|K, v) be an immediate extension of (K, v). Then every v-compatible
ordering of K admits a unique extension to a v-compatible ordering of L.

The extension can easily be defined: By assumption, for every a ∈ L there is a′ ∈ K
such that v(a − a′) > va. Then we (have to) set sign(a) = sign(a′). Indeed, if the order
is compatible with v on L, then its positive cone contains 1 +ML and thus, sign(a) =
sign(a(1 + (a′ − a)/a)) = sign(a′) since 1 + (a′ − a)/a is a 1-unit.

Example 10.8 Let us see in how many ways a power series field K = k((Γ)) over a
formally real field k can be ordered. Let v be the canonical valuation of K. First, we note
that every element of 1 +Mv is a square in K. The reader may prove this by computing
explicitly the expansion of the square roots of a given 1-unit. Later, we will see that this
is a consequence of the fact that v is henselian and the residue field k has characteristic 0.
(In fact, the same arguments show that the group of 1-units is even divisible.) It follows
from Lemma 10.3 that v is compatible with every ordering on K, that is, XK = Xv

K .
It also follows that the sign of a power series a =

∑
α aαt

α must be the same as that
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of avat
va (since a/avat

va is a 1-unit). If α ∈ 2Γ, then tα = (tα/2)2 is a square and thus
positive under every ordering of K. If we choose a maximal set of values β ∈ Γ, F2-
independent over 2Γ, then the signs of all tα are already determined by the signs of the
elements tβ. On the other hand, we have freedom to choose the signs of all tβ and to
determine the sign of the coefficients aα ∈ k by choosing an ordering of k. We obtain
XK = Xv

K ↔ Xk × Hom(vK/2vK, {1,−1}) in accordance with Theorem 10.5. ♦

Loosely speaking, we have shown above how to transfer the property “formally real”
upwards (from the residue field to the field) and downwards (from the field to the residue
field) by a place. There are many other properties that admit such a treatment, e.g. “real
closed”, “Rolle field”, “half-ordered”, “algebraically closed”, “perfect”. Since we will need
certain properties of places and valuations, like “henselian” or “algebraically maximal”, we
will discuss these cases later. Here, we will give some examples which all use the idea of
the proof of Lemma 10.2.

A field is called euclidean if it is formally real and every element or its negative is
a square. Consequently, every valuation of a euclidean field has a 2-divisible value group.
Suppose that (K,<) is an ordered field with convex valuation v. Every element of K may
be written as a with a ∈ O×K. Then a or −a and thus also a or −a is a square. This proves:
The residue field of a euclidean field with respect to a convex valuation is euclidean.

The Pythagoras number of a field K is the smallest number n ≤ ∞ such that every
sum of squares in K equals a sum of at most n squares. If n = 1, that is, if every sum of
squares is a square, then K is called pythagorean. Assume K to be formally real and the
Pythagoras number of K to be n. Let v be any convex valuation of K. Given a sum

∑m
i=1 a

2
i

of squares in K with m ≥ n, we can find b1, . . . , bn ∈ K such that
∑m

i=1 a
2
i =

∑n
i=1 b

2
i . Then

all bi are in Ov . Indeed, if this would not be true, we could choose some bj of minimal
value and divide the second sum by bj to obtain a sum of squares which are all in Ov but
not all in Mv such that the sum is in Mv . Passing to the residue field, we would obtain
a non-trivial sum of squares which sums up to zero. This contradicts the fact that K is
formally real, being the residue field of a convex valuation. Hence, all bi are in Ov , and

passing to the residue field, we find that
∑m

i=1 a
2
i =

∑n
i=1 b

2

i . We have proved: If v is a
convex valuation of the formally real field K, then the Pythagoras number of K is smaller
or equal to the Pythagoras number of K. In particular, if K is pythagorean, then so is K.

If the field K is not formally real, then −1 is a sum of squares in K. The level of K
is the smallest number n such that −1 is a sum of n squares. If K is formally real, then
we define the level of K to be ∞. Let −1 =

∑n
i=1 a

2
i in K, and let v be any valuation of

K. Since −1 /∈ Mv , not all ai can lie in Mv . If all ai lie in Ov , then −1 =
∑n

i=1 a
2
i . If

there are some ai of value < 0, then by the same procedure as in our last argument, we
find a non-trivial sum of at most n squares in K which sums up to zero. Dividing by an
arbitrary nonzero square in this sum, we find that −1 is a sum of less than n squares in
K. This proves: If v is an arbitrary valuation of the field K, then the level of K is smaller
or equal to the level of K.

Remark 10.9 There is a version of Theorem 10.5 for valuations such that Kv is a subfield of R (for every
v-compatible ordering, v will thus be the natural valuation); see [BRW2] and [LAM1] for details. Further,
Theorem 10.5 can be generalized in order to treat simultaneously orderings and semiorderings; see [PR1],
Chapter 7. For an exemplary application of real places in the theory of quadratic forms (namely, the
characterization of fields which satisfy the Weak Hasse Principle), see Theorem 9.1 of [PR1].
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Exercise 10.1 Let (K,<) be an ordered field. Then its prime field is Q. Let v be a valuation of K and
show that v is compatible with < if and only ifMv < r for every positive r ∈Q, and that this is the case
if and only if Mv < r for some positive r ∈Q.

Exercise 10.2 Let (K,<) be an ordered field with natural valuation v and a ∈ K. Show that va = 0
(that is, a is archimedean equivalent to 1) if and only if there exists some n ∈ N such that 1/n < |a| < n.
What happens if we replace v by an arbitrary convex valuation?

Exercise 10.3 Compare Theorem 10.5 and Corollary 10.7 with Corollary 2.25. Explain why in Corol-
lary 2.25, an ordering is uniquely determined by the skeleton, whereas in Theorem 10.5, the valuation v
and the ordering of K do in general not suffice to fix a unique ordering of the field. Prove a generalization
of Corollary 2.25 for arbitrary valuations, analogous to our above approach.

10.2 Real places and henselian places

Remark 10.10 Apart from the paper “Allgemeine Bewertungstheorie” of W. Krull [KRU7], the paper
“The theory of real places” by S. Lang [LANG2] was the first attempt to study systematically the relation
between formally real fields and their places. Since then, this approach has been very fruitful (the list of
papers at the beginning of Section 10.1 is certainly not exhaustive). For an interesting historical survey,
see the notes on the literature of §5 in T. Y. Lam [LAM1]. For further reading, we refer the reader to §7
and §8 in A. Prestel [PR1], §2 and §3 of Chapter III in S. Prieß-Crampe [PC1], and §5 of [LAM1].

The choice of the material in the present section and the last part of Section 10.1 is inspired by
the paper [RIB28] of P. Ribenboim, in which the results concerning euclidean fields, the level and the
Pythagoras number were proved for generalized power series fields.

In this section, we will give examples for properties that are transferred through henselian
places between valued fields and their residue fields. In particular, we will consider prop-
erties that have been introduced in Section 10.1, and complement them in the case of
henselian places.

Recall that if P is a real place of the field K, then K is formally real by virtue of
Lemma 10.2, and Corollary 10.6 shows that vP is compatible with some ordering of K.
Recall further that a field K is called euclidean if it is formally real and a or −a is a square
for every a ∈ K. In view of the condition that K be formally real, the latter condition
is equivalent to the condition that either a or −a is a square whenever 0 6= a ∈ K. The
standard example for a euclidean field is R. We leave it to the reader to prove that every
relatively algebraically closed subfield of a euclidean field is again euclidean.

Lemma 10.11 Let P be a real place of the field K. If K is euclidean, then vPK is 2-
divisible and KP is euclidean. The converse holds if (K,P ) is henselian.

Proof: The first assertion was already stated for convex valuations in Section 10.1. Cf.
also Corollary 9.38. Now assume that (K,P ) is henselian, vPK is 2-divisible and KP is
euclidean. Since KP is formally real, it is of characteristic 0. Let a ∈ K. Since vPK is 2-
divisible, there is some b ∈ K such that vPab

2 = 0. Since KP is euclidean, either (ab2)P or
−(ab2)P is a square in KP . Since 2 is not divisible by the residue characteristic of (K,P ),
it follows from Lemma 9.32 that ab2 or −ab2 and thus also a or −a is a square in K. Since
K is also formally real by Lemma 10.2, we have thus proved that it is euclidean. �

Let us observe that a euclidean field admits precisely one ordering. Indeed, since a
euclidean field is formally real, it admits at least one ordering. On the other hand, every
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positive cone contains all squares. So it contains precisely all squares since it can not
contain a 6= 0 and −a at the same time. Hence, the only possible positive cone on K is
the set of all squares of K.

A field K is called real closed if K is formally real but no proper algebraic extension
of K is formally real. E. Artin and O. Schreier have proved that K is real closed if and
only if K(

√
−1) = K̃, and this is the case if and only if the absolute Galois group of K

is finite (in this case, it is Z/2Z); cf. [AR–SCHR]. We wish to characterize real closed by
their convex places.

Lemma 10.12 Let K be a real closed field with a real place P . Then (K,P ) is henselian,
vPK is divisible and KP is real closed.

Proof: Since P is assumed to be a real place, KP is formally real. Since the henselization
(K,P )h is an immediate extension of (K,P ), its residue field is still KP . Hence also Kh

is formally real. By our assumption on K we must have that Kh = K, that is, (K,P ) is
henselian.

Assume that k is a formally real algebraic extension of KP . Further, let ṽPK denote the
divisible hull of vPK. Then by Theorem 6.42 there exists an algebraic extension (L|K,P )

such that LP = k and vPL = ṽPK. But then, also L is formally real and by assumption
on K we must have that L = K. Hence, vPK = ṽK is divisible, and KP = k shows that
KP is real closed. �

Corollary 10.13 Every real closed field is euclidean. Consequently, every real closed field
admits precisely one ordering, the positive cone of it being the set of all squares.

Proof: Let K be a real closed field and P the natural place with respect to some ordering
of K. Then KP is a subfield of R. Let k be the relative algebraic closure of KP in R.
Then k is euclidean. In particular, k is formally real, so the foregoing lemma shows that
k = KP . Again by the foregoing lemma, (K,P ) is henselian and vPK is 2-divisible. Now
it follows from Lemma 10.11 that K is euclidean. �

Theorem 10.14 Let P be a henselian place of K. If charKP 6= 2, then the level of K is
equal to the level of KP .

Proof: We have already shown in Section 10.1 that the level of KP is smaller or equal
to the level of K. It remains to show that the level of K is smaller or equal to the level of
KP . If the latter is∞, then there is nothing to show. Now assume that −1 =

∑n
i=1 ζ

2
i with

ζi ∈ KP . We choose elements ai ∈ K such that aiP = ζi . Then (a1P )2 = −1−
∑n

i=2(aiP )2.
Since (K,P ) is assumed to be henselian, we can infer from Lemma 9.32 that −1−

∑n
i=2 a

2
i

is a square, say b21 with b1 ∈ K. Then −1 = b21 + a2
2 + . . .+ a2

n , showing that the level of K
is at most n. This proves that the level of K is smaller or equal to the level of KP . �

Since a field is formally real if and only if its level is ∞, we obtain: If (K,P ) is henselian
and KP is of characteristic 6= 2 and not formally real, then K is not formally real. This
suggests that the residue field of a henselian place of a formally real field is again formally
real. The only disturbing point is the condition on the characteristic. To overcome it, we
prove a more informative theorem which is due to M. Knebusch and M. Wright [KN–WR].
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Theorem 10.15 A henselian valuation v of a formally real field K is compatible with
every ordering of K.

Proof: We consider the polynomial X2 + X + a for every a ∈ Mv . Its reduction
X2 +X has two distinct roots (independently of the characteristic of K !). Since (K, v) is
assumed to be henselian, it follows that X2 + X + a admits a root b in K. We have that
0 = b2 + b + a = (b + 1

2
)2 + a − 1

4
, hence 1

4
− a is a square in K. So a ≤ 1

4
< 1 for every

ordering of K and every a ∈ Mv . By Lemma 10.3, this shows that v is compatible with
every ordering of K. �

In view of Lemma 10.2 and Lemma 10.4, we conclude:

Corollary 10.16 If (K,P ) is henselian, then K is formally real if and only if KP is
formally real.

If an ordered field admits a non-trivial compatible valuation, then the order is not
archimedean. Thus, we can conclude from the foregoing theorem that

Corollary 10.17 There is no non-trivial henselian valuation on R.

The following theorem was proved by A. Prestel [PR1], Theorem (8.6).

Theorem 10.18 Let P be a real place of the field K. Then K is real closed if and only if

1) vPK is divisible,

2) KP is real closed,

3) (K, vP ) is henselian.

Proof: Implication “⇒” is the assertion of Lemma 10.12. To prove “⇐”, assume that 1),
2) and 3) hold. Since KP is formally real, its characteristic is 0. Hence by Theorem 11.23,
(K, vP ) is defectless. By assumption 3), it is also henselian, and by assumption 1), every
algebraic extension of vPK is trivial. So for every finite extension L|K, the unique extension
of P from K to L satisfies [L : K] = [LP : KP ]. That is, if L|K is non-trivial, then LP |KP
is non-trivial and it follows from assumption 2) that LP is not formally real. Since (L, vP )
is again henselian (cf. Lemma 7.33), we obtain from the foregoing corollary that L is not
formally real. We have thus proved that K is real closed. �

In view of our convention that the residue field of the natural valuation is a subfield of
R, we can deduce from this theorem the following assertion:

Let P be the natural place of the ordered field (K,<). Then K is real closed if and only if
1) vPK is divisible, 2) KP is relatively algebraically closed in R, 3) (K,P ) is henselian.

For the proof of implication “⇐” of the above theorem, we can also employ the characteri-
zation of real closed fields by their Galois groups. Let us assume that (K,P ) is a henselian
field with divisible value group vPK. If we also know that KP has characteristic 0, then
we can infer from Lemma 11.25 that GalK ∼= GalKP . Hence GalK ∼= Z/2Z if and only
if GalKP ∼= Z/2Z, showing that K is real closed if and only if KP is real closed.

Using the characterization by Galois groups, we are able to classify the valuations of a
real closed field. The following theorem is due to M. Knebusch and M. Wright [KN–WR].
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Theorem 10.19 Let v be a valuation of the real closed field K. Then K is real closed or
algebraically closed. K is real closed if and only if (K, v) is henselian, and this in turn
holds if and only if v is compatible with the unique ordering of K.

Proof: Since K is assumed to be real closed, we have that [K̃ : K] = 2. Hence if (K, v)
is not henselian, that is, if there is more than one extension of v from K of K̃, then by
the fundamental inequality (7.26), there are precisely two extensions v1, v2 , and both are
immediate. Then K = K̃v1 is algebraically closed (cf. Lemma 6.44). On the other hand,
if (K, v) is henselian, then we know from Theorem 10.15 that v is compatible with the
unique ordering of K. If the latter holds, then the place associated with v is a real place by
Lemma 10.4, and it follows from Theorem 10.18 that K is real closed. If the latter holds,

then [K̃ : K] = 2 = [K̃ : K], and the fundamental inequality shows that v admits a unique
extension from K to K̃, i.e. (K, v) is henselian. �

Now we consider the Pythagoras number.

Theorem 10.20 Let P be a real henselian place of the field K. Then the Pythagoras
number of K is equal to that of KP .

Proof: We have already shown in Section 10.1 that the Pythagoras number of KP is
smaller or equal to that of K. It remains to show that the Pythagoras number of K is
smaller or equal to that of KP . Let n be the Pythagoras number of KP and a1, . . . , am ∈ K
with m > n. We have to show that

∑m
i=1 a

2
i is the sum of at most n squares in K. Without

loss of generality we may assume that vPa1 ≤ vPai for all i. It suffices to show that
s := 1 +

∑m
i=2(ai/a1)

2 is the sum of at most n squares in K. By assumption on a1 , we
have that vP (ai/a1) ≥ 0 for all i, and sP 6= 0 is thus a sum of squares in KP . So it is the
sum of at most n squares in KP . It follows as in the proof of Theorem 10.14, where we
replace −1 by s, that also s is a sum of at most n squares in K. �

Finally, let us mention the following analogue to Theorem 10.18. Its proof is left to the
reader.

Theorem 10.21 Let P be a place of K and assume that charKP = 0. Then K is alge-
braically closed if and only if

1) vPK is divisible,

2) KP is algebraically closed,

3) (K, vP ) is henselian.

For charKP 6= 0, the assertion remains valid if condition 3) is replaced by

3 ′) (K, vP ) is algebraically maximal.

Exercise 10.4 Suppose that it was already shown that a subfield of R is real closed if and only if its
Galois group is isomorphic to Z/2Z . Deduce the same for every formally real field, using Theorem 10.18
and Lemma 11.25.
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10.3 Non-archimedean exponential fields

Remark 10.22 A special class of formally real fields are those which are equipped with an exponential.
The basic example is (R, exp), the reals with the usual exponential function. In the last years, model
theoretic algebra has witnessed the solution of one of its most renowned problems: A. Wilkie [WIL]
showed that the theory of (R, exp) is model complete. However, this solution left open a lot of questions,
among them the request for a general structure theory comparable to that of formally real fields. While the
existence of non-archimedean ordered exponential fields is guaranteed by model theory (cf. section 20.3),
the explicit construction of such fields is of interest since it gives a deeper insight in the structure theory
and the possible axiomatizations of exponentials. We devote this section to the structure theory of non-
archimedean exponential fields since to our opinion, it shows a very convincing application of the theory of
valued vector spaces to field theory. This application was worked out in detail by S. Kuhlmann in her thesis
[KUS1], and the first part of this section will follow closely her paper [KUS2]. Her approach has extended
and refined the methods and results of N. Alling [ALL4] who studied already in 1962 the structure which
an exponential induces on the value group and residue field of the natural valuation. Apparently, Alling
gave the first (to some extent explicit) construction of non-archimedean exponential fields.

The second part of this section will sketch some ideas from the paper [KU–KUS1]. This paper gives
valuation theoretical interpretations of growth and Taylor axioms (as satisfied by the usual exponential
function). One of them will be discussed here since it plays a crucial role for the construction of non-
archimedean exponential fields which have the same elementary properties as (R, exp). Finally, we will
discuss a map which is induced on the natural value group by an exponential.

For the background and the recent progress in the theory of exponential fields and exponential func-
tions, see N. Alling [ALL4], L. van den Dries [VDD 2,3,7], L. van den Dries and Levitz [VDD–LEV],
C. W. Henson and L. A. Rubel [HEN–RUB], A. Macintyre [MAC4], D. Richardson [RICS], B. I. Dahn and
H. Wolter [DAH–WOL1,2] H. Wolter [WOL1–5], B. I. Dahn [DAH], B. I. Dahn and P. Göring [DAH–GÖ],
A. Wilkie [WIL], J.-P. Ressayre [RES], M. H. Mourgues [MOU], L. van den Dries, A. Macintyre and D.
Marker [VDD–MAC–MAR1,2], C. Miller [MIL1,2], L. van den Dries and C. Miller [VDD–MIL]. For a
study of the theory of all analytic functions of R, restricted to the interval [0, 1], see L. van den Dries
[VDD8], J. Denef and L. van den Dries [DEN–VDD]. Some of these papers make explicit use of the natural
valuation for the study of non-archimedean exponential fields or ordered power series fields.

Throughout this section, let (K,<) be an ordered field with natural valuation v, and
define K>0 := {a ∈ K | a > 0}. The additive group (K,+, 0, <) and the multiplicative
group (K>0, ·, 1, <) are ordered groups. We shall ask for the order isomorphisms between
these two groups, in the case where v is non-trivial, i.e., (K,<) is a non-archimedean
ordered field.

Let us discuss the structure of these groups. The natural valuation v of K is at the same
time the natural valuation of (K,+, 0, <). The valuation ring Ov is a convex subgroup of
(K,+, 0, <), and the valuation ideal Mv is a convex subgroup of Ov .

The set of positive units U>0
v := {a ∈ O×v | a > 0} is a subgroup of (K>0, ·, 1, <).

Using (COMP), we see that the map

(K>0, ·, 1, <) → (vK,+, 0, <)

a 7→ −va = va−1

is a surjective group homomorphism preserving ≤ , with kernel U>0
v . It follows from

Lemma 2.20 that U>0
v is a convex subgroup of (K>0, ·, 1, <), and from Corollary 2.22

we obtain
(K>0, ·, 1, <)/U>0

v
∼= (vK,+, 0, <) . (10.2)

Further, the map

(U>0
v , ·, 1, <) → (K

>0
, ·, 1, <)

a 7→ a
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is a surjective group homomorphism preserving ≤ , with kernel 1 +Mv , the set of 1-units
in (K, v) (recall that all 1-units are positive, by virtue of Lemma 10.3). It follows that
(1 +Mv, ·, 1, <) is a convex subgroup of (U>0

v , ·, 1, <), and

(U>0
v , ·, 1, <)/1 +Mv

∼= (K
>0
, ·, 1, <) . (10.3)

Since v is the natural valuation of K, we know that (K,<) is archimedean. Consequently,

the same is true for the multiplicative ordered group (K
>0
, ·, 1, <) (if b > a > 1 then choose

n ∈ N such that n(a − 1) ≥ b to obtain that an = (1 + a − 1)n ≥ 1 + n(a − 1) > b ). As
the element 2 lies in U>0

v but not in 1 +Mv , we see that:

a) U>0
v is the smallest convex subgroup of (K>0, ·, 1, <) containing 2

b) 1 +Mv is the biggest convex subgroup of (K>0, ·, 1, <) not containing 2

c) (K
>0
, ·, 1, <) is the component of 2 in (K>0, ·, 1, <).

Let us use the name exponential for an isomorphism

f : (K,+, 0, <) −→ (K>0, ·, 1, <) (10.4)

which is normed by one of the equivalent conditions given in the following lemma:

Lemma 10.23 The following conditions for an isomorphism (10.4) are equivalent:
1) f(Ov) = U>0

v and f(Mv) = 1 +Mv ,
2) v(f(1)− 1) = 0 ,
3) there is n ∈ N such that 1 + 1/n < f(1) < n ,
4) f(1) is archimedean equivalent to 2 in (K>0, ·, 1, <) .

Proof: Assume that 1) holds. Then for every a ∈ Ov we have vf(a) = 0 and thus,
v(f(a) − 1) ≥ 0. By virtue of f(Mv) = 1 +Mv , we obtain that v(f(a) − 1) = 0 for all
a ∈ Ov \Mv . Since 1 ∈ Ov \Mv, we now see that 2) holds.

Condition 2) says that f(1)− 1 is archimedean equivalent to 1 in (K,+, 0, <). Now we
leave it to the reader to show that this is equivalent to condition 3) (cf. Exercise 10.2).

Assume condition 2), that is, v(f(1)−1) = 0 = v2. Choose n ∈ N such that n|f(1)−1| ≥
2 and n · 2 ≥ |f(1)− 1| ; w.l.o.g., we assume n > 2. Observe that f(1) > f(0) = 1. Hence,
we have f(1)n = (1 + f(1)− 1)n ≥ n(f(1)− 1) ≥ 2 and 2n ≥ 2n+ 1 ≥ f(1), showing that
4) holds.

Assume that 4) holds. Then the order isomorphism f must send the smallest convex
subgroup of (K,+, 0, <) containing 1 onto the smallest convex subgroup of (K>0, ·, 1, <)
containing f(1). The former is just Ov , the latter is (U>0

v , ·, 1, <) since f(1) is archimedean
equivalent to 2 by assumption. Further, f must send the biggest convex subgroup of
(K,+, 0, <) not containing 1 onto the biggest convex subgroup of (K>0, ·, 1, <) not con-
taining f(1) (or 2). Hence, f(Mv) = 1 +Mv . We have proved that 1) holds. �

Note that every isomorphism (10.4) gives rise to an exponential. Indeed, if f is any such
isomorphism, then we may take a ∈ K>0 such that f(a) = 2 ; setting e(x) := f(ax),
we thus obtain an isomorphism e which satisfies e(1) = 2. So it makes sense to call an
ordered field an exponential field as soon as it admits an isomorphism (10.4). Instead
of “exponential”, one may also speak of “weak exponential” since the usual exponential
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exp on R has many more properties that do not follow from just being such a (normed)
isomorphism.

In the last section, we have studied the structure induced by orderings on the value
group and residue field of a compatible valuation. We will do the same here for an expo-
nential f and the natural valuation v of (K,<).

First of all, we see that in view of condition 1) of the foregoing lemma, f induces an
isomorphism (Mv,+, 0, <)→ (1+Mv, ·, 1, <) , which we will denote by fR . Again in view
of that condition, f induces an isomorphism (Ov,+, 0, <)/Mv → (U>0

v , ·, 1, <)/1 +Mv .
Composing it with the isomorphism (10.3), we obtain an induced isomorphism

f : (K,+, 0, <) → (K
>0
, ·, 1, <)

a 7→ f(a)

which is an exponential on K.
Using once more our condition that f(Ov) = U>0

v , we find that f induces an order

isomorphism (K,+, 0, <)/Ov → (K
>0
, ·, 1, <)/U>0

v . By (10.2), the latter group is order
isomorphic to the value group (vK,+, 0, <) . Let us write G = (G,<) for (vK,+, 0, <) ,
and let vG denote the natural valuation of this ordered group. So the exponential f induces
an order isomorphism (K,+, 0, <)/Ov → G , which we denote by fL. This isomorphism
in turn induces an isomorphism between the ordered skeletons of these groups. The value
set of (K,+, 0, <) is G, and its components are all isomorphic to (K,+, 0, <). From
Corollary 2.23 we infer that the value set of (K,+, 0, <)/Ov is G<0 = {α ∈ G | α < 0},
and its components are all isomorphic to (K,+, 0, <). So f induces an isomorphism

ϕf : (G<0, <) → (vGG,<)

va 7→ vG(−vf(a)) = vG(vf(a))

of ordered sets, and isomorphisms from (K,+, 0, <) onto every component of G. We have
proved the following result due to N. Alling (cf. [ALL4], Section 1):

Theorem 10.24 Let (K,<) be an ordered field with natural valuation v and value group
G. Let vG be the natural valuation of G. If K admits an exponential f , then
a) there is an isomorphism fL : (K,+, 0, <)/Ov → G ,
b) there is an isomorphism ϕf : G<0 ∼= vGG of ordered sets,
c) all components of G are isomorphic to (K,+, 0, <) ,
d) there is an exponential f on K ,
e) there is an isomorphism fR : (Mv,+, 0, <) → (1 +Mv, ·, 1, <) .

Now the question arises whether there exists a converse of this theorem. This would
mean that we have to build an exponential from three different parts: an order isomorphism
fR, an exponential f on the residue field, and an order isomorphism fL . We have to
lift f and fL up into the additive and positive multiplicative group of K. Since the
additive group of a field of characteristic 0 is always divisible, there is a group complement
A′ ∼= (K,+, 0, <) for Mv in Ov , and there is a group complement A ∼= (K,+, 0, <)/Ov
for Ov in (K,+, 0, <). The reader may show that we have a lexicographic decomposition

(K,+, 0, <) ∼= AqA′ qMv . (10.5)
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To do the same for the group (K>0, ·, 1, <) , we have to assume that it is divisible, that
is, the field is root closed for positive elements. Note that this condition is necessary
for the existence of an exponential since an isomorphism between additive and positive
multiplicative group yields that the latter is divisible. Under this condition, there is a

group complement B′ ∼= (K
>0
, ·, 1, <) for 1 +Mv in U>0

v , and there is a group complement
B ∼= (vK,+, 0, <) for U>0

v in (K>0, ·, 1, <) . This gives a lexicographic decomposition

(K>0, ·, 1, <) ∼= BqB′ q 1 +Mv . (10.6)

Now fR may be viewed as an exponential of the right sides of these decompositions, and
we thus call it a right exponential. Similarly, fL may be viewed as an exponential of
the left sides of these decompositions, and we call it a left exponential. Putting the
exponentials fL , f and fR together, we obtain an exponential of K which induces these
partial exponentials. The problem is now to find criteria for the existence of right and left
exponentials.

In [ALL4], Theorem 3.1, Alling gives a criterion for the existence of fR . He shows that
on every power series field, a right exponential from the valuation ideal onto the set of
1-units can be defined by the usual Taylor expansion for exp . Thus, an arbitrary ordered
field admits a right exponential if it is embeddable into a power series field in such a
way that the image of its natural valuation ideal is closed under that right power series
exponential and its inverse.

We have deduced information about the skeletons of the groups from the existence of
an exponential. To some extent, this procedure can be reversed. Recall that divisible
ordered abelian groups are ordered Q-vector spaces. The idea introduced by S. Kuhlmann
in [KUS1] and [KUS2] is to employ the fact that in two special cases, these are determined
up to isomorphism by their skeletons, namely if they are countable (cf. Theorem 3.46) or if
they are maximal (cf. Theorem 3.52). (Recall that by Theorem 3.51, for divisible ordered
abelian groups the properties “maximal”, “spherically complete” and “being (isomorphic
to) a Hahn product” coincide.) In order to apply this idea, S. Kuhlmann computes the
skeleton of (1 + Mv, ·, 1, <). Let w denote its natural valuation. Implicitly, we have
already above determined the relation between v and w. Explicitly, it reads as follows (up
to equivalence, as usual):

Theorem 10.25 Let v be the natural valuation of (K,<). Then

w(1 + a) = va for all a ∈Mv (10.7)

is the natural valuation on (1 +Mv, ·, 1, <). Hence, its value set is w(1 +Mv) = vMv =
(vK)>0 . The components are all isomorphic to (K,+, 0, <). Consequently, (Mv,+, 0, <)
and (1 +Mv, ·, 1, <) have the same skeleton.

Proof: Suppose that a, b ∈Mv with a, b > 0. Assume that va ≥ vb. Then there is n ∈ N
such that nb ≥ a. This yields that (1 + b)n ≥ 1 + nb ≥ 1 + a, hence w(1 + a) ≥ w(1 + b).
Conversely, assume that w(1 + a) ≥ w(1 + b) and choose n ∈ N such that (1 + b)n ≥ 1 + a.
Hence (1 + b)n − 1 ≥ a, showing that va ≥ v((1 + b)n − 1). Since vb > 0, we have
v((1 + b)n − 1) = v(nb+ . . .+ bn) = vnb = vb, which proves that va ≥ vb. We have shown
that va ≥ vb⇔ w(1 + a) ≥ w(1 + b); consequently, va = w(1 + a) for all positive a ∈Mv

(up to equivalence of valuations). To deduce that this also holds for negative a ∈ Mv , it
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suffices to show that w(1 + b) = w(1 − b) for every positive b ∈ Mv , or in other words,
that 1 + b is archimedean equivalent to 1− b in the multiplicative group 1 +Mv . Since b is
positive, we have that (1− b)−1 > 1 + b. On the other hand, (1 + b)2(1− b) = 1+ b− b2− b3
which is > 1, since vb < 2vb = v(b2 + b3) yields that b > b2 + b3. This proves that
(1 + b)2 > (1− b)−1. Hence indeed, 1 + b is archimedean equivalent to 1− b. Now it also
follows that w(1 +Mv) = vMv = (vK)>0 .

Let α ∈ w(1 +Mv) = (vK)>0 . From what we have proved, we see that {c ∈ 1 +Mv |
wc ≥ α} = 1 + Oαv and {c ∈ 1 +Mv | wc > α} = 1 +Mα

v . Hence, the α-component of
(1 +Mv, ·, 1, <) is (1 +Oαv )/(1 +Mα

v ). Define a map

Oαv 3 a 7→ (1 + a)(1 +Mα
v ) ∈ (1 +Oαv )/(1 +Mα

v ) .

Let va = vb = α. Since α > 0, we have that vab > α and consequently, (1+a+b+ab)/(1+
a + b) ∈ 1 +Mα

v . This yields that (1 + a + b)(1 +Mα
v ) = (1 + a + b + ab)(1 +Mα

v ) =
(1 + a)(1 + b)(1 +Mα

v ) . Hence, our map is a group homomorphism. Since a 7→ a + 1
preserves the order and since the order on (1 + Oαv )/(1 +Mα

v ) is the order induced by
(1 +Oαv , ·, 1, <), our map preserves ≤ . Its kernel isMα

v . Now Corollary 2.22 shows that it
induces an order isomorphism from the component (Oαv ,+, 0, <)/Mα

v (which is isomorphic
to (K,+, 0, <) ) onto the component (1 +Oαv , ·, 1, <)/(1 +Mα

v ). �

Since every exponential f (and every right exponential fR) induces an isomorphism of
the skeletons of Mv and 1 +Mv, the equality of the value sets shows that it induces an
automorphism ψf of (vK)>0.

From (10.7), we deduce

w

(
1 + a

1 + b

)
= v

(
1 + a

1 + b
− 1

)
= v

(
a− b
1 + b

)
= v(a− b)

for all a, b ∈Mv . This shows that

Mv 3 a 7→ 1 + a ∈ 1 +Mv

is an isomorphism of ultrametric spaces. In view of Lemma ?? and Theorem 3.6, we obtain:

Corollary 10.26 If K is spherically complete with respect to its natural valuation, then
the groups (Mv,+, 0, <) and (1+Mv, ·, 1, <) are spherically complete (and hence maximal)
with respect to their natural valuations.

We have mentioned in the last section that the group 1 +Mv of 1-units (with respect
to the natural valuation) is divisible. Hence, it is a Q-vector space like the additive group
Mv . Hence, we may use Theorem 3.46 and Theorem 3.52 to obtain:

Corollary 10.27 Suppose that (K,<) is countable or spherically complete with respect to
its natural valuation. Then (K,<) admits a right exponential.

The conditions for the skeletons of A ∼= (K,+, 0, <)/Ov and B ∼= G to be isomorphic
are given by b) and c) of Theorem 10.24. Hence, we have: If (K,<) is countable or
spherically complete with respect to its natural valuation, then conditions b), c) and d) of
Theorem 10.24 imply the existence of an exponential on K. We shall improve this result
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by determining all possible exponentials (in the spirit of Theorem 10.5). But this is quite
hopeless if we allow the exponentials to be too messy on the components. So we will
confine ourselves to K-linear exponentials. To explain what we mean by this notion, we
show that we are actually working with K-vector spaces. Observe that the components of
(Mv,+, 0, <), (1 +Mv, ·, 1, <), and (K,+, 0, <)/Ov are all K, and the same is true for G
if it satisfies condition c). We shall use the following fact:

Lemma 10.28 Let k be a field and G a countable or spherically complete divisible ordered
(resp. valued) group whose components are k-vector spaces. Then G is a k-vector space
(with value preserving scalar multiplication).

Proof: If G is countable, then by Theorem 3.46 it is a Hahn sum over its skeleton. If
G is spherically complete, then by Theorem 3.51 it is a Hahn product over its skeleton.
In both cases, k-scalar multiplication can be defined componentwise since the components
are k-vector spaces. Multiplication by a nonzero scalar does not change the minimum of
the support and therefore, it preserves the value. �

It now remains to consider the component (U>0
v , ·, 1, <)/1+Mv

∼= (K
>0
, ·, 1, <). If f is

an exponential on K, then it is isomorphic to (K,+, 0, <) and through this isomorphism,
it inherits the structure of a K-vector space, with respect to which f is K-linear. With
this in mind, we will consider f to be K-linear if and only if fL and fR are K-linear.
If G satisfies condition c), then every K-linear fL is uniquely determined by the order
isomorphism ϕf : G<0 ∼= vGG. Similarly, every K-linear fR is uniquely determined by the
order automorphism ψf of G>0. We leave it to the reader to prove the following:

Lemma 10.29 Let k be a field and (V,<) and (V ′, <) two ordered Hahn sums or Hahn
products whose components are all equal to (k,+, 0, <) (hence, we view them as k-vector
spaces). Then for every isomorphism ϕ from the value set of V onto the value set of V ′

there is a unique k-linear isomorphism form (V,<) onto (V ′, <) which induces ϕ.

Fixing the isomorphism of the considered vector spaces onto the respective Hahn sums
(or Hahn products), we now obtain the desired description of K-linear exponentials:

Theorem 10.30 Suppose that (K,<) is root closed for positive elements and countable.
Assume further that all components of its value group G are isomorphic to (K,+, 0, <).
Then there is a bijection

f 7→ (ϕf , f , ψf )

from the set of all K-linear exponentials of (K,<) onto the product of the set of all order
isomorphisms ϕf : G<0 ∼= vGG, the set of all exponentials on K and the set of all order
automorphisms ψf of G>0.

The same holds if (K,<) and G are spherically complete with respect to their natural
valuations.

Observe that our theorem does not assert the existence of the isomorphism ϕf (while
ψf can always be taken to be the identity). And in fact, not every value group admits such
an isomorphism. In the countable case, the value group of an exponential field K is of the
form ∐

Q
(K,+, 0, <) .
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Indeed, the value group G of a root closed field must be divisible. If it is countable, it
is thus isomorphic to a Hahn sum, by virtue of Theorem 3.46. From divisibility, it also
follows that its ordering is dense and without endpoints and that the same is true for G<0.
If G and hence also G<0 are countable, then G<0 is a countable dense linearly ordered set
without endpoints and as such, it is isomorphic to the ordered set Q (cf. [ROS]). Hence, a
non-trivial countable divisible ordered abelian group G admits an isomorphism G<0 ∼= vGG
if and only if it is (isomorphic to) a Hahn sum with value set Q. We see that there exist
countable groups satisfying conditions b) and c), so our theorem indeed yields the existence
of countable exponential fields as soon as we are able to construct countable valued fields
with given value group and residue field. This will be done in section 6.5. As to the
problem of the existence of exponential power series fields, see [KU–KUS2].

Let us now consider the valuation theoretical interpretation of growth axioms for an
exponential of a nonarchimedean ordered field. As an example, we choose an axiom scheme
which plays a distinguished role in the model theory of exponential fields, according to a
theorem of Ressayre ([RES]; cf. also Theorem 1.1 of [VDD–MAC–MAR2]). It describes
the growth of the exponential f in comparison with polynomials:

(GRE) x > n2 =⇒ f(x) > xn (n ∈ N) .

Because of the condition “x > n2 ”, this axiom scheme is void for infinitesimals. That is,
it gives information only in the case of vx ≤ 0. It holds in the case vx = 0 if f coincides
with exp on a maximal archimedean subfield of K (viewed as a subfield of R). (Recall
that exp itself satisfies (GRE) and even x ≥ n2 ⇒ f(x) > xn.) Indeed, assume that
vx = 0; then x = r + ε with r ∈ R and vε > 0, and if x > n2, then r ≥ n2. So we have
f(r) = exp(r) > rn. But f(r) is the residue of f(x) and rn is the residue of xn modulo the
natural valuation v since ε is infinitesimal. Hence, f(r) > rn implies that f(x) > xn.

Now we have to consider the case of vx < 0. In this case, “x > n2 ” holds for all n ∈ N
if only x is positive. Restricted to K \OK , axiom scheme (GRE) is thus equivalent to the
assertion

vx < 0 ∧ x > 0 =⇒ ∀n ∈ N : f(x) > xn . (10.8)

But “ ∀n ∈ N : f(x) > xn ” means that wf(x) < wx . Observe that the condition
“vx < 0 ∧ x > 0” implies that x, f(x) ∈ K>0 \ U>0

v . Through the isomorphism (10.2)
which is induced by the map a 7→ −va , we see that the natural valuation w is given on
K>0 \ U>0

v by
wa = vG(va) for all a ∈ K>0 \ U>0

v

(note that vG(−va) = vG(va) ). Hence, wf(x) < wx is equivalent to vG(vf(x)) < vG(vx).
In view of vx < 0 and the definition of ϕf , this in turn is equivalent to ϕf (vx) < vG(vx) .
Therefore, assertion (10.8) is equivalent to

ϕf g < vG g for all g ∈ G<0 . (10.9)

For the conclusion of this section, let us sketch how to obtain a map induced on the
natural value group by the exponential f . One way to define this map is to compose the
natural valuation vG with the inverse of the isomorphism ϕf : G<0 ∼= vGG. This gives a
map

ϕ−1
f ◦ vG : G \ {0} → G<0 . (10.10)
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Using the definition of ϕf , we find that this map sends vf(a) to va, provided that va < 0.
Setting b = f−1(a) , we see that the above map is in fact induced by the logarithm f−1 :

G \ {0} → G<0

vb 7→ vf−1(b)

Since the natural valuation vG sends archimedean equivalent elements to the same value,
it is seen immediately from (10.10) that the above map does the same. In other words,
the map is constant on every archimedean class (which consists of two convex sets, one
in G<0 and one in G>0). Nevertheless, its image is all of G<0 since both vG and ϕ−1

f are
surjective. This shows that ordered groups admitting such maps resp. an isomorphism
ϕf : G<0 ∼= vGG must be “quite big”. For the study of their properties it turned out to be
convenient to change these maps a little bit. We define

χf g := ϕ−1
f (vG g) for all g ∈ G<0

and extend χf to all of G by symmetry, setting χf 0 = 0. in this way, we obtain a map
χf : G→ G which satisfies the following axioms:

(C0) χf x = 0 ⇔ x = 0 ,

(C−) χf (−x) = −χf x ,

(CA) vG x = vG y ∧ sign(x) = sign(y) ⇒ χf x = χf y ,

(C≤) χf preserves ≤ ,

(CS) χf is surjective.

The axioms (C0) and (C−) are direct consequences of our definition. Axiom (CA) follows
from the fact that (10.10) is constant on archimedean classes, and the extension by sym-
metry. Axiom (C≤) is seen as follows. On G<0, the natural valuation vG preserves ≤ (cf.
(2.7)), so its composition with the order preserving map ϕ−1

f also preserves ≤ . On G>0,

vG reverses ≤ , but χf again preserves ≤ since there it is equal to −ϕ−1
f ◦ vG by virtue of

our symmetric extension. Finally, axiom (CS) is a consequence of symmetry and the fact
that the image of ϕ−1

f ◦ vG is all of G<0. The advantage of the map χf in comparison with

ϕ−1
f ◦vG is that it is a map from G to G and that it preserves ≤ on all of G. Observe that all

axioms except (CS) are universal (cf. Section 20.1). Since axiom (CA) says that the map
contracts archimedean classes to just two points, we call a map χf a precontraction if it
satisfies the universal axioms (C0), (C−), (CA) and (C≤), and we call it a contraction if
it satisfies in addition axiom (CS).

Furthermore, assertion (10.9) is equivalent to

g < χf g for all g ∈ G<0 .

In view of the symmetry axiom (C−), this in turn is equivalent to the axiom

(CP) x 6= 0 ⇒ |χf x| < |x| .

This axiom expresses the assertion that χf sends the elements towards the middle point
0 of the group. Therefore, we call a precontraction centripetal if it satisfies (CP). For a
precontraction, (CP) is equivalent to the seemingly stronger assertion

vG(χf g) > vG g for all g ∈ G \ {0} . (10.11)
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Indeed, (CP) implies vGχf g ≥ vG g . But equality can not hold for g 6= 0 since otherwise
we would obtain χfχf g = χf g by virtue of (CA), in contradiction to (CP). We have
proved:

Lemma 10.31 Every exponential f on (K,<) induces a contraction χf on its natural
value group. Further, f satisfies (10.8) if and only if χf is centripetal.

Ordered abelian groups with contractions and precontractions are studied in detail in the
papers [KU4] and [KU5], making intense use of the natural valuation of such groups.

Remark 10.32 In Ressayre’s proof of his main theorem in [RES], a crucial tool is the integer part (also
called integral part) of an ordered field (K,<), that is, a subring R of K which satisfies

(IP1) (R,<) is discretely ordered (i.e., ∀x ∈ R : x ≤ 0 ∨ x ≥ 1),
(IP2) ∀x ∈ K ∃y ∈ R : |x− y| < 1 .

M. H. Mourgues and J.-P. Ressayre [MOU–RES] showed that every real closed field (cf. Section 10.2) has
an integer part; see also S. Boughattas [BOUG]. If f is an exponential on (K,<), then an integer part will
be called exponential integer part if it is closed under f . Ressayre has shown that every real closed
field has an exponential integer part, provided that the exponential satisfies f(1) = 2 (such an exponential
is commonly denoted by 2x). The reader may show the following:
Let (K,<) be an ordered field with natural valuation v. If the group complement A of Ov in (K,+, 0) is
closed under multiplication, then the subring R of K generated by A and Z is an integer part of (K,<).
If in addition, f is an exponential on (K,<) satisfying f(1) = 2 and if A is closed under f , then R is an
exponential integer part of (K,<, f).

Exercise 10.5 For an exponential f satisfying (GRE), deduce (10.11) directly from the definition χf (vb) =
vf−1(b).

10.4 Rolle fields

In this section, we shall give a theorem on Rolle fields (cf. P. Ribenboim [RIB29]). It
follows the spirit of Section 10.2. See also F. Delon [DEL6] for further information on Rolle
fields and Rolle rings. It should be noted that the following results admit a straitforward
generalization to Rolle rings.

An ordered field (K,<) is called a Rolle field if it satisfies the following Rolle prop-
erty:

for every polynomial f ∈ K[X] and every pair a < b of elements of K such that f(a) =
f(b) = 0, there exists an element c ∈ K satisfying a < c < b and f ′(c) = 0

where f ′ denotes the formal derivative of f . The following lemma is an easy consequence
of this definition:

Lemma 10.33 Assume (L,<) to be a Rolle field and (K,<) is a subfield, relatively alge-
braically closed in L (the ordering being the restriction of the ordering of L). Then (K, v)
is also a Rolle field.

Proof: Given a polynomial f ∈ K[X] and elements a < b of K such that f(a) = f(b) = 0.
Since (L, v) is a Rolle field, there exists an element c ∈ L satisfying a < c < b and f ′(c) = 0.
But like f , its derivative f ′ is also a polynomial with coefficients in K; since K is relatively
algebraically closed in L, it follows that c ∈ K. �
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Theorem 10.34 Assume that P is a henselian place of the Rolle field (L,<). Then LP
admits an ordering with respect to which it is a Rolle field.

Proof: Since L admits an ordering, it has characteristic 0. Consider the relative algebraic
closure k of Q in L. Since k admits an ordering (the restriction of the ordering of L), it
cannot have a non-trivial henselian p-adic valuation. Thus P is trivial on k which yields
that the characteristic of LP is 0.

Since LP has characteristic 0 and (L, P ) is henselian, there exists an embedding ι of
LP into L such that ∀x ∈ LP : (ιx)P = x (i.e. ιLP is a field of representatives for the
residue field LP ). If ιLP would admit a proper algebraic extension L′ within L then L′P
would be a proper extension of LP within LP which is absurd. Hence ιLP is relatively
algebraically closed in L. Equipped with the restriction of the ordering of L it is thus
a Rolle field by virtue of the above lemma. The same holds for LP with respect to the
ordering induced by the isomorphism ι. �

In the following we will discuss the converse of Theorem 10.34. We need the charac-
terization for Rolle fields which was given by R. Brown, T. C. Craven and M. J. Pelling in
[BRW–CR–PE]. An abelian group is called odd-divisible if every element is divisible by
every odd number.

Theorem 10.35 (K,<) is a Rolle field if and only if it admits a henselian valuation v
whose residue field Kv is real closed and whose value group vK is odd-divisible.

Note that it is not necessary to require that the valuation v be the natural valuation of
(K,<) (i.e. that the valuation ring be convex). Indeed, Brown, Craven and Pelling have
also shown in [BRW–CR–PE] that if (K,<) is a Rolle field, then also (K,<′) for every
other ordering <′ of K.

The following is a generalization of one direction of the preceding theorem and gives a
converse of Theorem 10.34.

Theorem 10.36 Assume that the field L admits a henselian valuation v whose value group
vL is odd-divisible. If Lv admits an ordering such that (Lv,<) is a Rolle field, then L
admits an ordering (inducing < via v) and is a Rolle field (with respect to every ordering).

Proof: Assume the hypothesis of the theorem. Then by virtue of the Theorem of Brown,
Craven and Pelling, the Rolle field (Lv,<) admits a valuation w whose residue field (Lv)w
is real closed and whose value group w(Lv) is odd-divisible. Consider the composite v ◦w
on L. Its residue field L(v ◦ w) = (Lv)w is real closed. Its value group v ◦ wL is odd-
divisible; this is seen as follows. v ◦ wL has a convex subgroup Γ isomorphic to w(Lv)
and hence odd-divisible. The quotiont of v ◦ wL by Γ is isomorphic to vL and hence also
odd-divisible by hypothesis. It follows that the group v ◦ wL itself is odd-divisible. Again
using the Theorem of Brown, Craven and Pelling, we conclude that L is a Rolle field for
every ordering. Let us show that there exists at least one ordering. As L admits a place
P = Pv onto the ordered field (Lv,<), it admits an ordering <′ which induces < on Lv
via this place, that is, the positive cone of < on Lv is the image of the positive cone of <′

under the place P . �


