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Chapter 1

Ordered Sets and Ultrametric spaces

1.1 Ordered sets

Let T be a set and < a binary relation on T . If for all x ∈ T ,

(O6R) x 6< x ,

(OT) x < y ∧ y < z =⇒ x < z ,

(OC) x < y ∨ x = y ∨ y < x ,

then (T,<) is called an ordered set and < is called an ordering of T . Axiom (O6R) says
that < is anti-reflexive, axiom (OT) states transitivity and axiom (OC) declares that every
two elements are comparable. In the presence of axiom (OC), one also speaks of a total
ordering, but we will omit “total” since we will only consider total orders in this book. In
the literature, a totally ordered set is also called a fully ordered set, a linearly ordered
set or a chain. In contrast to this, (T,<) is called a partially ordered set when (O6R)
and (OT) are satisfied.

Let (T,<) be an ordered set. If a, b ∈ T , then a ≤ b stands for a < b ∨ a = b, as usual.
If S1, S2 are non-empty subsets of T and a ∈ T , we will write a < S2 if a < b for all b ∈ S2,
and further, we will write S1 < S2 if a < S2 for all a ∈ S1. Similarly, we use the relations
>, ≤ and ≥.

If (T ′, <′) is another ordered set and f is a map from T into T ′, then f is said to
preserve the ordering (or to be order preserving) if for all a, b ∈ T , a < b implies
f(a) <′ f(b). It then follows that f is injective. If f is also onto, then it is called an order
isomorphism. The order type of (T,<) is the class of all ordered sets which admit an
order isomorphism onto (T,<). The finite ordered sets can be represented by the number
of their elements. The above map f is said to reverse the ordering (or to be order
reversing) if for all a, b ∈ T , a < b implies f(b) <′ f(a).

In the following, let S be a subset of T . We will call (T,<) an extension of (T,<) if
the ordering < on S is the restriction of the ordering < of T . Further, S is said to be dense
in (T,<) if for all elements α, β ∈ T with α < β, there exists γ ∈ S such that α < γ < β.
T is said to be dense if it is dense in itself, that is, if for every two unequal elements of
T there is a third element of T strictly between them. T is called discretely ordered, if
for every α ∈ T , the set {β ∈ T | β > α}, if non-empty, admits a minimal element, and
the set {γ ∈ T | γ < α}, if non-empty, admits a maximal element. That means, if α is
not the smallest element in T , then it admits an immediate predecessor β < α such that
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4 CHAPTER 1. ORDERED SETS AND ULTRAMETRIC SPACES

no element of T lies properly between β and α, and if α is not the maximal element in T ,
then it admits an immediate successor γ such that no element of T lies properly inbetween
α and γ. The properties “dense” and “discretely ordered” are mutually exclusive. An
element α ∈ T is called an endpoint of T if it is the maximal or the minimal element
of T . For example, (Q, <) is a densely ordered set without endpoints, and (Z, <) is a
discretely ordered set without endpoints (while (N, <) has one endpoint).

Let (T1, <) and (T2, <) be two ordered sets. Their lexicographic product, denoted
by T1 q T2, is the cartesian product T1 × T2 endowed with the ordering given by

(LEX) (x, y) < (x′, y′) ⇐⇒ x < x′ ∨ (x = x′ ∧ y < y′) .

If T2 is densely ordered without endpoints, then so is T1 q T2. If T2 is discretely ordered
without endpoints, then so is T1qT2. The sum of (T1, <) and (T2, <), denoted by T1 +T2,
is the disjoint union of T1 and T2, endowed with an extension of the orders of T1 and T2

such that every element of T1 is smaller than every element of T2. This sum can be viewed
as the subset {(i, α) | α ∈ Ti ∧ i ∈ {1, 2} } of the lexicographic product {1, 2} q (T1 ∪ T2),
endowed with the restriction of the lexicographic ordering. We will most often use the sum
in the case where we have to add a last element to an ordered set T . Indeed, in the sum
T + {∞} the element ∞ is bigger than every element of T . Instead of T + {∞} we will
also write T∞.

The subset S of T is called convex in (T,<) if for every two elements α, β ∈ S and
every γ ∈ T such that α ≤ γ ≤ β, it follows that γ ∈ S. The convex hull of S in T is
the set

{γ ∈ T | ∃α, β ∈ S : α ≤ γ ≤ β} .
The subset S of T is an initial segment of T if for every α ∈ S and every γ ∈ T with
γ ≤ α, it follows that γ ∈ S. Symmetrically, S is a final segment of T if for every α ∈ S
and every γ ∈ T with γ ≥ α, it follows that γ ∈ S. Consequently, S is an initial segment
of T if and only if T \ S is a final segment of T . Note that S is an initial segment of T if
and only if S < T \ S. Note also that ∅ < T and T < ∅ by definition; so ∅ is an initial
segment as well as a final segment of T .

The subset S of T is called coinitial in T if its convex hull is an initial segment of
T . Symmetrically, S is called cofinal in T if its convex hull is a final segment of T .
Consequently, S is cofinal in T if and only if for every β ∈ T there is some α ∈ S such
that α ≥ β. The coinitiality type of T 6= ∅ is the minimal ordinal λ such that there is
a coinitial subset S in T which admits an order reversing bijection onto λ. Similarly, the
cofinality type of T 6= ∅ is the minimal ordinal λ such that there is a cofinal subset S in
T of order type λ. Note that λ is 1 or a limit ordinal.

Example 1.1 The ordered set (Z, <) is discretely ordered, but coinitial and cofinal in
(Q, <). Hence, the convex hull of (Z, <) in (Q, <) is Q. The negative integers form an
initial segment of (Z, <), and the positive integers form a final segment. (Q, <) is dense,
and it is dense in (R, <). The lexicographic product QqZ is discretely ordered, while ZqQ
is densely ordered. (Z, <) is the sum (−N, <) + {0}+ (N, <). The sum (Z, <) + (Q, <) is
neither densely nor discretely ordered. ♦

Lemma 1.2 Let S be a subset of the ordered set T . If S is dense in T , then for every
element α ∈ T , the initial segment {β ∈ S | β < α} of S is cofinal in the initial segment
{β ∈ T | β < α} of T . The converse holds if T is dense.
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Proof: Assume that S is dense in T and that α ∈ T . We have to show that the set
{β ∈ S | β < α} is cofinal in {β ∈ T | β < α}. This is equivalent to: for every β ∈ T ,
β < α, there is some γ ∈ S such that β ≤ γ < α. But this follows from the density of S
in T .

For the converse, assume that T is dense and that {β ∈ S | β < α} is cofinal in
{β ∈ T | β < α} for every α ∈ T . Given α, β ∈ T with β < α, we have to show that
there exists γ ∈ S such that β < γ < α. By the density of T , there exists δ ∈ T such that
β < δ < α, hence δ ∈ {β ∈ T | β < α}. Now the existence of γ follows by the cofinality of
{β ∈ S | β < α} in {β ∈ T | β < α}. �

1.2 Cuts

Throughout this section, let S be a non-empty subset of the ordered set T . If S1 ⊆ S and
S2 ⊆ S are such that S1 ≤ S2 and S = S1 ∪ S2, then we will call (S1, S2) a quasi-cut in
S. Then S1 is an initial segment of S, S2 is a final segment of S, and the intersection of
S1 and S2 consists of at most one element. If this intersection is empty, then (S1, S2) will
be called a cut in S. In this case, we will write ΛL = S1 , ΛR = S2 and

Λ = (ΛL,ΛR) .

Since ΛR = S \ ΛL, the cut is uniquely determined by the initial segment ΛL.
A cut (ΛL,ΛR) with ΛL 6= ∅ and ΛR 6= ∅ is called a proper cut or a Dedekind cut.

Each (non-empty) ordered set (S,<) has exactly two improper cuts: (∅, S) and (S, ∅).
(Our notion which includes improper cuts is sometimes called Cuesta Dutari cut in the
literature.)

For any subset M ⊆ S, we let M+ denote the cut

M+ = ({α ∈ S | ∃γ ∈M : α ≤ γ} , {β ∈ S | β > M}) .

That is, if M+ = (ΛL,ΛR) then ΛL is the least initial segment of S which contains M ,
and ΛR is the largest final segment which has empty intersection with M . If M = ∅ then
ΛL = ∅ and ΛR = S, and if M = S, then ΛL = S and ΛR = ∅. Symmetrically, we set

M− = ({α ∈ S | α < M} , {β ∈ S | ∃γ ∈M : β ≥ γ}) .

That is, if M− = (ΛL,ΛR) then ΛL is the largest initial segment which has empty inter-
section with M , and ΛR is the least final segment of S which contains M . If M = ∅ then
ΛL = S and ΛR = ∅, and if M = S, then ΛL = ∅ and ΛR = S.

If M = {α}, we will write α+ instead of {α}+ and α− instead of {α}−. Note that

α+ = ({β ∈ S | β < α}, {β′ ∈ S | β′ ≥ α}) and α− = ({β ∈ S | β ≤ α}, {β′ ∈ S | β′ > α}) .
(1.1)

These two cuts are called principal cuts.
If γ ∈ T is such that ΛL ≤ γ ≤ ΛR, then we will say that γ realizes (ΛL,ΛR) (in

(T,<)). For γ ∈ T , the cut

({α ∈ S | α ≤ γ}, {β ∈ S | β > γ})

is called the cut induced by γ in S; this cut is realized by γ in (T,<). We have:
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Lemma 1.3 If two elements γ and δ in two extensions of (S,<) induce the same cut in
(S,<), and if this cut is not realized by any element of S, then (S∪{γ}, <) and (S∪{δ}, <)
are order isomorphic over S.

Proof: As the cut is not realized by any element of S, we know that γ, δ /∈ S. Thus for
every β ∈ S, γ > β or γ < β. Since γ and δ realize the same cut (ΛL,ΛR) in (S,<), we
have γ > β ⇔ β ∈ ΛL ⇔ δ > β and γ < β ⇔ β ∈ ΛR ⇔ δ < β. This shows that γ 7→ δ
induces an order preserving bijection between (S ∪ {γ}, <) and (S ∪ {δ}, <) over S. �

Every cut in S is realized by at most two elements of S. If α < α′ are two elements of
S realizing (ΛL,ΛR), then α is the maximal element of ΛL and α′ is the minimal element
of ΛR and there is no element of S between α and α′. Consequently, this situation can
not appear if S is dense. On the other hand, every α ∈ S realizes exactly two cuts in
(S,<), namely α+ and α−. This shows that the cuts realized in (S,<) are not in one to
one correspondence with the elements of S.

If it is clear from the context which ordering on S we are working with, then we will
often writen S instead of (S,<), and we denote by S̆ the set of cuts in S (including the
improper cuts). A natural ordering can be introduced on S̆ by setting Λ1 ≤ Λ2 if and only
if ΛL

1 ⊆ ΛL
2 (or, equivalently, ΛR

1 ⊇ ΛR
2 ). Again, we write S̆ for (S̆, <).

There are two natural embeddings of S into S̆ as ordered sets, given by S 3 α 7→ α+ ∈ S̆
and by S 3 α 7→ α− ∈ S̆. We will work with the former, so α ∈ S will be identified with
the cut whose left cut set has α as its largest element. Then we have

α = α+ > α− .

The set Sqc of all quasi-cuts in S contains S̆, and the ordering of S̆ can be extended
to Sqc as follows: if (A,B) is a quasicut in S with A ∩ B = {α}, then α− < (A,B) < α+.
Sending α to this cut (A,B) yields a natural order preserving embedding of S in Sqc with
image disjoint from S̆.

1.3 Ultrametric spaces

Remark 1.4 Most of the valuation theorists who have dealt with Krull valuations, and in particular with
those of rank > 1, have preferred the additive notation where the value group is written additively. Not
necessarily, but usually connected with this notation is the “philosophy” of taking the value of 0 to be an
element bigger than all others, and to take the valuation ideal to be the set of all elements having positive
value. In this philosophy, the world appears somewhat inverted: v(a − b) is large if the elements a and
b are near to each other; like gravitation, v(a − b) measures proximity and not remoteness. Although it
may be unfamiliar to many readers, we also prefer to work with this philosophy throughout the book, even
when considering ultrametric spaces. So let us introduce the following mnemonic:

It is of high value to be near to each other.

Let Γ be an ordered set. By Γ∞ we will denote the ordered set that we obtain from Γ by
adding a new element ∞ and extending the ordering of Γ such that ∞ becomes the last
element of Γ∞. Written as a sum of two ordered sets, Γ∞ = Γ + {∞} .

A set X together with a map u : X ×X → Γ∞ is called an ultrametric space and
u is called an ultrametric if the following axioms hold, for all x, y, z ∈ X:
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(UM 0) u(x, y) =∞ ⇐⇒ x = y ,

(UMT) u(x, y) ≥ min{u(x, z), u(z, y)} ,

(UMS) u(x, y) = u(y, x) .

Axiom (UMT) is called the ultrametric triangle law, and (UMS) expresses the symmetry
of the ultrametric. We will call uX := {u(x, y) | x, y ∈ X ∧ x 6= y} ⊆ Γ the value set of
(X, u). Note that we exclude ∞ from uX. We call u(x, y) the (ultrametric) distance
between x and y.

Lemma 1.5 Axioms (UMT) and (UMS) imply

(UM6=) u(x, z) 6= u(z, y) =⇒ u(x, y) = min{u(x, z), u(z, y)} ,

which in view of (UMT) can also be written as

(UM=) u(x, y) > min{u(x, z), u(z, y)} =⇒ u(x, z) = u(z, y) .

Proof: Assume u(x, z) < u(z, y) so that u(x, z) = min{u(x, z), u(z, y)}; we have to
show that u(x, y) = u(x, z). If this were not the case, then u(x, y) > u(x, z), by virtue
of (UMT). Applying (UMT) again, we find u(x, z) ≥ min{u(x, y), u(y, z)}. By (UMS),
u(y, z) = u(z, y), and we can now deduce u(x, z) ≥ min{u(x, y), u(z, y)} > u(x, z), a
contradiction. �

By induction, axiom (UMT) yields

∀x1, . . . , xn ∈ X : u(x1, xn) ≥ min
1≤i≤n−1

u(xi, xi+1) . (1.2)

An ultrametric space (X, u) is called homogeneous if for every x ∈ X and every
α ∈ uX there is x′ ∈ X such that u(x, x′) = α.

The main examples of ultrametric spaces will be provided by valued abelian groups and
valued fields. All ultrametric spaces induced by valuations of abelian groups or fields are
homogneous.

1.4 Balls

Let (X, u) be an ultrametric space. A subset B ⊆ X will be called a ball (in X) if

(BALL) ∀y, z ∈ B ∀w ∈ X : u(y, w) ≥ u(y, z)⇒ w ∈ B .

Balls are the ultrametric analogue of convex sets. We are giving an alternative represen-
tation of balls. For every x ∈ X and every final segment S of uX∞, we define

BS(x) := {y ∈ X | u(x, y) ∈ S} .

We note that S ⊆ S ′ implies that BS(x) ⊆ BS′(x). The sets BS(x) are precisely all balls
in X:
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Lemma 1.6 Every set BS(x) is a ball in X. Conversely, if B is a ball in X and S is the
least final segment containing the elements u(y, z) for all y, z ∈ B, then for every x ∈ B,

B = BS(x) .

In particular, BS(x) = BS(y) for every y ∈ BS(x).

Proof: Assume that y, z ∈ BS(x), that is, u(y, x) = u(x, y) ∈ S and u(x, z) ∈ S. Suppose
in addition that w ∈ X with u(y, w) ≥ u(y, z). Then u(x,w) ≥ min{u(x, y), u(y, w)} ≥
min{u(x, y), u(y, z)} ≥ min{u(x, y), u(y, x), u(x, z)} ∈ S. Since S is a final segment of
uX∞, it follows that u(x,w) ∈ S. Hence, w ∈ BS(x). We have proved that BS(x) is a
ball.

For the converse, assume that B is a ball, and let S be as in the assertion. Further,
let x be any element in B. If y ∈ B, then u(x, y) ∈ S and thus, y ∈ BS(x). Conversely,
if y ∈ BS(x), then u(x, y) ∈ S. So by definition of S, there is some z ∈ B such that
u(x, z) ≤ u(x, y). Since B is a ball, it follows that y ∈ B. We have proved that B = BS(x).

�

The last assertion of the lemma is sometimes described in the following words:

Every element of a ball in an ultrametric space is a center of the ball.

Note that also X, singletons and the empty set are balls in X. Indeed, for every x ∈ X,

X = BuX∞(x) , {x} = B{∞}(x) , ∅ = B∅(x) .

For every α ∈ uX∞, we define the following balls of radius α around x:

Bα(x) := {y ∈ X | u(x, y) ≥ α} , B◦α(x) := {y ∈ X | u(x, y) > α} .

Hence, Bα(x) = BS(x) for the final segment S = {γ ∈ uX∞ | γ ≥ α}, and B◦α(x) = BS(x)
for the final segment S = {γ ∈ uX∞ | γ > α}. We will also write Bα(X, x), B◦α(X, x) to
indicate the space in which we are working. Note that B∞(x) = {x} and B◦∞(x) = ∅. For
x, y ∈ X, we define:

B(x, y) := Bu(x,y)(x) = Bu(x,y)(y) ,

which is the smallest ball containing both x and y.

In the literature, a ball of the form B◦α(x) is sometimes called “open ball”, and a ball of
the form Bα(x) “closed ball”. But as we will see, both are closed and open in the topology
induced by the ultrametric. Therefore, we will speak of o-ball and c-ball instead.

We will work with the following sets of balls:

Bα(X) := {Bα(x) | x ∈ X} , B◦α(X) := {B◦α(x) | x ∈ X}

B(X) :=
⋃

α∈uX∞

Bα(X) , B◦(X) :=
⋃

α∈uX∞

B◦α(X) .

Hence B(X) is the set of all c-balls and B◦(X) the set of all o-balls in X.
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Lemma 1.7 Every two balls with non-empty intersection are comparable by inclusion: If
B,B′ are balls in X with B ∩ B′ 6= ∅, then B ⊆ B′ or B′ ⊆ B. In particular, for all
α, β ∈ uX and all x, y ∈ X,

α ≥ β ∧ Bα(x) ∩Bβ(y) 6= ∅ =⇒ Bα(x) ⊆ Bβ(y) , (1.3)

and the same holds for the balls B◦.

Proof: Suppose that z ∈ B ∩ B′. Then by the last lemma, there are final segments S
and S ′ of uX∞ such that B = BS(z) and B′ = BS′(z). Since S and S ′ are final segments,
we must have S ⊆ S ′ or S ′ ⊆ S. Hence, B ⊆ B′ or B′ ⊆ B. For the second assertion, we
just have to note that α ≥ β implies that {γ ∈ uX∞ | γ ≥ α} ⊆ {γ ∈ uX∞ | γ ≥ β}. �

Lemma 1.8 Let B be a ball in X and y ∈ X \ B. Then for every x ∈ B, B ∩ B◦α(y) = ∅
for α = u(x, y).

Proof: Suppose that z ∈ B◦α(y). Then u(y, z) > α = u(x, y), and thus u(x, z) =
min{u(x, y), u(y, z)} = u(x, y). If z were an element of B, then it would follow from
(BALL) that y ∈ B, a contradiction. �

Exercise 1.1 Prove that for all x, y ∈ X and α, β ∈ uX∞,

α ≥ β ∧ B◦α(x) ∩Bβ(y) 6= ∅ =⇒ B◦α(x) ⊆ Bβ(y)
α > β ∧ Bα(x) ∩B◦β(y) 6= ∅ =⇒ Bα(x) ⊆ B◦β(y) .

Exercise 1.2 Assume that (X,u) is homogenous. Prove that every c-ball is of the form B(x,x’) for
suitable x, x′ ∈ X. Further, prove that if x ∈ X α, β ∈ uX with α < β, then Bβ(x) ⊂6= Bα(x). Construct

an example of a non-homogenous ultrametric space in which this does not hold.

1.5 The topology induced by an ultrametric

For all x, y ∈ X and α, β ∈ uX∞ we have that B◦α(x)∩B◦β(y) is equal to either ∅ = B◦∞(x),
or B◦γ(z) for any z in the intersection and γ = max{α, β}. Consequently, the balls B◦α(x),
α ∈ uX∞, x ∈ X, form a basis for a topology on X, canonically induced by the ultrametric
u. One might be tempted to think of the Bα(x) as “closed” balls in contrast to the open
balls B◦α(x), but this does not reflect the reality:

Lemma 1.9 In the topology induced by the ultrametric u on X, the following holds:

a) all balls in X are closed,

b) all balls BS(x) in X with S 6= {∞} are open,

c) X is Hausdorff and totally disconnected.

Proof: The balls ∅ and X are closed. Now take a non-empty ball B 6= X, x ∈ B and
y /∈ B. Then the ball Bα(y) with α = u(x, y) is an open neighborhood of y, and Lemma 1.8
shows that it does not intersect with B. This proves a).
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Now take B = BS(x) with S 6= {∞}. If S = ∅, then B = ∅ is open. So assume that
S contains at least one element α of uX. Then for every y ∈ B the open neighborhood
B◦α(y) is contained in B. This proves b).

Given x, y ∈ X with x 6= y, we set α = u(x, y) < ∞. Thus, x ∈ B◦α(x) and y ∈
B◦α(y). On the other hand, we see that x /∈ B◦α(y) and y /∈ B◦α(x). Hence by Lemma 1.7,
B◦α(x)∩B◦α(y) = ∅. This proves that the topology is Hausdorff. Since the two balls B◦α(x)
and B◦α(y) are open and closed, the connected component of x is just {x}. This proves
c). �

Note that the topology is discrete if and only if all balls BS(x) with S = {∞} are open
(because these balls are precisely the singletons in X). This is the case e.g. if uX has a
greatest element γ, since then {x} = B◦γ(x).

Let (X, u) and (X ′, u′) be ultrametric spaces and f : X → X ′ an arbitrary map. For
the topologies induced on X and X ′ by the ultrametrics, f is continuous if and only if
for every x ∈ X and every β ∈ u′X ′ there is α ∈ uX such that f(Bα(x)) ⊆ Bβ(f(x)) .

1.6 Nests of balls and spherical completeness

The set of all balls in X is partially ordered by inclusion. Lemma 1.7 states that every two
balls with a non-empty intersection are comparable. The same can be deduced for the set
B(X)∪B◦(X) . Thus, a set of non-empty balls will be totally ordered as soon as every two
balls in the set have a non-empty intersection; in this case, it is called a nest of arbitrary
balls. In accordance with the literature, it will be called a nest of balls if it consists only
of c-balls. It will be called a nest of co-balls if it consists only of c-balls and o-balls.

The ultrametric space (X, u) is called spherically complete if for every nest B ⊆
B(X) of balls, their intersection

⋂
B =

⋂
B∈BB is non-empty. In the literature, the names

spherically compact and ultracomplete are also used for the same property.

A nest {Bα(xα) ∈ B(X) | α ∈ S} of balls will be called a completion nest if S
is a cofinal subset of uX∞. Ultracompleteness is stronger than the following property:
(X, u) is called complete if for every completion nest B ⊆ B(X), the intersection

⋂
B is

non-empty.

Given a nest of balls B ⊆ B(X), it can be written as {Bα(xα) | α ∈ S} with S a subset
of uX∞ and xα elements of X. We denote by ΛL(B) the minimal initial segment of uX∞
containing S and call it the support segment of B. If S = ΛL(B), then we call B a full
nest of balls. If S is not an initial segment of uX, that is, if S 6= ΛL(B), then we can
fill up B to a full nest B′ = {Bα(xα) | α ∈ ΛL(B)} of balls such that B ⊆ B′ and B′ has
the same intersection as B. Indeed, if α ∈ ΛL(B) \ S then we can pick β ∈ S such that
β > α and we can set xα = xβ. Note that Bα(xα) does not depend on the actual choice of
β : If we take γ ∈ S such that γ > α, then the balls Bβ(xβ) and Bγ(xγ) have a non-empty
intersection since B is a nest of balls. Consequently, u(xβ, xγ) ≥ min{β, γ} > α, showing
that Bα(xβ) = Bα(xγ). Since B ⊆ B′ and every Bα(xα) ∈ B′ contains some Bβ(xβ) ∈ B,
we have

⋂
B′ =

⋂
B.

This construction is doing nothing else than adding to B all those c-balls in X that lie
between two c-balls in B (that is, contain one and are contained in the other). In the same
way, we can fill up any nest B ⊆ B(X) ∪B◦(X) with c-balls and o-balls, and any nest of
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general balls with general balls. The nests obtained in this way are uniquely determined.
(We leave the details as an exercise to the reader.)

Given a nest B of arbitrary balls, we can first fill it up and then extract the nest B′′ of all
c-balls which the filled-up nest contains. If B contains no smallest ball, then

⋂
B′′ =

⋂
B.

The containment “⊆” is clear. The converse follows from the fact that if B1, B2 are
arbitrary balls such that B1

⊂
6= B2, then there is a c-ball B such that B1 ⊆ B ⊆ B2 .

Indeed, by Lemma 1.6 we can write Bi = BSi(xi) for i = 1, 2 with final segments S1
⊂
6= S2 ;

taking any α ∈ S2 \ S1, the ball B = Bα(x1) is what we need.
Since every nest of balls containing a smallest ball has a non-empty intersection, our

above construction proves:

Lemma 1.10 The ultrametric space (X, u) is spherically complete if and only if every nest
of arbitrary balls has a non-empty intersection.

A finite nest of balls always contains a smallest ball. Hence, every ultrametric space
with a finite value set is spherically complete. More generally, if the value set uX is a
reversed well-ordering, then every ascending chain of values in uX is finite, which yields
that all nests of balls contain a minimal ball, and again, (X, u) is spherically complete.
Similarly, if uX contains a maximal element αmax, then (X, u) is complete since every
cofinal subset in uX must contain αmax.

1.7 Products of ultrametric spaces

Let (Xi, ui), i ∈ I, be ultrametric spaces whose value sets uiXi are all contained in a
common ordered set, and assume that I is finite or

⋃
i∈I uiXi is wellordered. Then their

product will be the cartesian product
∏

i∈I Xi equipped with the ultrametric
∏

i∈I ui :∏
i∈I Xi ×

∏
i∈I Xi → (

⋃
i∈I uiXi)∞ defined by

(
∏
i∈I

ui) ((xi)i∈I , (yi)i∈I) := min
i∈I

ui(xi, yi) .

We leave it to the reader to verify that this map satisfies (UM 0), (UMT) and (UMS).
Note that indeed every element of

⋃
i∈I uiXi appears as the distance of two suitably chosen

elements of
∏

i∈I Xi . In case of two ultrametric spaces, we write (X1 × X2, u1 × u2).
Examples for products of ultrametric spaces are provided by Lemma 3.11 below.

Lemma 1.11 If the product (
∏

i∈I Xi ,
∏

i∈I ui) of ultrametric spaces is spherically com-
plete, then the same holds for all (Xi, ui), i ∈ I. If for 1 ≤ i ≤ n, the ultrametric spaces
(Xi, ui) are spherically complete (resp. complete), then the same holds for the finite product
(
∏n

i=1 Xi ,
∏n

i=1 ui).

Proof: Assume that the product (X, u) := (
∏

i∈I Xi ,
∏

i∈I ui) is spherically complete
and that B ⊆ B(X) is a nest of balls in (Xj, uj) for some fixed j ∈ I. Let us write
B = {Bα(Xj, xα) | α ∈ S} with S a subset of ujXj and xα elements in Xj . Pick some
elements xi ∈ Xi, i ∈ I, and set xj,α = xj and xi,α = xi for i 6= j. Define xα := (xi,α)i∈I ∈∏

i∈I Xi for every α ∈ S. Then {Bα(X, xα) | α ∈ S} is a nest of balls in the product. By
assumption, its intersection contains an element y. In view of the definition of

∏
i∈I ui it

follows that its j-th coordinate yj ∈ Xj lies in the intersection of B.
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For the converse, assume that the finitely many ultrametric spaces (Xi, ui), 1 ≤ i ≤ n,
are spherically complete. Let B = {Bα(X, xα) | α ∈ S} be a nest of balls in the product
(X, u) := (

∏n
i=1Xi ,

∏n
i=1 ui), with S ⊆

⋃n
i=1 uiXi . We have to show that the intersection

of B is non-empty, so we can assume w.l.o.g. that S has no maximal element. We write
xα = (xi,α)1≤i≤n. Although α ∈ S may not lie in ujXj , the notation Bα(Xj, xj,α) still
makes sense since by assumption,

⋃n
i=1 uiXi is an ordered set containing all ordered sets

uiXi . By definition,
∏n

i=1 ui(x, y) ≥ α implies that ui(xi, yi) ≥ α for all i. This yields
that every two sets in {Bα(Xj, xj,α) | α ∈ S} have non-empty intersection since the same
is true for the sets in B. However, Bα(Xj, xj,α) is not a ball in the original sense. But we
can extract a single element or a nest of balls Bj in (Xj, uj) from {Bα(Xj, xj,α) | α ∈ S}
as follows. If ujXj ∩ S is not cofinal in S then choose α ∈ S such that α > ujXj ∩ S and
define yj := xj,α. It will follow that for every β ∈ S with β ≥ α we have uj(yj, xj,β) > S.
Now assume that ujXj ∩S is cofinal in S. By virtue of our filling up procedure for nests of
balls, we can assume w.l.o.g. that S is an initial segment of

⋃n
i=1 uiXi . So ujXj ∩S will be

an initial segment of ujXj which is cofinal in S, and Bj := {Bα(Xj, xj,α) | α ∈ ujXj ∩ S}
is a set of balls which has the same intersection as {Bα(Xj, xj,α) | α ∈ S}. Since every two
elements in the latter have non-empty intersection, it follows that this also holds for Bj ,
which is consequently a nest of balls in (Xj, uj). By assumption on (Xj, uj), we find that⋂

Bj contains an element yj . By construction of the elements yj for 1 ≤ j ≤ n, it follows
that the element y := (y1, . . . , yn) lies in the intersection of B.

Now assume that the finitely many ultrametric spaces (Xi, ui), 1 ≤ i ≤ n, are complete;
we have to show that their product is complete. We proceed as before with the same B,
but assuming that S is cofinal in

⋃n
i=1 uiXi . Assuming again that S is an initial segment,

we find that S =
⋃n
i=1 uiXi and consequently, ujXj ∩ S = ujXj for every j. So for the

construction of the elements yj it suffices that every (Xi, ui) be complete. �

For an application of this lemma, see the proof of Theorem 11.27.

Exercise 1.3 Show that the first assertion of Lemma 1.11 does not hold for “complete” in the place of
“spherically complete”, and that its second assertion does not hold for the product of infinitely many
ultrametric spaces.

1.8 The Ultrametric Fixed Point Theorem

We shall now prove an Ultrametric Fixed Point Theorem which is due to S. Prieß-Crampe
(cf. [PC2]). A generalization to ultrametric spaces whose value sets are not totally ordered,
was given by S. Prieß-Crampe and P. Ribenboim (cf. [PC–RIB1,2]). In the latter paper,
it was remarked that the Fixed Point Theorem holds for a slightly more general class of
maps than that which are commonly called contractive. This generalization, however,
will be significant for some of our applications, so we will make it available by the following
definition. A map Ξ : X → X will be called self-contractive if it satisfies

(SC1) x 6= Ξx ⇒ u(Ξx,Ξ(Ξx)) > u(x,Ξx) ,

(SC2) u(Ξx,Ξy) ≥ u(x, y)

for all x, y ∈ X. The map Ξ is called contractive if it satisfies u(Ξx,Ξy) > u(x, y) for all
x, y ∈ X, x 6= y. Hence, every contractive map is self-contractive. An element x is called
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a fixed point of Ξ if Ξx = x. Note that a contractive map Ξ has at most one fixed point;
indeed, if x 6= y were fixed points of Ξ, then u(x, y) = u(Ξx,Ξy) > u(x, y), a contradiction.

Theorem 1.12 (Ultrametric Fixed Point Theorem)

The ultrametric space (X, u) is spherically complete if and only if every self-contractive
map Ξ : X → X admits a fixed point.

Proof: Assume first that (X, u) is spherically complete and that Ξ : X → X is a
self-contractive map. Let αx := u(x,Ξx) and Bx := Bαx(x). The set S = {Bx | x ∈ X} is
partially ordered by inclusion. Let T be a maximal totally ordered subset of S. Note that
no ball is empty, and thus, the intersection of any two balls in T is non-empty. Since (X, u)
is spherically complete, there is some z ∈

⋂
Bx∈T Bx . Pick an arbitrary Bx ∈ T ; we wish to

show that Bz ⊆ Bx . By (SC2) we know that u(Ξz,Ξx) ≥ u(z, x). Since z ∈ Bx , we have
u(z, x) ≥ u(x,Ξx). Altogether, u(z,Ξz) ≥ min{u(z, x), u(x,Ξx), u(Ξx,Ξz)} = u(x,Ξx).
By (1.3) it now follows that Bz ⊆ Bx. We find that Bz must be the smallest element of T .
We claim that z is a fixed point of Ξ . Otherwise, u(Ξz,Ξ(Ξz)) > u(z,Ξz) by assumption
on Ξ. This yields that z /∈ BΞz and in view of (1.3), BΞz

⊂
6= Bz . But this contradicts the

maximality of T .

For the converse, suppose that B ⊆ B(X) is a nest of balls. Then (1.3) yields that
inclusion imposes a total ordering on B. Let Bν = Bαν (xν), ν < λ, be a coinitial descending
sequence in B, where λ is an ordinal. Let us assume that

⋂
B∈BB = ∅. Then also⋂

ν<λBν = ∅ since the sequence Bν is coinitial in B. Hence, for every x ∈ X, there
is a minimal ordinal ν such that x /∈ Bν , and we set Ξx := xν . Since xν ∈ Bν and
x /∈ Bν , we have x 6= Ξx, showing that Ξ admits no fixed point. Let us show that Ξ is
contractive. Let x, y ∈ X such that x 6= y and Ξx = xν , Ξy = xµ . If xν = xµ then
u(Ξx,Ξy) =∞ > u(x, y). Otherwise, assume w.l.o.g. that µ < ν, that is, Bν ⊆ Bµ . Then
by our definition of Ξ, x ∈ Bµ but y /∈ Bµ . It follows that u(x, y) < αµ and further,
u(Ξx,Ξy) = u(xµ, xν) ≥ αµ > u(x, y), as required. We have shown the existence of a
contractive map Ξ : X → X without a fixed point. �

The first direction of the above proof is taken from the paper [PC–RIB2]; it also works for
ultrametric spaces with partially ordered value sets. The proof shows that in the assertion
of our theorem, we could replace “self-contractive” by “contractive”. Strengthening the
properties of the map Ξ, we can weaken the assumptions on the ultrametric space:

Lemma 1.13 Let (X, u) be a complete ultrametric space. Assume that the self-contractive
map Ξ : X → X satisfies in addition that for every x ∈ X and α ∈ uX there is some
n ∈ N such that u(Ξn+1x,Ξnx) > α. Then Ξ admits a fixed point.

Proof: By a modification of the first part of the proof of the preceding theorem. Choose
an arbitrary x ∈ X. By (SC1) and (1.3), the balls BΞnx form a totally ordered subset T ′ of
S. Let T be a maximal totally ordered subset of S containing T ′. Then by our additional
assumption on Ξ, T contains non-empty balls of arbitrarily high radius. Now the existence
of z is guaranteed by our assumption that (X, u) be complete. �
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1.9 Extensions of ultrametric spaces

Let (X, u) and (X ′, u′) be ultrametric spaces. An injective map ι : X → X ′ is called an
embedding of (X, u) in (X ′, u′) if it satisfies

u(x, y) < u(z, t) ⇐⇒ u′(ιx, ιy) < u′(ιz, ιt) (1.4)

for all x, y, z, t ∈ X. If in addition ι is onto, then it is called an isomorphism of (X, u)
onto (X ′, u′). Since we have assumed u : X ×X → uX to be onto for every ultrametric
space (X, u), it follows that an embedding ι of (X, u) in (X ′, u′) induces an order preserving
injective map ρ : uX → u′X ′ such that u′(ιx, ιy) = ρu(x, y) for all x, y ∈ X. If ι is an
isomorphism, then ρ is also an order isomorphism.

Take two ultrametric spaces (X, u) and (Y, u′). We will call (Y, u′) an extension of
(X, u) and write (X, u) ⊆ (Y, u′) if X ⊆ Y and u′ restricted to X × X coincides with u.
Then we will also just write (X, u) ⊆ (Y, u) for extensions of ultrametric spaces. For x ∈ X
we denote by Bα(X, x) the ball Bα(x) in X and by Bα(Y, x) the ball Bα(x) in Y . Similarly
for the balls B◦α and BS .

The easy proof of the following lemma is left to the reader as an exercise:

Lemma 1.14 Take an extension (X, u) ⊆ (Y, u) of ultrametric spaces and a ball B in
(Y, u) such that B ∩X 6= ∅. Then B ∩X is a ball in (X, u). If B is a c-ball with radius α,
then so is B ∩X. If B is an o-ball with radius α, then so is B ∩X.

Take an extension (X, u) ⊆ (Y, u) of ultrametric spaces. Then (X, u) is said to have
the optimal approximation property in (Y, u) if for every y ∈ Y the set

u(y,X) := {u(y, x) | x ∈ X} ⊆ uY∞ (1.5)

admits a maximum (i.e., for every element in Y there is a nearest element in X; however,
it may not be uniquely determined). Note that if y ∈ X, then max{u(y, x)} =∞. Further,
(X, u) is said to be spherically closed in (Y, u), if every nest of balls {Bα(X, xα) | α ∈ S},
S ⊆ uX, in (X, u) has a non-empty intersection whenever the associated nest of balls
{Bα(Y, xα) | α ∈ S} in (Y, u) has a non-empty intersection.

Lemma 1.15 (X, u) is spherically closed in (Y, u) if and only if it has the optimal approx-
imation property in (Y, u).

Proof: Suppose that (X, u) is spherically closed in (Y, u); we wish to show that (X, u)
has the optimal approximation property in (Y, u). Let y ∈ Y . Define Bα := {x ∈ X |
u(x, y) ≥ α} for all α ∈ uX∞. Consider all such balls which are non-empty. They form a
nest {Bα(X, xα) | α ∈ S} of balls, since by definition Bα ⊆ Bβ for β ≤ α. By construction,
the corresponding nest {Bα(Y, xα) | α ∈ S} in (Y, u) contains y in its intersection. Hence
by hypothesis, the intersection of {Bα(X, xα) | α ∈ S} is non-empty. Let x be an element
of this intersection. If u(y, x) is the maximum of u(y,X) then we are done. If there
exists some x′ ∈ X such that u(y, x) < u(y, x′), then we wish to show that u(y, x′) is
the maximum of u(y,X). Suppose there is x′′ ∈ X such that u(y, x′) < u(y, x′′). Then
u(y, x) < u(y, x′) = u(x′, x′′) by (UM=), showing that x /∈ Bα for α = u(x′, x′′) ∈ uX.
This contradicts our choice of x.
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Now suppose that (X, u) has the optimal approximation property in (Y, u). Take a
nest {Bα(X, xα) | α ∈ S} of balls in (X, u) such that {Bα(Y, xα) | α ∈ S} in (Y, u) admits
an element y ∈ Y in its intersection. Take x ∈ X such that u(y, x) is maximal. Then
u(y, x) ≥ u(y, xα) for all α ∈ S. This shows that x lies in all Bα(X, xα) and thus in their
intersection. We have proved that (X, u) is spherically closed in (Y, u). �

An extension (X, u) ⊆ (Y, u) is said to be an immediate if for all y ∈ Y and all
x ∈ X \ {y} there is some x′ ∈ X such that u(y, x′) > u(y, x). This means that for no
y ∈ Y \X there is a best approximation by elements from X; however, u(y,X)∩ uX may
be bounded from above by some element in uX. A stronger property is the following:
(X, u) is dense in (Y, u) if for all y ∈ Y and all α ∈ uY there is some x ∈ X such that
u(y, x) > α. This means that every element in Y can be approximated arbitrarily well by
elements from X.

Lemma 1.16 Let (X, u) ⊆ (Y, u) be an extension of ultrametric spaces. If (X, u) is dense
in (Y, u), then (X, u) ⊆ (Y, u) is immediate and uX = uY .

Proof: Suppose that (X, u) is dense in (Y, u). Then for every y ∈ Y and x ∈ X, α :=
u(y, x) ∈ uY and hence there is some x′ ∈ X such that u(y, x′) > u(y, x). This proves that
(X, u) ⊆ (Y, u) is immediate. Now let y, y′ ∈ Y and choose x, x′ ∈ X such that u(y, x) >
u(y, y′) and u(y′, x′) > u(y, y′). It follows that u(x, x′) = min{u(y, x), u(y, y′), u(y′, x′)} =
u(y, y′). This proves that uY = uX. �

The properties “(X, u) has the optimal approximation property in (Y, u)” (or, equiv-
alently, “(X, u) is spherically closed in (Y, u)”) and “(X, u) ⊆ (Y, u) is an immediate
extension” are mutually exclusive. All three properties discussed above are transitive:

Lemma 1.17 (Transitivity) Let (X, u) ⊆ (Y, u) ⊆ (Z, u) be ultrametric spaces.
a) If (X, u) is spherically closed in (Y, u) and (Y, u) is spherically closed in (Z, u), then
(X, u) is spherically closed in (Z, u).
b) If (X, u) ⊆ (Y, u) and (Y, u) ⊆ (Z, u) are immediate, then so is (X, u) ⊆ (Z, u).
c) (X, u) is dense in (Y, u) and (Y, u) is dense in (Z, u), if and only if (X, u) is dense in
(Z, u).

Proof: a): Take a nest {Bα(X, xα) | α ∈ S}, S ⊆ uX, in (X, u) such that the associated
nest {Bα(Z, xα) | α ∈ S} in (Z, u) has a non-empty intersection. Since (Y, u) is spherically
closed in (Z, u), the nest {Bα(Y, xα) | α ∈ S} has a non-empty intersection. Since (X, u) is
spherically closed in (Y, u), it follows that the nest {Bα(X, xα) | α ∈ S} has a non-empty
intersection.

b): Take z ∈ Z and x ∈ X \ {z}. We show the existence of x′ ∈ X satisfying u(z, x′) >
u(z, x). By assumption, there is y′ ∈ Y such that u(z, y′) > u(z, x). Hence, u(x, y′) =
min{u(z, y′), u(z, x)} = u(z, x). Again by assumption, there is x′ ∈ X such that u(y′, x′) >
u(y′, x) = u(z, x). It follows that u(z, x′) ≥ min{u(z, y′), u(y′, x′)} > u(z, x), as desired.

c): Take z ∈ Z and α ∈ uZ. We show the existence of x ∈ X satisfying u(z, x) > α.
By assumption, there is y ∈ Y such that u(z, y) > α. By Lemma 1.16, uZ = uY and
hence, α ∈ uY . Again by assumption, there is x ∈ X such that u(y, x) > α. It follows
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that u(z, x) ≥ min{u(z, y), u(y, x)} > α, as desired. The converse follows directly from the
definition. �

As to the converses of a) and b), it follows from the definitions that if (X, u) is spherically
closed in (Z, u), then (X, u) is spherically closed in (Y, u), and that if (X, u) ⊆ (Z, u) is
immediate, then so is (X, u) ⊆ (Y, u). But the respective properties do not necessarily
follow for (Y, u) ⊆ (Z, u) (cf. Exercise ??).

Lemma 1.18 If (X, u) ⊆ (Y, u) is immediate and (Y, u) is homogeneous, then uY = uX.

Proof: For y 6= y′ ∈ Y we have to show that u(y, y′) ∈ uX. Take x ∈ X. Since
(Y, u) is assumed to be homogeneous, there is y′′ ∈ Y such that u(x, y′′) = u(y, y′). Since
(X, u) ⊆ (Y, u) is immediate, there is x′ ∈ X such that u(y′′, x′) > u(x, y′′). Consequently,
u(y, y′) = u(x, y′′) = min{u(x, y′′), u(y′′, x′)} = u(x, x′) ∈ uX. �

An ultrametric space will be called maximal if it does not admit proper immediate
extensions.

Lemma 1.19 If (X, u) is spherically complete then it is spherically closed in every ultra-
metric space extension, and it is maximal.

Proof: If (X, u) is spherically complete then every nest of balls has a non-empty
intersection and thus, (X, u) is spherically closed in every ultrametric space extension. Now
the second assertion follows from Lemma 1.15 and the fact that “optimal approximation
property” and “immediate extension” are mutually exclusive. �

Suppose that (X, u) is not spherically complete. Does there exist an extension in which
(X, u) is not spherically closed? Let B ⊆ B(X) be a nest of balls in (X, u) having an empty
intersection. Take y /∈ X. We define an extension of u to Y := X∪{y} as follows. First, we
set u(y, y) =∞. Given x ∈ X, there is some non-empty ball in B which does not contain
x. Choose some x′ in that ball and set u(x, y) = u(y, x) := u(x′, x). This is welldefined:
suppose x′′ is in some other ball which does not contain x; we know that one of the balls is
contained in the other, so x′ and x′′ are contained in a common ball which does not contain
x, that is, u(x′′, x′) > u(x, x′), which yields u(x, x′) = u(x, x′′). By our definition, for x 6= y
we have u(y, x) 6= ∞; this shows that (Y, u) satisfies (UM 0). It also satisfies symmetry
by definition. It remains to show (UMT). The only non-trivial case is where precisely one
of the appearing elements is our new element y. Note that it suffices to show u(x, z) ≥
min{u(x, y), u(y, z)} since this implies that u(x, y) ≥ min{u(x, z), u(z, y)}. So take x′ and
z′ such that by our definition, u(y, x) = u(x′, x) and u(y, z) = u(z′, z). Then there is a ball
containing x′ and z′ such that x or z does not lie in this ball, that is, u(x′, z′) > u(x′, x)
or u(x′, z′) > u(z′, z). In both cases, we obtain u(x, z) ≥ min{u(x, x′), u(x′, z′), u(z′, z)} =
min{u(x, x′), u(z′, z)} = min{u(x, y), u(y, z)}.

We have now proved that (X, u) ⊆ (Y, u) is an extension of ultrametric spaces. Let us
show that u(y,X) does not admit a maximum. Take x ∈ X and x′ in a ball B′ so that
u(y, x) = u(x′, x) by our definition. Now let x′′ be an element in a ball B′′ not containing
x′ so that we have u(y, x′) = u(x′′, x′). Since one of the balls contains the other and since
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x′ /∈ B′′, we conclude that x′′ ∈ B′. Since x /∈ B′, we have u(x′, x) < u(x′′, x′) showing that
u(y, x) < u(y, x′). Since x ∈ X was arbitrary, this proves our claim. Since Y \X consists
only of the element y, we have even proved that (X, u) ⊆ (Y, u) is an immediate extension.
By our construction and the foregoing lemma, we have now proved:

Theorem 1.20 An ultrametric space is spherically complete if and only if it is spherically
closed in every ultrametric space extension, and this is the case if and only if it is maximal.

A closed subspace of a spherically complete ultrametric space is not necessarily again
spherically complete (therefore, we have introduced the stronger notion “spherically closed”).
Indeed, take a spherically complete ultrametric space (X, u) with a value set that is not dis-
cretely ordered, and such that for every x ∈ X and α ∈ uX there is y ∈ X with u(x, y) = α
(such ultrametric spaces appear for example as the underlying ultrametric spaces of power
series fields with their canonical valuations). Choose some x ∈ X and α ∈ uX without
immediate predecessor. As Bα(x) is open, X ′ = X \ Bα(x) is a closed subspace of X. It
is not spherically complete, as the intersection of the non-empty balls Bβ(x) \Bα(x) in X ′

for β < α is empty.
The easy proof of the following lemma is left to the reader as an exercise:

Lemma 1.21 Every ball in an ultrametric space is a spherically closed subspace. Hence if
the ultrametric space is spherically complete, then all of its balls are spherically complete
subspaces.

Exercise 1.4 Show that every extension of a spherically complete ultrametric space by finitely many
points is spherically complete again.

Exercise 1.5 Construct an example of an immediate extension (X,u) ⊂ (Y, u) of ultrametric spaces such
that uY 6= uX.

1.10 The ultrametric main theorem

Let (Y, u) and (Y ′, u′) be non-empty ultrametric spaces and f : Y → Y ′ a map. For
y ∈ Y , we will write fy instead of f(y). An element z′ ∈ Y ′ is called attractor for f if
for every y ∈ Y such that z′ 6= fy, there is an element z ∈ Y which satisfies:

(AT1) u′(fz, z′) > u′(fy, z′),
(AT2) f(B(y, z)) ⊆ B(fy, z′).

Condition (AT1) says that the approximation fy of z′ from within the image of f can be
improved, and condition (AT2) says that this can be done in a somewhat continuous way.

Theorem 1.22 (Attractor Theorem) Assume that z′ ∈ Y ′ is an attractor for f : Y →
Y ′ and that (Y, u) is spherically complete. Then z′ ∈ f(Y ).

For the proof of Theorem 1.22, we show the following more precise statement:

Lemma 1.23 Assume that z′ ∈ Y ′ is an attractor for f : Y → Y ′ and that (Y, u) is
spherically complete. Then for every y ∈ Y there is z0 ∈ Y such that fz0 = z′ and
f(B(y, z0)) ⊆ B(fy, z′).
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Proof: If z′ = fy then we set z0 = y and there is nothing to show. So assume that
z′ 6= fy. Then by assumption on z′ there is z ∈ Y such that (AT1) and (AT2) hold. Take
elements yi, zi ∈ B(y, z), i ∈ I, such that the balls B(yi, zi) form a nest inside of B(y, z),
maximal with the following properties, for all i:

i) z′ = fyi = fzi or u′(z′, fzi) > u′(z′, fyi),

ii) f(B(yi, zi)) ⊆ B(fyi, z
′),

iii) for all j ∈ I, u(yi, zi) < u(yj, zj) implies that u′(fyi, z
′) < u′(fyj, z

′).

Non-empty nests with these properties exist. Indeed, the singleton {B(y, z)} is such a nest.
Maximal nests with these properties exist by Zorn’s Lemma. Take one such maximal nest.
As soon as we find z0 ∈ B(y, z) such that z′ = fz0 we are done because f(B(y, z0)) ⊆
f(B(y, z)) ⊆ B(fy, z′).

Assume first that this nest has a minimal ball, say, B(y0, z0). If z′ = fz0 then we are
done. So assume that z′ 6= fz0, and set ỹ := z0 . Then by assumption on z′, we can find
z̃ ∈ Y such that

u′(f z̃, z′) > u′(fỹ, z′) and f(B(ỹ, z̃)) ⊆ B(fỹ, z′) .

We have that

u′(fỹ, z′) = u′(fz0, z
′) > u′(fy0, z

′) = u′(fỹ, fy0) , (1.6)

where the last equality follows from the ultrametric triangle law. So we know that fy0 /∈
B(fỹ, z′) and thus, y0 /∈ B(ỹ, z̃). This shows that u(ỹ, z̃) > u(ỹ, y0) = u(z0, y0), and since
ỹ = z0 ∈ B(z0, y0), it follows that B(z̃, ỹ) ⊂6= B(z0, y0). So we can enlarge our nest of balls
by adding B(z̃, ỹ), and conditions i) and ii) hold for the new nest. From iii) we see that
u′(fy0, z

′) is maximal among the u′(fyi, z
′), i ∈ I; so (1.6) shows that also iii) holds for

the new nest. But this contradicts the maximality of the chosen nest.

Now assume that the nest contains no smallest ball. Since (Y, u) is spherically complete
by assumption, there is some z0 ∈

⋂
i∈I B(yi, zi). Suppose that fz0 6= z′. Then we set

ỹ := z0 . For all i, we have ỹ ∈ B(yi, zi) and fỹ ∈ f(B(yi, zi)) ⊆ B(fyi, z
′), showing that

u′(fỹ, z′) ≥ u′(fyi, z
′). We choose z̃ as before. We have f(B(ỹ, z̃)) ⊆ B(fỹ, z′) ⊆ B(fyi, z

′)
for all i. On the other hand, since the nest contains no smallest ball, the set {u(yi, zi) |
i ∈ I} has no maximal element. So iii) implies that also the set {u′(fyi, z′) | i ∈ I} has
no maximal element. Consequently, for all i ∈ I there is j ∈ I such that u′(fỹ, z′) ≥
u′(fyj, z

′) > u′(fyi, z
′) . Consequently, fyi /∈ B(fỹ, z′), which yields that yi /∈ B(ỹ, z̃).

Therefore, B(ỹ, z̃) ⊂6= B(yi, zi) and u(ỹ, z̃) > u(yi, zi) for all i. So we can enlarge our nest
of balls by adding B(ỹ, z̃), and conditions i), ii) and iii) hold for the new nest. This again
contradicts the maximality of the chosen nest. Hence, fz0 = z′ and we are done. �

The map f will be called immediate if every z′ ∈ Y ′ is an attractor for f . Hence by the
Attractor Theorem, every immediate map from a spherically complete space is surjective.
But we will show more, and for that we need the next corollary and another lemma.

Corollary 1.24 Assume that f : Y → Y ′ is immediate and that (Y, u) is spherically
complete. Then the following holds:

(BB) for every y ∈ Y and every ball B′ in Y ′ around fy, there is a ball B in Y around
y such that f(B) = B′.
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Proof: Assume that y ∈ Y and that B′ is any ball in Y ′ which contains fy. Then we
can write

B′ =
⋃
z′∈B′

B(z′, fy) .

According to the foregoing lemma, for every z′ there is z0 ∈ Y such that z′ ∈ f(B(y, z0)) ⊆
B(fy, z′) ⊆ B′. Take B to be the union over all such balls B(y, z0) when z′ runs through
all elements of B′. Then B is a ball around y satisfying f(B) = B′. �

Lemma 1.25 Assume that f : Y → Y ′ is a map which satisfies (BB), and that (Y, u) is
spherically complete. Then f is surjective, and (Y ′, u′) is spherically complete.

Proof: Taking B′ = Y ′, we obtain the surjectivity of f .
Now we take any nest of balls {B′j | j ∈ J} in Y ′. We have to show that this nest has a

non-empty intersection. We claim that in Y there exists a nest of balls Bi, i ∈ I, maximal
with the property that

I ⊆ J , and for all i ∈ I, f(Bi) = B′i . (1.7)

To show this, we first take any j ∈ J and choose some yj ∈ Y such that fyj ∈ B′j , making
use of the surjectivity of f . As f satisfies (BB), we can choose a ball Bj in Y around yj
and such that f(Bj) = B′j . So the nest {Bj} has property (1.7). Hence, a maximal nest
{Bi | i ∈ I} with property (1.7) exists by Zorn’s Lemma.

We wish to show that the balls B′i , i ∈ I, are coinitial in the nest B′j , j ∈ J , that is,
for every ball B′j there is some i ∈ I such that B′i ⊆ B′j . Once we have shown this we are
done: as Y is spherically complete, there is some y ∈

⋂
i∈I Bi, and

fy ∈
⋂
i∈I

f(Bi) =
⋂
i∈I

B′i =
⋂
j∈J

B′j

shows that
⋂
j∈J B

′
j is non-empty.

Suppose the balls B′i , i ∈ I, are not coinitial in the nest B′j , j ∈ J . Then there is
some j ∈ J such that B′j

⊂
6= B′i for all i ∈ I. Since Y is spherically complete, there is some

y ∈
⋂
i∈I Bi . We have that fy ∈

⋂
i∈I B

′
i =: B′, and also that B′j ⊆ B′. By assumption,

there is a ball B around y such that f(B) = B′. If B′ happens to be the smallest ball among
the B′i , say, B′ = B′i0 with i0 ∈ I, then we just take B = Bi0 . If B′ ⊂6= B′i , then it follows

that B ⊂6= Bi . Hence in all cases, B ⊆ Bi for all i. Since B′j ⊆ B′, we can choose ỹ ∈ B
such that fỹ ∈ B′j . By assumption, there is a ball Bj around ỹ such that f(Bj) = B′j .
Since ỹ ∈ Bi for all i ∈ I, we know that Bi , i ∈ I ∪ {j} is a nest of balls. By construction,
it has property (1.7). Since j /∈ I, this contradicts our maximality assumption on I. This
proves that the balls B′i , i ∈ I, must be coinitial in the nest B′j , j ∈ J . �

From the Attractor Theorem, Corollary 1.24 and the last lemma, we obtain:

Theorem 1.26 (Ultrametric Main Theorem) Assume that f : Y → Y ′ is immediate
and that (Y, u) is spherically complete. Then f is surjective and (Y ′, u′) is spherically
complete. Moreover, for every y ∈ Y and every ball B′ in Y ′ containing fy, there is a ball
B in Y containing y and such that f(B) = B′.
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Compared to the Ultrametric Fixed Point Theorem, the Attractor Theorem and the
Ultrametric Main Theorem have the advantage that they can be applied to situations where
a natural contracting map is not readily at hand.

If f is just the embedding of an ultrametric subspace Y in an ultrametric space Y ′,
then (AT2) will automatically hold. Hence, Theorem 1.26 reproves the following assertion,
which was already shown in Lemma 1.19: If (Y ′, u) is an immediate extension of (Y, u)
and (Y, u) is spherically complete, then Y = Y ′.

Exercise 1.6 Construct a map of ultrametric spaces which is not immediate, but continuous with respect
to the topology given by the basic open sets Bα(x), ∞ 6= α, x ∈ X. (Hint: Take a suitable space (X,u)
with value set uX = ω + 1. Let γ = {α | α < ω}, the set of finite ordinals, and consider the space
(X,u)/∼γ . Construct some map f on this space which is not spherically continuous, and lift it to a
continuous map f on (X,u).)

1.11 Approximation types

When considering extensions of ultrametric spaces, the question arises: when are two
extensions of the same ultrametric space (X, u) isomorphic over X? The simplest answer
to this question is found in the case where the extensions contain just one new element
each, say, y and y′ respectively. In this case, an isomorphism over X can only send y to y′.
The answer is as simple as the question: it is necessary and sufficient that u(y, x) = u(y′, x)
for all x ∈ X. If u(X ∪ {y}) = uX = u(X ∪ {y′}), our answer is immediately seen to be
correct since it contains all information that has to be checked for an isomorphism of the
ultrametric spaces (X∪{y}, u) and (X∪{y′}, u). If u(X∪{y}) 6= uX, then we also have to
construct the isomorphism ρ : u(X ∪ {y}) → u(X ∪ {y′}) over uX. But u(X ∪ {y}) \ uX
can only contain one element u(y, x0) (cf. Exercise ??), and if we understand the assertion
“u(y, x0) = u(y′, x0)” to say also that u(y′, x0) /∈ uX, and that both u(y, x0) and u(y′, x0)
induce the same cut in uX, then Lemma 1.3 gives the required isomorphism of the value
sets, and we are done.

It is less easy to determine how the information about the values can be encoded in
the ultrametric space (X, u) itself, without using the symbols y and y′. We are looking
for a structure induced by y in (X, u) which, if equal to that induced by y′, gives us the
isomorphism we have asked for. For instance, for ordered sets the adequate structure is the
cut induced by an element of an arbitrary extension, as Lemma 1.3 shows. A second role
of such intrinsic structures is that they may tell us what sort of extensions the ultrametric
would admit. For example, if there are nests of balls with empty intersection, then the
space admits proper immediate extensions, and vice versa, according to Theorem 1.20.
But nests of balls in (X, u) will in general not suffice to describe extensions which are not
immediate:

Example 1.27 Let (X ∪ {y}, u) be such that there is some x0 ∈ X with u(y, x0) =
maxx∈X u(y, x) and α := u(y, x0) ∈ uX. On the other hand, let (X ∪ {y′}, u) be such that
u(y′, x0) = maxx∈X u(y′, x) with u(y′, x0) > α, but u(y′, x0) < β for every β ∈ uX, β > α.
Then for all β ∈ uX, the balls Bβ(X ∪ {y}, y) ∩ X and Bβ(X ∪ {y′}, y′) ∩ X are equal.
Indeed, for β > α, they are both empty, and for β ≤ α, they are both equal to Bβ(X, x0).
On the other hand, B◦α(X ∪ {y}, y) ∩X = ∅ whereas B◦α(X ∪ {y′}, y′) ∩X = B◦α(X, x0).

This example shows that the required structure should also pay attention to the o-
balls. Further, the value u(y′, x0) /∈ uX induces in uX the cut whose initial segment is
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{β | β ≤ α}, which is the set of radii β for which the balls Bβ(X ∪ {y′}, y′) ∩ X are
non-empty. ♦

We will now introduce approximation types, which constitute the required structure for
dealing with immediate extensions of ultrametric spaces. Approximation types will play
an important role in our investigation of immediate extensions of valued fields, groups and
modules. In the following, let (X, u) be an ultrametric space with value set uX. Recall
that we always exclude ∞ from uX, and that we write uX∞ for uX ∪ {∞}.

An approximation type over (X, u) is a full nest of balls in (X, u), that is, a nest
A = {Bα(xα) | α ∈ S} with S an initial segment of uX∞ and xα elements of X; hence, S =
ΛL(A). We write Aα = Bα(xα) for α ∈ ΛL(A), and Aα = ∅ otherwise. An approximation
type will be called immediate if its intersection is empty.

Every nest of balls determines uniquely an approximation type which is obtained by
filling up the nest as described in Section 1.6. If the nest has empty intersection, the
corresponding approximation type will be immediate.

Take any extension (X, u) ⊆ (Y, u), and y ∈ Y . For all α ∈ uX∞, we set

at (y,X)α := {x ∈ X | u(y, x) ≥ α} = Bα(Y, y) ∩X , (1.8)

at (y,X)◦α := {x ∈ X | u(y, x) > α} = B◦α(Y, y) ∩X . (1.9)

By Lemma 1.14, at (y,X)α is empty or a c-ball of radius α, and at (y,X)◦α is empty or an
o-ball of radius α. If at (y,X)α 6= ∅ and β < α, then also at (y,X)β 6= ∅. This shows that

ΛL(y,X) := {α ∈ uX∞ | at (y,X)α 6= ∅} (1.10)

is an initial segment of uX and therefore,

at (y,X) := {at (y,X)α | α ∈ ΛL(y,X)} (1.11)

is an approximation type over (X, u). We call it the approximation type of y over
(X, u). If we have to make clear which ultrametric we refer to, we will write “at u” (resp.
“at v” if we are dealing with the ultrametric induced by a valuation v).

Let us compare ΛL(y,X) with u(y,X):

Lemma 1.28 We have that u(y,X) ∩ uX∞ ⊆ ΛL(y,X), and if u(y,X) 6⊆ uX∞, then
u(y,X) \ uX = {γ} with γ > ΛL(y,X). If in addition (X, u) is homogeneous, then
u(y,X) ∩ uX = ΛL(y,X), hence if u(y,X) ⊆ uX∞, then u(y,X) = ΛL(y,X), and if
u(y,X) 6⊆ uX∞, then u(y,X) = ΛL(y,X) ∪ {γ} with ΛL(y,X) < γ /∈ uX.

Proof: Take x ∈ X such that u(y, x) ∈ uX. Then x ∈ at (y,X)u(y,x) and thus
u(y, x) ∈ ΛL(y,X). On the other hand, if x ∈ X such that γ := u(y, x) /∈ uX, then for each
x′ ∈ X, u(y, x′) = min{u(y, x), u(x, x′)} since u(y, x) 6= u(x, x′). Hence if u(y, x′) ∈ uX∞,
then u(y, x′) < γ, and if u(y, x′) /∈ uX, then u(y, x′) = γ.

Now assume that (X, u) is homogeneous. It suffices to show that ΛL(y,X) ⊆ u(y,X).
Take α ∈ ΛL(y,X) and x ∈ X such that u(y, x) ≥ α. If α = u(y, x) ∈ u(y,X), then we are
done. Suppose that α < u(y, x). Since (Y, u) is homogeneous, there is x′ ∈ X such that
u(x, x′) = α and thus, α = u(x, x′) = min{u(y, x), u(x, x′)} = u(y, x′) ∈ u(y,X). �

The proof of the following lemma is straightforward:
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Lemma 1.29 Let (X, u) ⊆ (Y, u) ⊆ (Z, u) be extensions of ultrametric spaces and z ∈ Z.
Then ΛL(z,X) ⊆ ΛL(z, Y ) and u(z,X) ⊆ ΛL(z, Y ).

Which elements in an ultrametric space extension of (X, u) have equal approximation
types over (X, u)? The next lemma answers this question:

Lemma 1.30 Let (X, u) ⊆ (Y, u) be an extension of ultrametric spaces and y, y′ ∈ Y .

a) For every α ∈ ΛL(y,X), at (y,X)α = at (y′, X)α holds if and only if u(y, y′) ≥ α.

b) Further,

at (y,X) = at (y′, X) ⇐⇒ u(y, y′) ≥ ΛL(y,X) = ΛL(y′, X) .

Proof: a): Let α ∈ uX∞. If u(y, y′) ≥ α, then Bα(Y, y) = Bα(Y, y′), which yields
that at (y,X)α = Bα(Y, y) ∩ X = Bα(Y, y′) ∩ X = at (y′, X)α . If u(y, y′) < α, then
Bα(Y, y) ∩Bα(Y, y′) = ∅, whence at (y,X)α ∩ at (y′, X)α = ∅; for α ∈ ΛL(y,X), this yields
that at (y,X)α 6= at (y′, X)α since then at (y,X)α is non-empty.

b): If ΛL(y,X) 6= ΛL(y′, X), then at (y,X) 6= at (y′, X). If u(y, y′) ≥ ΛL(y,X) does not
hold, then there is some α ∈ ΛL(y,X) such that α > u(y, y′). By part a), it follows that
at (y,X)α 6= at (y′, X)α. This proves implication “⇒”.

If u(y, y′) ≥ ΛL(y,X) holds, then u(y, y′) ≥ α for all α ∈ ΛL(y,X). Again by part
a), it follows that at (y,X)α = at (y′, X)α for all α ∈ ΛL(y,X) = ΛL(y′, X), that is,
at (y,X) = at (y′, X). �

If A is an approximation type over (X, u) and there exists an element y ∈ Y such that
A = at (y,X), then we say that y realizes A (in (Y, u)). If A is realized by some x ∈ X,
then A will be called trivial. We leave the easy proof of the following lemma to the reader
as an exercise.

Lemma 1.31 Let A be an approximation type over (X, u) and (X, u) ⊆ (Y, u) an extension
of ultrametric spaces.

a) The approximation type A is trivial if and only if A∞ 6= ∅. In this case, the element x
realizing A in X is the only element that realizes A in Y .

b) The element y ∈ Y realizes A if and only if

1) for all α ∈ ΛL(A), u(y, x) ≥ α for some x ∈ Aα,
2) for all α > ΛL(A), u(y, x) < α for all x ∈ X.

Note that since Aα is a c-ball of radius α, “u(y, x) ≥ α for some x ∈ Aα” implies “u(y, x) ≥
α ⇔ x ∈ Aα”.

1.12 Immediate approximation types

In this section we will consider the important special case of immediate approximation
types. We note that immediate approximation types A contain no smallest c-balls as
their intersection is empty, hence ΛL(A) has no largest element, and ΛL(A) ⊆ uX. The
following is a corollary to Lemma 1.31:
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Corollary 1.32 Let A be an immediate approximation type over (X, u) and (X, u) ⊆
(Y, u) an extension of ultrametric spaces. Then y ∈ Y realizes A if and only if for all
α ∈ ΛL(A), we have that u(y, x) ≥ α for all x ∈ Aα.

Proof: We have to show that for an immediate approximation type A over (X, u),
condition 1) of Lemma 1.31 implies condition 2). Take α > ΛL(A) and x ∈ X. Then by
the definiton of “immediate” there is some β ∈ ΛL(A) such that x /∈ Aβ . Hence by 1) and
the remark following Lemma 1.31, u(y, x) < β < α. �

As a corollary to Lemma 1.30, we have:

Corollary 1.33 Let (X, u) ⊆ (Y, u) be an extension of ultrametric spaces and y, y′ ∈ Y .
If at (y,X) is immediate, then

at (y,X) = at (y′, X) ⇐⇒ u(y, y′) > ΛL(y,X) ⇐⇒ u(y, y′) ≥ ΛL(y,X) .

Proof: Since ΛL(y,X) = ΛL(at (y,X)) has no largest element, u(y, y′) > ΛL(y,X)
if and only if u(y, y′) ≥ ΛL(y,X). It remains to show that u(y, y′) > ΛL(y,X) implies
that ΛL(y,X) = ΛL(y′, X). Take α ∈ ΛL(y,X) and x ∈ X such that u(y, x) ≥ α. With
u(y, y′) > α it follows that u(y′, x) ≥ α, hence α ∈ ΛL(y′, X). Now take α ∈ ΛL(y′, X) and
x ∈ X such that u(y′, x) ≥ α, and suppose that α /∈ ΛL(y,X). Then α > ΛL(y,X), and
with u(y, y′) > ΛL(y,X) we find that u(y, x) > ΛL(y,X). Hence for every β ∈ ΛL(y,X),
u(y, x) > β and thus, x ∈ at (y,X)β . This shows that the intersection of all balls in
at (y,X) is non-empty, contradicting our assumption that it is an immediate approximation
type. Therefore, α ∈ ΛL(y,X). �

The following corollary deals with the behaviour of immediate approximation types
under ultrametric space extensions.

Corollary 1.34 Let (X, u) ⊆ (Y, u) ⊆ (Z, u) be extensions of ultrametric spaces and z ∈ Z
with non-trivial immediate approximation type at (z,X). If at (z, Y ) is not immediate, then
there exists y ∈ Y such that at (z,X) = at (y,X).

Proof: If at (z, Y ) is not immediate, then by definition there is some y ∈ Y contained
in the intersection of all balls in at (z, Y ). Hence, u(z, y) ≥ α for all α ∈ ΛL(z, Y ). In view
of Lemma 1.29, this also holds for all α ∈ ΛL(z,X), that is, u(z, y) ≥ ΛL(z,X). From
Corollary 1.33 we can now infer that at (y′, X) = at (y,X). �

Corollary 1.35 Let (X, u) ⊆ (Y, u) be an extension of ultrametric spaces and y, y′ ∈ Y .
If at (y,X) is immediate, then there exists α ∈ ΛL(y,X) such that u(y′, y) ≥ u(y′, x) for
all x ∈ at (y,X)α .

Proof: If u(y, y′) ≥ ΛL(y,X) then at (y,X) = at (y′, X) by Corollary 1.33. Then it
follows that u(y, y′) ≥ u(y, x) = u(y′, x) for all x ∈ X.

Now assume that u(y, y′) ≥ ΛL(y,X) does not hold. Then there is some α ∈ ΛL(y,X)
such that u(y′, y) < α. Hence, u(y′, x) = min{u(y′, y), u(y, x)} = u(y′, y) for all x ∈
at (y,X)α . �

The following lemma shows the motivation for the name “immediate approximation
type”:
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Lemma 1.36 Let (X, u) ⊆ (Y, u) be an extension of ultrametric spaces and y ∈ Y \ X.
Then at (y,X) is immediate if and only if for every x ∈ X there is some x′ ∈ X such
that u(y, x′) > u(y, x). The extension (X, u) ⊆ (Y, u) is immediate if and only if for every
y ∈ Y \X, the approximation type at (y,X) is immediate.

Proof: Suppose that at (y,X) is immediate and that x is an arbitrary element of X. By
definition of “immediate”, there is some α ∈ ΛL(y,X) such that x /∈ at (y,X)α . Choose
some x′ ∈ at (y,X)α . By Lemma 1.31, we obtain that u(y, x) < α ≤ u(y, x′).

Now let y ∈ Y \ X and suppose that for arbitrary x ∈ X, there is x′ ∈ X such that
u(y, x′) > u(y, x). Then there is also some x′′ ∈ X such that u(y, x′′) > u(y, x′). By
(UM 6=) we obtain that u(x′, x) = u(y, x) < u(y, x′) = u(x′′, x′). Hence by Lemma 1.31,
u(x′′, x′) ∈ ΛL(y,X) and x /∈ at (y,X)u(x′′,x′) . As x ∈ X was arbitrary, this shows that
at (y,X) is immediate.

The second assertion follows from the first and the definition of “immediate extension”.
�

We will now come back to the question that has led to the introduction of approxi-
mation types. We will show how immediate approximation types can serve to establish
isomorphisms of immediate extensions of ultrametric spaces. In the course of this book,
this will gain even more importance when isomorphisms of richer ultrametric structures
like valued groups and fields can be traced back to approximation types.

Lemma 1.37 Let (Y, u) and (Y ′, u′) be extensions of the ultrametric space (X, u). Further,
let y ∈ Y and y′ ∈ Y ′. If at (y,X) is immediate, then there is an isomorphism (X ∪
{y}, u) → (X ∪ {y′}, u′) over (X, u) if and only if at (y,X) = at (y′, X).

Proof: If there is such an isomorphism, then it has to send y to y′, and u(y, x) = u′(y′, x)
for all x ∈ X. This implies that at (y,X) = at (y′, X).

For the converse, assume that at (y,X) is immediate and that at (y,X) = at (y′, X).
Let x be an arbitrary element of X. As the intersection of the balls in at (y,X) is empty,
there is some α ∈ ΛL(y,X) such that x /∈ at (y,X)α and hence also x /∈ at (y′, X)α.
Choose some x′ ∈ at (y,X)α = at (y′, X)α. We find that u(y, x) < α ≤ u(y, x′), hence
u(y, x) = min{u(y, x), u(y, x′)} = u(x, x′). The same holds with y′ in the place of y.
Therefore, u(y, x) = u(x, x′) = u(y′, x). This shows that y 7→ y′ induces an isomorphism
(X ∪ {y}, u) → (X ∪ {y′}, u′) over (X, u). �

To conclude this section, we will show the connection between immediate approximation
types and the notion “spherically complete” and “complete”.

Lemma 1.38 The ultrametric space (X, u) is spherically complete if and only if there are
no immediate approximation types over (X, u).

Proof: An immediate approximation type is a nest of balls with empty intersection,
hence if there is one over (X, u), then (X, u) is not spherically complete. Conversely, if
(X, u) is not spherically complete, then it admits a nest of balls with empty intersection;
filling this ball up as described in Section 1.6 will yield an immediate approximation type
over (X, u). �
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What happens to immediate approximation types over (X, u) in a spherically complete
extension of (X, u)? To answer this question, we need:

Lemma 1.39 Let A be an immediate approximation type over (X, u) and (Y, u) an exten-
sion of (X, u). If y ∈ Y is such that y ∈ Bα(Y, xα) for xα ∈ Aα and all α ∈ ΛL(A), then
A = at (y,X).

Proof: The assumption yields that for all α ∈ ΛL(A), we have Bα(Y, xα) = Bα(Y, y),
whence Aα = Bα(Y, xα) ∩X = Bα(Y, y) ∩X for all α ∈ ΛL(A). Since already these balls
determine the immediate approximation type A (cf. Corollary ??), we have proved that
A = at (y,X). �

Lemma 1.40 If the extension (Y, u) of (X, u) is spherically complete, then every immedi-
ate approximation type over (X, u) is realized by some element of (Y, u).

Proof: Let A be an immediate approximation type over (X, u). For every α ∈ ΛL(A),
let xα ∈ Aα. Then Bα(Y, xα) is a nest of balls in (Y, u), which by assumption must have
a non-empty intersection. If y ∈ Y lies in this intersetion, then it satisfies the assumption
of the foregoing lemma, which shows that A = at (y,X). �

1.13 Completions and completion types

Let us return to the notion of complete ultrametric spaces. If a given space (X, u) is not
complete, the question arises whether there is an extension which is complete and which
is as small as possible. We will call (Y, u) a completion of (X, u) if (Y, u) is complete
and (X, u) is dense in (Y, u). We will now show that completions of (X, u) exist and are
unique up to isomorphism over X. In view of the latter, we will talk of “the” completion
of (X, u) and denote it by (X, u)c or (Xc, u).

Let us call an approximation type A over (X, u) a completion type if it is immediate
and ΛL(A) = uX.

Lemma 1.41 The ultrametric space (X, u) is complete if and only if there are no comple-
tion types over (X, u).

Proof: A completion type over (X, u) is a nest A of balls with empty intersection
and ΛL(A), hence if there is one, then (X, u) is not complete. Conversely, if (X, u) is not
complete, then it admits a completion nest with empty intersection; filling this ball up as
described in Section 1.6 will yield an completion type over (X, u). �

Now take an ultrametric space (X, u) which is not complete. Then there exists a
completion type over (X, u). We take Xc to be the set of all completion types and all
trivial approximation types over (X, u). If x 6= x′ ∈ X, then at (x,X) 6= at (x′, X). We
can thus view X as a subset of Xc. We define an extension of the ultrametric u from X to
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Xc as follows. Let A,A′ ∈ Xc. If A = A′ then u(A,A′) :=∞. If A 6= A′ then Aα 6= A′α
for some α ∈ uX, and we set

u(A,A′) = u(xα, x
′
α) for arbitrary xα ∈ Aα , x′α ∈ A′α . (1.12)

Then u(xα, x
′
α) < α since otherwise, the balls would coincide by virtue of Lemma 1.7. Using

this fact, the reader may show that our definition does not depend on the choice of α and
the elements xα, x

′
α of the respective balls, and that the map so defined coincides with u on

X. It evidently satisfies (UM 0) and (UMS). For the proof of (UMT), we note the following:
if we have u(A,A′) = u(xα, x

′
α) by our above definition, then also u(A,A′) = u(xγ, x

′
γ) for

every γ ≥ α and xγ ∈ Aγ , x′γ ∈ A′γ . So if we have to compare the u-distance between three
completion types, then we can choose γ large enough as to represent these u-distances as
u-distances between three elements xγ, x

′
γ, x

′′
γ ∈ X, and the ultrametric triangle law on Xc

will follow from that on X.
As a direct consequence of our definition, we have uXc = uX. Furthermore, let us

observe the following: if Aα = Bα(xα) for all α ∈ uX, then for arbitrary β ∈ uX,
we can choose A′ = at (xβ, X) to obtain u(A,A′) > β. Indeed, for α ≤ β, we have
Aα = Bα(xβ) = A′α . Consequently, if α is chosen such that Aα 6= A′α, then α > β. For
xα ∈ Aα, this yields that xα ∈ Aβ(xβ), that is, u(A,A′) = u(xα, xβ) ≥ β. If equality
holds, then we replace xβ by xα and set A′ = at (xα, X). Then we obtain u(A,A′) > β.
We have proved:

∀y ∈ Xc ∀β ∈ uXc ∃x ∈ X : u(y, x) > β , (1.13)

that is, (X, u) is dense in (Y, u).
We have not yet shown that (Xc, u) is complete. So let {Bα(Xc, yα) | α ∈ S} be a nest

of balls in (Xc, u), with S a cofinal subset of uX = uXc. By (1.13), for every α ∈ S there is
some xα ∈ X such that u(xα, yα) > α, whence Bα(Xc, yα) = Bα(Xc, xα). So Bα(Xc, yα) ∩
X = Bα(X, xα) 6= ∅ for every α ∈ uX. It follows that {Bα(X, xα) | α ∈ S} is a nest of balls
in (X, u). Its associated immediate approximation type A is a completion type in (X, u)
and hence an element of Xc; it is uniquely determined since by assumption, uX admits no
maximal element. By construction, A satisfies u(yα,A) ≥ min{u(yα, xα), u(xα,A)} ≥ α
for every α. That is, A is an element of

⋂
{Bα(Xc, yα) | α ∈ uXc}. This proves that

(Xc, u) is complete.

We have shown the existence of completions of (X, u). We will now work towards
showing their uniqueness, up to isomorphism over X. The following lemma gives a useful
characterization of density:

Lemma 1.42 Let (X, u) ⊆ (Y, u) be an extension of ultrametric spaces. Then (X, u) is
dense in (Y, u) if and only if uX is cofinal in uY and for every y ∈ Y \X, at (y,X) is a
completion type. In particular, if (X, u) is complete and dense in (Y, u), then X = Y .

Proof: Suppose that uX is cofinal in uY and that for every y ∈ Y , at (y,X) is a
completion type. Then for every α ∈ uY there is some β ∈ uX such that α ≤ β. On the
other hand, for every β ∈ uX the ball at (y,X)β is non-empty. As the intersection of all
balls in at (y,X) is empty, there must be some γ ∈ uX such that γ > β and at (y,X)γ is
non-empty. That is, there is some x ∈ X such that u(y, x) ≥ γ > β ≥ α. This proves that
(X, u) is dense in (Y, u).

For the converse, suppose that (X, u) is dense in (Y, u). We have already shown in
Lemma 1.16 that this implies that (X, u) ⊆ (Y, u) is immediate and uX = uY . From
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Lemma 1.36 we infer that at (y,X) is immediate for every y ∈ Y . Take any α ∈ uX. Choose
x′ ∈ X such that u(y, x′) > α. Then either y = x′ ∈ X, or u(y, x′) ∈ uY . In the latter
case, choose x ∈ X such that u(y, x) > u(y, x′). Then by (UM=), u(y, x′) = u(x′, x) ∈ uX,
showing that α < u(x′, x) ∈ ΛL(y,X). We have proved that ΛL(y,X) is cofinal in uX,
hence at (y,X) is a completion type.

Assume that (X, u) is dense in (Y, u) and that (X, u) is complete. Then by Lemma 1.41,
there are no completion types over (X, u). Hence by what we have already shown, there is
no y ∈ Y \X. �

How many different elements can realize a completion type?

Lemma 1.43 Let (X, u) ⊆ (Y, u) be an extension of ultrametric spaces such that uX is
cofinal in uY . Then every completion type over (X, u) is realized by at most one element
of (Y, u).

Proof: Let A be a completion type over (X, u) which is realized by the elements
y, y′ ∈ Y . That is, at (y,X) = A = at (y′, X). Since every completion type is an immediate
approximation type, it follows from Lemma 1.33 that u(y, y′) > ΛL(y,X) = uX. Since uX
is cofinal in uY by assumption, it follows that u(y, y′) =∞, that is, y = y′. �

Using this lemma in conjunction with Lemma 1.40, we obtain:

Lemma 1.44 If (X, u) ⊆ (Y, u) with uX cofinal in uY , and if (Y, u) is complete, then
every completion type over (X, u) is realized by a unique element of (Y, u).

Lemma 1.45 If (X, u) is dense in (Y, u), then (Y, u) admits a unique embedding in (Xc, u)
over X. If in addition (Y, u) is complete, then the embedding is onto.

Proof: Assume that (X, u) is dense in (Y, u). By the standard argument using Zorn’s
Lemma, there is a maximal subspace (X1, u) ⊆ (Y, u) containing (X, u) which admits a
unique embedding in (X, u)c over (X, u). We can identify (X1, u) with its image in (Xc, u).
Since (X, u) is dense in (Xc, u), we then know from Lemma 1.17 that (X1, u) is dense in
(Xc, u). If (X1, u) 6= (Y, u), then there is some y ∈ Y \ X1 . By Lemma 1.42, at (y,X1)
is a completion type over (X1, u). By the foregoing lemma (which we can apply since we
know from Lemma 1.42 that uX1 = uXc), it is realized by a unique element y′ ∈ Xc. Now
Lemma 1.37 shows that there is a unique embedding of (X1 ∪ {y}, u) in (Xc, u) over X1,
contrary to our maximality assumption for (X1, u). Hence X1 = Y , showing that (Y, u) can
be embedded in (Xc, u) over (X, u). If in addition (Y, u) is complete, then the same holds
for its image in (Xc, u), and since this is dense in (Xc, u) by , it follows from Lemma 1.42
that the embedding is onto Xc. �

Now the proof of the following theorem is easy, and we leave it to the reader:

Theorem 1.46 Every ultrametric space (X, u) admits a completion. Between every two
completions of (X, u) there is a unique isomorphism over X. If (Z, u) is any completion of
(X, u) and (X, u) is dense in (Y, u), then (Y, u) admits a unique embedding in (Z, u) over
X.
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1.14 Pseudo Cauchy sequences

Pseudo Cauchy sequences have played an important role in the development of valuation
theory. We will thus introduce them here, although we prefer to work with approximation
types since they express more information. However, there are some situations where it
is more convenient to work with pseudo Cauchy sequences. For instance, certain maps
may send pseudo Cauchy sequences into pseudo Cauchy sequences while it is not easy to
describe how the approximation types are transformed. Another example is the task of
constructing immediate extensions with certain properties. In this case, pseudo Cauchy
sequences can represent a natural approach.

In what follows, let (X, u) always be an ultrametric space. Take a sequence (xν)ν<λ of
elements in X, indexed by ordinals ν < λ where λ is a limit ordinal. It is called a pseudo
Cauchy sequence if

(PCS) u(xρ, xσ) < u(xσ, xτ ) whenever ρ < σ < τ < λ.

More generally, the sequence is ultimately a pseudo Cauchy sequence if there is
some ν0 < λ such that the condition in (PCS) holds whenever ν0 ≤ ρ < σ < τ < λ. A
sequence that is ultimately a pseudo Cauchy sequence can be made into a pseudo Cauchy
sequence by deleting sufficiently many initial members. Hence the results we will prove for
pseudo Cauchy sequences hold in a corresponding form also for such sequences.

Let us state some properties of pseudo Cauchy sequences.

Lemma 1.47 Let (xν)ν<λ be a pseudo Cauchy sequence in (X, u). Then

u(xµ, xν) = u(xµ, xµ+1) whenever µ < ν < λ (1.14)

and
u(xµ, xν) < u(xµ′ , xν′) whenever µ < ν < λ and ν < µ′ < ν ′ < λ . (1.15)

Further, if y ∈ X, then either
u(y, xµ) < u(y, xν) whenever µ < ν < λ , (1.16)

or there is µ0 < λ such that

u(y, xν) = u(y, xµ0) whenever µ0 ≤ ν < λ .

Property (1.16) is equivalent to

u(y, xν) = u(xν , xν+1) for all ν < λ . (1.17)

Proof: Assume that (xν)ν<λ is a pseudo Cauchy sequence and ν < µ < λ. By definition,
u(xµ, xµ+1) < u(xµ+1, xν). Hence, u(xµ, xν) = min{u(xµ, xµ+1), u(xµ+1, xν)} = u(xµ, xµ+1)
by (UM 6=). Having proved this, we take µ < ν < λ and µ < µ′ < ν ′ < λ, hence
µ + 1 < ν ′, and we compute u(xµ′ , xν′) ≥ min{u(xµ′ , xµ+1), u(xµ+1, xν′)} = u(xµ+1, xν′) =
u(xµ+1, xµ+2) > u(xµ, xµ+1) = u(xµ, xν).

Now take y ∈ X and suppose that (1.16) does not hold. Then there are µ0, µ
′ such that

µ′ < µ0 < λ and u(y, xµ0) ≤ u(y, xµ′). Assume µ0 < ν < λ and u(y, xν) 6= u(y, xµ0). Then
u(xµ′ , xµ0) ≥ min{u(y, xµ′), u(y, xµ0)} = u(y, xµ0) ≥ min{u(y, xµ0), u(y, xν)} = u(xµ0 , xν),
where the last equality holds by (UM 6=). But this is a contradiction to assertion (1.15),
which we have already proved above.
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Suppose that y satisfies (1.16). Then u(y, xν) < u(y, xν+1) and thus, u(xν , xν+1) =
min{u(y, xν), u(y, xν+1)} = u(y, xν) for all ν < λ. Hence, y satisfies (1.17). Conversely,
(1.16) follows from (1.17) and assertion (1.15). �

In the following, take S = (xν)ν<λ to be any pseudo Cauchy sequence. We will say that
an assertion about its members xν holds ultimately if there is some µ0, µ0 < λ, so that
it holds for all xν with µ0 ≤ ν < λ. The foregoing lemma says that for every y ∈ X, the
sequence (u(y, xν))ν<λ is either strictly increasing or ultimately constant.

For ν < λ, we set
γν := u(xν , xν+1) .

Then (1.15) tells us that (γν)ν<λ is a strictly increasing sequence in uX. Hence if uX admits
no infinite strictly increasing sequences, then (X, u) admits no pseudo Cauchy sequences.
By (1.14), we have that γµ = u(xµ, xν) whenever µ < ν < λ.

Note that if (Y, u) is an extension of (X, u) and S is a pseudo Cauchy sequence in
(X, u), then it is also a pseudo Cauchy sequence in (Y, u). An element y ∈ Y is called
a pseudo limit (or just limit) of S if it satisfies (1.16), or equivalently, (1.17). Since
u(y, xν+1) ≥ γν+1 > γν implies that u(y, xν) = min{γν , u(y, xν+1)} = γν , both conditions
are equivalent to

u(y, xν) ≥ γν for all ν < λ .

Assume that y ∈ X is not a limit of S. Then by the foregoing lemma, there is µ0 such
that µ0 < λ and u(y, xν) = u(y, xµ0) whenever µ0 ≤ ν < λ. It follows that γν > γµ0 =
u(xµ0 , xµ0+1) ≥ min{u(y, xµ0), u(y, xµ0+1)} = u(y, xµ0) = u(y, xν) whenever µ0 < ν < λ.
Conversely, if there is ν such that ν < λ and γν > u(y, xν), then in view of (1.17), y can
not be a limit of S. We have proved:

Lemma 1.48 For an element y ∈ X and a pseudo Cauchy sequence S = (xν)ν<λ, the
following assertions are equivalent:

1) y ∈ X is not a limit of S,

2) u(y, xν) is ultimately constant,

3) u(y, xν) < γν holds ultimately,

4) u(y, xν) < γν holds for some ν < λ.

A pseudo Cauchy sequence may admit more than one limit. The following lemma
describes the set of all limits.

Lemma 1.49 Let y ∈ X be a limit of S. Then z ∈ X is also a limit of S if and only if

u(y, z) > γν for all ν < λ .

Proof: Since y is a limit of S, we have u(y, xν) = γν for ν < λ. If u(y, z) > γν , then
u(z, xν) = min{u(y, z), u(y, xν)} = min{u(y, z), γν} = γν for ν < λ, showing that also z is
a limit of S. Conversely, suppose that z is a limit of S, that is, u(z, xν) = γν for ν < λ.
Then u(y, z) ≥ min{u(y, xν+1), u(xν+1, z)} ≥ γν+1 > γν for ν < λ. �

The least initial segment of uX containing all γν for ν < λ will be called the support
segment of S and denoted by ΛL(S). Note that ΛL(S) does not have a largest element.
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Now the assertion of the foregoing lemma can be expressed as follows. If y is a limit of S,
then z is a limit of S if and only if

u(y, z) ≥ ΛL(S) ,

or equivalently,

u(y, z) > ΛL(S) .

If ΛL(S) = uX, then this means that u(y, z) =∞, that is, y = z. Consequently,

Lemma 1.50 Assume that S has a limit in (X, u). If ΛL(S) = uX, then the limit is
unique. The converse holds if (X, u) is homogeneous.

If ΛL(S) = uX, then the pseudo Cauchy sequence S is called a Cauchy sequence.
Hence by the foregoing lemma, every Cauchy sequence admits at most one limit. The non-
uniqueness of limits in the case of ΛL(S) 6= uX is the reason for the name pseudo Cauchy
sequence.

We shall now describe the relation between pseudo Cauchy sequences, nests of balls
and approximation types. Let B ⊆ B(X) be a nest of balls in (X, u) without a smallest
ball. We want to associate a pseudo Cauchy sequence SB to B. Choose some ball B0 ∈ B;
as this is not the smallest ball in B, we can choose some x0 ∈ B0 \

⋂
B. Suppose that

µ < λ and that for all ν < µ we have already chosen Bν ∈ B and xν ∈ Bν \
⋂

B such that
xν′ /∈ Bν for ν ′ < ν.

First consider the case of µ = µ′ + 1 a successor ordinal. Since
⋂

B = ∅, there is a ball
Bµ ∈ B which does not contain xµ′ . Since the balls Bν are linearly ordered by inclusion,
this together with our induction hypothesis yields that xν′ /∈ Bµ for ν ′ < µ.

Now consider the case of µ a limit ordinal. If the balls Bν are coinitial in B (with
respect to inclusion), then we set λ := µ, and our construction is finished. Otherwise, B
contains a ball Bµ which is properly contained in Bν for every ν < µ. For every ν < µ,
xν /∈ Bν+1 by induction hypothesis, and hence xν /∈ Bµ.

In both cases, as Bµ is not the smallest ball in B we can choose some xµ ∈ Bµ\
⋂

B. Our
induction will stop at some ordinal µ because all of them are bounded by the coinitiality
type of the set B, ordered by inclusion. This ordinal µ must be a limit ordinal because B
contains no smallest ball.

The sequence SB := (xν)ν<λ is a pseudo Cauchy sequence. Indeed, if ρ < σ < τ < λ,
then xρ /∈ Bσ 3 xτ by construction, and hence u(xρ, xσ) < u(xσ, xτ ).

We claim that ΛL(B) = ΛL(SB). Take α ∈ ΛL(B). Then there is a ball Bβ(z) ∈ B
such that α ≤ β. Since this is not the smallest ball in B, there is a ball Bν in our above
construction which is prperly contained in Bβ(z). Then α ≤ β < u(xν , xν+1) ∈ ΛL(SB),
so α ∈ ΛL(SB). For the converse, take γ ∈ ΛL(SB). So there is some ν < λ such that
γ ≤ u(xν , xν+1). Since xν /∈ Bν+1 and Bν+1 is contained in some Bβ(z) ∈ B by our
construction, we have that γ ≤ u(xν , xν+1) < β and hence γ ∈ ΛL(B).

Let (Y, u) be an extension of (X, u). Suppose that y ∈ Y is a limit of SB. Then for
all ν < λ, u(y, xν) = u(xν , xν+1). Take any Bβ(z) ∈ B. Since the sequence (Bν)ν<λ is
coinitial in B, there is some ν such that Bν ⊆ Bβ(z). As xν , xν+1 ∈ Bν ⊆ Bβ(Y, z), we
obtain that y ∈ Bβ(Y, z). Hence y ∈

⋂
{Bβ(Y, z) | Bβ(z) ∈ B}. For the converse, assume

that the latter holds, and take ν < λ. Write Bν+1 = Bβ(z). Then y, xν+1 ∈ Bβ(Y, z) 63 xν ,
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whence u(y, xν+1) > u(xν , xν+1). This yields that u(y, xν) = min{u(y, xν+1), u(xν+1, xν)} =
u(xν , xν+1) for all ν < λ, showing that y is a limit of SB.

Now assume that S = (xν)ν<λ is a pseudo Cauchy sequence. As before, we let γν =
u(xν , xν+1). Then BS := {Bγν (xν) | ν0 < ν < λ} is a nest of balls because every ball
Bγν (xν) contains all balls Bγµ(xµ) for ν < µ < λ. If S has no limit in X, then

⋂
B = ∅;

indeed, an element x ∈
⋂

B would satisfy u(xν , x) ≥ γν for ν0 < ν < λ and would thus be
a limit of S. Our above construction applied to BS will (essentially) give back S. We have
now proved:

Lemma 1.51 Let (X, u) be an ultrametric space. Then for every nest of balls B ⊆ B(X)
in (X, u) without a smallest ball there is a pseudo Cauchy sequence SB such that ΛL(B) =
ΛL(SB) and that for every extension (X, u) ⊆ (Y, u) of ultrametric spaces, an element
y ∈ Y lies in

⋂
{Bα(Y, bα) | Bα(xα) ∈ B} if and only if it is a limit of SB. In particular,⋂

B = ∅ if and only if SB does not have a limit in X. Further, B is a completion nest if
and only if SB is a Cauchy sequence.

Conversely, for every pseudo Cauchy sequence S there exists a nest BS of balls in (X, u)
with

⋂
BS = ∅, such that the relation between S and BS is the same as between SB and B

that we have described above.

From this lemma together with Lemma ??, we obtain an analogous lemma which describes
the relation between approximation types and pseudo Cauchy sequences. The proof is an
easy exercise which we leave to the reader.

Lemma 1.52 For every immediate approximation type A in (X, u), there is a pseudo
Cauchy sequence SA in (X, u) without a limit in X such that ΛL(A) = ΛL(SA) and that
for every extension (X, u) ⊆ (Y, u) of ultrametric spaces, an element y ∈ Y realizes A if
and only if it is a limit of SA. Further, A is a completion type if and only if SA is a
Cauchy sequence.

Conversely, for every pseudo Cauchy sequence S in (X, u) without a limit in X there
exists a unique immediate approximation type AS in (X, u) such that the relation between
S and AS is the same as between SA and A that we have described above.

We obtain the following characterization of spherically complete ultrametric spaces
which is analogous to Lemma 1.38:

Corollary 1.53 The ultrametric space (X, u) is spherically complete if and only if every
pseudo Cauchy sequence in (X, u) has a limit in X. Further, (X, u) is complete if and only
if every Cauchy sequence in (X, u) has a limit in X.

Exercise 1.7 Let S = (xν)ν<λ be a pseudo Cauchy sequence. Show that y is a limit of S if and only if
u(y, xν) < u(y, xν+1) for all ν < λ.

Exercise 1.8 Assume that every pseudo Cauchy sequence in (X,u) admits a limit in some extension
(Y, u) of (X,u) (which is true; cf. Lemma 20.85). Prove: if B is a nest of balls and S is a pseudo Cauchy
sequence such that for every extension (Y, u) of (X,u), the intersection

⋂
{Bα(Y, xα) | Bα(xα) ∈ B} is

precisely the set of all limits of S in Y , then it follows that ΛL(B) = ΛL(S).


