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Abstract. We classify all possible extensions of a valuation from a ground

field K to a rational function field in one or several variables over K. We

determine which value groups and residue fields can appear, and we show
how to construct extensions having these value groups and residue fields. In

particular, we give several constructions of extensions whose corresponding

value group and residue field extensions are not finitely generated. In the
case of a rational function field K(x) in one variable, we consider the relative

algebraic closure of K in the henselization of K(x) with respect to the given
extension, and we show that this can be any countably generated separable-

algebraic extension of K. In the “tame case”, we show how to determine this

relative algebraic closure. Finally, we apply our methods to power series fields
and the p-adics.

1. Introduction

In this paper, we denote a valued field by (K, v), its value group by vK, and
its residue field by Kv. When we write (L|K, v) we mean a field extension L|K
endowed with a valuation v on L and its restriction on K.

In many recent applications of valuation theory, valuations on algebraic function
fields play a main role. To mention only a short and incomplete list of applications
and references: local uniformization and resolution of singularities ([C], [CP], [S],
[KU3], [KKU1,2]), model theory of valued fields ([KU1,2,4]), study of curves via
constant reduction ([GMP1,2], [PL]), classification of all extensions of an ordering
from a base field to a rational function field ([KUKMZ]), Gröbner bases ([SW],
[MOSW1,2]).

In many cases, a basic tool is the classification of all extensions of a valuation from
a base field to a function field. As the classification of all extensions of a valuation
from a field to an algebraic extension is taken care of by general ramification theory
(cf. [E], [KU2]), a crucial step in the classification is the case of rational function
fields. Among the first papers describing valuations on rational function fields
systematically were [M] and [MS]. Since then, an impressive number of papers have
been written about the construction of such valuations and about their properties;
the following list is by no means exhaustive: [AP], [APZ1-3], [KH1-10], [KHG1-
6], [KHPR], [MO1,2], [MOSW1], [O1-3], [PP], [V]. From the paper [APZ3] the
reader may get a good idea of how MacLane’s original approach has been developed
further. Since then, the notion of “minimal pairs” has been adopted and studied
by several authors (see, e.g., [KHPR]). In the present paper, we will develop a new
approach to this subject. It serves to determine in full generality which value groups
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and which residue fields can possibly occur. This question has recently played a
role in two other papers:

1) In [KU3], we prove the existence of “bad places” on rational function fields
of transcendence degree ≥ 2. These are places whose value group is not finitely
generated, or whose residue field is not finitely generated over the base field. The
existence of such places has been shown by MacLane and Schilling ([MS]) and by
Zariski and Samuel ([ZS], ch. VI, §15, Examples 3 and 4). However, our approach
in [KU3] using Hensel’s Lemma seems to be new, and the present paper contains a
further refinement of it. The following theorem of [MS] and [ZS] is a special case
of a result which we will prove by this refinement:

Theorem 1.1. Let K be any field. Take Γ to be any non-trivial ordered abelian
group of finite rational rank ρ, and k to be any countably generated extension of K
of finite transcendence degree τ . Choose any integer n > ρ + τ . Then the rational
function field in n variables over K admits a valuation whose restriction to K is
trivial, whose value group is Γ and whose residue field is k.

In particular, every additive subgroup of Q and every countably generated alge-
braic extension of K can be realized as value group and residue field of a place of
the rational function field K(x, y)|K whose restriction to K is the identity.

The rational rank of an abelian group Γ is the dimension of the Q-vector space
Q⊗Z Γ. We denote it by rr Γ. It is equal to the cardinality of any maximal set of
rationally independent elements in Γ.

Bad places on function fields are indeed bad: the value group or residue field not
being finitely generated constitutes a major hurdle for the attempt to prove local
uniformization or other results which are related to resolution of singularities (cf.
[CP]). Another hurdle is the phenomenon of defect which can appear when the
residue characteristic of a valued field is positive, even if the field itself seems to
be quite simple. Indeed, we will prove in Section 3.3, and by a different method in
Section 3.5:

Theorem 1.2. Let K be any algebraically closed field of positive characteristic.
Then there exists a valuation v on the rational function field K(x, y)|K whose re-
striction to K is trivial, such that (K(x, y), v) admits an infinite chain of immediate
Galois extensions of degree p and defect p.

An extension (L′|L, v) of valued fields is called immediate if the canonical embed-
dings of vL in vL′ and of Lv in L′v are surjective (which we will express by writing
vL′ = vL and L′v = Lv). For a finite immediate extension (L′|L, v), its defect
is equal to its degree if and only if the extension of v from L to L′ is unique (or
equivalently, L′|L is linearly disjoint from some (or every) henselization of (L, v)).

One of the examples we shall construct for the proof of the above theorem is
essentially the same as in Section 7 of [CP], but we use a different and more di-
rect approach (while the construction in [CP] is more intricate since it serves an
additional purpose).

2) In [KUKMZ], the classification of all extensions of an ordering to a rational
function field is considered in the context of power series fields, and the above
question is partially answered in this setting. In the present paper, we will consider
the question without referring to power series fields (see Theorem 1.8 below).
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During the preparation of [KUKMZ], we found that the construction of an exten-
sion of the valuation v from K to the rational function field K(x) with prescribed
value group vK(x) and residue field K(x)v is tightly connected with the determi-
nation of the relative algebraic closure of K in a henselization K(x)h of K(x) with
respect to v. In earlier papers, we have introduced the name “henselian function
field” for the henselizations of valued function fields (although these are not function
fields, unless the valuation is trivial). In the same vein, one can view the relative
algebraic closure as being the (exact) constant field of the henselian function field
(K(x)h|K, v). We will call it the implicit constant field of (K(x)|K, v) and
denote it by IC (K(x)|K, v). Clearly, the henselization K(x)h depends on the valu-

ation which has been fixed on the algebraic closure K̃(x). So whenever we will talk
about the implicit constant field, we will do it in a setting where the valuation on

K̃(x) has been fixed. However, since the henselization Lh of any valued field (L, v)
is unique up to valuation preserving isomorphism over L, the implicit constant field
is unique up to valuation preserving isomorphism over K. If L0 is a subfield of L,
then Lh contains a (unique) henselization of L0 . Hence, IC (K(x)|K, v) contains
a henselization of K and is itself henselian. Further, Lh|L is a separable-algebraic
extension; thus, K(x)h|K is separable. Therefore, IC (K(x)|K, v) is a separable-
algebraic extension of K.

In the present paper, we answer the above question on value groups and residue
fields by determining which prescribed separable-algebraic extensions of K can be
realized as implicit constant fields. The following result shows in particular that
every countably generated separable-algebraic extension of a henselian base field
can be realized:

Theorem 1.3. Let (K1|K, v) be a countable separable-algebraic extension of non-
trivially valued fields. Then there is an extension of v from K1 to the algebraic

closure K̃1(x) = K̃(x) of the rational function field K(x) such that, upon taking

henselizations in (K̃(x), v),

(1.1) Kh
1 = IC (K(x)|K, v) .

In Section 3.1 we will introduce a basic classification (“value-transcendental”
– “residue-transcendental” – “valuation-algebraic”) of all possible extensions of v
from K to K(x). In Section 3.2 we introduce a class of extensions (K(x)|K, v)
for which IC (K(x)|K, v) = Kh holds. Building on this, we prove Theorem 1.3
in Section 3.5. In fact, we prove a more detailed version: we show under which
additional conditions the extension can be chosen in a prescribed class of the basic
classification. This yields the following

Theorem 1.4. Take any valued field (K, v), an ordered abelian group extension Γ0

of vK such that Γ0/vK is a torsion group, and an algebraic extension k0 of Kv.
Further, take Γ to be the abelian group Γ0 ⊕ Z endowed with any extension of the
ordering of Γ0 .

Assume first that Γ0/vK and k0|Kv are finite. If v is trivial on K, then assume
in addition that k0|Kv is simple. Then there is an extension of v from K to the
rational function field K(x) which has value group Γ and residue field k0. If v is
non-trivial on K, then there is also an extension which has value group Γ0 and as
residue field a rational function field in one variable over k0 .
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Now assume that v is non-trivial on K and that Γ0/vK and k0|Kv are countably
generated. Suppose that at least one of them is infinite or that (K, v) admits an
immediate transcendental extension. Then there is an extension of v from K to
K(x) which has value group Γ0 and residue field k0.

Here is the converse:

Theorem 1.5. Let (K(x)|K, v) be a valued rational function field. Then one and
only one of the following three cases holds:

1) vK(x) ' Γ0 ⊕ Z, where Γ0|vK is a finite extension of ordered abelian groups,
and K(x)v|Kv is finite;
2) vK(x)/vK is finite, and K(x)v is a rational function field in one variable over
a finite extension of Kv;
3) vK(x)/vK is a torsion group and K(x)v|Kv is algebraic.

In all cases, vK(x)/vK is countable and K(x)v|Kv is countably generated.

In 2), we use a fact which was proved by J. Ohm [O2] and is known as the
“Ruled Residue Theorem”: If K(x)v|Kv is transcendental, then K(x)v is a rational
function field in one variable over a finite extension of Kv. For the countability
assertion, see Theorem 2.9.

In Section 3.4 we give an explicit description of all possible extensions of v from
K to K(x) (Theorem 3.11).

Theorem 1.4 is used in the proof of our next theorem:

Theorem 1.6. Let (K, v) be any valued field, n, ρ, τ non-negative integers, n ≥ 1,
Γ 6= {0} an ordered abelian group extension of vK such that Γ/vK is of rational
rank ρ, and k|Kv a field extension of transcendence degree τ .

Part A. Suppose that n > ρ+ τ and that

A1) Γ/vK and k|Kv are countably generated,
A2) Γ/vK or k|Kv is infinite.

Then there is an extension of v to the rational function field K(x1, . . . , xn) in n
variables such that

(1.2) vK(x1, . . . , xn) = Γ and K(x1, . . . , xn)v = k .

Part B. Suppose that n ≥ ρ+ τ and that

B1) Γ/vK and k|Kv are finitely generated,
B2) if v is trivial on K, n = ρ+τ and ρ = 1, then k is a simple algebraic extension
of a rational function field in τ variables over Kv (or of Kv itself if τ = 0), or
a rational function field in one variable over a finitely generated field extension of
Kv of transcendence degree τ − 1,
B3) if n = τ , then k is a rational function field in one variable over a finitely
generated field extension of Kv of transcendence degree τ − 1,
B4) if ρ = 0 = τ , then there is an immediate extension of (K, v) which is either
infinite separable-algebraic linearly disjoint from the henselization of (K, v), or of
transcendence degree at least n.

Then again there is an extension of v to K(x1, . . . , xn) such that (1.2) holds.

Theorem 1.1 is the special case of Part A for v trivial on K. The following
converse holds:
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Theorem 1.7. Let n ≥ 1 and v be a valuation on the rational function field
F = K(x1, . . . , xn). Set ρ = rr vF/vK and τ = trdegFv|Kv. Then n ≥ ρ + τ ,
vF/vK is countable, and Fv|Kv is countably generated.

If n = ρ+ τ , then vF/vK is finitely generated and Fv|Kv is a finitely generated
field extension. Assertions B2) and B3) of Theorem 1.6 hold for k = Fv, and if

ρ = 0 = τ , then there is an immediate extension of (K̃, v) of transcendence degree n

(for any extension of v from K to K̃).

There is a gap between Theorem 1.6 and this converse for the case of ρ = 0 =
τ , as the former talks about K and the latter talks about the algebraic closure
K̃ of K. This gap can be closed if (K, v) has residue characteristic 0 or is a
Kaplansky field; because the maximal immediate extension of such fields is unique
up to isomorphism, one can show that K̃ can be replaced by K. But in the case
where (K, v) is not such a field, we do not know enough about the behaviour
of maximal immediate extensions under algebraic field extensions. This question
should be considered in future research.

A valuation on an ordered field is called convex if the associated valuation ring
is convex. For the case of ordered fields with convex valuations, we can derive from
Theorem 1.6 the existence of convex extensions of the valuation with prescribed
value groups and residue fields in the frame given by Theorem 1.7, provided that a
natural additional condition for the residue fields is satisfied:

Theorem 1.8. In the setting of Theorem 1.6, assume in addition that K is ordered
and that v is convex w.r.t. the ordering. Assume further that k is equipped with an
extension of the ordering induced by < on Kv. Then this extension can be lifted
through v to K(x1, . . . , xn) in such a way that the lifted ordering extends <. It
follows that v is convex w.r.t. this lifted ordering on K(x1, . . . , xn).

In Section 5 we shall introduce “homogeneous sequences”. In the “tame case”,
they can be used to determine the implicit constant field of a valued rational func-
tion field, and also to characterize this “tame case”. In Section 6 we shall show how
to apply our results to power series, in the spirit of [MS] and [ZS] (Theorem 6.1).
We will also use our approach to give proofs of two well known facts in p-adic al-
gebra: that the algebraic closure of Qp is not complete and that its completion is
not maximal.

Finally, let us mention that we use our criteria for IC (K(x)|K, v) = Kh in Sec-
tion 3.2 to give an example for the following fact: Suppose that K is relatively
algebraically closed in a henselian valued field (L, v) such that vL/vK is a tor-
sion group. Then it is not necessarily true that vL = vK, even if v has residue
characteristic 0.

I would like to thank Murray Marshall and Salma Kuhlmann for the very inspir-
ing joint seminar; without this seminar, this paper would not have been written.
I also feel very much endebted to Sudesh Kaur Khanduja for many ideas she has
shared with me. Finally, I would like to thank Roland Auer for finding some mis-
takes and asking critical questions.

2. Notation and valuation theoretical preliminaries

For an arbitrary field K, will will denote by Ksep the separable-algebraic closure
of K, and by K̃ the algebraic closure of K. By GalK we mean the absolute Galois
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group Gal (K̃|K) = Gal (Ksep|K). For a valuation v on K, we let OK denote the
valuation ring of v on K.

Every finite extension (L|K, v) of valued fields satisfies the fundamental in-
equality (cf. [E]):

(2.1) n ≥
g∑
i=1

eifi

where n = [L : K] is the degree of the extension, v1, . . . , vg are the distinct ex-
tensions of v from K to L, ei = (viL : vK) are the respective ramification indices
and fi = [Lvi : Kv] are the respective inertia degrees. Note that g = 1 if (K, v) is
henselian.

In analogy to field theory, an extension Γ ⊂ ∆ of abelian groups will also be
written as ∆|Γ, and it will be called algebraic if ∆/Γ is a torsion group. The
fundamental inequality implies the following well known fact:

Lemma 2.1. If (L|K, v) is finite, then so are vL/vK and Lv|Kv. If (L|K, v) is
algebraic, then so are vL/vK and Lv|Kv.

Given two subextensions M |K and L|K within a fixed extension N |K, the field
compositum M.L is defined to be the smallest subfield of N which contains both
M and L. If L|K is algebraic, the compositum is uniquely determined by taking

N = M̃ and specifying a K-embedding of L in M̃ .

Lemma 2.2. Let (M |K, v) be an immediate extension of valued fields, and (L|K, v)
a finite extension such that [L : K] = (vL : vK)[Lv : Kv]. Then for every

K-embedding of L in M̃ and every extension of v from M to M̃ , the extension
(M.L|L, v) is immediate.

Proof. Via the embedding, we identify L with a subfield of M̃ . Pick any extension
of v from M to M̃ . This will also be an extension of v from L to M̃ because by the
fundamental inequality, the extension of v from K to L is unique. We consider the
extension (M.L|M,v). It is clear that vL ⊆ v(M.L) and Lv ⊆ (M.L)v; therefore,
(v(M.L) : vK) ≥ (vL : vK) and [(M.L)v : Kv] ≥ [Lv : Kv]. Since (M |K, v) is
immediate, we have

[M.L : M ] ≥ (v(M.L) : vM)[(M.L)v : Mv] = (v(M.L) : vK)[(M.L)v : Kv]

≥ (vL : vK)[Lv : Kv] = [L : K] ≥ [M.L : M ] .

This shows that (v(M.L) : vK) = (vL : vK) and [(M.L)v : Kv] = [Lv : Kv], that
is, v(M.L) = vL and (M.L)v = Lv. �

2.1. Pseudo Cauchy sequences. We assume the reader to be familiar with the
theory of pseudo Cauchy sequences as presented in [KA]. Recall that a pseudo
Cauchy sequence A = (aν)ν<λ in (K, v) (where λ is some limit ordinal) is of
transcendental type if for every g(x) ∈ K(x), the value vg(aν) is eventually
constant, that is, there is some ν0 < λ such that

(2.2) vg(aν) = vg(aν0) for all ν ≥ ν0 , ν < λ .

Otherwise, A is of algebraic type.
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Take a pseudo Cauchy sequence A in (K, v) of transcendental type. We define
an extension vA of v from K to the rational function field K(x) as follows. For
each g(x) ∈ K[x], we choose ν0 < λ such that (2.2) holds. Then we set

vA g(x) := vg(aν0) .

We extend vA toK(x) by setting vA(g/h) := vAg−vAh. The following is Theorem 2
of [KA]:

Theorem 2.3. Let A be a pseudo Cauchy sequence in (K, v) of transcendental
type. Then vA is a valuation on the rational function field K(x). The exten-
sion (K(x)|K, vA) is immediate, and x is a pseudo limit of A in (K(x), vA). If
(K(y), w) is any other valued extension of (K, v) such that y is a pseudo limit of
A in (K(y), w), then x 7→ y induces a valuation preserving K-isomorphism from
(K(x), vA) onto (K(y), w).

From this theorem we deduce:

Lemma 2.4. Suppose that in some valued field extension of (K, v), x is the pseudo
limit of a pseudo Cauchy sequence in (K, v) of transcendental type. Then (K(x)|K, v)
is immediate and x is transcendental over K.

Proof. Assume that (aν)ν<λ is a pseudo Cauchy sequence in (K, v) of transcenden-
tal type. Then by Theorem 2.3 there is an immediate extension w of v to the rational
function field K(y) such that y becomes a pseudo limit of (aν)ν<λ ; moreover, if also
x is a pseudo limit of (aν)ν<λ in (K(x), v), then x 7→ y induces a valuation preserv-
ing isomorphism from K(x) onto K(y) over K. Hence, (K(x)|K, v) is immediate
and x is transcendental over K. �

Lemma 2.5. A pseudo Cauchy sequence of transcendental type in a valued field
remains a pseudo Cauchy sequence of transcendental type in every algebraic valued
field extension of that field.

Proof. Assume that (aν)ν<λ is a pseudo Cauchy sequence in (K, v) of transcenden-
tal type and that (L|K, v) is an algebraic extension. If (aν)ν<λ were of algebraic
type over (L, v), then by Theorem 3 of [KA] there would be an algebraic extension
L(y)|L and an immediate extension of v to L(y) such that y is a pseudo limit of
(aν)ν<λ in (L(y), v). But then, y is also a pseudo limit of (aν)ν<λ in (K(y), v).
Hence by the foregoing lemma, y must be transcendental over K. This is a contra-
diction to the fact that L(y)|L and L|K are algebraic. �

2.2. Valuation independence. For the easy proof of the following lemma, see
[B], chapter VI, §10.3, Theorem 1.

Lemma 2.6. Let (L|K, v) be an extension of valued fields. Take elements xi, yj ∈
L, i ∈ I, j ∈ J , such that the values vxi , i ∈ I, are rationally independent over
vK, and the residues yjv, j ∈ J , are algebraically independent over Kv. Then the
elements xi, yj, i ∈ I, j ∈ J , are algebraically independent over K.

Moreover, if we write

f =
∑
k

ck
∏
i∈I

x
µk,i
i

∏
j∈J

y
νk,j
j ∈ K[xi, yj | i ∈ I, j ∈ J ]
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in such a way that for every k 6= ` there is some i s.t. µk,i 6= µ`,i or some j s.t.
νk,j 6= ν`,j , then

(2.3) vf = min
k

v ck
∏
i∈I

x
µk,i
i

∏
j∈J

y
νk,j
j = min

k
vck +

∑
i∈I

µk,ivxi .

That is, the value of the polynomial f is equal to the least of the values of its
monomials. In particular, this implies:

vK(xi, yj | i ∈ I, j ∈ J) = vK ⊕
⊕
i∈I

Zvxi

K(xi, yj | i ∈ I, j ∈ J)v = Kv (yjv | j ∈ J) .

Moreover, the valuation v on K(xi, yj | i ∈ I, j ∈ J) is uniquely determined by its
restriction to K, the values vxi and the residues yjv.

Conversely, if (K, v) is any valued field and we assign to the vxi any values in an
ordered group extension of vK which are rationally independent, then (2.3) defines
a valuation on L, and the residues yjv, j ∈ J , are algebraically independent over
Kv.

Corollary 2.7. Let (L|K, v) be an extension of finite transcendence degree of valued
fields. Then

(2.4) trdegL|K ≥ trdegLv|Kv + rr (vL/vK) .

If in addition L|K is a function field and if equality holds in (2.4), then the exten-
sions vL|vK and Lv|Kv are finitely generated.

Proof. Choose elements x1, . . . , xρ, y1, . . . , yτ ∈ L such that the values vx1, . . . , vxρ
are rationally independent over vK and the residues y1v, . . . , yτv are algebraically
independent over Kv. Then by the foregoing lemma, ρ + τ ≤ trdegL|K. This
proves that trdegLv|Kv and the rational rank of vL/vK are finite. Therefore, we
may choose the elements xi, yj such that τ = trdegLv|Kv and ρ = rr (vL/vK) to
obtain inequality (2.4).

Assume that equality holds in (2.4). This means that L is an algebraic extension
of L0 := K(x1, . . . , xρ, y1, . . . , yτ ). Since L|K is finitely generated, it follows that
L|L0 is finite; hence by Lemma 2.1, also vL/vL0 and Lv|L0v are finite. Since already
vL0|vK and L0v|Kv are finitely generated by the foregoing lemma, it follows that
also vL|vK and Lv|Kv are finitely generated. �

The algebraic analogue of the transcendental case discussed in Lemma 2.6 is the
following lemma (see [R] or [E]):

Lemma 2.8. Let (L|K, v) be an extension of valued fields. Take ηi ∈ L such that
vηi , i ∈ I, belong to distinct cosets modulo vK. Further, take ϑj ∈ OL , j ∈ J ,
such that ϑjv are Kv-linearly independent. Then the elements ηiϑj , i ∈ I, j ∈ J ,
are K-linearly independent, and for every choice of elements cij ∈ K, only finitely
many of them nonzero, we have that

v
∑
i,j

cijηiϑj = min
i,j

vcijηiϑj = min
i,j

(vcij + vηi) .

If the elements ηiϑj form a K-basis of L, then vηi , i ∈ I, is a system of represen-
tatives of the cosets of vL modulo vK, and ϑjv, j ∈ J , is a basis of Lv|Kv.
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The following is an application which is important for our description of all
possible value groups and residue fields of valuations on K(x). The result has
been proved with a different method in [APZ3] (Corollary 5.2); cf. Remark 3.1 in
Section 3.1.

Theorem 2.9. Let K be any field and v any valuation of the rational function field
K(x). Then vK(x)/vK is countable, and K(x)v|Kv is countably generated.

Proof. Since K(x) is the quotient field of K[x], we have that vK(x) = vK[x] −
vK[x]. Hence, to show that vK(x)/vK is countable, it suffices to show that the
set {α + vK | α ∈ vK[x]} is countable. If this were not true, then by Lemma 2.8
(applied with J = {1} and ϑ1 = 1), we would have that K[x] contains uncountably
many K-linearly independent elements. But this is not true, as K[x] admits the
countable K-basis {xi | i ≥ 0}.

Now assume that K(x)v|Kv is not countably generated. Then by Corollary 2.7,
K(x)v|Kv must be algebraic. It also follows that K(x)v has uncountable Kv-
dimension. Pick an uncountable set κ and elements fi(x)/gi(x), i ∈ κ, with
fi(x), gi(x) ∈ K[x] and vfi(x) = vgi(x) for all i, such that their residues are Kv-
linearly independent. As vK(x)/vK is countable, there must be some uncountable
subset λ ⊂ κ such that for all i ∈ λ, the values vfi(x) = vgi(x) lie in the same
coset modulo vK, say vh(x) + vK with h(x) ∈ K[x]. The residues (fi(x)/gi(x))v,
i ∈ λ, generate an algebraic extension of uncountable dimension. Choosing suitable
elements ci ∈ K such that

vcifi(x) = vh(x) = vcigi(x) ,

we can write

fi(x)

gi(x)
=

cifi(x)

h(x)
· h(x)

cigi(x)
=

cifi(x)

h(x)
·
(
cigi(x)

h(x)

)−1
for all i ∈ λ. Therefore,

fi(x)

gi(x)
v =

(
cifi(x)

h(x)
v

)
·
(
cigi(x)

h(x)
v

)−1
for all i ∈ λ. In order that these elements generate an algebraic extension of
Kv of uncountable dimension, the same must already be true for the elements
(cifi(x)/h(x))v, i ∈ λ, or for the elements (cigi(x)/h(x))v, i ∈ λ. It follows that
at least one of these two sets contains uncountably many Kv-linearly independent
elements. But then by Lemma 2.8 (applied with I = {1} and η1 = 1), there are
uncountably many K-linearly independent elements in the set

1

h(x)
K[x]

and hence also in K[x], a contradiction. �

Finally, let us mention the following lemma which combines the algebraic and
the transcendental case. We leave its easy proof to the reader.

Lemma 2.10. Let (L|K, v) be an extension of valued fields. Take x ∈ L. Suppose
that for some e ∈ N there exists an element d ∈ K such that vdxe = 0 and dxev
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is transcendental over Kv. Let e be minimal with this property. Then for every
f = cnx

n + . . .+ c0 ∈ K[x],

vf = min
1≤i≤n

vcix
i .

Moreover, K(x)v = Kv(dxev) is a rational function field over Kv, and we have

vK(x) = vK + Zvx with (vK(x) : vK) = e .

2.3. Construction of valued field extensions with prescribed value groups
and residue fields. In this section, we will deal with the following problem. Sup-
pose that (K, v) is a valued field, Γ|vK is an extension of ordered abelian groups
and k|Kv is a field extension. Does there exist an extension (L|K, v) of valued
fields such that vL = Γ and Lv = k? We include the case of (K, v) being trivially
valued; this amounts to the construction of a valued field with given value group
and residue field. Throughout, we use the well known fact that if (K, v) is any
valued field and L is any extension field of K, then there is at least one extension
of v to L (cf. [E], [R]).

Let us adjust the following notion to our purposes. Usually, when one speaks of
an Artin-Schreier extension then one means an extension of a field K generated
by a root of an irreducible polynomial of the form Xp − X − c, provided that
p = charK. We will replace this by the weaker condition “p = charKv”. In fact,
such extensions also play an important role in the mixed characteristic case, where
charK = 0.

Every Artin-Schreier polynomial Xp−X − c is separable since its derivative
does not vanish. The following is a simple but very useful observation:

Lemma 2.11. Let (K, v) be a valued field and c ∈ K such that vc < 0. If a ∈ K̃
such that ap − a = c, then for every extension of v from K to K(a),

0 > v(ap − c) = va > pva = vc .

Proof. Take any extension of v from K to K(a). Necessarily, va < 0 since otherwise,
∞ = v(ap − a − c) = min{pva, va, vc} = vc, a contradiction. It follows that
vap = pva < va and thus,

vc = min{v(ap − a− c), v(ap − a)} = v(ap − a) = min{pva, va} = pva .

�

Lemma 2.12. Let (K, v) be a non-trivially valued field, p a prime and α an element

of the divisible hull of vK such that pα ∈ vK, α /∈ vK. Choose an element a ∈ K̃
such that ap ∈ K and vap = pα. Then v extends in a unique way from K to K(a).
It satisfies
(2.5)
va = α , [K(a) : K] = (vK(a) : vK) , vK(a) = vK+Zα and K(a)v = Kv .

If charK = charKv = p, then this extension K(a)|K is purely inseparable. On
the other hand, if charKv = p, then there is always an Artin-Schreier extension
K(a)|K with properties (2.5); if α < 0, then a itself can be chosen to be the root of
an Artin-Schreier polynomial over K.

Proof. Take c ∈ K such that vc = pα and a ∈ K̃ such that ap = c. Choose any
extension of v from K to K(a). Then pva = vc = pα. Consequently, va = α
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and (vK(a) : vK) ≥ (vK + Zα : vK) = p. On the other hand, the fundamental
inequality (2.1) shows that

p = [K(a) : K] ≥ (vK(a) : vK) · [K(a)v : Kv] ≥ (vK(a) : vK) ≥ p .
Hence, equality holds everywhere, and we find that (vK(a) : vK) = p and [K(a)v :
Kv] = 1. That is, vK(a) = vK + Zα and K(a)v = Kv. Further, the fundamental
inequality implies that the extension of v from K to K(a) is unique.

Now suppose that charKv = p. Choose c ∈ K such that vc = −|pα| < 0. By
the foregoing lemma, every root b of the Artin-Schreier polynomial Xp − X − c
must satisfy pvb = vc. Now we set a = b if α < 0, and a = 1/b if α > 0 (but note
that then 1/a is in general not the root of an Artin-Schreier polynomial). Then as
before one shows that (2.5) holds. �

For f ∈ OK [X], we define the reduction fv ∈ Kv[X] to be the polynomial
obtained from f through replacing every coefficient by its residue.

Lemma 2.13. Let (K, v) be a valued field and ζ an element of the algebraic closure
of Kv. Choose a monic polynomial f ∈ OK [X] whose reduction fv is the minimal

polynomial of ζ over Kv. Further, choose a root b ∈ K̃ of f . Then there is a unique
extension of v from K to K(b) and a corresponding extension of the residue map
such that

(2.6) bv = ζ, [K(b) : K] = [Kv(ζ) : Kv], vK(b) = vK and K(b)v = Kv(ζ) .

In all cases, f can be chosen separable, provided that the valuation v is non-trivial.
On the other hand, if charK = charKv = p > 0 and ζ is purely inseparable over
Kv, then b can be chosen purely inseparable over K.

If v is non-trivial, charKv = p > 0 and ζp ∈ Kv, ζ /∈ Kv, then there is also
an Artin-Schreier extension K(b)|K such that (2.6) holds and db is the root of an
Artin-Schreier polynomial over K, for a suitable d ∈ K.

Proof. We choose an extension of v from K to K(b). Since f is monic with integral
coefficients, b must also be integral for this extension, and bv must be a root of fv.
We may compose the residue map with an isomorphism in GalKv which sends this
root to ζ. Doing so, we obtain a residue map (still associated with v) that satisfies
bv = ζ. Now ζ ∈ K(b)v and consequently, [K(b)v : Kv] ≥ [Kv(ζ) : Kv] = deg fv =
deg f . On the other hand, the fundamental inequality shows that

deg f = [K(b) : K] ≥ (vK(b) : vK) · [K(b)v : Kv] ≥ [K(b)v : Kv] ≥ deg f .

Hence, equality holds everywhere, and we find that [K(b)v : Kv] = [Kv(ζ) : Kv] =
[K(b) : K] and (vK(b) : vK) = 1. That is, vK(b) = vK and K(b)v = Kv(ζ).
Further, the uniqueness of v on K(a) follows from the fundamental inequality.

If fv is separable, then so is f . Even if fv is not separable but v is nontrivial
on K, then f can still be chosen separable since we can add a summand cX with
c 6= 0, vc > 0 (we use that v is non-trivial) without changing the reduction of f .
On the other hand, if fv is purely inseparable and hence of the form Xpν −cv, then
we can choose f = Xpν − c which also is purely inseparable if charK = p.

Now suppose that charKv = p > 0 and ζp ∈ Kv, ζ /∈ Kv. Choose c ∈ K such
that cv = ζp. To construct an Artin-Schreier extension, choose any d ∈ K with
vd < 0, and let b0 be a root of the Artin-Schreier polynomial Xp −X − dpc. Since
vdpc = pvd < 0, Lemma 2.11 shows that v(bp0 − dpc) = vb0 > vbp0. Consequently,

v((b0/d)p − c) > v(b0/d)p = vc = 0, whence (b0/d)pv = cv and (b0/d)v = (cv)1/p =
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ζ. We set b = b0/d; so K(b) = K(b0). As before, it follows that vK(b) = vK and
K(b)v = Kv(ζ). �

Theorem 2.14. Let (K, v) be an arbitrary valued field. For every extension Γ|vK
of ordered abelian groups and every field extension k|Kv, there is an extension
(L, v) of (K, v) such that vL = Γ and Lv = k. If Γ|vK and k|Kv are algebraic,
then L|K can be chosen to be algebraic, with a unique extension of v from K to
L. If ρ = rr Γ/vK and τ = trdeg k|Kv are finite, then L|K can be chosen of
transcendence degree ρ + τ . If Γ 6= {0}, then L can be chosen to be a separable
extension of K.

If both Γ|vK and k|Kv are finite, then L|K can be taken to be a finite extension
such that [L : K] = (Γ : vK)[k : Kv]. If in addition v is non-trivial on K, then
L|K can be chosen to be a simple separable-algebraic extension.

If Γ/vK is countable and k|Kv is countably generated, then L|K can be taken to
be a countably generated extension.

Proof. For the proof, we assume that Γ 6= {0} (the other case is trivial). Let αi ,
i ∈ I, be a maximal set of elements in Γ rationally independent over vK. Then by
Lemma 2.6 there is an extension (K1, v) := (K(xi | i ∈ I), v) of (K, v) such that
vK1 = vK ⊕

⊕
i∈I Zαi and K1v = Kv. Next, choose a transcendence basis ζj , j ∈

J , of k|Kv. Then by Lemma 2.6 there is an extension (K2, v) := (K1(yj | j ∈ J), v)
of (K1, v) such that vK2 = vK1 and K2v = Kv(ζj | j ∈ J). If Γ|vK and k|Kv are
algebraic, then I = J = ∅ and K2 = K.

If we have an ascending chain of valued fields whose value groups are subgroups
of Γ and whose residue fields are subfields of k, then the union over this chain
is again a valued field whose value group is a subgroup of Γ and whose residue
field is a subfield of k. So a standard argument using Zorn’s Lemma together with
the transitivity of separable extensions shows that there are maximal separable-
algebraic extension fields of (K2, v) with these properties. Choose one of them and
call it (L, v). We have to show that vL = Γ and Lv = k. Since already Γ|vK2 and
k|K2v are algebraic, the same holds for Γ|vL and k|Lv. If vL is a proper subgroup of
Γ, then there is some prime p and some element α ∈ Γ\vL such that pα ∈ vL. But
then, Lemma 2.12 shows that there exists a proper separable-algebraic extension
(L′, v) of (L, v) such that vL′ = vL+Zα ⊂ Γ and L′v = Lv ⊂ k, which contradicts
the maximality of L. If Lv is a proper subfield of k, then there is some element
ζ ∈ k \ Lv algebraic over Lv. But then, Lemma 2.13 shows that there exists a
proper separable-algebraic extension (L′, v) of (L, v) such that vL′ = vL ⊂ Γ and
L′v = Lv(ζ) ⊂ k, which again contradicts the maximality of L (here we have used
Γ 6= {0}, which implies that v is not trivial on L). This proves that vL = Γ and
Lv = k, and (L, v) is the required extension of (K, v). Since K2 is generated over K
by a set of elements which are algebraically independent overK, we know thatK2|K
is separable. Since also L|K2 is separable, we find that L|K is separable. Since
L|K2 is algebraic, {xi , yj | i ∈ I , j ∈ J} is a transcendence basis of (K2|K, v). If
Γ|vK and k|Kv are algebraic, then I = J = ∅ and L is an algebraic extension of
K = K2 .

If Γ|vK and k|Kv are finite, then L can be constructed by a finite number of
applications of Lemma 2.12 and Lemma 2.13. Since extension degree, ramification
index and inertia degree are multiplicative, we obtain that [L : K] = (vL : vK)[Lv :
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Kv] = (Γ : vK)[k : Kv]. If in addition v is non-trivial, then L|K can be chosen to
be a separable extension. Since it is finite, it is simple.

If Γ|vK and k|Kv are countably generated algebraic, then they are unions over
a countable chain of algebraic extensions. Hence also L can be constructed as a
union over a countable chain of algebraic extensions and will thus be a countably
generated extension of K.

If Γ|vK and k|Kv are countably generated, then the sets I and J in our above
construction are both countable, that is, K2|K is countably generated. Moreover,
the extensions Γ|vK2 and k|K2v are countably generated algebraic. Hence by what
we have just shown, L can be taken to be a countably generated extension of K2 ,
and thus also of K. �

Every ordered abelian group is an extension of the trivial group {0} as well as
of the ordered abelian group Z. Every field of characteristic 0 is an extension of
Q, and every field of characteristic p > 0 is an extension of Fp. Let Γ 6= 0 be
an ordered abelian group and k a field. If char k = 0, then Q endowed with the
trivial valuation v will satisfy vQ = {0} ⊂ Γ and Qv = Q ⊂ k. If char k = p > 0,
then we can choose v to be the p-adic valuation on Q to obtain that vQ = Z ⊂ Γ
and Qv = Fp ⊂ k. But also Fp endowed with the trivial valuation v will satisfy
vFp = {0} ⊂ Γ and Fpv = Fp ⊂ k. An application of the foregoing theorem now
proves:

Corollary 2.15. Let Γ 6= 0 be an ordered abelian group and k a field. Then there
is a valued field (L, v) with vL = Γ and Lv = k. If char k = p > 0, then L can
be chosen to be of characteristic 0 (mixed characteristic case) or of characteristic p
(equal characteristic case).

For the sake of completeness, we add the following information. From the fun-
damental inequality it follows that vK̃|vK, vKsep|vK, K̃v|Kv and Ksepv|Kv are
algebraic extensions. On the other hand, Lemma 2.12 shows that the value group
of a separable-algebraically closed field must be divisible. Similarly, it follows from
Lemma 2.13 that the residue field of a separable-algebraically closed non-trivially
valued field must be algebraically closed. This proves:

Lemma 2.16. Let (K, v) be a non-trivially valued field and extend v to K̃. Then

the value groups vK̃ and vKsep are equal to the divisible hull of vK, and the residue
fields K̃v and Ksepv are equal to the algebraic closure of Kv.

A valued field (K, v) of residue characteristic p > 0 is called Artin-Schreier
closed if every Artin-Schreier polynomial with coefficients in K admits a root in
K. Recall that if charK = p, then this means that every Artin-Schreier polynomial
with coefficients in K splits into linear factors over K. If K is Artin-Schreier closed,
then so is Kv. As a corollary to Lemmas 2.12 and 2.13, we obtain:

Corollary 2.17. Every Artin-Schreier closed non-trivially valued field of residue
characteristic p > 0 has p-divisible value group and perfect Artin-Schreier closed
residue field.

2.4. Orderings and valuations. We will assume the reader to be familiar with
the basic theory of convex valuations, which can be found in [L] and [PR].

Proposition 2.18. Suppose that (K,<) is an ordered field with convex valuation
v, and denote by <r the ordering induced by < through v on Kv. Let (L|K, v) be
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an extension of valued fields. If 2vL ∩ vK = 2vK, then each extension <′r of <r
to an ordering of Lv can be lifted through v to an ordering of L which extends the
ordering < of K.

Proof. We fix a section from vK/2vK to K×/K×2. Since 2vL ∩ vK = 2vK, this
section can be extended to a section from vL/2vL to L×/L×2. Now there is a
bijection between the set of all liftings of <r through v to orderings of K, and
the set of all group characters of vK/2vK; see [PR], (7.5) to (7.9). The same
construction yields a bijection between the set of all liftings of <′r through v to
orderings of L, and the set of all group characters of vL/2vL. Since we use an
extension of the section vK/2vK → K×/K×2 to a section vL/2vL → L×/L×2,
the bijection maps commute with the restriction from L to K of any lifting. That
is, if a lifting <′ of <′r to L corresponds to a character χ of vL/2vL, then the
restriction of <′ to K is the unique lifting of <r to K which corresponds to the
restriction of χ to vK/2vK.

As the given ordering < of K is a lifting of <r , it corresponds to a unique
group character of vK/2vK. Since 2vL ∩ vK = 2vK, we can extend it to a group
character of vL/2vL. Take the lifting of <′r through v to an ordering <′ of L which
corresponds to this group character of vL/2vL. Then its restriction to K is <. �

The following was proved by Knebusch and Wright [KW] and by Prestel (cf.
[PR]); see Theorem 5.6 of [L].

Theorem 2.19. Let v be a convex valuation on the ordered field (K,<), <r the
ordering induced by < on Kv, and R a real closure of (K,<). Then there exists
a unique extension of v to a convex valuation of R. Denoting this extension again
by v, we have that (R, v) is henselian, vR is divisible, and Rv with the ordering
induced by < is a real closure of (Kv,<r).

Corollary 2.20. Let v be a convex valuation on the ordered field (K,<) and R a
real closure of (K,<), endowed with the unique convex extension of v. Further, let
Γ|vK be an algebraic extension of ordered abelian groups, and k|Kv a subextension
of some real closure of Kv. Then there is a (separable-algebraic) subextension
(L|K, v) of (R|K, v) such that vL = Γ and Lv = k. If both Γ|vK and k|Kv are
finite, then L|K can be taken to be a finite simple extension of the form K(a)|K
such that [K(a) : K] = (Γ : vK)[k : Kv].

We leave the proof of the corollary as an exercise to the reader. It is a straight-
forward application of Hensel’s Lemma, using the fact that (R, v) is henselian. One
also uses the fact that all real closures of Kv are isomorphic over Kv, so by passing
to an equivalent residue map (place), one passes from Rv to the real closure given
in the hypothesis.

2.5. A version of Krasner’s Lemma. Let (K, v) be any valued field. If a ∈ K̃\K
is not purely inseparable over K, we choose some extension of v from K to K̃ and
define

kras(a,K) := max{v(τa− σa) | σ, τ ∈ GalK and τa 6= σa} ∈ vK̃

and call it the Krasner constant of a over K. Since all extensions of v from K to
K̃ are conjugate, this does not depend on the choice of the particular extension of v.
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For the same reason, over a henselian field (K, v) our Krasner constant kras(a,K)
coincides with the Krasner constant

max{v(a− σa) | σ ∈ GalK and a 6= σa}

as defined by S. K. Khanduja in [KH11,12]. The following is a variant of the well-
known Krasner’s Lemma (cf. [R]).

Lemma 2.21. Take K(a)|K to be a separable-algebraic extension, and (K(a, b), v)
to be any valued field extension of (K, v) such that

(2.7) v(b− a) > kras(a,K) .

Then for every extension of v from K(a, b) to its algebraic closure K̃(a, b) = K̃(b),

the element a lies in the henselization of (K(b), v) in (K̃(b), v).

Proof. Take any extension of v from K(a, b) to K̃(b) and denote by K(b)h the

henselization of (K(b), v) in (K̃(b), v). Since a is separable-algebraic over K, it is
also separable-algebraic over K(b)h. Since for every ρ ∈ GalK(b)h we have that
ρa = ρ|K̃a and ρ|K̃ ∈ GalK, we find that

{v(a− ρa) | ρ ∈ GalK(b)h and a 6= ρa}
⊆ {v(a− σa) | σ ∈ GalK and a 6= σa}
⊆ {v(τa− σa) | σ, τ ∈ GalK and τa 6= σa} .

This implies that

kras(a,K(b)h) ≤ kras(a,K) ,

and consequently, v(b − a) > kras(a,K(b)h). Now a ∈ K(b)h follows from the
usual Krasner’s Lemma. �

3. Valuations on K(x)

3.1. A basic classification. In this section, we wish to classify all extensions of
the valuation v of K to a valuation of the rational function field K(x). As

(3.1) 1 = trdegK(x)|K ≥ rr vK(x)/vK + trdegK(x)v|Kv

holds by Lemma 2.6, there are the following mutually exclusive cases:

• (K(x)|K, v) is valuation-algebraic:
vK(x)/vK is a torsion group and K(x)v|Kv is algebraic,

• (K(x)|K, v) is value-transcendental:
vK(x)/vK has rational rank 1, but K(x)v|Kv is algebraic,

• (K(x)|K, v) is residue-transcendental:
K(x)v|Kv has transcendence degree 1, but vK(x)/vK is a torsion group.

We will combine the value-transcendental case and the residue-transcendental case
by saying that

• (K(x)|K, v) is valuation-transcendental:
vK(x)/vK has rational rank 1, or K(x)v|Kv has transcendence degree 1.

A special case of the valuation-algebraic case is the following:

• (K(x)|K, v) is immediate:
vK(x) = vK and K(x)v = Kv.
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Remark 3.1. It was observed by several authors that a valuation-algebraic extension
of v from K to K(x) can be represented as a limit of an infinite sequence of residue-
transcendental extensions. See, e.g., [APZ3], where the authors also derive the
assertion of our Theorem 2.9 from this fact. A “higher form” of this approach is
found in [S]. The approach is particularly important because residue-transcendental
extensions behave better than valuation-algebraic extensions: the corresponding
extensions of value group and residue field are finitely generated (Corollary 2.7), and
they do not generate a defect: see the Generalized Stability Theorem (Theorem 3.1)
and its application in [KKU1].

If K is algebraically closed, then the residue field Kv is algebraically closed, and
the value group vK is divisible. So we see that for an extension (K(x)|K, v) with
algebraically closed K, there are only the following mutually exclusive cases:

(K(x)|K, v) is immediate: vK(x) = vK and K(x)v = Kv,
(K(x)|K, v) is value-transcendental: rr vK(x)/vK = 1, but K(x)v = Kv,
(K(x)|K, v) is residue-transcendental: trdegK(x)v|Kv = 1, but vK(x) = vK.

Let us fix an arbitrary extension of v to K̃. Every valuation w on K(x) can be

extended to a valuation on K̃(x). If v and w agree on K, then this extension can be

chosen in such a way that its restriction to K̃ coincides with v. Indeed, if w′ is any
extension of w to K̃(x) and v′ is its restriction to K̃, then there is an automorphism

τ of K̃|K such that v′τ = v on K̃. We choose σ to be the (unique) automorphism

of K̃(x)|K(x) whose restriction to K̃ is τ and which satisfies σx = x. Then w′σ is

an extension of w from K(x) to K̃(x) whose restriction to K̃ is v. We conclude:

Lemma 3.2. Take any extension of v from K to its algebraic closure K̃. Then
every extension of v from K to K(x) is the restriction of some extension of v from

K̃ to K̃(x).

Now extend v to K̃(x). We know that vK̃(x)/vK(x) and vK̃/vK are torsion

groups, and also vK̃(x)/vK(x) ⊂ vK̃(x)/vK(x) is a torsion group. Hence,

rr vK̃(x)/vK̃ = rr vK(x)/vK .

Since vK̃ is divisible, vK(x)/vK is a torsion group if and only if vK̃(x) = vK̃.

Further, the extensions K̃(x)v|K(x)v and K̃v|Kv are algebraic, and also the

subextension K̃(x)v|K(x)v of K̃(x)v|K(x)v is algebraic. Hence,

trdeg K̃(x)v|K̃v = trdegK(x)v|Kv .

Since K̃v is algebraically closed, K(x)v|Kv is algebraic if and only if K̃(x)v = K̃v.
We have proved:

Lemma 3.3. (K(x)|K, v) is valuation-algebraic if and only if (K̃(x)|K̃, v) is im-

mediate. (K(x)|K, v) is valuation-transcendental if and only if (K̃(x)|K̃, v) is not

immediate. (K(x)|K, v) is value-transcendental if and only if (K̃(x)|K̃, v) is value-

transcendental. (K(x)|K, v) is residue-transcendental if and only if (K̃(x)|K̃, v) is
residue-transcendental.

The proof can easily be generalized to show:
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Lemma 3.4. Let (F |K, v) be any valued field extension. Then vF |vK and Fv|Kv
are algebraic if and only if (F.K̃|K̃, v) is immediate, for some (or any) extension

of v from F to F.K̃.

3.2. Pure and weakly pure extensions. Take t ∈ K(x). If vt is not a torsion ele-
ment modulo vK, then t will be called a value-transcendental element. If vt = 0
and tv is transcendental over Kv, then t will be called a residue-transcendental
element. An element will be called a valuation-transcendental element if
it is value-transcendental or residue-transcendental. We will call the extension
(K(x)|K, v) pure (in x) if one of the following cases holds:

• for some c, d ∈ K, d · (x− c) is valuation-transcendental,

• x is the pseudo limit of some pseudo Cauchy sequence in (K, v) of transcendental
type.

We leave it as an exercise to the reader to prove that (K(x)|K, v) is pure in x if
and only if it is pure in any other generator of K(x) over K; we will not need this
fact in the present paper.

If (K(x)|K, v) is pure in x then it follows from Lemma 2.6 and Lemma 2.4 that
x is transcendental over K. If d · (x − c) is value-transcendental, then vK(x) =
vK⊕Zv(x−c) and K(x)v = Kv by Lemma 2.6 (in this case, we may in fact choose
d = 1). If d · (x − c) is residue-transcendental, then again by Lemma 2.6, we have
vK(x) = vK and that K(x)v = Kv(d(x− c)v) is a rational function field over Kv.
If x is the pseudo limit of some pseudo Cauchy sequence in (K, v) of transcendental
type, then (K(x)|K, v) is immediate by Lemma 2.4. This proves:

Lemma 3.5. If (K(x)|K, v) is pure, then vK is pure in vK(x) (i.e., vK(x)/vK
is torsion free), and Kv is relatively algebraically closed in K(x)v.

Here is the “prototype” of pure extensions:

Lemma 3.6. If K is algebraically closed and x /∈ K, then (K(x)|K, v) is pure.

Proof. Suppose that the set

(3.2) v(x−K) := {v(x− b) | b ∈ K}

has no maximum. Then there is a pseudo Cauchy sequence in (K, v) with pseudo
limit x, but without a pseudo limit in K. Since K is algebraically closed, Theorem 3
of [KA] shows that this pseudo Cauchy sequence must be of transcendental type.
The extension therefore satisfies the third condition for being pure.

Now assume that the set v(x−K) has a maximum, say, v(x− c) with c ∈ K. If
v(x− c) is a torsion element over vK, then v(x− c) ∈ vK because vK is divisible
as K is algebraically closed. It then follows that there is some d ∈ K such that
vd(x − c) = 0. If d(x − c)v were algebraic over Kv, then it were in Kv since K
and thus also Kv is algebraically closed. But then, there were some b0 ∈ K such
that v(d(x − c) − b0) > 0. Putting b := c + d−1b0 , we would then obtain that
v(x− b) = v((x− c)− d−1b0) > −vd = v(x− c), a contradiction to the maximality
of v(x− c). So we see that either v(x− c) is non-torsion over vK, or there is some
d ∈ K such vd(x− c) = 0 and d(x− c)v is transcendental over Kv. In both cases,
this shows that (K(x)|K, v) is pure. �
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We will call the extension (K(x)|K, v) weakly pure (in x) if it is pure in x
or if there are c, d ∈ K and e ∈ N such that vd(x − c)e = 0 and d(x − c)ev is
transcendental over Kv.

Lemma 3.7. Assume that the extension (K(x)|K, v) is weakly pure. If we take

any extension of v to K̃(x) and take Kh to be the henselization of K in (K̃(x), v),
then Kh is the implicit constant field of this extension:

Kh = IC (K(x)|K, v) .

Proof. As noted already in the introduction, Kh is contained in IC (K(x)|K, v).
SinceK(x)h is the fixed field of the decomposition groupGdx := Gd(K(x)sep|K(x), v)
in the separable-algebraic closure K(x)sep of K(x), we know that IC (K(x)|K, v) is
the fixed field in Ksep of the subgroup

Gres := {σ|Ksep | σ ∈ Gdx}

of GalK. In order to show our assertion, it suffices to show that IC (K(x)|K, v) ⊆
Kh, that is, that the decomposition group Gd := Gd(Ksep|K, v) is contained in
Gres . So we have to show: if τ is an automorphism of Ksep|K such that vτ = v on
Ksep, then τ can be lifted to an automorphism σ of K(x)sep|K(x) such that vσ = v
on K(x)sep. In fact, it suffices to show that τ can be lifted to an automorphism σ of
Ksep(x)|K(x) such that vσ = v on Ksep(x). Indeed, then we take any extension σ′

of σ from Ksep(x) to K(x)sep. Since the extensions vσ′ and v of v from Ksep(x) to
K(x)sep are conjugate, there is some ρ ∈ Gal (K(x)sep|Ksep(x)) such that vσ′ρ = v
on K(x)sep. Thus, σ := σ′ρ ∈ Gd is the desired lifting of τ to K(x)sep.

We take σ on Ksep(x) to be the unique automorphism which satisfies σx = x and
σ|Ksep = τ . Using that (K(x)|K, v) is weakly pure, we have to show that vσ = v
on Ksep(x). Assume first that for some c, d ∈ K and e ∈ N, d(x− c)e is valuation-
transcendental. Since K(x− c) = K(x), we may assume w.l.o.g. that c = 0. Every
element of Ksep(x) can be written as a quotient of polynomials in x with coefficients
from Ksep. For every polynomial f(x) = anx

n + . . .+ a1x+ a0 ∈ Ksep[x],

vσf(x) = v (σ(an)xn + . . .+ σ(a1)x+ σ(a0))

= min
i

(vσ(ai) + ivx) = min
i

(vτ(ai) + ivx)

= min
i

(vai + ivx) = vf(x) ,

where the second equality holds by Lemma 2.6 and Lemma 2.10. This shows that
vσ = v on Ksep(x).

Now assume that x is the pseudo limit of a pseudo Cauchy sequence in (K, v)
of transcendental type. By Lemma 2.5, this pseudo Cauchy sequence is also of
transcendental type over (Ksep, v). Observe that x is still a pseudo limit of this
pseudo Cauchy sequence in (Ksep(x), vσ), because vσ(x−a) = v(σx−σa) = v(x−a)
for all a ∈ K. But vσ = vτ = v on Ksep, and the extension of v from Ksep to
Ksep(x) is uniquely determined by the pseudo Cauchy sequence (cf. Theorem 2.3).
Consequently, vσ = v on Ksep(x). �

3.3. Construction of nasty examples. We are now able to give the

Proof of Theorem 1.2:

Let K be any algebraically closed field of characteristic p > 0. On K(x), we take
v to be the x-adic valuation. We work in the power series field K(( 1

p∞Z)) of all
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power series in x with exponents in 1
p∞Z, the p-divisible hull of Z. We choose y to

be a power series

(3.3) y =

∞∑
i=1

x−p
−ei

where ei is any increasing sequence of natural numbers such that ei+1 ≥ ei + i for
all i. We then restrict the canonical (x-adic) valuation of K(( 1

p∞Z)) to K(x, y) and

call it again v. We show first that vK(x, y) = 1
p∞Z. Indeed, taking pej -th powers

and using that the characteristic of K is p, we find

yp
ej −

j∑
i=1

x−p
ej−ei

=

∞∑
i=j+1

x−p
ej−ei

.

Since ej − ei ≥ 0 for i ≤ j, the left hand side is an element in K(x, y). The right
hand side has value

−pej−ej+1vx ;

since ej − ej+1 ≤ −j, we see that 1
pj vx lies in vK(x, y). Hence, 1

p∞Z ⊆ vK(x, y).

On the other hand, vK(x, y) ⊆ vK(( 1
p∞Z)) = 1

p∞Z and therefore, vK(x, y) = 1
p∞Z.

By definition, y is a pseudo limit of the pseudo Cauchy sequence(∑̀
i=1

x−p
−ei

)
`∈N

in the field L = K(x1/p
i | i ∈ N) ⊂ K(( 1

p∞Z)). Suppose it were of algebraic type.

Then by [KA], Theorem 3, there would exist some algebraic extension (L(b)|L, v)
with b a pseudo limit of the sequence. But then b would also be algebraic over
K(x) and hence the extension K(x, b)|K(x) would be finite. On the other hand,
since b is a pseudo limit of the above pseudo Cauchy sequence, it can be shown as
before that vK(x, b) = 1

p∞Z and thus, (vK(x, b) : vK(x)) =∞. This contradiction

to the fundamental inequality shows that the sequence must be of transcendental
type. Hence by Lemma 3.7, Lh is relatively algebraically closed in L(y)h. Since
Lh = L.K(x)h is a purely inseparable extension of K(x)h and K(x, y)h|K(x)h is
separable, this shows that K(x)h is relatively algebraically closed in K(x, y)h.

Now we set η0 := 1
x , and by induction on i we choose ηi ∈ K̃(x) such that

ηpi − ηi = ηi−1 . Then we have

vηi = − 1

pi
vx

for every i. Since vK(x)h = vK(x) = Zvx, this shows that K(x)h(ηi)|K(x)h has
ramification index at least pi. On the other hand, it has degree at most pi and
therefore, it must have degree and ramification index equal to pi. Note that for
all i ≥ 0, K(x, ηi) = K(x, η1, . . . , ηi) and every extension K(x, ηi+1)|K(x, ηi) is
a Galois extension of degree and ramification index p. By what we have shown,
the chain of these extensions is linearly disjoint from K(x)h|K(x). Since K(x)h

is relatively algebraically closed in K(x, y)h and the extensions are separable, it
follows that the chain is also linearly disjoint from K(x, y)h|K(x).

We will now show that all extensions K(x, y, ηi)|K(x, y) are immediate. First,
we note that K(x, y)v = K since K ⊂ K(x, y) ⊂ K(( 1

p∞Z)) and K(( 1
p∞Z))v = K.

Since K is algebraically closed, the inertia degree of the extensions must be 1.
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Further, as the ramification index of a Galois extension is always a divisor of the
extension degree, the ramification index of these extensions must be a power of p.
But the value group ofK(x, y) is p-divisible, which yields that the ramification index
of the extensions is 1. By what we have proved above, they are linearly disjoint
from K(x, y)h|K(x, y), that is, the extension of the valuation is unique. This shows
that the defect of each extension K(x, y, ηi)|K(x, y) is equal to its degree pi. �

Remark 3.8. Instead of defining y as in (3.3), we could also use any power series

(3.4) y =

∞∑
i=1

xnip
−ei

where ni ∈ Z are prime to p and the sequence nip
−ei is strictly increasing. The

example in [CP] is of this form. But in this example, the field K(x, y) is an extension
of degree p2 of a field K(u, v) such that the extension of the valuation from K(u, v)
to K(x, y) is unique. Since the value group of K(x, y) is 1

p∞Z, it must be equal to

that of K(u, v). Since K is algebraically closed, both have the same residue field.
Therefore, the extension has defect p2. This shows that we can also use subfields
instead of field extensions to produce defect extensions, in quite the same way.

A special case of (3.4) is the power series

(3.5) y =

∞∑
i=1

xi−p
−ei

=

∞∑
i=1

xix−p
−ei

which now has a support that is cofinal in 1
p∞Z.

To conclude this section, we use Lemma 3.7 to construct an example about
relatively algebraically closed subfields in henselian fields. The following fact is
well known:
Suppose that K is relatively algebraically closed in a henselian valued field (L, v) of
residue characteristic 0 and that Lv|Kv is algebraic. Then vL/vK is torsion free.
We show that the assumption “Lv|Kv is algebraic” is necessary.

Example 3.9. On the rational function field Q(x), we take v to be the x-adic
valuation. We extend v to the rational function field Q(x, y) in such a way that
vy = 0 and yv is transcendental over Q(x)v = Q. So by Lemma 2.6 we have
vQ(x, y) = vQ(x) = Zvx and Q(x, y)v = Q(yv). We pick any integer n > 1. Then
vQ(xn) = Znvx and Q(xn)v = Q. Further, vQ(xn, xy) = Zvx since vx = vxy ∈
vQ(xn, xy) ⊆ Zvx. Also, Q(xn, xy)v = Q(ynv) by Lemma 2.10. From Lemma 3.7
we infer that Q(xn)h is relatively algebraically closed in Q(xn, xy)h. But

vQ(xn, xy)h/vQ(xn)h = vQ(xn, xy)/vQ(xn) = Zvx/Znvx ' Z/nZ

is a non-trivial torsion group.

3.4. All valuations on K(x). In this section, we will explicitly define extensions
of a given valuation on K to a valuation on K(x). First, we define valuation-
transcendental extensions, using the idea of valuation independence. Let (K, v) be
an arbitrary valued field, and x transcendental over K. Take a ∈ K and an element
γ in some ordered abelian group extension of vK. We define a map va,γ : K(x)× →
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vK + Zγ as follows. Given any g(x) ∈ K[x] of degree n, we can write

(3.6) g(x) =

n∑
i=0

ci(x− a)i .

Then we set

(3.7) va,γ g(x) := min
0≤i≤n

vci + iγ .

We extend va,γ to K(x) by setting va,γ(g/h) := va,γg − va,γh.

For example, the valuation v0,0 is called Gauß valuation or functional valu-
ation and is given by

v0,0 (cnx
n + . . .+ c1x+ c0) = min

0≤i≤n
vci .

Lemma 3.10. va,γ is a valuation which extends v from K to K(x). It satisfies:

1) If γ is non-torsion over vK, then va,γK(x) = vK ⊕ Zγ and K(x)va,γ = Kv.

2) If γ is torsion over vK, e is the smallest positive integer such that eγ ∈ vK and
d ∈ K is some element such that vd = −eγ, then d(x − a)eva,γ is transcendental
over Kv, K(x)va,γ = Kv(d(x − a)eva,γ) and va,γK(x) = vK + Zγ. In particular,
if γ = 0 then (x − a)va,γ is transcendental over Kv, K(x)va,γ = Kv ((x − a)va,γ)
and va,γK(x) = vK.

Proof. It is a straightforward exercise to prove that va,γ is a valuation and that 1)
and 2) hold. However, one can also deduce this from Lemma 2.6. It says that if
we assign a non-torsion value γ to x− a then we obtain a unique valuation which
satisfies (3.7). Since this defines a unique map va,γ on K[x], we see that va,γ must
coincide with the valuation given by Lemma 2.6, which in turn satisfies assertion
1). Similarly, if γ ∈ vK, d ∈ K with vd = −γ and we assign a transcendental
residue to d(x − a), then Lemma 2.6 gives us a valuation on K(x) which satisfies
(3.7) and hence must coincide with va,γ . This shows that va,γ is a valuation and
satisfies 2).

If e > 1, then we can first use Lemma 2.6 to see that va,γ is a valuation on
the subfield K(d(x − a)e) of K(x) and that va,γK(d(x − a)e) = vK and K(d(x −
a)e)va,γ = Kv(d(x− a)eva,γ) with d(x− a)eva,γ transcendental over Kv. We know
that there is an extension w of va,γ to K(x). It must satisfy w(x−a) = −vd/e = γ.
So 0, w(x− a), w(x− a)2, . . . , w(x− a)e−1 lie in distinct cosets modulo vK. From
Lemma 2.8 it follows that w satisfies (3.7) on K(x), hence it must coincide with
the valuation va,γ on K(x). Assertion 2) for this case follows from Lemma 2.8. �

Now we are able to prove:

Theorem 3.11. Take any valued field (K, v). Then all extensions of v to the

rational function field K̃(x) are of the form

• ṽa,γ where a ∈ K̃ and γ is an element of some ordered group extension of vK,
or
• ṽA where A is a pseudo Cauchy sequence in (K̃, ṽ) of transcendental type,

where ṽ runs through all extensions of v to K̃. The extension is of the form ṽa,γ
with γ /∈ ṽK̃ if and only if it is value-transcendental, and with γ ∈ ṽK̃ if and only
if it is residue-transcendental. The extension is of the form ṽA if and only if it is
valuation-algebraic.



22 FRANZ-VIKTOR KUHLMANN

All extensions of v to K(x) are obtained by restricting the above extensions,

already from just one fixed extension ṽ of v to K̃.

Proof. By Lemma 3.10 and Theorem 2.3, ṽa,γ and ṽA are extensions of ṽ to K̃(x).

For the converse, let w be any extension of v to K̃(x) and set ṽ = w|K̃ . From

Lemma 3.6 we know that (K̃(x)|K̃, w) is always pure. Hence, either d(x − c) is

valuation-transcendental for some c, d ∈ K̃, or x is the pseudo limit of some pseudo
Cauchy sequence A in (K̃, ṽ) of transcendental type. In the first case, Lemma 2.6
shows that

w

n∑
i=0

di(d(x− c))i = min
0≤i≤n

vdi + iwd(x− c) = min
0≤i≤n

vdid
i + iw(x− c)

for all di ∈ K̃. This shows that w = ṽc,γ for γ = w(x − c). If this value is not in

ṽK̃, then it is non-torsion over ṽK̃ and thus, the extension of ṽ to K̃(x), and hence

also the extension of v to K(x), is value-transcendental. If it is in ṽK̃, then the

residue of d(x− c) is not in K̃ṽ, and the extension of ṽ to K̃(x), and hence also the
extension of v to K(x), is residue-transcendental.

In the second case, we know from Theorem 2.3 that A induces an extension ṽA
of ṽ to K̃(x) such that x is a pseudo limit of A in (K̃(x), ṽA). Since x is also a

pseudo limit of A in (K̃(x), w), we can infer from Lemma 2.4 that w = ṽA . It

also follows from Theorem 2.3 that (K̃(x)|K̃, ṽA) is immediate and consequently,

(K̃(x)|K, ṽA) is valuation-algebraic.

For the last assertion, we invoke Lemma 3.2. Now it just remains to show that it
suffices to take the restrictions of the valuations ṽa,γ and ṽA for one fixed ṽ. Suppose

that w̃ is another extension of v to K̃. Since all such extensions are conjugate, there
is σ ∈ GalK such that w̃ = ṽ ◦ σ. Let g(x) ∈ K[x] be given as in (3.6). Extend σ

to an automorphism of K̃(x) which satisfies σx = x. Since g has coefficients in K,
we then have

g(x) = σg(x) =
∑
i

σci(x− σa)i

and therefore,

w̃a,γ g(x) = min
i

(w̃ci + iγ) = min
i

(ṽσci + iγ) = ṽσa,γ g(x) .

This shows that w̃a,γ = ṽσa,γ on K(x).

Given a pseudo Cauchy sequence A in (K̃, w̃), we set Aσ = (σaν)ν<λ . This

is a pseudo Cauchy sequence in (K̃, ṽ) since ṽ(σaµ − σaν) = ṽσ(aµ − aν) =

w̃(aµ−aν). For every polynomial f(x) ∈ K̃[x], we have ṽf(σaν) = w̃σ−1(f(σaν)) =
w̃(σ−1(f))(aν), where σ−1(f) denotes the polynomial obtained from f(x) by ap-
plying σ−1 to the coefficients. So we see that Aσ is of transcendental type if and
only if A is. If g(x) ∈ K[x], then σ−1(g) = g and the above computation shows
that ṽg(σaν) = w̃g(aν). This implies that w̃A = ṽAσ

on K(x). �

Remark 3.12. If v is trivial on K, hence Kv = K (modulo an isomorphism), and if
we choose γ > 0, then the restriction w of ṽa,γ to K(x) will satisfy xw = aw = a.
It follows that K(x)w = K(a). Further, wK(x) ⊆ Zγ and thus, wK(x) ' Z.
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3.5. Prescribed implicit constant fields. If not stated otherwise, we will always
assume that (K, v) is any valued field. The following is an immediate consequence
of our version of Krasner’s Lemma:

Lemma 3.13. Assume that K(a)|K is a separable-algebraic extension. Assume

further that K(x)|K is a rational function field and v is a valuation on K̃(x) such
that

(3.8) v(x− a) > kras(a,K) .

Then K(a) ⊆ IC (K(x)|K, v), and consequently,

vK(a) ⊆ vK(x) and K(a)v ⊆ K(x)v .

Proof. By Lemma 2.21, condition (3.8) implies that K(a) ⊆ K(x)h, the henseliza-

tion being chosen in (K̃(x), v). Consequently, K(a) ⊆ IC (K(x)|K, v), vK(a) ⊆
vK(x)h = vK(x) and K(a)v ⊆ K(x)hv = K(x)v. �

Proposition 3.14. Assume that (K(a)|K, v) is a separable-algebraic extension of
valued fields. Further, take Γ to be the abelian group vK(a)⊕ Z endowed with any
extension of the ordering of vK(a), and take k to be the rational function field in

one variable over K(a)v. Then there exists an extension v1 of v from K(a) to K̃(x)
such that

(3.9) v1K(x) = Γ and K(x)v1 = K(a)v and K(a)h = IC (K(x)|K, v1) .

If v is non-trivial on K, then there exists an extension v2 of v from K(a) to K̃(x)
such that

(3.10) v2K(x) = vK(a) and K(x)v2 = k and K(a)h = IC (K(x)|K, v2) .

If (K(a), v) admits a transcendental immediate extension, then there is also an
extension v3 such that

(3.11) v3K(x) = vK(a) and K(x)v3 = K(a)v .

If in addition (K(a), v) admits a pseudo Cauchy sequence of transcendental type,
then v3 can be chosen such that K(a)h = IC (K(x)|K, v3).

Suppose that (K(a), <) is an ordered field and that v is convex. Denote by <r
the ordering induced by < on the residue field K(a)v. Then <r can be lifted through
v1 and through v3 to K(x) in such a way that the lifted orderings extend < (from
K). If <′r is an extension of <r to k, then <′r can be lifted through v2 to K(x) in
such a way that the lifted ordering extends < (from K).

Proof. If K(a) = K, then we do the following. We take a generator γ of Γ over vK

and let v1 be any extension of v0,γ to K̃(x). Further, we take v2 to be any extension

of v0,0 to K̃(x). Then the desired properties of v1 and v2 follow from Lemma 3.10
and Lemma 3.7. To construct v3, we send x to some transcendental element in
the given immediate extension of (K, v). The so obtained embedding induces an
extension v3 of v to K(x) such that (K(x)|K, v3) is immediate. We extend v3

further to K̃(x). If (K, v) admits a pseudo Cauchy sequence of transcendental
type, then we can use Theorem 2.3 to construct an immediate extension v3 of v
to K(x) such that x is a pseudo limit of this pseudo Cauchy sequence. Then by
Lemma 3.7, Kh = IC (K(x)|K, v3).
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Now assume that a /∈ K. If v′ is any extension of v to K̃(x) such that v′(x−a) >
kras(a,K), then Lemma 3.13 shows that a ∈ K(x)h, where the henselization is

taken in (K̃(x), v′). Thus,

(3.12) K(x)h = K(a, x)h ,

and consequently,

(3.13)
v′K(x) = v′K(x)h = v′K(a, x)h = v′K(a, x)
K(x)v′ = K(x)hv′ = K(a, x)hv′ = K(a, x)v′ .

}
If in addition we know that

(3.14) K(a)h = IC (K(a, x)|K(a), v′) ,

then

K(a)h ⊆ IC (K(x)|K, v′) ⊆ IC (K(a, x)|K(a), v′) = K(a)h ,

which yields that K(a)h = IC (K(x)|K, v′).

As vK is cofinal in its divisible hull vK̃, we can choose some α ∈ vK such that
α ≥ kras(a,K).

To construct v1 , we choose any positive generator β of Γ over vK(a). Then also
γ := α+ β is a generator of Γ over vK(a). Now we take v1 to be any extension of

va,γ to K̃(x). From Lemma 3.10 we know that va,γK(a, x) = vK(a)⊕ Zγ = Γ and
K(a, x)va,γ = K(a)v . Since

(3.15) va,γ(x− a) = γ > kras(a,K) ,

equations (3.13) hold for v′ = va,γ , and we obtain:

v1K(x) = va,γK(a, x) = vK(a) + Zγ = Γ

K(x)v1 = K(a, x)va,γ = K(a)v .

From Lemma 3.7 we infer that (3.14) holds for v′ = va,γ . Consequently, K(a)h =
IC (K(x)|K, v1).

To construct v2 , we make use of our assumption that v is non-trivial on K and
choose some positive β ∈ vK. We set γ := α + β and take v2 to be any extension

of va,γ to K̃(x). From Lemma 3.10 we know that va,γK(a, x) = vK(a) = Γ and
K(a, x)va,γ is a rational function field in one variable over K(a)v; in this sense,
K(a, x)va,γ = k . Again we have (3.15), and equations (3.13) hold for v′ = va,γ ; so
we obtain

v2K(x) = va,γK(a, x) = vK(a)

K(x)v2 = K(a, x)va,γ = k .

From Lemma 3.7 we infer that (3.14) holds for v′ = va,γ . Consequently, K(a)h =
IC (K(x)|K, v2).

To construct v3 , we take (L|K(a), v) to be the transcendental immediate exten-
sion which exists by hypothesis. We choose some y ∈ L, transcendental over K(a)
and such that γ := vy > kras(a,K). Then (K(a, y)|K(a), v) is immediate. Now
the isomorphism K(a, y) ' K(a, x) induced by y 7→ x − a induces on K(a, x) a
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valuation v′ such that (K(a, x)|K(a), v′) is immediate and v′(x− a) = γ. We take

v3 to be any extension of v′ to K̃(x). Again, we have (3.13), and we obtain

v3K(x) = v′K(a, x) = vK(a)

K(x)v3 = K(a, x)v′ = K(a)v .

If (K(a), v) admits a pseudo Cauchy sequence of transcendental type, then we can
use Theorem 2.3 to construct an immediate extension (K(a, z)|K(a), v). Multiply-
ing z with a suitable element from K will give us y such that vy > kras(a,K). By
our above construction, also x will be a pseudo limit of a pseudo Cauchy sequence
of transcendental type. Then by Lemma 3.7, K(a)h = IC (K(x)|K, v3).

Finally, suppose that (K(a), <) is an ordered field and that <r is the ordering
induced by < on K(a)v. We have that vK(a) = v2K(a, x) = v3K(a, x), so it is
trivially true that 2v2K(a, x) ∩ vK(a) = 2vK(a) = 2v3K(a, x) ∩ vK(a). Further,
v1K(a, x) = vK(a) ⊕ Zγ, hence also in this case, 2v1K(a, x) ∩ vK(a) = 2vK(a).
Therefore, Proposition 2.18 shows that the given orderings on K(a)v and k can be
lifted through v1 , v2 and v3 respectively, to orderings on K(a, x) which extend the
ordering < of K(a). �

This proposition proves Theorem 1.3 in the case where Kh
1 |Kh is finite since

then, there is some a ∈ K1 such that Kh
1 = K(a)h. Further, we obtain:

Proposition 3.15. Take any finite ordered abelian group extension Γ0 of vK and
any finite field extension k0 of Kv. Further, take Γ to be the abelian group Γ0 ⊕ Z
endowed with any extension of the ordering of Γ0 , and take k to be the rational
function field in one variable over k0 . If v is trivial on K, then assume in addition
that k0|Kv is separable. Then there exists an extension v1 of v from K to K(x)
such that

(3.16) v1K(x) = Γ and K(x)v1 = k0 .

If v is non-trivial on K, then there exists an extension v2 of v from K to K(x)
such that

(3.17) v2K(x) = Γ0 and K(x)v2 = k .

If (K, v) admits a transcendental immediate extension, then there is also an exten-
sion v3 such that

(3.18) v3K(x) = Γ0 and K(x)v3 = k0 .

Suppose that (K,<) is an ordered field and that v is convex. Suppose further
that k0 and k are equipped with extensions of the ordering induced by < on Kv.
Then these extensions can be lifted through v1 , v2 , v3 to K(x) in such a way that
the lifted orderings extend <.

Proof. We choose any finite separable extension (K(a)|K, v) such that vK(a) = Γ0 ,
K(a)v = k0 and [K(a) : K] = (vK(a) : vK)[K(a)v : Kv]. If v is non-trivial on
K, then such an extension exists by Theorem 2.14; otherwise, K(a) is just equal
to k0 , up to the isomorphism induced by the residue map of the trivial valuation
v. If (K, v) admits a transcendental immediate extension, then by Lemma 2.2, also
(K(a), v) admits a transcendental immediate extension. Now the first part of our
theorem follows from Proposition 3.14.
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Suppose that (K,<) is an ordered field with v convex. Then by Corollary 2.20
we can choose the field K(a) to be a subfield of a real closure (R,<) of K, equipped
with a convex extension of v, in such a way that the given ordering on k0 is induced
by < through this extension of v. Now again, our assertion for the ordered case
follows from Proposition 3.14. �

We turn to the realization of countably infinite separable-algebraic extensions as
implicit constant fields.

Proposition 3.16. Let (K1|K, v) be a countably infinite separable-algebraic exten-
sion of non-trivially valued henselian fields. Then (K1, v) admits a pseudo Cauchy

sequence of transcendental type. In particular, there is an extension v3 of v to K̃(x)
such that (K1(x)|K1, v) is immediate, with x being the pseudo limit of this pseudo
Cauchy sequence. Moreover, K1 = IC (K(x)|K, v3).

Proof. K1|K is a countably infinite union of finite subextensions. Thus, we can
choose a sequence ai , i ∈ N such that K(ai)|K is separable-algebraic and K(ai) ⊂

6=

K(ai+1) for all i, and such that K1 =
⋃
i∈NK(ai). Through multiplication with

elements from K it is possible to choose each ai in such a way that

(3.19) vai+1 > max{vai, kras(ai,K(a1, . . . , ai−1))} .
We set

bi :=

i∑
j=1

aj .

By construction, (bi)i∈N is a pseudo Cauchy sequence. Suppose that x is a pseudo
limit of it, for some extension of v from K1 to K1(x). Then by induction on i, we
show that ai ∈ K(x)h, where K(x)h is chosen in some henselization of (K1(x), v).
First, by Lemma 2.21, v(x − a1) = v(x − b1) = va2 > kras(a1,K) implies that
a1 ∈ K(x)h. If we have already shown that a1, . . . , ai ∈ K(x)h, then bi ∈ K(x)h

and v(x− bi− ai+1) = v(x− bi+1) = vai+2 > kras(ai+1,K(a1, . . . , ai)) implies that
ai+1 ∈ K(a1, . . . , ai)(x− bi)h = K(a1, . . . , ai)(x)h = K(x)h.

This proves that K1 ⊆ K(x)h. Since K1|K is infinite, this also proves that x
must be transcendental. As a pseudo Cauchy sequence of algebraic type would
admit an algebraic pseudo limit ([KA], Theorem 3), this yields that (bi)i∈N is a
pseudo Cauchy sequence of transcendental type in (K1, v).

By Theorem 2.3 we can now extend v to K1(x) such that (K1(x)|K1, v) is im-
mediate and x is a pseudo limit of (bi)i∈N. We choose any extension v3 of v from

K1(x) to K̃(x). By Lemma 3.7 we know that K1 = IC (K1(x)|K1, v3). Hence,

K1 ⊆ K(x)h ⊆ IC (K(x)|K, v3) ⊆ IC (K1(x)|K1, v3) = K1 ,

which shows that K1 = IC (K(x)|K, v3). �

Since IC (K(x)|K, v) = IC (Kh(x)|Kh, v), this proposition proves Theorem 1.3
in the case where Kh

1 |Kh is countably infinite.

Proposition 3.17. Take any non-trivially valued field (K, v), any countably gener-
ated ordered abelian group extension Γ0 of vK such that Γ0/vK is a torsion group,
and any countably generated algebraic field extension k0 of Kv. Assume that Γ0/vK
or k0|Kv is infinite. Then there exists an extension v3 of v from K to K(x) such
that equations (3.18) hold.
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Suppose that (K,<) is an ordered field and that v is convex. If k0 is equipped with
an extension of the ordering induced by < on Kv, then this can be lifted through v3
to an ordering of K(x) which extends <.

Proof. We fix an extension of v to K̃. By Theorem 2.14 there is a countably
generated separable-algebraic extension K1|Kh such that vK1 = Γ0 and K1v = k0 .
Since at least one of the extensions Γ0|vK and k0|Kv is infinite, Kh

1 |Kh is infinite

too, taking the henselizations in (K̃, v). Hence by Proposition 3.16 there is an
extension v3 of v to K1(x) such that K1 ⊂ K(x)h and that (K1(x)|K1, v3) is
immediate. Consequently, K1(x)h = K(x)h, which gives us v3K(x) = v3K(x)h =
v3K1(x) = vK1 = Γ0 and K(x)v3 = K(x)hv3 = K1(x)v3 = K1v = k0 .

Suppose that (K,<) is ordered, v is convex and k0 is equipped with an extension
of the ordering induced by < on Kv. Take any real closure (R,<) of (K,<) with
an extension of v to a convex valuation of R. By Corollary 2.20 we can choose the
extension K1|K as a subextension of R|K, with the ordering on k0 induced by <
through v. Since (K1(x)|K1, v3) is immediate, Proposition 2.18 shows that there
is a lifting of the ordering of k0 through v to an ordering of K1(x) which extends
the ordering < of K1 . Its restriction to K(x) is an extension of the ordering < of
K. �

To conclude this section, we now give an alternative

Proof of Theorem 1.2:

Let K be an algebraically closed field of characteristic p > 0. On K(x), we again
take v to be the x-adic valuation. We assume that K contains an element t which is
transcendental over the prime field of K. Then it can be proved that K(x)h admits
two infinite linearly disjoint towers of Galois extensions of degree p and ramification
index p. They can be defined as follows. For the first tower, we set η0 = x−1, take
ηi+1 to be a root of Xp −X − ηi , and set Li := K(ηi). For the second tower, we
set ϑ0 = tx−1, take ϑi+1 to be a root of Xp −X − tϑi , and set Ni := K(ϑi). Note
that L0 = N0 = K(x), ηi ∈ Li+1 and ϑi ∈ Ni+1 . For each i ≥ 0, we have that
vηi = vϑi = − 1

pi vx, and the extensions Li+1|Li and Ni+1|Ni are Galois of degree

p with ramification index p. Consequently, the same is true for the extensions
Lhi+1|Lhi and Nh

i+1|Nh
i (note that Lhi = Li.K(x)h and Nh

i = Ni.K(x)h).
We set L :=

⋃
i∈N Li and N :=

⋃
i∈NNi . By the above, L and N are linearly

disjoint from K(x)h over K(x). Thus, Lh = L.K(x)h and Nh = N.K(x)h are
countably infinite separable-algebraic extensions of K(x)h, and it can be proved
that they are linearly disjoint overK(x)h. We use Proposition 3.16 (withK replaced
by K(x)h and x replaced by y) to obtain an extension of v from K(x)h to K(x)h(y)
such that vK(x)h(y) = vLh = 1

p∞Z and K(x)h(y)v = Lhv = K(x)hv = K, and

such that the extension (K(x)h(y)|K(x)h, v) has implicit constant field Lh (i.e.,
Lh is relatively algebraically closed in K(x, y)h = (K(x)h(y))h ). Since K(x) is
relatively algebraically closed in K(x, y), we see that N is linearly disjoint from
K(x, y) over K(x) and therefore, N.K(x, y)|K(x, y) is again an infinite tower of
Galois extensions of degree p. Since N is linearly disjoint from K(x)h over K(x)
and Nh = N.K(x)h is linearly disjoint from Lh over K(x)h, we see that N is
linearly disjoint from Lh over K(x). Since Lh is relatively algebraically closed
in K(x, y)h, this implies that N is linearly disjoint from K(x, y)h over K(x) and
hence, N.K(x, y) is linearly disjoint from K(x, y)h over K(x, y). Therefore, the
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extension of v from K(x, y) to N.K(x, y) is unique. Since (K(x)h(y))h = K(x, y)h,
we see that (K(x)h(y)|K(x, y), v) is immediate. So we have vK(x, y) = 1

p∞Z,

which is p-divisible, and K(x, y)v = K, which is algebraically closed. Hence, the
extension (N.K(x, y)|K(x, y), v) is immediate, and so it is an infinite tower of Galois
extensions of degree p and defect p. �

Remark 3.18. For the above defined ηi, we have that the roots of Xp −X − ηi−1
are ηi, ηi + 1, . . . , ηi + p− 1. Therefore,

kras(ηi,K(ηi−1)) = 0

for all i. Setting ai := xiηi, we obtain that

kras(ai,K(x)h(a1, . . . , ai−1)) = kras(ai,K(x)h(ηi−1))

= ivx+ kras(ηi,K(x)h(ηi−1)) = ivx

and vai+1 = (i + 1)vx − 1
pi+1 vx > ivx. This shows that vai+1 > vai and that

(3.19) is satisfied. So we can take y to be a pseudo limit of the Cauchy sequence

(
∑i
j=1 aj)i∈N . That is,

(3.20) y =

∞∑
i=1

xiηi .

Comparing this with (3.5), we see that we have replaced the term x−p
−ei

by ηi
which has an infinite expansion in powers of x, starting with x−p

−i
.

4. Rational function fields of higher transcendence degree

This section is devoted to the proof of Theorems 1.6 and 1.8. We will make use
of the following theorem which we prove in [KU5]:

Theorem 4.1. Let (L|K, v) be a valued field extension of finite transcendence de-
gree ≥ 0, with v non-trivial on L. Assume that one of the following two cases
holds:

transcendental case: vL/vK has rational rank at least 1 or Lv|Kv is transcenden-
tal;

separable-algebraic case: L|K contains a separable-algebraic subextension L0|K
such that within some henselization of L, the corresponding extension Lh0 |Kh is
infinite.

Then each maximal immediate extension of (L, v) has infinite transcendence degree
over L.

Note: The assertion need not be true for an infinite purely inseparable extension
L|K.

Now we can give the

Proof of Theorem 1.6: Assume that (K, v) is a valued field, n, ρ, τ, ` are non-
negative integers, Γ is an ordered abelian group extension of vK such that Γ/vK
is of rational rank ρ, and k|Kv is a field extension of transcendence degree τ . We
pick a maximal set of elements α1, . . . , αρ in Γ rationally independent over vK, and
a transcendence basis ζ1, . . . , ζτ of k|Kv.

We prove Part A of Theorem 1.6 first. So assume further that n > ρ + τ ,
Γ|vK and k|Kv are countably generated, and at least one of them is infinite. By
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Lemma 2.6 there is a unique extension of v from K to K(x1, . . . , xρ+τ ) such that
vxi = αi for 1 ≤ i ≤ ρ, and xρ+iv = ζi for 1 ≤ i ≤ τ . Since Γ|vK and k|Kv are
countably generated, vK(x1, . . . , xρ+τ ) contains α1, . . . , αρ and K(x1, . . . , xρ+τ )v
contains ζ1, . . . , ζτ , the extensions Γ|vK(x1, . . . , xρ+τ ) and k|K(x1, . . . , xρ+τ )v are
countably generated and algebraic.

Suppose first that at least one of these extensions is infinite. From our as-
sumption that Γ 6= {0} it follows that v is non-trivial on K(x1, . . . , xρ+τ ). Hence
we can use Proposition 3.17 to find an extension of v from K(x1, . . . , xρ+τ ) to
K(x1, . . . , xρ+τ+1) such that vK(x1, . . . , xρ+τ+1) = Γ and K(x1, . . . , xρ+τ+1)v = k,
and that the implicit constant field of (K(x1, . . . , xρ+τ+1)|K(x1, . . . , xρ+τ ), v) is
an infinite separable-algebraic extension of K(x1, . . . , xρ+τ )h. That means that
K(x1, . . . , xρ+τ+1)h|K(x1, . . . , xρ+τ )h contains an infinite separable-algebraic sub-
extension. Hence by the separable-algebraic case of Theorem 4.1, each maximal im-
mediate extension of K(x1, . . . , xρ+τ+1)h is of infinite transcendence degree. This
shows that we can find an immediate extension of v from K(x1, . . . , xρ+τ+1)h to
K(x1, . . . , xρ+τ+1)h(xρ+τ+2, . . . , xn). Its restriction to K(x1, . . . , xn) is an imme-
diate extension of v from K(x1, . . . , xρ+τ+1).

Now suppose that both extensions Γ|vK(x1, . . . , xρ+τ ) and k|K(x1, . . . , xρ+τ )v
are finite. Then from our hypothesis that at least one of the extensions Γ|vK and
k|Kv is infinite, it follows that ρ > 0 or τ > 0. Hence by the transcendental
case of Theorem 4.1, any maximal immediate extension of (K(x1, . . . , xρ+τ ), v) is
of infinite transcendence degree. In combination with Proposition 3.15, this shows
that there is an extension of v from K(x1, . . . , xρ+τ ) to K(x1, . . . , xρ+τ+1) such that
vK(x1, . . . , xρ+τ+1) = Γ and K(x1, . . . , xρ+τ+1)v = k. By the transcendental case
of Theorem 4.1, every maximal immediate extension of (K(x1, . . . , xρ+τ+1), v) is of
infinite transcendence degree. So we can find an extension of v to K(x1, . . . , xn) as
in the previous case.

In both cases we have that vK(x1, . . . , xn) = Γ and K(x1, . . . , xn)v = k, as
required.

Now we prove Part B. So assume that n ≥ ρ+ τ , and that Γ|vK and k|Kv are
finitely generated.

I) First, we consider the case of ρ > 0. By Lemma 2.6 there is an exten-
sion of v from K to K(x1, . . . , xρ−1+τ ) such that vxi = αi for 1 ≤ i ≤ ρ − 1,
and xρ−1+iv = ζi for 1 ≤ i ≤ τ . Since Γ|vK and k|Kv are finitely gener-
ated, vK(x1, . . . , xρ−1+τ ) contains α1, . . . , αρ−1 and K(x1, . . . , xρ−1+τ )v contains
ζ1, . . . , ζτ , the extension Γ|vK(x1, . . . , xρ−1+τ ) is finitely generated of rational rank
1 (and thus, Γ is of the form Γ0 ⊕ Z with Γ0/vK(x1, . . . , xρ−1+τ ) finite), and the
extension k|K(x1, . . . , xρ−1+τ )v is finite.

If v is not trivial on K(x1, . . . , xρ−1+τ ), then we can apply Proposition 3.15
to obtain an extension of v from K(x1, . . . , xρ−1+τ ) to K(x1, . . . , xρ+τ ) such that
vK(x1, . . . , xρ+τ ) = Γ and K(x1, . . . , xρ+τ )v = k. From the transcendental case of
Theorem 4.1 we see that any maximal immediate extension of K(x1, . . . , xρ+τ ), v)
is of infinite transcendence degree. This shows that we can find an immediate
extension of v from K(x1, . . . , xρ+τ ) to K(x1, . . . , xn).

Now suppose that v is trivial on K(x1, . . . , xρ−1+τ ). Then ρ = 1 and v is trivial
on K. It follows that Γ ' Z, and we pick a generator γ of Γ.



30 FRANZ-VIKTOR KUHLMANN

If n > 1+τ , we modify the above procedure in such a way that we use Lemma 2.6
to choose an extension of v from K(x1, . . . , xτ ) to K(x1, . . . , x1+τ ) so that the
latter has value group Zγ = Γ and residue field Kv(ζ1, . . . , ζτ ). Then we use
Proposition 3.15 in combination with the transcendental case of Theorem 4.1 to
find an extension of v to K(x1, . . . , xn) with value group Γ and residue field k.

If n = 1 + τ , then by our assumption B2), k is a simple algebraic extension of
a rational function field k′ in τ variables over Kv (or of Kv itself if τ = 0), or a
rational function field in one variable over a finitely generated field extension k0 of
Kv of transcendence degree τ − 1.

Assume the first case holds. The extension of v to the rational function field
K(x1, . . . , xτ ) can be chosen such that k′ = Kv(x1v, . . . , xτv) = K(x1, . . . , xτ )v.
Then the extension k|K(x1, . . . , xτ )v is simple algebraic, and according to Re-
mark 3.12 there is an extension of v to the rational function fieldK(x1, . . . , xτ )(x1+τ )
which satisfies vK(x1, . . . , x1+τ ) = Zγ = Γ and K(x1, . . . , x1+τ )v = k.

In the second case, we know that τ ≥ 1. The elements ζi ∈ k can be chosen in
such a way that ζ1, . . . , ζτ−1 form a transcendence basis of k0|Kv. We pick γ ∈ Γ,
γ 6= 0. By Lemma 2.6 there is an extension of v from K to K(x1, . . . , xτ ) such that
xiv = ζi for 1 ≤ i ≤ τ − 1, and vxτ = γ. Since K(x1, . . . , xτ )v = Kv(ζ1, . . . , ζτ−1),
we see that k is a rational function field in one variable over a finite extension of
K(x1, . . . , xτ )v. Further, vK(x1, . . . , xτ ) = Γ. Now we use Proposition 3.15 to find
an extension of v to K(x1, . . . , x1+τ ) with value group Γ and residue field k.

II) Second, suppose that ρ = 0. Then because of Γ 6= {0}, we know that v
is non-trivial on K. If τ > 0, then we proceed as follows. The case of n > τ is
covered by Part A. So we assume that n = τ , and that k is a rational function
field in one variable over a finitely generated field extension k0 of Kv of transcen-
dence degree τ − 1. Again we choose ζ1, . . . , ζτ−1 to form a transcendence basis of
k0|Kv, and use Lemma 2.6 to find an extension of v from K to K(x1, . . . , xτ−1)
such that xiv = ζi for 1 ≤ i ≤ τ − 1. Again we obtain that k is a rational function
field in one variable over a finite extension of K(x1, . . . , xτ−1)v. By assumption,
Γ/vK(x1, . . . , xτ−1) = Γ/vK is finite. Hence by Proposition 3.15 there is an exten-
sion of v from K(x1, . . . , xτ−1) to K(x1, . . . , xτ ) such that vK(x1, . . . , xτ ) = Γ and
K(x1, . . . , xτ )v = k.

Finally, suppose that ρ = 0 = τ and that there is an immediate extension
(K ′, v) of (K, v) which is either infinite separable-algebraic or of transcendence de-
gree at least n. If the former holds, then we obtain from the separable-algebraic
case of Theorem 4.1 that every maximal immediate extension of (K ′, v) has infi-
nite transcendence degree. But a maximal immediate extension of (K ′, v) is also a
maximal immediate extension of (K, v). Thus in all cases, we have the existence
of immediate extensions of (K, v) of transcendence degree at least n. Therefore,
we can choose an immediate extension of v from K to K(x1, . . . , xn−1) such that
(K(x1, . . . , xn−1), v) still admits a transcendental immediate extension. The exten-
sions Γ|vK = Γ|vK(x1, . . . , xn−1) and k|Kv = k|K(x1, . . . , xn−1)v are both finite
since they are finitely generated and algebraic. Hence by Proposition 3.15 there is an
extension of v from K(x1, . . . , xn−1) to K(x1, . . . , xn) such that vK(x1, . . . , xn) = Γ
and K(x1, . . . , xn)v = k. �

Now we give the

Proof of Theorem 1.7: Corollary 2.7 shows that n ≥ ρ+τ . If n = ρ+τ , then
Corollary 2.7 tells us that vF |vK and Fv|Kv are finitely generated extensions.
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The fact that vF |vK and Fv|Kv are always countably generated follows from
Theorem 2.9 by induction on the transcendence degree n.

Suppose that F admits a transcendence basis x1, . . . , xn such that the residue
field extension Fv|K(x1, . . . , xn−1)v is of transcendence degree 1. (This is in par-
ticular the case when n = τ .) Then by Ohm’s Ruled Residue Theorem, Fv is a
rational function field in one variable over a finite extension of K(x1, . . . , xn−1)v.
Whenever equality holds in (2.4) for an extension L|K of finite transcendence de-
gree, it will hold in the respective inequality for any subextension of L|K. Hence if
n = ρ+ τ then by Corollary 2.7, K(x1, . . . , xn−1)v|Kv is a finitely generated field
extension, and if n = τ , this extension is of transcendence degree τ − 1. This yields
that B3) holds for k = Fv.

Now suppose that there does not exist such a transcendence basis, and that
n = ρ + τ with ρ = 1 and v is trivial on K. We pick any transcendence basis
x1, . . . , xn . Since Fv|K(x1, . . . , xn−1)v is algebraic and n = ρ + τ , we must have
that the rational rank of vF/vK(x1, . . . , xn−1) is 1. Since ρ = 1 and v is trivial
on K, this means that v is also trivial on K(x1, . . . , xn−1). Hence, Kv = K and
K(x1, . . . , xn−1)v = K(x1, . . . , xn−1) (modulo an isomorphism). Remark 3.12 now
shows that Fv is a simple algebraic extension of K(x1, . . . , xn−1), which in turn
is a rational function field in τ variables over K = Kv, or equal to Kv if τ = 0.
Together with what we have shown before, this proves that B2) holds for k = Fv.

To conclude this proof, assume that ρ = 0 = τ . Then by Lemma 3.4, (F.K̃|K̃, v)

is immediate, for any extension of v from F to F.K̃. This shows that (K̃, v) admits
an immediate extension of transcendence degree n. �

Finally, we give the

Proof of Theorem 1.8: We have to show that whenever we construct an
extension of the form (L2|L1, v) with Kv ⊆ L1v ⊆ L2v ⊆ k in the previous proof,
then the ordering of L2v induced by the given ordering of k can be lifted to an
extension of the lifting that we have already obtained on L1 . Whenever we apply
Propositions 3.14, 3.15 and 3.17, we obtain this already from the assertions of these
propositions. Whenever we apply Lemma 2.6, we obtain this from Proposition 2.18
because in this case, we always have that vL2 is generated over vL1 by rationally
independent values and therefore, 2vL2∩vL1 = 2vL1 . Finally, whenever (L2|L1, v)
is an immediate extension, we can also apply Proposition 2.18 because 2vL2∩vL1 =
2vL1 ∩ vL1 = 2vL1 . �

5. Homogeneous sequences

In this section, we will develop special sequences which under certain tameness
conditions can be used to determine implicit constant fields.

5.1. Homogeneous approximations. Let (K, v) be any valued field and a, b ele-
ments in some valued field extension (L, v) of (K, v). We will say that a is strongly
homogeneous over (K, v) if a ∈ Ksep \ K, the extension of v from K to K(a)
is unique (or equivalently, K(a)|K is linearly disjoint from all henselizations of
(K, v)), and

(5.1) va = kras(a,K) .

Note that in this case, va = v(σa − a) for all automorphisms such that σa 6= a;
indeed, we have that vσa = va and therefore, va ≥ v(σa− a) ≥ va.
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We will say that a is homogeneous over (K, v) if there is some d ∈ K such
that a− d is strongly homogeneous over (K, v), i.e.,

v(a− d) = kras(a− d,K) = kras(a,K) .

We call a ∈ L a homogeneous approximation of b over K if there is some
d ∈ K such that a−d is strongly homogeneous over K and v(b−a) > v(b−d) ≥ vb.
It then follows that va = vb and v(a− d) = v(b− d).

Lemma 5.1. If a ∈ L is a homogeneous approximation of b then a lies in the

henselization of K(b) w.r.t. every extension of the valuation v from K(a, b) to K̃(b).

Proof. From Corollary 2.21 we obtain that a − d and hence also a lies in the
henselization of K(b − d) = K(b) w.r.t. every extension of the valuation v from

K(a, b) to K̃(b). �

We will also exploit the following easy observation:

Lemma 5.2. Let (K ′, v) be any henselian extension field of (K, v) such that a /∈ K ′.
If a is homogeneous over (K, v), then it is also homogeneous over (K ′, v), and
kras(a,K) = kras(a,K ′). If a is strongly homogeneous over (K, v), then it is also
strongly homogeneous over (K ′, v).

Proof. Suppose that a − d is separable-algebraic over K and v(a − d) = kras(a −
d,K) for some d ∈ K. Then a − d is also separable-algebraic over K ′. Further,

kras(a − d,K ′) ≤ kras(a − d,K) since restriction to K̃ is a map sending {σ ∈
GalK ′ | σa 6= a} into {σ ∈ GalK | σa 6= a}. Hence, v(a − d) ≤ kras(a − d,K ′) ≤
kras(a − d,K) = v(a − d), which shows that equality holds everywhere. Thus,
kras(a,K ′) = kras(a − d,K ′) = kras(a − d,K) = kras(a,K). Since (K ′, v) is
henselian by assumption, the extension of v from K ′ to K ′(a) is unique. This
shows that a− d is strongly homogeneous over (K ′, v), and concludes the proof of
our assertions. �

The following gives the crucial criterion for an element to be (strongly) homo-
geneous over (K, v):

Lemma 5.3. Suppose that a ∈ K̃ and that there is some extension of v from K to
K(a) such that if e is the least positive integer for which eva ∈ vK, then

a) e is not divisible by charKv,
b) there exists some c ∈ K such that vcae = 0, caev is separable-algebraic over
Kv, and the degree of cae over K is equal to the degree f of caev over Kv.

Then [K(a) : K] = ef and if a /∈ K, then a is strongly homogeneous over (K, v).

Proof. We have

ef ≥ [K(a) : K(ae)] · [K(ae) : K] = [K(a) : K]

≥ (vK(a) : vK) · [K(a)v : Kv] ≥ ef .

So equality holds everywhere, and we obtain [K(a) : K] = ef, (vK(a) : vK) = e
and [K(a)v : Kv] = f. By the fundamental inequality, the latter implies that the
extension of v from K to K(a) is unique.

Now assume that a /∈ K. Take two distinct conjugates σa 6= τa of a and set
η := σa/τa 6= 1. If σae 6= τae, then cσae = σcae and cτae = τcae are distinct
conjugates of cae. By hypothesis, their residues are also distinct and therefore,
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the residue of σae/τae = ηe is not 1. It follows that the residue of η is not 1. If
σae = τae, then η is an e-th root of unity. Since e is not divisible by the residue
characteristic, it again follows that the residue of η is not equal to 1. Hence in both
cases, we obtain that v(η − 1) = 0, which shows that v(σa− τa) = vτa = va. We
have now proved (5.1). �

Lemma 5.4. Assume that b is an element in some algebraically closed valued field
extension (L, v) of (K, v). Suppose that there is some e ∈ N not divisible by charKv,
and some c ∈ K such that vcbe = 0 and cbev is separable-algebraic over Kv. If the
smallest possible e ∈ N is bigger than 1 or if cbev /∈ Kv, then we can find a ∈ L,
strongly homogeneous over K and such that v(b − a) > vb. In particular, a is a
homogeneous approximation of b over K.

Proof. Take a monic polynomial g over K with v-integral coefficients whose reduc-
tion modulo v is the minimal polynomial of cbev over Kv. Then let a0 ∈ K̃ be the
root of g whose residue is cbev. The degree of a0 over K is the same as that of cbev
over Kv. We have that v( a0cbe − 1) > 0. So there exists a1 ∈ K̃ with residue 1 and
such that ae1 = a0

cbe . Then for a := a1b, we find that v(a− b) = vb+ v(a1 − 1) > vb
and cae = a0 . It follows that va = vb and caev = cbev. By the foregoing lemma,
this shows that a is strongly homogeneous over K. �

5.2. Homogeneous sequences. Let (K(x)|K, v) be any extension of valued fields.

We fix an extension of v to K̃(x).

Let S be an initial segment of N, that is, S = N or S = {1, . . . , n} for some
n ∈ N or S = ∅. A sequence

S := (ai)i∈S

of elements in K̃ will be called a homogeneous sequence for x if the following
conditions are satisfied for all i ∈ S (where we set a0 := 0):

(HS) ai−ai−1 is a homogeneous approximation of x−ai−1 over K(a0, . . . , ai−1).

Recall that then by the definition of “strongly homogeneous”, ai /∈ K(a0, . . . , ai−1)h.
We call S the support of the sequence S. We set

KS := K(ai | i ∈ S) .

If S is the empty sequence, then KS = K.

From this definition, we obtain:

Lemma 5.5. If i, j ∈ S with 1 ≤ i < j, then

(5.2) v(x− aj) > v(x− ai) = v(ai+1 − ai) .

If S = N then (ai)i∈S is a pseudo Cauchy sequence in KS with pseudo limit x.

Proof. If 1 ≤ i ∈ S, then ai − ai−1 is a homogeneous approximation of x − ai−1 .
Hence by definition,

v(x− ai) = v(x− ai−1 − (ai − ai−1)) > v(x− ai−1) ,

whence v(ai−ai−1) = min{v(x−ai), v(x−ai−1)} = v(x−ai−1). If i < j ∈ S, then
by induction, v(x− aj) > v(x− ai).

Suppose that S = N. Then it follows by induction that for all k > j > i ≥ 1,

v(x− ak) > v(x− aj) > v(x− ai)
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and therefore,

v(ak − aj) = min{v(x− ak), v(x− aj)} = v(x− aj) > v(x− ai)
= min{v(x− aj), v(x− ai)} = v(aj − ai) .

This shows that (ai)i∈S is a pseudo Cauchy sequence. The equality in (5.2) shows
that x is a pseudo limit of this sequence. �

Let us also observe the following:

Lemma 5.6. Take x, x′ ∈ L.
1) If a ∈ L is a homogeneous approximation of x over K and if v(x−x′) ≥ v(x−a),
then a is also a homogeneous approximation of x′ over K.

2) Assume that (ai)i∈S is a homogeneous sequence for x over K. If v(x − x′) >
v(x− ak) for all k ∈ S, then (ai)i∈S is also a homogeneous sequence for x′ over K.

In particular, for each k ∈ S such that k > 1, (ai)i<k is a homogeneous sequence
for ak over K.

Proof. 1): Suppose that a is a homogeneous approximation of x over K, with
v(x − a) > v(x − d) ≥ vx and a − d strongly homogeneous over K. If in addition
v(x−x′) ≥ v(x−a) > v(x−d), then v(x′−d) = min{v(x−x′), v(x−d)} = v(x−d)
and v(x′ − a) ≥ min{v(x− x′), v(x− a)} ≥ v(x− a) > v(x− d) = v(x′ − d). This
yields the assertion.

2): Since ak−ak−1 is a homogeneous approximation of x−ak−1 overK(a0, . . . , ak−1)
and

v(x− ak−1 − (x′ − ak−1)) = v(x− x′) > v(x− ak) = v(x− ak−1 − (ak − ak−1)) ,

it follows from part 1) that ak − ak−1 is also a homogeneous approximation of
x′ − ak−1 over K(a0, . . . , ak−1). Hence, (ai)i∈S is a homogeneous sequence for x′

over K.
If k > 1, then by (5.2), v(x − ak) > v(x − ai) for 0 ≤ i < k. Hence the last

assertion follows from what we have just proved. �

What is special about homogeneous sequences is described by the following
lemma:

Lemma 5.7. Assume that (ai)i∈S is a homogeneous sequence for x over K. Then

(5.3) KS ⊂ K(x)h .

For every n ∈ S, a1, . . . , an ∈ K(an)h. If S = {1, . . . , n}, then

(5.4) Kh
S = K(an)h .

Proof. We use induction on k ∈ S. Suppose that we have already shown that
ak−1 ∈ K(x)h. As ak − ak−1 is a homogeneous approximation of x − ak−1 , we
know from Lemma 5.1 that

ak − ak−1 ∈ K(x− ak−1)h ⊆ K(x)h

and hence also ak ∈ K(x)h. This proves (5.3). Now all other assertions follow
when we replace x by ak in the above argument, using the fact that by the previous
lemma, (ai)i<n is a homogeneous sequence for an over K. �



VALUE GROUPS, RESIDUE FIELDS AND BAD PLACES 35

Proposition 5.8. Assume that S = (ai)i∈S is a homogeneous sequence for x over
K with support S = N. Then (ai)i∈N is a pseudo Cauchy sequence of transcendental
type in (KS, v) with pseudo limit x, and (KS(x)|KS, v) is immediate and pure.

Proof. By Lemma 5.5, (ai)i∈N is a pseudo Cauchy sequence with pseudo limit x.
Suppose it were of algebraic type. Then by [KA], Theorem 3, there would exist some
algebraic extension (KS(b)|KS, v) with b a pseudo limit of the sequence. But then
v(x− b) > v(x−ak) for all k ∈ S and by Lemma 5.6, (ai)i∈S is also a homogeneous
sequence for b over K. Hence by Lemma 5.7, Kh

S ⊂ K(b)h = Kh(b). Since b is
algebraic over K, the extension Kh(b)|Kh is finite. On the other hand, Kh

S|Kh is
infinite since by the definition of homogeneous elements, ak /∈ K(ai | 1 ≤ i < k)h for
every k ∈ N and therefore, each extension K(ai | 1 ≤ i ≤ k+1)h|K(ai | 1 ≤ i ≤ k)h

is non-trivial. This contradiction shows that the sequence is of transcendental type.
Hence by definition, (KS(x)|KS, v) is pure. Further, it follows from Lemma 2.4
that (KS(x)|KS, v) is immediate. �

This proposition leads to the following definition. A homogeneous sequence S for
x over K will be called (weakly) pure homogeneous sequence if (KS(x)|KS, v)
is (weakly) pure in x. Hence if S = N, then S is always a pure homogeneous
sequence. The empty sequence is a (weakly) pure homogeneous sequence for x over
K if and only if already (K(x)|K, v) is (weakly) pure in x.

Theorem 5.9. Suppose that S is a (weakly) pure homogeneous sequence for x over
K. Then

Kh
S = IC (K(x)|K, v) .

Further, KSv is the relative algebraic closure of Kv in K(x)v, and the torsion
subgroup of vK(x)/vKS is finite. If S is pure, then vKS is the relative divisible
closure of vK in vK(x).

Proof. The assertions follow from Lemma 3.5, Lemma 2.10 and Lemma 3.7, together
with the fact that because KS|K is algebraic, the same holds for vKS|vK and
KSv|Kv by Lemma 2.1. �

5.3. Conditions for the existence of homogeneous sequences. Now we have
to discuss for which extensions (K(x)|K, v) there exist homogeneous sequences.

An algebraic extension (L|K, v) of henselian fields is called tame if the following
conditions hold:

(TE1) Lv|Kv is separable,
(TE2) if charKv = p > 0, then the order of each element in vL/vK is prime to p,
(TE3) [K ′ : K] = (vK ′ : vK)[K ′v : Kv] holds for every finite subextension K ′|K
of L|K.

Condition (TE3) means that equality holds in the fundamental inequality (2.1). If
L′|K is any subextension of L|K, then (L|K, v) is a tame extension if and only if
(L|L′, v) and (L′|K, v) are (this is easy to prove if L|K is finite). Further, it is well
known that for (K, v) henselian, the ramification field of the extension (Ksep|K, v)
is the unique maximal tame extension of (K, v) (cf. [E]). A henselian valued field
(K, v) is called a tame field if all its algebraic extensions are tame, or equivalently,
the following conditions hold:

(T1) Kv is perfect,
(T2) if charKv = p > 0, then vK is p-divisible,
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(T3) for every finite extension K ′|K, [K ′ : K] = (vK ′ : vK)[K ′v : Kv].

Note that every valued field with a residue field of characteristic zero is tame; this
is a consequence of the Lemma of Ostrowski (cf. [R]). It follows directly from the
definition together with the multiplicativity of ramification index and inertia degree
that every finite extension of a tame field is again a tame field. If (K, v) is a tame
field, then condition (T3) shows that (K, v) does not admit any proper immediate
algebraic extensions; hence by Theorem 3 of [KA], every pseudo Cauchy sequence
in (K, v) without a pseudo limit in K must be of transcendental type.

If an element a ∈ K̃ satisfies the conditions of Lemma 5.3, then (K(a)|K, v) is
a tame extension. The following implication is also true, as was noticed by Sudesh
K. Khanduja (cf. [KH11], Theorem 1.2):

Proposition 5.10. Suppose that (K, v) is henselian. If a is homogeneous over
(K, v), then (K(a)|K, v) is a tame extension. If S is a homogeneous sequence over
(K, v), then KS is a tame extension of K.

Proof. Since K(a−d) = K(a) for d ∈ K, we may assume w.l.o.g. that a is strongly
homogeneous over (K, v). If (K(a)|K, v) were not a tame extension, then a would
not lie in the ramification field of the extension (Ksep|K, v). So there would exist an
automorphism σ in the ramification group such that σa 6= a. But by the definition
of the ramification group,

v(σa− a) > va = kras(a,K) ,

a contradiction.
The second assertion is proved using the first assertion and the fact that a (pos-

sibly infinite) tower of tame extensions is itself a tame extension. �

In fact, it can also be shown that if a is separable over K, then va = kras(a,K)
implies that a satisfies the conditions of Lemma 5.3.

We can give the following characterization of elements in tame extensions:

Proposition 5.11. An element b ∈ K̃ belongs to a tame extension of the henselian
field (K, v) if and only if there is a finite homogeneous sequence a1, . . . , ak for b over
(K, v) such that b ∈ K(ak).

Proof. Suppose that such a sequence exists. By the foregoing proposition, KS is a
tame extension of K. Since b ∈ K(ak) ⊆ KS, it contains b.

For the converse, let b be an element in some tame extension of (K, v). Since
K(b)|K is finite, also the extensions vK(b)|vK and K(b)v|Kv are finite. Take
ηi ∈ K(b) with η1 = 1 such that vηi , 1 ≤ i ≤ `, belong to distinct cosets modulo
vK. Further, take ϑj ∈ OK(b) with ϑ1 = 1 such that ϑjv, 1 ≤ j ≤ m, are Kv-
linearly independent. Then by Lemma 2.8, the elements ηiϑj , 1 ≤ i ≤ `, 1 ≤ j ≤ m,
are K-linearly independent. By (TE3), [K(b) : K] = `m, so these elements form a
basis of K(b)|K. Now we write

b =
∑
i,j

cijηiϑj

with cij ∈ K. Again by Lemma 2.8,

vb = v
∑
i,j

cijηiϑj = min
i,j

vcijηiϑj = min
i,j

(vcij + vηi) .
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If c11η1ϑ1 = c11 ∈ K happens to be the unique summand of minimal value, then
we set d = c1,1 and consider b− d in place of b; otherwise, we set d = 0.

Choose i0 such that vb is in the coset of vηi0 . If vci1j1ηi1 = vci2j2ηi2 then since
the η’s are in distinct cosets modulo vK, we must have that i1 = i2 . So we can
list the summands of minimal value as ci0jrηi0ϑjr , 1 ≤ r ≤ t, for some t ≤ m. We
obtain that

(5.5) v

(
b− d−

t∑
r=1

ci0jrηi0ϑjr

)
> v(b− d) .

Take e to be the least positive integer such that ev(b− d) ∈ vK. Choose c ∈ K
such that vc(b−d)e = 0. Then by (TE1), c(b−d)ev is separable-algebraic over Kv.
If i0 > 1, then va = v(b− d) /∈ vK, and by (TE2), e is not divisible by charKv. If
i0 = 1, then e = 1 and ηi0 = 1, and in view of (5.5),

c(b− d)v =

t∑
r=1

(cci0jrv) · ϑjrv .

This is not in Kv since by our choice of d, some jk > 1 must appear in the sum
and the residues ϑjrv, 1 ≤ r ≤ t, are linearly independent over Kv.

We conclude that b−d satisfies the assumptions of Lemma 5.4. Hence there is an
element a ∈ K̃, strongly homogeneous over K and such that v(b−d−a) > v(b−d).
We set a1 := a+ d to obtain that a1 is a homogeneous approximation of b over K.
By the foregoing proposition, K(a1) is a tame extension of K and therefore, by the
general facts we have noted following the definition of tame extensions, K(a1, b−a1)
is a tame extension of K(a1).

We repeat the above construction, replacing b by b−a1 . By induction, we build
a homogeneous sequence for b over K. It cannot be infinite since b is algebraic over
K (cf. Proposition 5.8). Hence it stops with some element ak . Our construction
shows that this can only happen if b ∈ K(a1, . . . , ak), which by Lemma 5.7 is equal
to K(ak). �

Proposition 5.12. Assume that (K, v) is a henselian field. Then (K, v) is a tame
field if and only if for every element x in any extension (L, v) of (K, v) there exists
a weakly pure homogeneous sequence for x over K, provided that x is transcendental
over K.

Proof. First, let us assume that (K, v) is a tame field and that x is an element in
some extension (L, v) of (K, v), transcendental over K. We set a0 = 0. We assume
that k ≥ 0 and that ai for i ≤ k are already constructed. Like K, also the finite
extension Kk := K(a0, . . . , ak) is a tame field. Therefore, if x is the pseudo limit
of a pseudo Cauchy sequence in Kk , then this pseudo Cauchy sequence must be of
transcendental type, and Kk(x)|Kk is pure and hence weakly pure in x.

If Kk(x)|Kk is weakly pure in x, then we take ak to be the last element of S if
k > 0, and S to be empty if k = 0.

Assume that this is not the case. Then x cannot be the pseudo limit of a pseudo
Cauchy sequence without pseudo limit in Kk . So the set v(x−ak−Kk) must have
a maximum, say x − ak − d with d ∈ Kk. Since we assume that Kk(x)|Kk is not
weakly pure in x, there exist e ∈ N and c ∈ Kk such that vc(x− ak − d)e = 0 and
c(x − ak − d)ev is algebraic over Kkv. Conditions (T1) and (T2) yield that e can
be chosen to be prime to charKv and that c(x − ak − d)ev is separable-algebraic
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over Kkv. Since v(x − ak − d) is maximal in v(x − ak −Kk), we must have that
e > 1 or c(x− ak − d)ev /∈ Kkv.

Now Lemma 5.4 shows that there exists a ∈ K̃, strongly homogeneous over
Kk and such that v(x − ak − d − a) > v(x − ak − d). So a + d is a homogeneous
approximation of x−ak over Kk, and we set ak+1 := ak+a+d. This completes our
induction step. If our construction stops at some k, then Kk(x)|Kk is weakly pure
in x and we have obtained a weakly pure homogeneous sequence. If the construction
does not stop, then S = N and the obtained sequence is pure homogeneous.

For the converse, assume that (K, v) is not a tame field. We choose an element

b ∈ K̃ such that K(b)|K is not a tame extension. On K(b, x) we take the valuation
vb,γ with γ an element in some ordered abelian group extension such that γ > vK.

Choose any extension of v to K̃(x). Since vK is cofinal in vK̃, we have that γ > vK̃.

Since b ∈ K̃, we find γ ∈ vK̃(x). Hence, (K̃(x)|K̃, v) is value-transcendental.
Now suppose that there exists a weakly pure homogeneous sequence S for

x over K. By Lemma 3.3, also (KS(x)|KS, v) is value-transcendental. Since
(KS(x)|KS, v) is also weakly pure, it follows that there must be some c ∈ KS

such that x − c is a value-transcendental element (all other cases in the definition
of “weakly pure” lead to immediate or residue-transcendental extensions). But

if c 6= b then v(b − c) ∈ vK̃ and thus, v(c − b) < γ. This implies v(x − c) =

min{v(x−b), v(b−c)} = v(b−c) ∈ vK̃, a contradiction. This shows that b = c ∈ KS.
On the other hand, KS is a tame extension of K by Proposition 5.10 and cannot
contain b. This contradiction shows that there cannot exist a weakly pure homo-
geneous sequence for x over K. �

6. Applications

Let us show how to apply our results to power series fields. We denote by k((G))
the field of power series with coefficients in the field k and exponents in the ordered
abelian group G.

Theorem 6.1. Let (K, v) be a henselian subfield of a power series field k((G))
such that v is the restriction of the canonical valuation of k((G)). Suppose that K
contains all monomials of the form ctγ for c ∈ Kv ⊆ k and γ ∈ vK ⊆ G. Consider
a power series

z =
∑
i∈N

cit
γi

where (γi)i∈N is a strictly increasing sequence in G, all ci ∈ k are separable-algebraic
over Kv, and for each i there is an integer ei > 0 prime to the characteristic of Kv
and such that eiγi ∈ vK. Then, upon taking the henselization of K(z) in k((G)),
we obtain that K(cit

γi | i ∈ N) ⊆ K(z)h. Consequently, vK(z) contains all γi , and
if γi ∈ vK for all i ∈ N, then K(z)v contains all ci .

If vK +
∑∞
i=1 Zγi/vK or Kv(ci | i ∈ N)|Kv is infinite, then z is transcendental

over K, we have IC (K(z)|K, v) = K(cit
γi | i ∈ N), and

a) vK(z) is the group generated over vK by the elements γi ,

b) if γi ∈ vK for all i ∈ N, then K(z)v = Kv(ci | i ∈ N).

Proof. We derive a homogeneous sequence S from z as follows. We set a0 = 0. If
all ci are in Kv and all γi are in vK, then we take S to be the empty sequence.
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Otherwise, having chosen ij ∈ N and defined

aj :=
∑

1≤i≤ij

cit
γi

for all j < m, we proceed as follows. We let ` be the first index in the power series
z− am−1 for which c`t

γ` /∈ K(a1, . . . , am−1); if such an index does not exist, we let

am−1 be the last element of S. Otherwise, we set im := ` and am :=
∑

1≤i≤im

cit
γi .

We have that

c`t
γ` = am − am−1 − d with d =

∑
im−1<i<`

cit
γi ∈ K(a1, . . . , am−1) .

By assumption, e`vc`t
γ` = e`γ` ∈ vK and hence, c := t−e`γ` ∈ K. We have that

c(c`t
γ`)e` = ce`` . Since c` is separable-algebraic over Kv, the same holds for ce`` .

Since v is trivial on k, the degree of ce`` v over Kv is equal to that of ce`` over
K. It now follows by Lemma 5.3 that c`t

γ` is strongly homogeneous over K. By
Lemma 5.2 it follows that it is also strongly homogeneous over the henselian field
K(a1, . . . , am−1). Further, v(z − am−1 − (am − am−1)) = v(z − am) = γ`+1 >
γ` = v(z − am−1 − d) ≥ v(z − am−1). This proves that am − am−1 is a homoge-
neous approximation of z − am−1 over K(a0, . . . , am−1). By induction, we obtain
a homogeneous sequence S for z in k((G)). It now follows from Lemma 5.7 that
K(cit

γi | i ∈ N) = K(aj | j ∈ S) ⊆ K(z)h; thus, γi = vcit
γi ∈ vK(z) for all

i ∈ N. If γi ∈ vK and hence tγi ∈ K, then ci ∈ K(z)h; since the residue map is the
identity on elements of k, this implies that ci ∈ K(z)v.

Now assume that vK +
∑∞
i=1 Zγi/vK or Kv(ci | i ∈ N)|Kv is infinite. Then S

must be infinite, and it follows from Proposition 5.8 that z is a pseudo limit of the
pseudo Cauchy sequence (ai)i∈N of transcendental type. Thus, z is transcendental
over K by Lemma 2.4. Theorem 5.9 now shows that IC (K(z)|K, v) = K(cit

γi |
i ∈ N), vK(z) = vK(cit

γi | i ∈ N) and K(z)v = K(cit
γi | i ∈ N)v. Since

K(cit
γi | i ∈ N) ⊆ K(ci, t

γi | i ∈ N), for the proof of assertions a) and b) it now
suffices to show that the value group of the latter field is generated over vK by the
γi , and that its residue field is generated over Kv by the ci . As tγ ∈ K for every
γ ∈ vK, we have that

(vK +
∑̀
i=1

Zγi : vK) = [K(tγi | 1 ≤ i ≤ `) : K] .

On the other hand,

[K(tγi | 1 ≤ i ≤ `) : K] ≥ (vK(tγi | 1 ≤ i ≤ `) : vK) ≥ (vK +
∑̀
i=1

Zγi : vK) ,

where the last inequality holds since γi ∈ vK(tγi | 1 ≤ i ≤ `) for i = 1, . . . , `.

We obtain that vK(tγi | 1 ≤ i ≤ `) = vK +
∑`
i=1 Zγi and that K(tγi | 1 ≤ i ≤

`)v = Kv for all ` ∈ N. This implies that vK(tγi | i ∈ N) = vK +
∑∞
i=1 Zγi and

K(tγi | i ∈ N)v = Kv.
Set K ′ := K(tγi | i ∈ N). As K ′v = Kv ⊂ K ⊂ K ′, we have that

[K ′v(ci | 1 ≤ i ≤ `) : K ′v] ≥ [K ′(ci | 1 ≤ i ≤ `) : K ′] .
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On the other hand,

[K ′(ci | 1 ≤ i ≤ `) : K ′] ≥ [K ′(ci | 1 ≤ i ≤ `)v : K ′v] ≥ [K ′v(ci | 1 ≤ i ≤ `) : K ′v] ,

where the last inequality holds since ci ∈ K ′(ci | 1 ≤ i ≤ `)v for i = 1, . . . , `. We
obtain that K ′(ci | 1 ≤ i ≤ `)v = K ′v(ci | 1 ≤ i ≤ `) and that vK ′(ci | 1 ≤
i ≤ `) = vK ′. This implies that vK(ci, t

γi | i ∈ N) = vK ′(ci | i ∈ N) = vK ′ =
vK +

∑∞
i=1 Zγi and K(ci, t

γi | i ∈ N)v = K ′(ci | i ∈ N)v = K ′v(ci | i ∈ N) =
Kv(ci | i ∈ N). This proves assertions a) and b). �

Remark 6.2. Assertions a) and b) of the previous theorem will also hold if K =
Kv((vK)). Indeed, if G0 denotes the subgroup of G generated by the γi over Kv,
and k0 = Kv(ci | i ∈ N), then K(z) ⊂ k0((G0)) and therefore, vK(z) ⊆ G0 and
K(z)v ⊆ k0 .

Our methods also yield an alternative proof of the following well known fact:

Theorem 6.3. The algebraic closure of the field Qp of p-adic numbers is not com-
plete.

Proof. Choose any compatible system of n-th roots p1/n of p, that is, such that
(p1/mn)m = p1/n for all m,n ∈ N. For i ∈ N, choose any ni ∈ N not divisible by
p, and set γi := i + 1

ni
if ni > 1, and γi = i otherwise. Further, choose ci in some

fixed set of representatives in Q̃p of its residue field F̃p such that the degree of cnii
over Qp is equal to the degree of cnii vp over Qpvp = Fp . Then set

(6.1) bi :=
∑

1≤j≤i

cjp
γj .

Since γi < γi+1 for all i and the sequence (γi)i∈N is cofinal in the value group Q of

Q̃p, the sequence (bi)i∈N is a Cauchy sequence in (Q̃p, vp). If this field were complete,
it would contain a pseudo limit z to every such Cauchy sequence. On the other
hand, as in the proof of Theorem 6.1 one shows that Qp(cipγi | i ∈ N) ⊆ Qp(z)h,
and that

a) vQp(z) is the group generated over Z by the elements γi ,

b) if γi ∈ Z for all i ∈ N, then Qp(z)v = Fp(civp | i ∈ N),

c) if vQp(z)/Z or Fp(civp | i ∈ N)|Fp is infinite, then z is transcendental over Qp .

Hence, if we choose (ni)i∈N to be a strictly increasing sequence and ci = 1 for all
i, or if we choose ni = 1 for all i and the elements ci of increasing degree over Qp ,

then z will be transcendental over Qp . Since z lies in the completion of Q̃p, we

have now proved that this completion is transcendental over Q̃p. �

With the same method, we can also prove another well known result:

Theorem 6.4. The completion Cp of Q̃p admits a pseudo Cauchy sequence without
a pseudo limit in Cp . Hence, Cp is not maximal and not spherically complete.

Proof. In the same setting as in the foregoing proof, we now choose ci = 1 for all i.
Further, we choose (ni)i∈N to be a strictly increasing sequence and set γi := 1− 1

ni
.

Then (bi)i∈N is a pseudo Cauchy sequence. Suppose it would admit a pseudo limit

y in Cp . Then, using that Q̃p is dense in Cp , we could choose z ∈ Q̃p such that
vp(y − z) ≥ 1. Since 1 > γi for all i, it would follow that also z is a pseudo limit
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of (bi)i∈N . But as in the foregoing proof one shows that z must be transcendental
over Qp . This contradiction shows that (bi)i∈N cannot have a pseudo limit in Cp .
By the results of [KA], this implies that Cp admits a proper immediate extension,
which shows that Cp is not maximal. With the elements bi defined as in (6.1), we
also find that the intersection of the nest ({a ∈ Cp | v(a− bi) ≥ γi+1})i∈N of balls
is empty. Hence, Cp is not spherically complete. �
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