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5 Polynomials in additive operators 275.1 A basi result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275.2 The ase of operators ompatible with a weak oeÆient map . . . . . . . . . . . . . . . . 305.3 The ase of a dominant operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335.4 Rosenliht systems of operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 Immediate di�erentiation 376.1 VD-�elds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376.2 Integration on Rosenliht valued di�erential �elds . . . . . . . . . . . . . . . . . . . . . . . 406.3 Di�erential equations on Rosenliht valued di�erential �elds . . . . . . . . . . . . . . . . . 427 Sums of spherially omplete valued abelian groups 451 IntrodutionHensel's Lemma (see Theorem 22) is an important tool in the theory of valued �elds. Inreent years, it has witnessed several generalizations. For example, suh generalizationsare important when the valued �elds are enrihed by additional struture like derivations.But attempts have also been made to formulate Hensel's Lemma in situations with lessstruture. For instane, forgetting about multipliation one may onsider valued abeliangroups or modules. Another interesting ase is that of a non-ommutative multipliation.In view of these developments, it is logial to ask for the underlying priniple thatmakes Hensel's Lemma work. This priniple should be formulated using as little algebraistruture as possible so that one an derive new versions of Hensel's Lemma by addingwhatever struture one is interested in.It has turned out that the struture suitable for suh an underlying priniple is that ofultrametri spaes. In [P2℄, S. Prie�-Crampe proved an ultrametri Fixed Point Theorem.This theorem works with ontrating maps, and indeed the Newton algorithm used toprove Hensel's Lemma for the �eld of p-adi numbers readily provides suh a map. But inother situations, ontrating maps are not always instantly available. For example, if onelooks for zeros of polynomial maps on a valued �eld, it an be more onvenient to diretlystudy the ultrametri properties of these maps. The problem ould then be solved byshowing surjetivity of suh maps when restrited to suitable subsets of the �eld. OurUltrametri Main Theorem (Theorem 2) is of this nature.In the next setion, we give a quik introdution to the fats about ultrametri spaesthat are neessary to understand the Ultrametri Main Theorem. In Setion 1.2 we willthen give a summary of the various appliations that are derived in this paper.1.1 The Ultrametri Main TheoremLet (Y; u) be an ultrametri spae. That is, u is a map from Y �Y onto a totally orderedset � with last element 1, satisfying that for all x; y; z 2 Y ,(U1) u(y; z) =1 if and only if y = z,(U2) u(y; z) � minfu(y; x); u(x; z)g (ultrametri triangle law),2



(U3) u(y; z) = u(z; y) (symmetry).It follows that� u(y; z) > minfu(y; x); u(x; z)g ) u(y; x) = u(x; z),� u(y; x) 6= u(x; z) ) u(y; z) = minfu(y; x); u(x; z)g.We will use these properties freely. We set uY := fu(y; z) j y; z 2 Y; y 6= zg = � n f1gand all it the value set of (Y; u).We reall some de�nitions. For y 2 Y and � 2 uY [ f1g, we de�ne the losed ballaround y with radius � as follows:B�(y) := fz 2 Y j u(y; z) � �g :To failitate notation, we will also useB(x; y) := Bu(x;y)(x) :It follows from the ultrametri triangle law that Bu(x;y)(x) = Bu(x;y)(y) and that B(x; y)is the smallest losed ball ontaining x and y. Similarly, it follows from the ultrametritriangle law thatB(x; y) � B(z; t) if and only if x 2 B(z; t) and u(x; y) � u(z; t) : (1)(Note: the bigger u(x; y), the loser x and y; this is ompatible with the Krull notationof valuations.)A ball is the union of any non-empty olletion of losed balls whih ontain a ommonelement. If B1 and B2 are balls with non-empty intersetion, then B1 � B2 or B2 � B1 .A set of balls in (Y; u) is alled a nest of balls if it is totally ordered by inlusion;this is the ase as soon as every two balls in the set have a nonempty intersetion. Theintersetion of the nest is de�ned to be the intersetion of all of its balls. If it is non-empty, then it is again a ball.The ultrametri spae (Y; u) is alled spherially omplete if every nest of balls hasa nonempty intersetion. It is well known and easy to prove that this holds if and onlyif every nest of losed balls has a nonempty intersetion. If (Y; u) is spherially ompleteand B is a ball in Y , then also (B; u) is spherially omplete.Let (Y; u) and (Y 0; u0) be non-empty ultrametri spaes and f : Y ! Y 0 a map. Fory 2 Y , we will write fy instead of f(y). An element z0 2 Y 0 is alled attrator for f iffor every y 2 Y suh that z0 6= fy, there is an element z 2 Y whih satis�es:(AT1) u0(fz; z0) > u0(fy; z0),(AT2) f(B(y; z)) � B(fy; z0).Condition (AT1) says that the approximation fy of z0 from within the image of f an beimproved, and ondition (AT2) says that this an be done in a somewhat ontinuous way.The following are our main theorems.Theorem 1 Assume that z0 2 Y 0 is an attrator for f : Y ! Y 0 and that (Y; u) isspherially omplete. Then z0 2 f(Y ). 3



The map f will be alled immediate if every z0 2 Y 0 is an attrator for f .Theorem 2 Assume that f : Y ! Y 0 is immediate and that (Y; u) is spherially om-plete. Then f is surjetive and (Y 0; u0) is spherially omplete. Moreover, for every y 2 Yand every ball B0 in Y 0 ontaining fy, there is a ball B in Y ontaining y and suh thatf(B) = B0.This theorem is a generalization of a result proved in [KU1℄ for additive maps on spheri-ally omplete abelian groups (see Setion 3 for the de�nition). Theorem 2 also works inthe ase where the map f is not additive (or even when there is no addition at all). It isrelated to ultrametri �xed point theorems as proved in [P2℄, [PR1℄. Compared to them, ithas the advantage that it an be applied to situations where a natural ontrating map isnot at hand. There is also a variant of our \Attrator Theorem" (Theorem 1) whih worksfor ultrametri spaes with partially ordered value sets ([PR2℄). For further informationand appliations of ultrametri �xed point theorems, see also [SCH℄ and [PR3℄.If f is just the embedding of an ultrametri subspae Y in an ultrametri spae Y 0, then(AT2) will automatially hold. Hene, we will say that Y is an immediate subspae ofY 0 if it is an ultrametri subspae of Y 0 and for all z0 2 Y 0 and y 2 Y there is z 2 Y suhthat u0(z; z0) > u0(y; z0). Now Theorem 2 yields:Corollary 3 Assume that Y is an immediate ultrametri subspae of Y 0. If (Y; u) isspherially omplete, then Y = Y 0.It should be noted that an immediate subspae is not neessarily a dense subspae.A subspae Y of Y 0 is said to have the optimal approximation property (in Y 0) iffor every z0 2 Y 0 there is z 2 Y suh that u0(z; z0) = maxfu0(y; z0) j y 2 Y g. The elementz need not be uniquely determined. If the set fu0(y; z0) j y 2 Y g has no maximum, thenz0 is an attrator for the embedding of Y in Y 0. On the other hand, if z0 2 Y , then themaximum is u(z0; z0) =1. Thus, Theorem 1 yields:Corollary 4 Assume that Y is an ultrametri subspae of Y 0. If (Y; u) is spheriallyomplete, then it has the optimal approximation property.1.2 Appliations� The Additive Main TheoremIn some appliations, the map f is a homomorphism of abelian groups and the ultrametriu is indued by a group (or �eld) valuation (see Setion 3 for de�nitions). With thepresene of addition, balls an be shifted additively to balls that ontain 0. In thisway, the riteria for immediate maps beome muh easier to formulate and to hek (seeProposition 11). In Setion 3.1 we will prove the additive version of our Ultrametri MainTheorem (Theorem 12), whih works for homomorphisms.In Setion 3.2 we will introdue the notion of pseudo-ompanion for arbitrary mapson valued abelian groups. One an think of it as a linearization at a ertain point \up4



to terms of higher order", valuation theoretially speaking. This notion will then play anessential role when we study polynomial maps.� Hensel's Lemma revisitedLet (K; v) be a valued �eld with valuation ring O and valuation ideal M. Further, takea polynomial f 2 O[X℄ and b 2 O suh that s := f 0(b) 6= 0. In Setion 4.3 we onsider fas a map on K and prove that f indues an immediate injetive map from b + sM intof(b) + s2M (Proposition 20). Here, the pseudo-ompanion is simply multipliation bys. From Theorem 2 we obtain that if (K; v) is spherially omplete (i.e., its underlyingultrametri is spherially omplete), then this map is onto (Theorem 21).This allows a new look at Hensel's Lemma: while it is always true for (K; v) spheriallyomplete and f 0(b) 6= 0 that the above map is onto, the ondition \vf(b) � 2vf 0(b)" ofHensel's Lemma guarantees that 0 2 f(b) + s2M and onsequently, there is a 2 Ksuh that f(a) = 0 and v(a � b) > vf 0(b) (see Setion 4.4). We generalize this resultto systems of n polynomials in n variables and use it to prove that the multidimensionalHensel's Lemma holds in every spherially omplete valued �eld (Theorem 23). By an easyargument due to F. Pop, we onlude that the multidimensional Hensel's Lemma holdsin every henselian �eld (see Theorem 24). Further, we prove results on the surjetivity offuntions de�ned by power series in spherially omplete valued �elds (see Setion 4.6).Our above approah to Hensel's Lemma has also been used in a non-ommutativesetting. In [VC℄ it is applied to skew power series �elds over skew �elds.� In�nite-dimensional Impliit Funtion TheoremsThe n-fold produt of a spherially omplete ultrametri spae is again spherially om-plete (see Setion 2.2). We use this fat for the proof of the multi-dimensional Hensel'sLemma. If one thinks of generalizing this to an in�nite-dimensional version, one runs intoproblems when trying to de�ne a suitable produt. But if one restrits the sope to valuedrings with well ordered value sets, then this is possible. Using the above mentioned notionof pseudo-ompanion, we formulate in Setions 4.5 and 4.7 several in�nite-dimensional Im-pliit Funtion Theorems, for polynomial and power series maps. Suh theorems are ofinterest for B. Teissier's approah to loal uniformization in arbitrary harateristi (f.[T℄, Theorem 5.56).� VD-�eldsA VD-�eld is a valued �eld (K; v) with an additive map D : K ! K satisfying onditionsthat are a relaxation of T. Sanlon's axioms for valued D-�elds (f. [S1,2℄). Sanlon'snotion omprises both di�erential and di�erene �elds. Essential features of VD-�eldsare that the value vDa depends on the value va in a suÆiently simple way and that Dindues an additive map on the residue �eld of K (again denoted by D). The followingresult, proved in Setion 6.1, shows that in this setting, the notion of immediate mapappears in a very natural way: If (K;D; v) is a VD-�eld, then D is immediate if andonly if D is surjetive on Kv (Theorem 48). Hene we obtain from Theorem 2 that if(K;D; v) is a spherially omplete VD-�eld suh that D is surjetive on Kv, then D issurjetive on K (see Theorem 49). 5



In Setion 6.1 we will also prove the following version of Sanlon's D-Hensel's Lemma(f. [S1,2℄). By Di we denote the i-th iterate of D. The residue �eld Kv is said to belinearly D-losed if eah operator Pni=0 iDi with i 2 Kv is surjetive on Kv.Theorem 5 Let (K;D; v) be a spherially omplete VD-�eld whose residue �eld is linearlyD-losed. Take a polynomial f 2 O[X0; X1; : : : ; Xn℄ and assume that there is some b 2 Osuh that := min0�i�n v �f�Xi (b;Db; : : : ; Dnb) < 1 and vf(b;Db : : : ; Dnb) > 2 :Then there is an element a 2 K suh that f(a;Da; : : : ; Dna) = 0 and v(a� b) > .In fat, we will dedue this theorem from a muh more general Hensel's Lemma forpolynomials in several additive operators (Theorem 42 in Setion 5.2).� Rosenliht valued di�erential �eldsA valuation v on a di�erential �eld (K;D) is a di�erential valuation in the sense ofM. Rosenliht (f. [R1℄) if it satis�es an axiom that is derived from de l'Hôpital's Rule.In this ase, there is in general no simple orrespondene between the values vDa andva, and there is also no suitable map indued on the residue �eld. Yet again, immediatemaps appear naturally. We say that (K;D) admits integration if D is surjetive, andthat (K;D; v) admits asymptoti integration (f. [R2℄) if for every a0 2 K nf0g, thereis some a 2 K suh that v(a0 �Da) > va0 :In Setion 6.2, we will give the (easy) proof of the following fat: If v is a di�erentialvaluation on (K;D), then D is immediate if and only if (K;D; v) admits asymptotiintegration (see Proposition 54). Hene we obtain from Theorem 2: Let (K;D) be adi�erential �eld, endowed with a spherially omplete di�erential valuation v. If (K;D; v)admits asymptoti integration, then (K;D) admits integration (Theorem 55).In Setion 6.2 we will also prove a theorem about integration on the union of aninreasing hain of spherially omplete Rosenliht valued di�erential �elds (Theorem 56).It an be used to show that the derivation on the logarithmi-exponential power series�eld R((t))LE (f. [DMM3℄) is surjetive.When we try to prove a \di�erential Hensel's Lemma" for Rosenliht's di�erentialvaluations, we experiene tehnial problems beause of the weak orrespondene betweenthe values vDa and va. In this ase, the results are not as nie and simple as in the ase ofVD-�elds. The main results are Theorem 59, obtained from the more general Theorem 44proved in Setion 5.3, and Theorem 61, obtained from the more general Theorem 47proved in Setion 5.4. As a simple appliation we obtain a result whih was proved byLou van den Dries in [D℄ (see Corollary 63).� Sums of spherially omplete valued abelian groups6



So far, we have been interested in the surjetivity of maps. Here is an appliation wherewe use that the image of the map inherits spherial ompleteness. It is used in [KU2℄to determine elementary properties of the power series �eld F p((t)) in onnetion withadditive polynomials. A polynomial f is alled additive on an in�nite �eld K if f(a+b) = f(a) + f(b) for all a; b 2 K (f. [L℄, VIII, x11). For example, the polynomialsXp and Xp � X are additive on F p((t)) and every other �eld of harateristi p. Forevery additive polynomial f on a �eld K, the image f(K) is a subgroup of the additivegroup of K. If f1; : : : ; fn are additive polynomials with oeÆients in K, then the sumf1(K) + : : :+ fn(K) is again a subgroup of the additive group of K.If K is a maximally valued �eld (like K = F p((t)) ; f. Setion 4), then the imagef(K) of every polynomial is spherially omplete. Hene the question arises whether thesubgroup f1(K) + : : : + fn(K) is again spherially omplete. In Setion 7 we will showthat the sum of spherially omplete subgroups of a valued abelian group is spheriallyomplete (and hene has the optimal approximation property) if the sum is pseudo-diret(f. Theorem 65). The optimal approximation property of a de�nable subgroup in a valuedabelian group is an elementary property in the language of groups with a prediate forthe valuation. If the subgroups are de�nable, then also the assertion that their sum ispseudo-diret is elementary. Hene, given additive polynomials f1; : : : ; fn with oeÆientsin K = F p((t)), the assertionif f1(K) + : : :+ fn(K) is pseudo-diret, then it has the optimal approximation propertyis elementary in the language of valued �elds (enrihed by names for the oeÆients of thepolynomials fi). By Theorem 65, it holds for K = F p((t)), and for every other spheriallyomplete valued �eld (K; v). See [KU2℄ and [KU3℄ for further details.2 Ultrametri Spaes2.1 Proof of the Ultrametri Main TheoremFor the proof of Theorem 1, we show the following more preise statement:Lemma 6 Assume that z0 2 Y 0 is an attrator for f : Y ! Y 0 and that (Y; u) isspherially omplete. Then for every y 2 Y there is z0 2 Y suh that fz0 = z0 andf(B(y; z0)) � B(fy; z0).Proof: If z0 = fy then we set z0 = y and there is nothing to show. So assume thatz0 6= fy. Then by assumption on z0 there is z 2 Y suh that (AT1) and (AT2) hold. Takeelements yi; zi 2 B(y; z), i 2 I, suh that the balls B(yi; zi) form a nest inside of B(y; z),maximal with the following properties, for all i:i) z0 = fyi = fzi or u0(z0; fzi) > u0(z0; fyi),ii) f(B(yi; zi)) � B(fyi; z0),iii) for all j 2 I, u(yi; zi) < u(yj; zj) implies that u0(fyi; z0) < u0(fyj; z0).7



Non-empty nests with these properties exist. Indeed, the singleton fB(y; z)g is suha nest. Maximal nests with these properties exist by Zorn's Lemma. Take one suhmaximal nest. As soon as we �nd z0 2 B(y; z) suh that z0 = fz0 we are done beausef(B(y; z0)) � f(B(y; z)) � B(fy; z0).Assume �rst that this nest has a minimal ball, say, B(y0; z0). If z0 = fz0 then we aredone. So assume that z0 6= fz0, and set ~y := z0 . Then by assumption on z0, we an �nd~z 2 Y suh that u0(f ~z; z0) > u0(f ~y; z0) and f(B(~y; ~z)) � B(f ~y; z0) :We have that u0(f ~y; z0) = u0(fz0; z0) > u0(fy0; z0) = u0(f ~y; fy0) ; (2)where the last equality follows from the ultrametri triangle law. So we know that fy0 =2B(f ~y; z0) and thus, y0 =2 B(~y; ~z). This shows that u(~y; ~z) > u(~y; y0) = u(z0; y0), and sine~y = z0 2 B(z0; y0), it follows that B(~z; ~y) �6= B(z0; y0). So we an enlarge our nest of ballsby adding B(~z; ~y), and onditions i) and ii) hold for the new nest. From iii) we see thatu0(fy0; z0) is maximal among the u0(fyi; z0), i 2 I; so (2) shows that also iii) holds for thenew nest. But this ontradits the maximality of the hosen nest.Now assume that the nest ontains no smallest ball. Sine (Y; u) is spherially ompleteby assumption, there is some z0 2 Ti2I B(yi; zi). Suppose that fz0 6= z0. Then we set~y := z0 . For all i, we have ~y 2 B(yi; zi) and f ~y 2 f(B(yi; zi)) � B(fyi; z0), showingthat u0(f ~y; z0) � u0(fyi; z0). We hoose ~z as before. We have f(B(~y; ~z)) � B(f ~y; z0) �B(fyi; z0) for all i. On the other hand, sine the nest ontains no smallest ball, the setfu(yi; zi) j i 2 Ig has no maximal element. So iii) implies that also the set fu0(fyi; z0) ji 2 Ig has no maximal element. Consequently, for all i 2 I there is j 2 I suh thatu0(f ~y; z0) � u0(fyj; z0) > u0(fyi; z0) . Consequently, fyi =2 B(f ~y; z0), whih yields thatyi =2 B(~y; ~z). Therefore, B(~y; ~z) �6= B(yi; zi) and u(~y; ~z) > u(yi; zi) for all i. So we anenlarge our nest of balls by adding B(~y; ~z), and onditions i), ii) and iii) hold for the newnest. This again ontradits the maximality of the hosen nest. Hene, fz0 = z0 and weare done. 2Corollary 7 Assume that f : Y ! Y 0 is immediate and that (Y; u) is spherially om-plete. Then the following holds:(BB) for every y 2 Y and every ball B0 in Y 0 around fy, there is a ball B in Y aroundy suh that f(B) = B0.Proof: Assume that y 2 Y and that B0 is any ball in Y 0 whih ontains fy. Then wean write B0 = [z02B0 B(z0; fy) :Aording to the foregoing lemma, for every z0 there is z0 2 Y suh that z0 2 f(B(y; z0)) �B(fy; z0) � B0. Take B to be the union over all suh balls B(y; z0) when z0 runs throughall elements of B0. Then B is a ball around y satisfying f(B) = B0. 28



The next lemma proves Theorem 2:Lemma 8 Assume that f : Y ! Y 0 is a map whih satis�es (BB), and that (Y; u) isspherially omplete. Then f is surjetive, and (Y 0; u0) is spherially omplete.Proof: Taking B0 = Y 0, we obtain the surjetivity of f .Now we take any nest of balls fB0j j j 2 Jg in Y 0. We have to show that this nesthas a nonempty intersetion. We laim that in Y there exists a nest of balls Bi, i 2 I,maximal with the property thatI � J , and for all i 2 I, f(Bi) = B0i . (3)To show this, we �rst take any j 2 J and hoose some yj 2 Y suh that fyj 2 B0j , makinguse of the surjetivity of f . As f satis�es (BB), we an hoose a ball Bj in Y around yjand suh that f(Bj) = B0j . So the nest fBjg has property (3). Hene, a maximal nestfBi j i 2 Ig with property (3) exists by Zorn's Lemma.We wish to show that the balls B0i , i 2 I, are oinitial in the nest B0j , j 2 J , that is,for every ball B0j there is some i 2 I suh that B0i � B0j . One we have shown this we aredone: as Y is spherially omplete, there is some y 2 Ti2I Bi, andfy 2 \i2I f(Bi) = \i2IB0i = \j2JB0jshows that Tj2J B0j is non-empty.Suppose the balls B0i , i 2 I, are not oinitial in the nest B0j , j 2 J . Then there issome j 2 J suh that B0j �6= B0i for all i 2 I. Sine Y is spherially omplete, there is somey 2 Ti2I Bi . We have that fy 2 Ti2I B0i =: B0, and also that B0j � B0. By assumption,there is a ball B around y suh that f(B) = B0. If B0 happens to be the smallest ballamong the B0i , say, B0 = B0i0 with i0 2 I, then we just take B = Bi0 . If B0 �6= B0i , thenit follows that B �6= Bi . Hene in all ases, B � Bi for all i. Sine B0j � B0, we anhoose ~y 2 B suh that f ~y 2 B0j . By assumption, there is a ball Bj around ~y suh thatf(Bj) = B0j . Sine ~y 2 Bi for all i 2 I, we know that Bi , i 2 I [fjg is a nest of balls. Byonstrution, it has property (3). Sine j =2 I, this ontradits our maximality assumptionon I. This proves that the balls B0i , i 2 I, must be oinitial in the nest B0j , j 2 J . 22.2 ProdutsLet (Yi; ui), i 2 I, be ultrametri spaes whose value sets uiYi are all ontained in aommon ordered set, and assume that I is �nite or that Si2I uiYi is well ordered. Thentheir diret produt will be the artesian produt Qi2I Yi equipped with the ultrametriu : Yi2I Yi �Yi2I Yi ! [i2I uiYi [ f1g9



de�ned by u ((yi)i2I ; (zi)i2I) := mini2I ui(yi; zi) :We leave it to the reader to verify that this map satis�es (U1), (U2) and (U3). Note thatindeed every element of Si2I uiYi appears as the distane of two suitably hosen elementsof Qi2I Yi .Lemma 9 Take k 2 I and let �k : Qi2I Yi ! Yk denote the projetion onto the k-thomponent. If B is a ball in (Qi2I Yi; u), then for every k 2 I, �kB is a ball in (Yi; ui),and B = Yi2I �iB : (4)Proof: Sine B 6= ;, we have that �kB 6= ; and we an pik an element yk 2 �kB whihis the projetion of some y = (yi)i2I 2 B. We laim that�kB = [z 2BB(yk; �kz) ; (5)where B(yk; �kz) is understood to designate a ball in (Yk; uk). Sine �kz 2 B(yk; �kz),the inlusion \�" is trivial. Now take z = (zi)i2I 2 B and some xk 2 B(yk; �kz). Setx = (xi)i2I with xi := yi for k 6= i 2 I. Then u(y; x) = uk(yk; xk) � uk(yk; �kz) � u(y; z)and therefore, x 2 B and xk 2 �kB. This proves that \�", and hene equality holds in(5). As a union of balls with ommon element yk, �kB is itself a ball.The inlusion \�" in (4) is trivial. For the onverse, pik an element x = (xi)i2I 2Qi2I �iB. Then there are elements zi 2 B suh that xi = �izi for all i 2 I. Pik anarbitrary element y 2 B. Then for some j 2 I, u(y; x) = minui(yi; xi) = minui(yi; �izi) =uj(yj; �jzj) � u(y; zj). Sine y; zj 2 B, it follows that x 2 B. This proves the inlusion\�" and hene equality in (4). 2Proposition 10 If the ultrametri spaes (Yi; ui), i 2 I, are spherially omplete, thenthe same holds for their diret produt (Qi2I Yi ; u).Proof: Let B = fBj j j 2 Jg be a nest of balls in the diret produt. We have toshow that the intersetion of B is nonempty. For every i 2 I we onsider the projetions�iBj whih by the foregoing lemma are balls in (Yi; ui). Sine B is a nest, all intersetionsBj \ Bk are non-empty and therefore, all intersetions �iBj \ �iBk are non-empty. Thisproves that for eah i 2 I, f�iBj j j 2 Jg is a nest of balls in (Yi; ui). By our assumptionthat the ultrametri spaes (Yi; ui) are spherially omplete, there exist elements xi 2Tj2J �iBj for eah i. By equation (4) of the foregoing lemma, (xi)i2I 2 Bj for everyj 2 J , hene (xi)i2I 2 Tj2J Bj . 2
10



2.3 Embeddings and isomorphismsTake ultrametri spaes (Y; u) and (Y 0; u0) and a map f : Y ! Y 0. A map ' : uY ! u0Y 0will be alled a value map for f if it preserves � and satis�es u0(fy; fz) = 'u(y; z)for all y; z 2 Y , y 6= z. From the latter it follows that f is injetive sine u0(fy; fz) ='u(y; z) 2 u0Y 0 means that u0(fy; fz) 6= 1, i.e., fy 6= fz. We all f an embedding ofultrametri spaes (with value map ') if in addition, ' preserves < and hene isitself injetive. An embedding f is alled an isomorphism of ultrametri spaes if itis onto. In this ase, also ' is onto. We set '1 =1.3 Immediate maps on valued abelian groupsA valued abelian group (G; v) is an abelian group G endowed with a valuation v.That is, a 7! va is a map from G onto vG [ f1g, where vG is a totally ordered set and1 is an element bigger than all elements of vG, and the following laws hold:(V1) va =1, a = 0 ,(V2) v(a� b) � minfva; vbg (ultrametri triangle law).The value set of (G; v) is vG. For every valued abelian group (G; v), the set G endowedwith the map u : G�G! vG [ f1g ; u(a; b) := v(a� b)is an ultrametri spae. We note the following translations of properties of the ultrametri:� v(a� b) > minfva; vbg ) va = vb,� va 6= vb ) v(a� b) = minfva; vbg,� va = v(�a).A valued abelian group (G; v) is alled spherially omplete if the underlying ultra-metri spae (G; u) is spherially omplete. Standard examples for spherially ompleteabelian groups are the Hahn produts (see, e.g., [KU4℄).Observe that in a valued abelian group, any ball around 0 is a subgroup. Sine ballsare unions of losed balls, this has only to be proved for losed balls. Note thatB�(0) = fz 2 G j u(0; z) � �g = fz 2 G j vz � �gsine u(0; z) = v(0 � z) = v(�z) = vz. Take a; b 2 B�(0). Then va � � and vb � �,whene v(a � b) � � by (V2), that is, a � b 2 B�(0). This proves that every B�(0) andevery other ball B ontaining 0 is a subgroup of G. Let us note that sine every ball Bontaining 0 is a union of losed balls B�(0), it follows thaty 2 B and vz � vy ) z 2 B :Every ball ~B in (G; v) an be written in the form b+B where b 2 ~B and B = fa� b ja 2 ~Bg is a ball around 0. Hene the balls in (G; v) are preisely the osets with respetto the subgroups that are balls. 11



3.1 Immediate homomorphismsIn this setion we will give a handy riterion for group homomorphisms to be immediate.Throughout, let (G; v) and (G0; v0) be valued abelian groups.Proposition 11 Let f : G! G0 be a map suh that f0 = 0. If f is immediate, then forevery a0 2 G0 n f0g there is some a 2 G suh that(IH1) v0(a0 � fa) > v0a0,(IH2) for all b 2 G, va � vb implies v0fa � v0fb .The onverse is true if f is a group homomorphism.Proof: Suppose �rst that f is immediate, and take any a0 2 G0, a0 6= 0. Set z0 := a0and y := 0. Take z 2 G suh that onditions (AT1) and (AT2) hold, and set a := z.Then v0(a0 � fa) = u0(z0; fz) > u0(z0; fy) = v0(a0 � f0) = v0a0. Hene, (IH1) holds. Also,we obtain from the ultrametri triangle law that v0a0 = v0fa. Further, ondition (AT2)shows thatf(fb j vb � vag) = f(B(0; a)) = f(B(y; z))� B(fy; z0) = B(0; a0) = fb0 j v0b0 � v0a0 = v0fag :That is, va � vb) v0fa � v0fb, i.e., (IH2) holds.For the onverse, take any y 2 G and z0 2 G0 n ffyg. Set a0 := z0 � fy 6= 0.Choose a 2 G suh that onditions (IH1) and (IH2) hold, and set z := y + a. Thenu0(z0; fz) = v0(z0 � fz) = v0(z0 � fy � fa) = v0(a0 � fa) > v0a0 = v0(z0 � fy) = u0(z0; fy).So (AT1) holds. Also, we obtain from the ultrametri triangle law that v0fa = v0(z0�fy).To show that (AT2) holds, take any x 2 B(y; z). Then v(x� y) � v(z � y) = va. Heneby (IH2), v0(fx� fy) = v0f(x� y) � v0fa = v0(z0 � fy), so fx 2 B(fy; z0). 2By Theorem 2, we obtain:Theorem 12 Let f : G ! G0 a group homomorphism whih satis�es (IH1) and (IH2).Assume further that (G; v) is spherially omplete. Then f is surjetive and (G0; v0) isspherially omplete.Lemma 13 Let f; ~f : G ! G0 be group homomorphisms. Suppose that f is immediateand for all a 2 G, v0( ~fa� fa) > v0fa or ~fa = fa = 0 : (6)Then also ~f is immediate.Proof: If f satis�es (IH1) of Proposition 11, then v0(a0� ~fa) � minfv0(a0� fa); v0( ~fa�fa)g > v0 ~fa = v0a0, showing that also ~f satis�es (IH1). Sine (6) implies that v0 ~fa = v0fa,~f will satisfy (IH2) whenever f does. Hene by Proposition 11, ~f is immediate wheneverf is. 212



For an arbitrary map f : G! G0 we will say that a 2 G is f-regular if it is non-zeroand satis�es ondition (IH2). We will denote the set of all f -regular elements by Reg (f).Then the following holds:Proposition 14 If f : G! G0 is an immediate group homomorphism, thenva 7! v0fafor a 2 Reg (f) indues a well de�ned and �-preserving map from fva j a 2 Reg (f)gonto v0G0.Proof: If a; b 2 Reg (f) suh that va = vb, then by (IH2), v0fa � v0fb and v0fa � v0fb,whene v0fa = v0fb. This shows that the map is well de�ned. Again beause of (IH2), itpreserves �. Now take any a0 2 v0G0, a0 6= 0. Then by (IH1), there is a 2 G suh thatv0(a0 � fa) > v0a0, whene v0a0 = v0fa by the ultrametri triangle law. This proves thatthe map is onto. 23.2 Basi riteriaEven if the map f that we onsider on a valued abelian group is not a homomorphism,the presene of addition helps us to give handy and natural riteria for the map to beimmediate. We just have to work a little harder. In this setion, we present basi riteriathat will over all our appliations in the non-additive ase.Proposition 15 Take valued abelian groups (G; v) and (G0; v0), an element b 2 G, a ballB around 0 in G, a ball B0 around 0 in G0, and a map f : b+B ! fb+B0. Assume that� : B ! B0 is a map suh that for all a0 2 B0 n f0g there is a 2 Reg (�) with the followingproperties: v0(a0 � �a) > v0a0 = v0�a ; (7)andv0(fy � fz � �(y � z)) > v0�a for all y; z 2 b+B suh that v(y � z) � va . (8)Then f is immediate.If �0 = 0 then (8) needs to be heked only for y 6= z.Proof: Take z0 2 fb + B0 and y 2 b + B suh that z0 6= fy. Applying our assumptionto a0 := fy � z0 we �nd that there is some a 2 Reg (�) suh that by (7),v0(fy � z0 � �a) > v0(fy � z0) = v0�a ; (9)13



and suh that (8) holds. Set z := y � a 2 y � B = y + B = b + B. Then y � z = a andhene by (8) and (9),v0(fy � fz � �(y � z)) > v0�a = v0(fy � z0) :Consequently,v0(z0 � fz) � minfv0(z0 � fy + �a) ; v0(fy � fz � �a)g= minfv0(fy � z0 � �a) ; v0(fy � fz � �(y � z))g> v0(fy � z0) = v0(z0 � fy) :Hene (AT1) holds. Now take x 2 B(y; z) � b + B, i.e., v(y � x) � v(y � z) = va.Then v0�(y � x) � v0�a beause a 2 Reg (�), and v0(fy � fx � �(y � x)) > v0�a by (8).Therefore,v0(fy � fx) � maxfv0(fy � fx � �(y � x)) ; v0�(y � x)g � v0�a = v0(fy � z0) ;whene fx 2 B(fy; z0). Hene (AT2) holds.Assume that �0 = 0. Observe that �a 6= 0 sine a0 6= 0 and v0a0 = v0�a. Hene ify = z then v0(fy� fz � �(y� z)) = v00 =1 > v0�a, whih shows that (8) need only beheked for y 6= z. 2Note that by the ultrametri triangle law, the equality in (7) is a onsequene of theinequality. Further, observe that this proposition proves the diretion \(" of Proposi-tion 11: if we take B = G, B0 = G0 and � = f , then (IH1) implies (7) and (IH2) impliesthat a 2 Reg (�), while (8) is trivially satis�ed. Hene if for every a0 2 G0 n f0g thereis a 2 G suh that (IH1) and (IH2) hold, then the above proposition shows that f isimmediate.The following is a speial ase of the above riterion, with nier properties.Proposition 16 Take valued abelian groups (G; v) and (G0; v0), an element b 2 G, a ballB in G around 0, a ball B0 in G0 around 0, and a map f : b +B ! G0. Assume that(PC1) � : B ! B0 is immediate,(PC2) for all y; z 2 b +B,v0(fy � fz � �(y � z)) > v0(fy � fz) = v0�(y � z) or fy � fz = �(y � z) = 0 :Then f(b+B) � fb+B0, and f : b +B ! fb +B0 is immediate.If in addition � is injetive, then so is f , and if � is an embedding of ultrametrispaes with value map ', then so is f .Proof: Taking y = z, we obtain from (PC2) that �(0) = 0. So we an apply Proposi-tion 11 to �nd that � satis�es (IH1) and (IH2). Therefore, for a0 2 B0 nf0g we an hoosea 2 Reg (�) n f0g suh that v0(a0 � �a) > v0a0.14



Take y; z 2 b+B suh that v(y� z) � va . By the regularity of a, v0�(y� z) � v0�a .Hene by (PC2), v0(fy � fz � �(y � z)) = v0�(y � z) > v0�a. Now it follows fromProposition 15 that f is immediate. If in addition, � is injetive, it follows from (PC2)that also f is injetive. If � is an embedding of ultrametri spaes with value map ',then v0�(y � z) = 'v(y � z) shows that also f is an embedding with value map '. 2If the map � satis�es the onditions (PC1) and (PC2) of the foregoing proposition, itwill be alled a pseudo-ompanion of f on b +B.We will later need the following fat:Lemma 17 Let the situation be as in Proposition 16 and let �; ~� : B ! B0 be grouphomomorphisms. Suppose that v0(~�a� �a) > v0�a or ~�a = �a = 0 for all a 2 G. If � isa pseudo ompanion for f on b +B, then so is ~�.Proof: Assume that � is a pseudo-ompanion of f on b+B. Then by Proposition 13, also~� is immediate. Now take y; z 2 b+B. If �(y� z) = 0 then by assumption, ~�(y� z) = 0.Otherwise, v0(fy�fz� ~�(y�z)) � minfv0(fy�fz��(y�z)); v0(�(y�z)� ~�(y�z))g >v0�(y�z) = v0(fy�fz). This shows that also ~� is a pseudo-ompanion of f on b+B. 2
4 Immediate maps on valued �elds and their �nite-dimensional vetor spaesLet (K; v) be a valued �eld. That is, v is a valuation of its additive group, vK is a totallyordered abelian group, and the following additional law holds:(V3) v(ab) = va+ vb.The value group of (K; v) is vK := v(K�). Throughout this paper, its valuation ringfy 2 K j vy � 0g will be denoted by O, and its valuation ideal fy 2 K j vy > 0gby M. The �eld O=M is alled the residue �eld and is denoted by Kv. Note thatO = fy 2 K j vy � vg = Bv(0) and O = fy 2 K j vy > vg.A valued �eld (K; v) is alled spherially omplete if the underlying valued addi-tive group is spherially omplete (i.e., if the underlying ultrametri spae is spheriallyomplete).Main examples for spherially omplete �elds are the power series �elds k((G))with their anonial valuation. Here, k an be any �eld and G any ordered abeliangroup, and k((G)) onsists of all formal sums a = Pg2G gtg with g 2 k and well orderedsupport supp(a) = fg 2 G j g 6= 0g. The anonial valuation on k((G)) is given byva := min supp(a) 2 G and v0 :=1. Its value group is G, and its residue �eld is k.An extension (L;w) � (K; v) of valued �elds is alled immediate if the anonialembedding of vK in wL and the anonial embedding of Kv in Lw are onto. It is wellknown that this holds if and only if as ultrametri spaes, (K; v) is an immediate subspae15



of (L; v) (f. [KU4℄). A valued �eld is alled maximally valued if it admits no properimmediate extensions. It was shown by Krull ([KR℄; see also [G℄) that for every valued�eld (K; v) there is a maximal immediate extension �eld; this is maximally valued byde�nition.A valued �eld is maximally valued if and only if it is spherially omplete (f. [P1℄,[P2℄, [KU4℄). This was essentially proved by Kaplansky in [KA℄, using the notion of\pseudo Cauhy sequene" instead of \nest of balls". Every power series �eld is spheriallyomplete (f. [P2℄, [KU4℄). Hene it is maximally valued.4.1 The minimum valuationFor every n 2 N , the valuation v of K indues a valuation of the n-dimensionalK-vetor spae Kn, alled the minimum valuation:v(a1; : : : ; an) := min1�i�n vai (10)for all (a1; : : : ; an) 2 Kn. This valuation satis�es (V1) and (V2) for all a; b 2 Kn, so(Kn; v) is a valued abelian group. Instead of (V3), it satis�es(V30) v(a) = v+ va for all  2 K, a 2 Kn.Again, u(a; b) := v(a � b) makes Kn into an ultrametri spae with value set vK.If 0 6=  2 K, then we write (O)n for the n-fold produt O � : : : � O whih is thesubgroup of vetors in Kn whose entries all have value � v ; (M)n is de�ned similarly.Note that (O)n = fa j a 2 Ong = On and (M)n = Mn. For b 2 Kn,  2 K,b+On = fa 2 Kn j v(a�b) � vg = Bv(b) and b+Mn = fa 2 Kn j v(a�b) > vg :We will say that (Kn; v) is spherially omplete if its underlying ultrametri spae(Kn; u) is. Proposition 10 of Setion 2.2 implies:Lemma 18 If (K; v) is spherially omplete, then so is (Kn; v).4.2 Pseudo-linear mapsTake Y � Kn, 0 6= s 2 K and f a map from Y into Kn. We will say that f is pseudo-linear with pseudo-slope s if for all y; z 2 Y suh that y 6= z,v(fy � fz � s(y � z)) > v(fy � fz) = vs(y � z) : (11)If B is any ball in (Kn; v) around 0, then sB is again a ball in (Kn; v) around 0 andthe map B 3 x 7! sx 2 sB is an isomorphism of ultrametri spaes with value map' : � 7! � + vs. Hene pseudo-linear maps are maps with a partiularly simple pseudo-ompanion given by multipliation with a suitable salar. From Proposition 16 we obtain:16



Proposition 19 Take b 2 Kn and B a ball in (Kn; v) around 0. Assume that f : b+B !Kn is pseudo-linear with pseudo-slope s. Then f(b +B) � fb+ sB, andf : b +B ! fb+ sBis an immediate embedding of ultrametri spaes with value map ' : � 7! � + vs.If in addition, (K; v) is spherially omplete, then f is an isomorphism of ultrametrispaes from b+B onto fb+ sB.4.3 Polynomial mapsTake any n 2 N . For any system f = (f1; : : : ; fn) of n polynomials in n variables withoeÆients in K, we denote by Jf(b) its Jaobian matrix at b 2 Kn. We will denote byJ�f (b) the adjoint matrix of Jf(b).Proposition 20 a) Take a polynomial f 2 O[X℄ and b 2 O suh thats := f 0(b) 6= 0 :Then f indues a pseudo-linear map with pseudo-slope s from b + sM into f(b) + s2M.b) Take n polynomials in n variables f1; : : : ; fn 2 O[X1; : : : ; Xn℄ and b 2 On suh thats := det Jf(b) 6= 0for f = (f1; : : : ; fn). If vs = 0, then Jf(b) is a pseudo-ompanion of f on b +M and findues an embedding from b+M into f(b) +M with value map ' = id.In the general ase, J�f (b) f indues a pseudo-linear map with pseudo-slope s fromb + sMn into J�f (b)f(b) + s2MnProof: Note that whenever we prove pseudo-linearity, the assertions about the range ofthe funtions will follow from Proposition 19.a): For a polynomial f in one variable over a �eld of arbitrary harateristi, we denoteby f [i℄ its i-th formal derivative (f. [KA℄, [KU4℄). These polynomials are de�ned suhthat the following Taylor expansion holds in arbitrary harateristi:f(b+ ") = f(b) + deg fXi=1 "if [i℄(b) : (12)Note that f 0 = f [1℄. Sine f 2 O[X℄, we have that f [i℄ 2 O[X℄. Sine b 2 O, we alsohave that f [i℄(b) 2 O. Now take y; z 2 b + sM. Write y = b + "y and z = b + "z with"y; "z 2 sM. Then by (12),f(y)� f(z) = ("y � "z)f 0(b) + deg fXi=2 ("iy � "iz)f [i℄(b) = s(y � z) + S(b; "y; "z) : (13)17



Sine"iy � "iz = ("y � "z)("i�1y + (i� 1)"i�2y "z + : : :+ (i� 1)"i�2y "i�2z + "i�1y ) 2 ("y � "z)sMfor every i � 2, and sine f [i℄(b) 2 O, we �nd thatS(b; "y; "z) 2 ("y � "z)sM = s(y � z)M :This proves that v(f(y)� f(z)� s(y � z)) = vS(b; "y; "z) > vs(y � z) (14)whih implies that (11) holds. This proves a).b): We write J = Jf (b) and J� = J�f (b). Then JJ� = (det J)E = sE where E is the n�nidentity matrix. Note that J; J� 2 On�n by our assumptions on f and b. If y 2 Kn thenwe an write y = z with  2 K, v = vy, z 2 On and vz = 0. Then Jy = Jz 2 On,hene vJy = v+ vJz � v = vy. Similarly, vJ�y � vy for all y 2 Kn.Take "1; "2 2 sMn. The multidimensional Taylor expansion gives the following ana-logue of (13): f(b + "1)� f(b + "2) = J("1 � "2) + S(b; "1; "2) (15)with vS(b; "1; "2) > vs("1 � "2) : (16)Assume �rst that vs = 0. Then also J�1 = 1sJ� 2 On�n, so for all y 2 Kn, vJ�1y � vy.But then, vy = vEy = vJ�1Jy � vJy � vy, so equality must hold. We �nd thatfor all y 2 Kn, vJy = vy and similarly, vJ�y = vy. In partiular, this yields that Jindues a value-preserving automorphism of the valued abelian group (Mn;+), and anisomorphism of ultrametri spaes fromMn ontoMn with value map ' = id, with inversemaps indued by J�1. From (15) and (16) we obtain that for y = b + "1 and z = b + "2in b +M, v(f(y)� f(z) � J(y � z)) > vs(y � z) = v(y � z) = vJ(y � z) :This proves that J is a pseudo-ompanion of f on b +M. From Proposition 16 we inferthat f indues an embedding from b +M into f(b) + JM = f(b) +M with value map' = id.Now we turn to the general ase. We ompute:J�f(y)� J�f(z) = J�(f(b+ y � b)� f(b+ z � b))= J�J(y � z) + J�S(b; y � b; z � b)= s(y � z) + J�S(b; y � b; z � b) :By (16), vJ�S(b; y � b; z � b) � vS(b; y � b; z � b) > vs(y � z) :18



Hene, v (J�f(y)� J�f(z)� s(y � z)) = vJ�S(b; y � b; z � b) > vs(y � z) :This proves our assertion for the map J�f (b) f . 2Note that in the one-dimensional ase (n = 1), we may write det Jf(b) = f 0(b) andJ�f (b) = 1; in this way, the de�nition of fhbi in the one-dimensional ase beomes a speialase of the de�nition for the multi-dimensional ase.If vs > 0 in the multi-dimensional ase, then in general Jf(b) will not be a pseudo-ompanion of f . It is neessary to transform f in order to obtain suitable pseudo-ompanions. We have shown above that this an be done so that one even obtainspseudo-linear funtions.From Proposition 20 together with Propositions 19 and 16, we obtain:Theorem 21 Assume that (K; v) is spherially omplete.a) Take a polynomial f 2 O[X℄ and b 2 O suh that s := f 0(b) 6= 0. Then f induesa pseudo-linear isomorphism of ultrametri spaes from b + sM onto f(b) + s2M, withpseudo-slope s.b) Take n polynomials in n variables f1; : : : ; fn 2 O[X1; : : : ; Xn℄ and b 2 On suh thats := det Jf(b) 6= 0 for f = (f1; : : : ; fn). If vs = 0, then f indues an embedding ofultrametri spaes from b+M onto f(b) +M.In the general ase, J�f (b) f indues a pseudo-linear isomorphism of ultrametri spaesfrom b+ sMn onto J�f (b) f(b) + s2Mn, with pseudo-slope s.4.4 Hensel's Lemma and Impliit Funtion Theorem revisitedLet us apply Theorem 21 to prove that Hensel's Lemma holds for every spherially om-plete valued �eld (K; v). We prove the following version of Hensel's Lemma, whih isoften alled \Newton's Lemma":Theorem 22 Let (K; v) be a spherially omplete valued �eld. Then (K; v) satis�es theone-dimensional Newton's Lemma:Take f 2 O[X℄ and assume that b 2 O is suh that vf(b) > 2vf 0(b). Then there exists aunique root a of f suh that v(a� b) = vf(b)� vf 0(b) > vf 0(b).Proof: The inequality vf(b) > 2vf 0(b) implies that s := f 0(b) 6= 0. Hene by Theorem 21,f indues a pseudo-linear isomorphism of ultrametri spaes from b+sM onto f(b)+s2M,with pseudo-slope s. Sine vf(b) > 2vf 0(b) = vs2, we have that f(b) 2 s2M, that is,f(b)+ s2M = s2M. Therefore, 0 2 f(b)+ s2M. Sine f indues a bijetion from b+ sMonto f(b) + s2M, there is a unique a 2 b + sM suh that f(a) = 0. We have thatv(a� b) = v(f(a)� f(b))� vf 0(b) = vf(b)� vf 0(b) > vf 0(b). 2Here is the multi-dimensional version: 19



Theorem 23 Let (K; v) be a spherially omplete valued �eld. Then (K; v) satis�es themulti-dimensional Newton's Lemma:Let f = (f1; : : : ; fn) be a system of n polynomials in n variables with oeÆients in O.Assume that b 2 O n is suh that vf(b) > 2v det Jf (b). Then there exists a unique a 2 O nsuh that f(a) = 0 and v(a� b) = vJ�f (b)f(b)� v det Jf(b) > v det Jf(b).Proof: The inequality vf(b) > 2v det Jf(b) implies that s := det Jf (b) 6= 0. Heneby Theorem 21, J�f indues an isomorphism of ultrametri spaes from b + sMn intoJ�f(b)+s2Mn, where J� = J�f (b). Sine vf(b) > vs2, we have that f(b) 2 s2Mn and henealso J�f(b) 2 s2Mn (sine J� 2 On�n). That is, J�f(b) + s2Mn = s2Mn. Therefore,0 2 J�f(b) + s2Mn. Sine J�f indues a bijetion from b + sMn onto J�s�2f(b) +Mn,there is a unique a 2 b+ sMn suh that J�f(a) = 0. Sine J� is invertible, we have thatf(a) = 0, J�f(a) = 0. Hene, a is the unique element in b+sMn suh that f(a) = 0. Wehave that v(a� b) = v �J�f (b)f(a)� J�f (b)f(b)�� v det Jf(b) = vJ�f (b)f(b)� v det Jf(b) >v det Jf(b). 2Note that like in the one-dimensional ase, also in the multi-dimensional ase the proofof Newton's Lemma an be redued by transformation to a simpler ase where we wouldin fat obtain the identity as a pseudo-ompanion. But as we have already shown thateven in the general ase we an derive suitable pseudo-linear maps from f , it is muheasier to employ them diretly in the proof of the multidimensional Newton's Lemma.A valued �eld (K; v) is alled henselian if the extension of v to the algebrai losure~K of K is unique. It is well known that this holds if and only if (K; v) satis�es theone-dimensional Newton's Lemma (see, e.g., [KU4℄). We are now going to show that themulti-dimensional Newton's Lemma holds in every henselian �eld.Theorem 24 A valued �eld (K; v) is henselian if and only if it satis�es the multidimen-sional Newton's Lemma.Proof: ): Let (K; v) be henselian. Take (L; v) to be a maximal immediate extensionof (K; v). Then (L; v) is spherially omplete. By the foregoing theorem, (L; v) satis�esthe multidimensional Newton's Lemma. Denote by O the valuation ring of K, and byOL that of L. Now assume that the hypothesis of the multidimensional Newton's Lemmais satis�ed by a system f of polynomials with oeÆients in O and by b 2 O n. Itfollows that there is a unique a = (a1; : : : ; an) 2 O nL suh that f(a) = 0 and v(a � b) >v det Jf(b). From the latter, it follows that v det Jf (a) = v det Jf (b) and in partiular,det Jf(a) 6= 0. Now [L℄, Chapter X, x7, Proposition 8, shows that the elements a1; : : : ; anare separable algebrai over K. On the other hand, for every � 2 Aut ( ~KjK), the element�a = (�a1; : : : ; �an) satis�es f(�a) = �f(a) = 0 and v(�a � b) = mini v(�ai � bi) =mini v�(ai�bi) = mini v(ai�bi) = v(a�b) > v det Jf(b) (note that v� = v beause (K; v)is henselian). By the uniqueness of a, it follows that �a = a for every � 2 Aut ( ~KjK),that is, a 2 Kn, as required. 20



(: If n = 1, then det Jf(b) = f 01(b1), and the assertion is preisely the assertion of theone-dimensional Newton's Lemma. Hene the multidimensional Newton's Lemma impliesthat (K; v) is henselian. 2Using the multidimensional Newton's Lemma, one an prove the multidimensionalImpliit Funtion Theorem:Theorem 25 Let (K; v) be a henselian �eld, and let f1; : : : ; fn 2 O[X1; : : : ; Xm; Y1; : : : ; Yn℄with m < n. Set Z = (X1; : : : ; Xm; Y1; : : : ; Yn) andJ(Z) := 0BB� �f1�Y1 (Z) : : : �f1�Yn (Z)... ...�fm�Y1 (Z) : : : �fm�Yn (Z) 1CCA :Assume that f1; : : : ; fn admit a ommon zero z = (x1; : : : ; xm; y1; : : : ; yn) 2 Om+n andthat the determinant of J(z) is nonzero. Then for all (x01; : : : ; x0m) 2 Om with v(xi �x0i) > 2v det J(z), 1 � i � m, there exists a unique tuple (y01; : : : ; y0n) 2 On suh that(x01; : : : ; x0m; y01; : : : ; y0n) is a ommon zero of f1; : : : ; fm , andmin1�i�n v(yi � y0i) � min1�i�m v(xi � x0i)� v det J(z) :Proof: We observe that the entries of J(Z) and its adjoint matrix J�(Z) are polynomialsin X1; : : : ; Xm; Y1; : : : ; Yn with oeÆients in O. We set b = (x01; : : : ; x0m; y1; : : : ; yn). ThenJ�(b) is the adjoint matrix for J(b), and the entries of both matries lie inO. In partiular,this implies that vJ�(b)f(b) � vf(b).By assumption, fi(z) = 0 for 1 � i � m. Hene, the ondition v(xi�x0i) > 2 det vJ(a),1 � i � m, will imply thatvfi(b) = v (fi(x01; : : : ; x0m; y1; : : : ; yn)� f(x1 : : : ; xm; y1; : : : ; yn)) � min1�i�m v(xi � x0i)> 2v det J(x1 : : : ; xm; y1; : : : ; yn) = 2v det J(x01; : : : ; x0m; y1; : : : ; yn) = 2v det J(b)for 1 � i � m. In partiular, det J(b) 6= 0. Hene by Theorem 24, there is a uniqueommon zero (y01; : : : ; y0n) 2 On of the polynomials fi(x01; : : : ; x0m; Y1; : : : ; Yn), 1 � i � n,suh thatmin1�i�n v(yi � y0i) � vJ�(b)f(b)� v det J(b) = vJ�(b)f(b)� v det J(z)� min1�i�m vfi(b)� v det J(z) � min1�i�m v(xi � x0i)� v det J(z)This proves our assertion. 2
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4.5 An in�nite-dimensional Impliit Funtion TheoremFrom our result in Setion 2.2 it follows that an in�nite power Y I of an ultrametri spae Yan be equipped with an ultrametri uI (analogous to the minimum valuation) if the valueset uY is well ordered. In this ase, if (Y; u) is spherially omplete, then so is (Y I ; uI).So we obtain the following orollary to our Main Theorem 2 and to Proposition 16:Corollary 26 a) Take two ultrametri spaes (Y; u) and (Y 0; u0), and an arbitrary indexset I. Assume that uY is well ordered, f : Y I ! Y 0 is immediate and that (Y; u) isspherially omplete. Then f is surjetive and (Y 0; u0) is spherially omplete.b) Take two valued abelian groups (G; v) and (G0; v0), and an arbitrary index set I.Assume that vG is well ordered, b 2 GI, B is a ball around 0 in GI, f : GI ! G0 has apseudo-ompanion on b+B, and that (G; v) is spherially omplete. Then f is surjetiveand (G0; v0) is spherially omplete.In the ase of a valued �eld (K; v) we annot do the same sine if the valuation isnon-trivial, the value group will not be well ordered. If the valuation is not disrete (i.e.,its value group is not isomorphi to Z), then not even the value set vO := v(Onf0g) of thevaluation ring is well ordered. But we may be interested in in�nite systems of polynomialswith oeÆients in a subring R of O with well ordered value set vR := v(R n f0g). Weset MR := fa 2 R j va > 0g.Note that (R; v) is not neessarily spherially omplete, even if (K; v) is. So we willassume that (R; v) is spherially omplete.We generalize the de�nitions of minimum valuation and of pseudo linear map inthe obvious way. If a = (ai)i2I 2 RI , then va := mini2I vai . If Y � RI , 0 6= s 2 R andf a map from Y into RI , then f is pseudo-linear with pseudo-slope s if (11) holds forall y; z 2 Y suh that y 6= z. We then have the following appliation of Proposition 16together with Proposition 10:Proposition 27 Take b 2 RI and B a ball in (RI ; v) around 0. Assume that f : b+B !RI is pseudo-linear with pseudo-slope s 2 R and that (R; v) is spherially omplete. Thenf is an isomorphism of ultrametri spaes from b +B onto fb+ sB.If the map is given by an in�nite system of polynomials f = (fk)k2I in in�nitely manyvariables Xi , i 2 I, and with oeÆients in R, then we may onsider the in�nite matrixJf (b) 2 RI�I . Note that this matrix has only �nitely many non-zero entries in every row.We denote by R(I�I) all matries in RI�I whih have only �nitely many non-zero entriesin every row and every olumn. If every variable appears only in �nitely many fk, thenJf (b) 2 R(I�I).If we assume that R is spherially omplete, we an onsider a larger lass of matries.We denote by R((I�I)) all matries in RI�I whih for eah � 2 vR have only �nitelymany entries of value � � in every row and every olumn. For every two matries inR((I�I)), their produt an be omputed and lies again in R((I�I)). It is possible thatJf (b) 2 R((I�I)) even when there are variables that appear in in�nitely many fk.22



We de�neM(I�I)R andM((I�I))R analogously and note that R(I�I), R((I�I)),M(I�I)R andM((I�I))R are all losed under matrix addition and multipliation and under salar multi-pliation. Further, R(I�I)M(I�I)R � M(I�I)R , M(I�I)R R(I�I) � M(I�I)R , R((I�I))M((I�I))R �M((I�I))R and M((I�I))R R((I�I)) �M((I�I))R .We are not able to use determinants here. Still, we an use our original approah ifJf (b) has an inverse. But we an even work with less than invertibility. Given matriesM;MÆ in R(I�I), or in R((I�I)) if R is spherially omplete, we will say that MÆ is apseudo-inverse of M if the matries MMÆ � E and MÆM � E are in MI�IR , where Edenotes the I � I-identity matrix.Atually, we also do not need that the ring R is a subring of a valued �eld. It suÆesto assume that it is a valued abelian group with its multipliation satisfying (V3), andthat its value set is a well ordered subset of an ordered abelian group. It then follows thatthe value set does not ontain negative elements. In partiular, all entries of M 2 RI�Ihave value � 0. This implies that vMa � va for all a 2 RI . Sine vR is well ordered, itontains a minimal positive value �0. If M is inM(I�I)R or inM((I�I))R , then all entries ofM have value � �0. It then follows that vMa � va+ �0 > va for all a 2 RI .Lemma 28 Take M;MÆ in R(I�I), or in R((I�I)) if R is spherially omplete. Assumethat MÆ is a pseudo-inverse of M . Then the following holds:1) For all a 2 RI, vMa = va and vMÆa = va; in partiular, M;MÆ =2 MI�IR and thevalue set vR must ontain 0.2) If M 0 is in R(I�I), or in R((I�I)) respetively, suh that M 0 �M 2 MI�IR , then MÆ isalso a pseudo-inverse of M 0.3) Both M and MÆ indue immediate embeddings of the ultrametri spae RI in itselfwith value map id, and the same holds on every ball around 0 in RI.Proof: 1): For all a 2 RI we have that v(MMÆa � a) = v((MMÆ � E)a > va andhene va = vMMÆa � vMÆa � va. It follows that equality holds everywhere, whih givesvMÆa = va. Interhanging M and MÆ, we obtain vMa = va.2): We ompute: M 0MÆ �E = (M 0�M)MÆ +MMÆ �E 2 MI�IR , and similarly forMÆM 0 � E.3): It suÆes to show that for every ball B around 0 in RI , M indues an immediateembedding of B into itself with value map id. Sine vMa = va for all a 2 RI , we haveMB � B and that M indues an injetive map on B with value map id. As M induesa group homomorphism, we only have to show now that for every a0 2 B n f0g there isa 2 B suh that (IH1) and (IH2) of Proposition 11 hold for M in the plae of f . AsvMÆa0 = va0, we have that a := MÆa0 2 B. Further, v(a0 �Ma) = v(a0 �MMÆa0) =v(E �MMÆ)a0 > va0. Finally, if b 2 B with va � vb, then vMa = va � vb = vMb. 2Proposition 29 Assume that (R; v) is spherially omplete. Take any index set I anda system of polynomials f = (fk)k2I in variables Yi , i 2 I, with oeÆients in R. Take23



b 2 RI and suppose that Jf(b) lies in R((I�I)) and admits a pseudo-inverse in R((I�I)).Then Jf (b) is a pseudo-ompanion of f on b+MIR, and f is an isomorphism from b+MIRonto f(b) +MIR with value map id. The system f has a zero on b +MIR (whih then isunique) if and only if vf(b) > 0.Proof: Sine J = Jf (b) has a pseudo-inverse, we know from the previous lemma that Jindues an immediate embedding of MIR in itself with value map id.Take "1; "2 2 MIR. An in�nite-dimensional version of the multidimensional Taylorexpansion gives the in�nite-dimensional analogue of (15) and (16), with s = 1. We obtainthat for y = b + "1 and z = b + "2 in b +MIR with y 6= z,v(f(y)� f(z) � J(y � z)) > v(y � z) = vJ(y � z) :This proves that J is a pseudo-ompanion of f on b+MIR. From Proposition 16 we inferthat f indues an embedding of b +MIR in f(b) + JMIR � f(b) +MIR with value map' = id.The remaining assertions now follow from Proposition 16 and Theorem 2. 2Now we an prove an in�nite-dimensional Impliit Funtion Theorem:Theorem 30 Take any index sets I and I 0 and a system of polynomials f = (fk)k2I invariables Xj , j 2 I 0, and Yi , i 2 I, with oeÆients in R, and suh that eah variableYi appears in only �nitely many fk. Assume that (R; v) is spherially omplete. SetZ = (Xj; Yi j j 2 I 0; i 2 I) and J(Z) :=  �fk�Yi (Z)!k;i2I :Assume that the polynomials fk, k 2 I, admit a ommon zero z = (xj; yi j j 2 I 0; i 2 I)in RI0[I suh that J(z) admits a pseudo-inverse in R((I�I)). Then for all (x0j)j2I0 2 RI0with v(xj � x0j) > 0 there exists a unique (y0i)i2I 2 RI suh that z0 = (x0j; y0i j j 2 I 0; i 2 I)is a ommon zero of the polynomials fk , k 2 I, andmini2I v(yi � y0i) � minj2I0 v(xj � x0j) :Proof: We set ~z := (x0j; yi j j 2 I 0; i 2 I) and observe that our ondition thatv(xj � x0j) > 0 implies that v ��fk�Yi (~z)� �fk�Yi (z)� > 0. From part 2) of Lemma 28 itthus follows that the pseudo-inverse of J(z) is also a pseudo inverse of J(~z). (Note thatJ(z); J(~z) 2 R(I�I) by our ondition on the variables Yi.)For eah k 2 I we set gk(Yi j j 2 I) := fk(x0j; Yi j j 2 I 0; i 2 I). Further, we setb := (yi j i 2 I). We onsider the system g = (gk)k2I. From Proposition 29 we infer thatJg(b) = J(~z) is a pseudo-ompanion of g on b+MIR. By assumption, fk(z) = 0 for k 2 I.Hene, the ondition v(xj � x0j) > 0 will imply thatvgk(b) = vfk(~z) = v(fk(~z)� fk(z)) � minj2I0 v(xj � x0j) > 0 :24



Hene vg(b) > 0 and by Proposition 29 the system g has a unique zero a = (y0i j i 2 I) onb +MIR. It satis�esmini2I v(yi � y0i) = v(b� a) = v(g(b)� g(a)) = vg(b) � minj2I0 v(xj � x0j) : 2Remark 31 In our theorem we needed the assumption on the variables Yi in order tohave only �nitely many non-zero polynomials in eah row and eah olumn of J(Z).Without this it is not automati that the onditions J(z) 2 R((I�I)) and v(xj � x0j) > 0imply that J(~z) 2 R((I�I)). We an drop the ondition on the variables if we assumeinstead that J(~z) 2 R((I�I)) and that it has a pseudo-inverse in R((I�I)).4.6 Power series maps on valuation idealsTake any �eld k and any ordered abelian group G. We endow k((G)) with the anonialvaluation v and denote the valuation ideal by M. Every power seriesf(X) =Xi2N iX i 2 k[[X℄℄ (17)de�nes in a anonial way a map f :M!M (note: 0 =2 N in our notation). This an beshown by use of Neumann's Lemma, f. [DMM1℄. We note that for every integer r > 1and every y; z 2 M, v(yr � zr) > v(y � z) : (18)Therefore, if 1 6= 0, we have thatv(f(y)� f(z)� 1(y � z)) = vXi�2 i(yi � zi) > v(y � z) = v1(y � z) (19)beause vi = 0 for all i. So we see that f is pseudo-linear with slope 1 if 1 6= 0. ByProposition 19, we obtain:Theorem 32 If f : M!M is de�ned by the power series (17), then f is an isomor-phism of ultrametri spaes.A similar result holds for power series with generalized exponents (whih for instaneare disussed in [DS℄). Take any subgroup G of R and a generalized power series of theform f(X) =Xi2N iXri 2 k[[XG℄℄ (20)where ri , i 2 N , is an inreasing sequene of positive real numbers in G. Suppose thatthe power funtions y 7! yri are de�ned on M for all i. Then again, the generalizedpower series (20) de�nes a map f :M!M. We note that (18) also holds for every real25



number r > 1 for whih y 7! yr is de�ned on M. Hene if 1 6= 0 and r1 = 1, then (19)holds, with the exponent i replaed by ri . This shows again that f is pseudo-linear withpseudo-slope 1 . If, however, r1 6= 1, we may think of writing f(y) = ~f(yr1) with~f(X) = Xi2N iXri=r1 :If the power funtions y 7! yri=r1 are de�ned onM for all i, then ~f de�nes a pseudo-linearmap from M to M with pseudo-slope 1 . So we obtain:Theorem 33 Suppose that the power funtions y 7! yri and y 7! yri=r1 are de�ned onM for all i, and that y 7! yr1 is surjetive. If f :M!M is de�ned by the power series(20) with 1 6= 0, then f is surjetive.4.7 Power series maps and in�nite-dimensional Impliit Fun-tion TheoremsWe use again the notations and assumptions from Setion 4.5. We take R[[Xj; Yi j j 2I 0; i 2 I℄℄ to be the set of all formal power series in the variables Xj; Yi in whih for everyn 2 N only �nitely many of the Xj; Yi appear to a power less than n. In the previoussetion, our power series had well de�ned values beause we were operating in a powerseries �eld k((G)). Here, we will assume throughout that R is spherially omplete. Butthis alone does not a priori give us well de�ned values of the power series on MI0[IR .So we will assume that we have some anonial way to determine the value of a givenpower series at an element of MIR. This holds for instane if vR is arhimedean, i.e., is asubsemigroup of an arhimedean ordered abelian group.To every power series g 2 R[[Yi j i 2 I℄℄ we assoiate its 0-linear part L0g, by whihwe mean the sum of all of its monomials of total degree 1 and with a oeÆient in R ofvalue 0. This is a polynomial, i.e., ontains only �nitely many of the variables Yi. We setY = (Yi j i 2 I).Theorem 34 Assume that (R; v) is spherially omplete. Take any index sets I andI 0 and a system f = (fk)k2I where fk 2 R[[Xj; Yi j j 2 I 0; i 2 I℄℄. Assume that fk,k 2 I, admit a ommon zero z = (x; y), x 2 MI0R, y 2 MIR, suh that for the mapL(Y ) = L0f(x;Y )(Y ) : MIR ! MIR the following holds: for every a0 2 MIR n f0g there issome a 2 MIR suh that v(a0 � La) > va0 and va = va0 :Take x0 = (x0j)j2I0 2 MI0R, set � = v(x� x0) and g(Y ) = f(x0; Y ) and suppose thatv(gw� gw0 � L(w � w0)) > v(gw � gw0) for all distint w;w0 2 B�(y) : (21)Then there exists a unique (y0i)i2I 2 MIR suh that z0 = (x0j; y0i j j 2 I 0; i 2 I) is a ommonzero of fk , k 2 I, and mini2I v(yi � y0i) � � :26



Proof: Note that Lf(x0;Y )(Y ) = Lf(x;Y )(Y ) = L(Y ). We laim that L is a pseudo-ompanion of f(x0; Y ) : MIR ! MIR on B�(y). Condition (PC2) holds by assumption.As L is a group homomorphism, our onditions together with Proposition 11 show thatL :MIR !MIR is immediate; note that (IH2) holds beause if va � vb then vLa = va �vb � vLb. Now the assertion of our theorem follows as in earlier proofs. 2The following version of the above theorem has a similar proof:Theorem 35 Assume that (R; v) is spherially omplete. Take any index sets I and I 0and a system f = (fk)k2I where fk 2 R[Xj j j 2 I 0℄[[Xj j i 2 I℄℄. Assume that fk, k 2 I,admit a ommon zero z = (x; y), x 2 RI0, y 2 MIR, suh that L(Y ) = L0f(x;Y )(Y ) satis�esthe same ondition as in Theorem 34. Take x0 = (x0j)j2I0 2 RI0 suh that � = v(x�x0) > 0.Suppose that (21) holds for g(Y ) = f(x0; Y ). Then there exists a unique (y0i)i2I 2 MIRsuh that z0 = (x0j; y0i j j 2 I 0; i 2 I) is a ommon zero of the polynomials fk , k 2 I, andmini2I v(yi � y0i) � �.Alternatively, in order to obtain maps on all of R, one an onsider onvergent powerseries. We let RffXj; Yi j j 2 I 0; i 2 Igg be the set of all formal power series in thevariables Xj; Yi in whih for every � 2 vR only �nitely many monomials have oeÆientsof value less than �. Again we assume that R is spherially omplete. Then everyonvergent power series de�nes a map from R into R. In a similar way as before, one anprove:Theorem 36 Assume that (R; v) is spherially omplete. Take any index sets I and I 0and a system f = (fk)k2I where fk 2 RffXj; Yi j j 2 I 0; i 2 Igg. Assume that fk, k 2 I,admit a ommon zero z = (x; y), x 2 RI0, y 2 RI, suh that L(Y ) = L0f(x;Y )(Y ) satis�esthe same ondition as in Theorem 34. Take x0 = (x0j)j2I0 2 RI0 suh that � = v(x�x0) > 0.Suppose that (21) holds for g(Y ) = f(x0; Y ). Then there exists a unique (y0i)i2I 2 RI suhthat z0 = (x0j; y0i j j 2 I 0; i 2 I) is a ommon zero of the polynomials fk , k 2 I, andmini2I v(yi � y0i) � �.5 Polynomials in additive operatorsIn this setion, we will onsider polynomials f 2 O[X0; X1; : : : ; Xn℄ over valued �elds(K; v) and additive operators �i : K ! K, 0 � i � n. We write � = (�0; : : : ; �n). We willtry to solve equations in one variable of the formf�X := f(�0X; �1X; : : : ; �nX) = 0 :5.1 A basi resultFor any polynomial f in n+1 variables over a �eld of arbitrary harateristi, we denote byf [ i ℄ its i-th formal derivative, where i = (i0; : : : ; in) is a multi-index. These polynomials27



are de�ned suh that the following analogue of (12) holds in arbitrary harateristi:f(b + ") = f(b) +Xi2I f [ i ℄(b)"i for all b; " 2 Kn+1 ; (22)where I = f0; 1; : : : ; deg fgn+1 n f(0; : : : ; 0)g and "i = "i00 � : : : � "inn . Note that if i =(0; : : : ; 0; 1; 0; : : : ; 0) with the 1 in the j-th plae, then f [ i ℄ = �f�Xj (X0; : : : ; Xn).Lemma 37 Take f 2 O[X0; : : : ; Xn℄ and b 2 On+1, s 2 O suh thatvs = min0�i�n v �f�Xi (b) < 1 :Then for all distint y = (y0; : : : ; yn) and z = (z0; : : : ; zn) in b + sMn+1,v  f(y)� f(z) � nXi=0(yi � zi) �f�Xi (b)! > vs+ min0�i�n v(yi � zi) (23)and v(f(y)� f(z)) � vs+ min0�i�n v(yi � zi) : (24)In partiular, f(b+ sMn+1) � f(b) + s2Mn+1 :Proof: Sine f 2 O[X0; : : : ; Xn℄, we have that f [ i ℄ 2 O[X0; : : : ; Xn℄. Sine b 2 On+1,we also have that f [ i ℄(b) 2 O. Write y = b + Æ and z = b + " with Æ = (Æ0; : : : ; Æn); " =("0; : : : ; "n) 2 sMn+1. Then by (22),f(y)� f(z) = nXi=0(Æi � "i) �f�Xi (b) + Xi2I0(Æi � "i)f [ i ℄(b)where I 0 = fi 2 I j jij � 2g with jij := i0 + : : :+ in .Choose  2 M suh that v = mini v(Æi�"i) = mini v(yi�zi). Pik j 2 f0; : : : ; ng andtake i 2 I 0 suh that ij 6= 0. Let i0 2 I be the multi-index obtained from i by subtrating1 in the j-th plae. ThenÆi � "i = ÆjÆi0 � "j"i0 = (Æj � "j)Æi0 + "j(Æi0 � "i0)Suppose we have already shown by indution on jij that Æi0 � "i0 2 O. Sine Æj� "j 2 Oand Æi0 ; "j 2 sM, we then �nd that Æi � "i 2 sMfor every multi-index i with jij � 2. Sine also f [ i ℄(b) 2 O, we obtain thatf(y)� f(z) � nXi=0(Æi � "i) �f�Xi (b) = Xi2I0(Æi � "i)f [ i ℄(b) 2 sM :28



This proves (23). To prove (24), we observe thatv nXi=0(yi � zi) �f�Xi (b) � min0�i�n v(yi � zi) �f�Xi (b) � vs+ min0�i�n v(yi � zi)and therefore,v(f(y)� f(z)) �� min(v  f(y)� f(z) � nXi=0(yi � zi) �f�Xi (b)! ; v nXi=0(yi � zi) �f�Xi (b))� vs+ min0�i�n v(yi � zi) :The last assertion is obtained by applying (23) with z = b. 2Proposition 38 Take� additive operators �i : O ! O , 0 � i � n,� f 2 O[X0; : : : ; Xn℄,� b 2 O suh that at least one of the following derivatives is not zero:di := �f�Xi (�0b; �1b; : : : ; �nb) (0 � i � n); (25)� s 2 O suh that vs = min0�i�n vdi : (26)Suppose that(V�) v�ia � va for all a 2 O (0 � i � n)holds and that the additive operator� := nXi=0 di�i : sM�! s2Mhas the property that for all a0 2 s2M there is some a 2 sM suh that v(a0 � �a) > va0and va = va0 � vs. Then the maps � andb + sM3 x 7! f�x 2 f�b + s2Mare immediate.Proof: For all a 2 sM, the de�nition of s together with (V�) yieldsv�a = v nXi=0 di�ia � min0�i�n vdi�ia � min0�i�n vdi + va = vs+ va : (27)29



We wish to apply Proposition 15 to the map f�. Take distint elements y; z 2 b + sM.From (V�) it follows that bi := �ib 2 O, yi := �iy 2 O, zi := �iz 2 O with yi�bi = �i(y�b) 2 sM and zi�bi = �i(z�b) 2 sM, so (y0; : : : ; yn) ; (z0; : : : ; zn) 2 (b0; : : : ; bn)+sMn+1.Thus we an apply Lemma 37 to obtainv(f�y � f�z � �(y � z)) = v  f�y � f�z � nXi=0 di�i(y � z)!= v  f(�0y; : : : ; �ny)� f(�0z; : : : ; �nz)� nXi=0(�iy � �iz) �f�Xi (�0b; : : : ; �nb)!> vs+mini v(�iy � �iz) = vs+mini v�i(y � z) � vs+ v(y � z) :We also obtain that f�(b+ sM) � f�b + s2M.Now take any a0 2 s2M. By assumption, there is some a 2 sM suh that v(a0��a) >va0 and va = va0 � vs = v�a � vs. Take distint elements y; z 2 b + sM suh thatv(y� z) � va. By what we have shown above, v(f�y� f�z� �(y� z)) > vs+ v(y� z) �vs+ va = v�a.We have to show that a 2 Reg (�). Indeed, if va � vb, then v�a = vs + va �vs+ vb � v�b by (27). It now follows from Proposition 11 that � is immediate, and fromProposition 15 that f� is immediate. 2In the next setion, we give a riterion whih guarantees that the hypothesis of Propo-sition 38 on the operator � is satis�ed.5.2 The ase of operators ompatible with a weak oeÆientmapLet us start with the following useful observation.Lemma 39 Let (K; v) be any valued �eld. For all � 2 vK, hoose elementsm� 2 K suh that vm� = � and m0 = 1 : (28)De�ne o 0 := 0 and o a := (m�va a) v for all a 2 K n f0g :Then o has the following properties:(WCM0) o a = 0 if and only if a = 0,(WCM1) if va = 0, then o a = av,(WCM2) if va1 = va2 = : : : = vak and Pki=1 o ai 6= 0, then o (Pki=1 ai) = Pki=1 o ai ,(WCM3) if o a = o b and va = vb, then v(a� b) > va,(WCM4) if  2 vK and 0 6= a 2 Kv, then 9a 2 K : o a = a and va = .30



Proof: Sine (m�va a)v 6= 0 for a 6= 0, (WCM0) holds. Sine m0 = 1, also (WCM1)holds.If va1 = va2 = : : : = vak and Pki=1 o ai 6= 0, then m�va1 = m�va2 = : : : = m�vak and0 6= kXi=1 o ai = kXi=1(m�vai ai) v = kXi=1(m�va1 ai) v =  m�va1 kXi=1 ai! v ;whene vm�va1 Pki=1 ai = 0 and therefore, vPki=1 ai = va1 . Hene,kXi=1 o ai =  m�va1 kXi=1 ai! v = o  kXi=1 ai! :This shows that (WCM2) holds.If va = vb and o a = o b, then(m�va a) v = o a = o b = (m�vb b) v = (m�va b) v ;so 0 < v(m�vaa �m�vab) = vm�va + v(a � b) = �va + v(a � b), that is, v(a � b) > va.This shows that (WCM3) holds.If  2 vK and 0 6= a 2 Kv, we hoose a0 2 O� suh that a0v = a. Then we seta = m�1�a0. This gives va = �vm� =  and o a = (m�(m�1�a0))v = a0v = a. Hene,(WCM4) holds. 2A map o with properties (WCM0) { (WCM4) will be alled a weak oeÆient map.We will assume that the operators �i satisfy (V�); hene they indue additive operators�i on Kv: for all a 2 O, �i(av) = (�ia)v (0 � i � n) : (29)We will need some stronger ompatibility of the �i with the weak oeÆient map:Lemma 40 Assume that the operators �i satisfy (V�) and that the elements m� in (28)an be hosen suh thatfor all a 2 O, v(�im�vaa � m�va�ia) > 0 (0 � i � n) : (30)Thenfor all a 2 O and all d 2 O�, (o d) �i o a = ( o (d�ia) if v�ia = va0 if v�ia > va (31)Proof: Take any d 2 O�; then vd = 0 and hene, o d = dv. We have that(o d) �io a = (dv) �i((m�vaa)v) = (dv) (�im�vaa)v= (dv) (m�va�ia)v = (m�vad�ia)v :31



Here, the seond equality holds by equation (29), and the third equality holds by (30).Now we distinguish two ases. Suppose �rst that v�ia = va. Then(m�vad�ia)v = (m�v�iad�ia)v = (m�vd�iad�ia)v = o (d�ia) :Now suppose that v�ia > va. Then vm�vad�ia > 0 and hene, (m�vad�ia)v = 0. Thisproves that (31) holds. 2Property (31) an be expressed by saying that unit multiples of the additive operatorsommute with the oeÆient map.Proposition 41 Let the assumptions on f , b, di and s be as in Proposition 38. Assumethat the additive operators �i satisfy (V�), that o is a weak oeÆient map and that(31) holds. Suppose further that the additive operatornXi=0 i�i with i = ( o s�1di if vdi = vs0 if vdi > vson the residue �eld Kv is surjetive. Then the mapb + sM3 x 7! f�(x) 2 f�(b) + s2Mis immediate.Proof: We de�ne � as in Proposition 38. Now we just have to show that � satis�esthe assumptions of that proposition. So take any a0 2 s2M, a0 6= 0. Sine Pni=0 i�i issurjetive on Kv by assumption, there is some a 2 Kv suh that Pni=0 i�i a = o s�1a0.Property (WCM4) of the oeÆient map allows us to hoose a 2 K suh that o a = a andva = va0� vs. Thus, 0 6= a 2 sM. Set I = fi j 0 � i � n with vdi = vs and �i o a 6= 0g.Then by the de�nition of the i ,o s�1a0 = nXi=1 i�i a = Xi2I o (s�1di) �i o a= Xi2I o (s�1di�ia) = o (Xi2I s�1di�ia) ;where the third equality holds by (31). The last equality follows from (WCM2) sine theleft hand side is non-zero, being equal to o s�1a0, and beause for eah i 2 I, �i o a 6= 0implies v�ia = va by (31), and vdi = vs then yields vs�1di�ia = va so that all values areequal. By (WCM3), it follows thatv  s�1a0 � Xi2I s�1di�ia! > vs�1a0 :32



Consequently,v  a0 � Xi2I di�ia! = v  s�1a0 � Xi2I s�1di�ia!+ vs > vs�1a0 + vs = va0 :On the other hand, take i 2 I 0 := f0; : : : ; ng n I. In the ase of vdi > vs, sine v�ia �va = va0 � vs, we �nd that vdi�ia � vdi + va0 � vs > va0. Observe that a 6= 0 impliesd�ia 6= 0, and this implies o d�ia 6= 0. Hene in the ase of �i o a = 0, (31) shows thatv�ia > va and we obtain that vdi�ia > vdi + va = vdi + va0 � vs � va0. Therefore,v Xi2I0 di�ia � mini2I0 vdi�ia > va0 :This gives usv(a0 � �a) = v  a0 � nXi=0 di�ia! � min8<:v  a0 � Xi2I di�ia! ; v Xi2I0 di�ia9=; > va0 :So the onditions of Proposition 38 are satis�ed and we are done. 2In the same way as for the original Hensel's Lemma (exept for the uniqueness as-sertion), Proposition 41 yields the following generalized Hensel's Lemma in the presentsetting:Theorem 42 In addition to the assumptions of Proposition 41, suppose that (K; v) isspherially omplete and that vf�(b) > 2vs :Then there is an element a 2 K suh that f�(a) = 0 and v(a� b) > vs.5.3 The ase of a dominant operatorIn this setion, we onsider the ase where one of the additive operators, say �n (withoutloss of generality), is dominant on some ball B around 0, that is,8 a 2 B : v�na < min0�j�n�1 v�ja or �0a = �1a = : : : = �na = 0 : (32)We will not assume that (V�) holds, so we annot apply Proposition 38. Instead, weprove:Proposition 43 Let �i : O ! O, 0 � i � n, be additive operators satisfying ondition(32). With f , b and di as in Proposition 38, assume thatvdn = min0�i�n vdi : (33)Suppose further that for some balls B;B0 � dnM around 0, the map �n : B ! B0 isimmediate. Then the map b+B 3 x 7! f�x 2 f�b + dnB0 (34)is immediate. If �n is injetive on B, then (34) is injetive, too.33



Proof: We set s = dn . Take distint elements y; z 2 b + B � b + sM and setbi := �ib 2 O, yi := �iy 2 O, zi := �iz 2 O. It follows from (32) that v(yi � bi) =v�i(y� b) � v�n(y� b), and our assumption on �n yields that yi � bi 2 B0 for 0 � i � n.We obtain yi 2 bi + B0 � bi + sM and similarly, zi 2 bi + sM. Thus we an applyLemma 37 to obtain that f�(b +B) � f�b + dnB0 :We shall apply Proposition 15 in order to show that g : b+B ! f�b+dnB0 is immediate.We set � := dn�n . Pik any a0 2 dnB0, a0 6= 0. Sine �n : B ! B0 is immediate,Proposition 11 shows that there is some a 2 B suh that a 6= 0 andv  a0dn � �na! > v a0dn (35)and va � vb =) v�na � v�nb : (36)We obtain that v(a0��a) > va0 and va � vb! v�a � v�b, whih shows that (7) of Propo-sition 15 is satis�ed. Now take distint y; z 2 b + B. As in the proof of Proposition 38,we an apply Proposition 37 to obtain thatv  f�y � f�z � nXi=0 di�i(y � z)! > vs+mini v(�iy � �iz) = vs+mini v�i(y � z) :By (32), vs+mini v�i(y � z) = vs+ v�n(y � z) = vdn�n(y � z) :Again by (32), v n�1Xi=0 di�i(y � z) > vdn�n(y � z) ;and we onlude thatv(f�y�f�z� dn�n(y�z)) � minfv(f�y�f�z� nXi=0 di�i(y�z)) ; n�1Xi=0 di�i(y�z)g > vdn�n(y�z) :(37)If v(y � z) � va, then by (36), vdn�n(y � z) � vdn�na and thus, (37) yieldsv(f�y � f�z � �(y � z)) = v(f�y � f�z � dn�n(y � z)) > vdn�na = v�a :Sine �0 = 0 as � is additive, this shows that (8) is satis�ed for f� in the plae of f . NowProposition 15 proves that f� is immediate.If �n is injetive on B, then y 6= z implies vdn�n(y � z) < 1, whene f�y 6= f�z by(37). Hene in this ase, (34) is injetive. 2Proposition 43 yields the following Hensel's Lemma for the ase of a dominant opera-tor: 34



Theorem 44 In addition to the assumptions of Proposition 43, suppose that (K; v) isspherially omplete and that for some e 2 B,vf�b � vdn + v�ne : (38)Then there is an element a 2 b + B suh that f�a = 0 and v�n(a � b) � v�ne. If �n isinjetive on B, then a is unique.Proof: It just remains to show that v�n(a� b) � v�ne. By (38),vdn + v�ne � vf�b = v(f�b � f�a) = vdn + v�n(b� a) ;where the last equality follows from (37) by the ultrametri triangle law. Hene, v�n(a�b) = v�n(b� a) � v�ne. 2In Setion 6.3 we will dedue from this theorem a Hensel's Lemma for Rosenlihtvalued di�erential �elds. But this Hensel's Lemma is not strong enough. To improveit, we onsider also the values of the higher derivatives of f . So we need to modify ourapproah, whih we will do in the next setion.5.4 Rosenliht systems of operatorsWe will all �0; �1; : : : ; �n a Rosenliht system of operators if eah �i : O ! O isadditive and there exist elements ei 2 O suh thaten = 1 and ve0 � ve1 � : : : � ven = 0 ; (39)and for all i < n, vei + v�ia > v�na for all a 2 M; a 6= 0 : (40)The latter impliitly inludes the ondition that �n is injetive on M.The following is an adaptation of Lemma 37.Lemma 45 Take f 2 O[X0; X1; : : : ; Xn℄ and b 2 On+1 suh thatdn = �f�Xn (b) 6= 0and for all i 2 I = f0; : : : ; deg fgn+1 n f(0; : : : ; 0)g,vf [ i ℄(b) � vdn + vek if k = minfj j ij 6= 0g (41)where the elements ei 2 K satisfy (39). Take y = (y0; : : : ; yn) and z = (z0; : : : ; zn) inb +Mn+1 suh that vei + v(yi � zi) > v(yn � zn) for 0 � i < n : (42)Then the following holds:v(f(y)� f(z) � dn(yn � zn)) > vdn(yn � zn) = v(f(y)� f(z)) : (43)35



Proof: Write y = b + Æ 2 b +Mn+1 and z = b + " 2 b +Mn+1, where Æ = (Æ0; : : : ; Æn)and " = ("0; : : : ; "n) satisfyvei + v(Æi � "i) = vei + v(yi � zi) > v(yn � zn) for 0 � i < n : (44)We note that ven + v(Æn � "n) = v(yn � zn); so we havevei + v(Æi � "i) � v(yn � zn) for 0 � i � n : (45)Take i 2 I, jij � 2, and let i0 be the multi-index obtained from i by subtrating 1 in thek-th plae, where k = minfj j ij 6= 0g. ThenÆi � "i = (Æk � "k)Æi0 + "k(Æi0 � "i0) :Suppose that we have already shown by indution on ji0j thatve` + v(Æi0 � "i0) � v(yn � zn) for ` = minfj j i0j 6= 0g ;with the indution start for ji0j = 1 being overed by (45). We have that ` � k, henevek � ve` by (39); therefore, also vek + v(Æi0 � "i0) � v(yn� zn). Sine vek + v(Æk � "k) �v(yn � zn) by (45), and sine Æi0 ; "k 2 M, we then �ndvek + v(Æi � "i) � minfvek + v(Æk � "k) + vÆi0 ; vek + v"k + v(Æi0 � "i0)g> v(yn � zn) : (46)Take i 2 I 0 := I n f(0; : : : ; 0; 1)g. Then beause of (44), inequality (46) also holds in thease of jij = 1. Hene by hypothesis (41),v(Æi � "i)f [ i ℄(b) � vdn + vek + v(Æi � "i) > vdn + v(yn � zn) :Sine f(y)� f(z) = dn(Æn � "n) + Xi2I0(Æi � "i)f [ i ℄(b)by (22), this yieldsv(f(y)� f(z) � dn(yn � zn)) = v(f(y)� f(z) � dn(Æn � "n))= vXi2I0(Æi � "i)f [ i ℄(b) > vdn + v(yn � zn) ;whih gives the inequality in (43). The equality in (43) follows from the inequality by theultrametri triangle law. 2Proposition 46 Let �0; : : : ; �n be a Rosenliht system of operators satisfying (39) and(40). Take f , b and dn as in Proposition 45 suh that (41) holds. Suppose further thatfor some balls B;B0 �M around 0, the map �n : B ! B0 is immediate. Thenb+B 3 x 7! f�x 2 f�b + dnB0 (47)is immediate and injetive. 36



Proof: We modify the proof of Proposition 43 as follows. In order to apply Lemma 45,we set yi = �iy and zi = �iz. From (40) it follows thatvei + v(yi � zi) = vei + v(�iy � �iz) = vei + v�i(y � z)> v�n(y � z) = v(�ny � �nz) = v(yn � zn)for all y; z 2 b + B and 0 � i < n. Therefore, we an apply Lemma 45, and (43) showsthat v(f(y)� f(z)) = vdn�n(y � z) = vdn + v�n(y � z) (48)for all y; z 2 b +B. It follows thatf�(b +B) � f�b + dnB0 :As in the proof of Proposition 43 we use Proposition 15 to show that f� : b + B !f�b + dnB0 is immediate. The proof that (7) and (8) hold an be taken over literally,exept that instead of deduing (37) we just apply inequality (43) of Lemma 45 to obtainthat v(f�y � f�z � dn�n(y � z)) > vdn�n(y � z) :Sine �n is injetive on M (as a onsequene of ondition (40)), it follows as in theproof of Proposition 43 that g is injetive. 2Proposition 46 yields the following generalized Hensel's Lemma for the ase of a Rosen-liht system of operators:Theorem 47 The assertion of Theorem 44 also holds under the assumptions of Propo-sition 46.6 Immediate di�erentiationFrom now on our �i will be the i-th iterates Di of an additive operator D, with D0 beingthe identity. For a polynomials f in n+1 variables, we set fD(X) = f(X;DX;D2X; : : : ; DnX).6.1 VD-�eldsWe will all a valued �eld (K; v) with an additive map D : K ! K a VD-�eld if thefollowing onditions are satis�ed:(VDF1) vDa � va for all a 2 K,(VDF2) vK = fva j a 2 K with vDa > vag,(VDF3) there is e 2 O suh that D(ab) = aDb+ bDa + e(Da)(Db) for all a; b 2 K.Together with (VDF1), the additivity of D implies:(VDF4) D indues an additive map on Kv, again denoted by D, suh that (Da)v =D(av), 37



Proposition 48 Let (K;D; v) be a VD-�eld. Then D is immediate if and only if D issurjetive on Kv.Proof: \)": Take any a0 2 O; we have to show that D(av) = a0v for some a 2 O.Condition (IH1) implies that there is a 2 K suh that v(a0 � Da) > va0 � 0, whenea0v = (Da)v = D(av).\(": Take any a0 2 K n f0g. By (VDF2), we hoose  2 K suh that v = va0 withvD > v, and set a00 = a0=. Then va00 = 0, and sine D is surjetive on Kv, there issome a0 2 O suh that a00v = D(a0v) = (Da0)v. Hene, v(a00�Da0) > 0. We set a = a0 .We have that va0D = va0 + vD � vD > v and ve(D)(Da0) = ve + vD + vDa0 �vD > v. Hene,v(a0 �Da) = v(a00 �Da0) = v(a00 � Da0 � a0D� e(D)(Da0))� minfv+ v(a00 �Da0) ; va0D ; ve(D)(Da0)g > v = va0 :This shows that (IH1) holds. Sine D(a0v) = a00v 6= 0, we know that a0v 6= 0, that is,va0 = 0. Therefore, vDa = va0 = v = va0 = va. So we obtain from (VDF1) thatva � vb implies vDa = va � vb � vDb, for all b 2 K. Hene, also (IH2) is satis�ed. 2The next theorem is an immediate onsequene of this proposition and Theorem 2.Theorem 49 Let (K;D; v) be a spherially omplete VD-�eld. Assume that D is surje-tive on Kv. Then D is surjetive on K.As a preparation for our \D-Hensel's Lemma", we need the following fats:Lemma 50 In every VD-�eld, D1 = 0.Proof: Suppose that D1 6= 0. From (VDF3) with b = 1 we then obtain eDa = �afor all a 2 K. With a = 1 this yields e = �(D1)�1, so ve � 0 sine vD1 � v1 = 0 by(VDF1). But by (VDF2), e 2 O, so we get ve = 0. But then eDa = �a shows thatvDa = va for all a 2 K, in ontradition to (VDF2). 2Reall that by Di we denote the i-th iterate of D, with D0 being the identity map.Lemma 51 Let (K; v) be a VD-�eld and m 2 K suh that vDm > vm. Thenv �Di(ma)�mDia� > vma (49)for all a 2 K�, and vDm�1 > vm�1 : (50)38



Proof: By assumption, vaDm = va + vDm > va + vm = vma and ve(Dm)(Da) =ve + vDm+ vDa � vDm+ va > vm+ va = vma. Hene by (VDF3),v (D(ma)�mDa) � minfvaDm ; ve(Dm)(Da)g > vma :Now we proeed by indution on i. Suppose that j > 1 and that we have already shown(49) for all i < j and all a 2 K. Thenv �Dj(ma)�mDja� == v �DDj�1(ma)�D(mDj�1a) +D(mDj�1a)�mDDj�1a�� minfvD �Dj�1(ma)�mDj�1a� ; v �D(mDj�1a)�mDDj�1a�g> minfvma ; vmDj�1ag = vmasine vDj�1a � va. This proves (49).By Lemma 50 and (VDF3),0 = D1 = D(mm�1) = mDm�1 +m�1Dm+ e(Dm)(Dm�1) :From this together with veDm � vDm > vm, we infervDm�1 = vm�1Dm� v(m+ eDm) = vm�1 + vDm� vm > vm�1 ;whih proves (50). 2In every VD-�eld, ondition (V�) holds for the additive operators �i = Di. Thisfollows by indution on i (and we have used it already in the last proof). Again byindution on i, (VDF4) implies that(Dia)v = Di(av) for every i � 1 ; (51)that is, the map indued by Di on Kv is the i-th iterate of the map indued by Don Kv. Indeed, having already shown that (Di�1a)v = Di�1(av), we obtain (Dia)v =(D(Dia))v = D((Dia)v) = D(Di(av)) = Di(av).Now we an prove the following theorem:Theorem 52 Let (K;D; v) be a spherially omplete VD-�eld. Take a polynomial f 2O[X0; X1; : : : ; Xn℄ and assume that1) there is b 2 O and s 2 K with vDs > vs suh thatvs = min0�i�n v �f�Xi (b;Db; : : : ; Dnb) <1 and vfDb > 2vs ;2) the additive operatornXi=0 iDi with i =  s�1 �f�Xi (b;Db : : : ; Dnb)! v (52)on the residue �eld Kv is surjetive.Then there is an element a 2 K suh that fDa = 0 and v(a� b) > vs.39



Proof: By (VDF2), we an hoose elements m� with vm� = � and vDm� > vm�for � 2 vK; we set m0 = 1. By Lemma 39, this gives rise to a weak oeÆient mapo . Inequality (49) of Lemma 51 shows that ondition (30) of Lemma 40 holds for theelements m� and the additive operators �i = Di. Therefore, o satis�es (31) for theseoperators. Sine vDs > vs, inequality (50) of Lemma 51 shows that vDs�1 > vs�1. Thus,we an hoose mvs = s and obtain that o a = (s�1a)v whenever va = vs. With di de�nedas in Proposition 38, we thus obtain that the elements i de�ned above oinide with theelements i de�ned in Proposition 41 and that the operator Pni=0 iDi oinides with theoperator Pni=0 i�i of Proposition 41. The former being surjetive on Kv, our theoremnow follows from Theorem 42. 2This theorem yields Theorem 5. Indeed, if the assumptions of that theorem are satis-�ed, then by use of (VDF2) we pik s 2 K with vDs > vs suh that vs = . Sine Kv isassumed to be linearly D-losed, the operator (52) on Kv is surjetive, and we an applyTheorem 52.6.2 Integration on Rosenliht valued di�erential �eldsLet (K;D) be a di�erential �eld with �eld of onstants C = fa 2 K j Da = 0g. FollowingM. Rosenliht [R1℄, a valuation v of K is alled a di�erential valuation if C is a �eldof representatives for the residue �eld of (K; v) (that is, v is trivial on C and for everyy 2 K with vy = 0 there is a unique  2 C s.t. v(y � ) > 0), and v satis�es8a; b 2 K : va � 0 ^ vb > 0 ^ b 6= 0 ) v  bDaDb ! > 0 : (53)Beause of our assumption on C, this ondition is equivalent to8a; b 2 K n f0g; va 6= 0; vb 6= 0 : va � vb , vDa � vDb : (54)Lemma 53 Assume that v is a di�erential valuation with respet to D. Then for every~a 2 K there is some a 2 K suh that va 6= 0 and Da = D~a. Moreover,8a; b 2 K : (0 6= va ^ va � vb) ) vDa � vDb : (55)This shows that fa 2 K j va 6= 0g � Reg (D).Proof: If v~a = 0 then by our assumption that the �eld of onstants is a �eld ofrepresentatives for the residue �eld, there is some onstant  suh that v(~a�) > 0; henefor a := ~a�  we have that va 6= 0 and Da = D~a�D = D~a.To prove (55), assume that 0 6= va and va � vb. If vb = 0, then we hoose a onstant suh that v(b� ) > 0. So we an infer from (54) that vDa � vD(b� ) = vDb. 240



Proposition 54 Let v be a di�erential valuation on (K;D). Then D : (K; v)! (K; v)is immediate if and only if (K;D; v) admits asymptoti integration.Proof: \)": Condition (IH1) implies that (K;D; v) admits asymptoti integration.\(": Take any a0 2 K n f0g. Sine (K;D; v) admits asymptoti integration, there issome a 2 K suh that v(a0 � Da) > va0, that is, (IH1) holds. By Lemma 53, a an behosen suh that va 6= 0 and (IH2) holds. 2The next theorem is an immediate onsequene of this proposition and Theorem 2.Theorem 55 Let (K;D) be a di�erential �eld, endowed with a spherially omplete dif-ferential valuation v. Assume further that (K;D) admits asymptoti integration. Then(K;D) admits integration.For ertain appliations, one has to work with a �eld K whih is a union of an inreas-ing sequene of power series �elds Ki , i 2 N . If this sequene does not beome stationary,then K itself will not be spherially omplete. However, we still an prove the following:Theorem 56 Let (K; v) be the union of an inreasing hain (Ki; v) of spherially om-plete valued �elds, i 2 N . Let D be a derivation on K suh that v is a di�erential valuationwith respet to D. Assume further that for eah i there are elements ai;j 2 Ki+1 , j 2 Ii ,suh that1) Dai;j 2 Ki for all j 2 Ii ,2) the valued Ki-subvetor spae Vi := Ki +Pj2Ii Kiai;j of Ki+1 is spherially omplete,3) for every b 2 Ki there is some a 2 Vi suh that v(b�Da) > vb.Then (K;D) admits integration.Proof: It suÆes to show that for eah i, D is a surjetive map from Vi onto Ki . SineK = Si2NKi it then follows that D is surjetive on K.Beause of 1), we have that DVi � Ki . We set Y = Vi and Y 0 = Ki . As in the proofof Proposition 54 one uses 3) to show that D : Y ! Y 0 is immediate. From 2) togetherwith Theorem 2, one obtains that DVi = Ki . 2This theorem implies that the derivation on the logarithmi-exponential power series�eld R((t))LE (f. [DMM3℄) is surjetive. The argument is as follows. It an be shownthat R((t))LE is the union over an inreasing sequene of di�erential power series �eldsKi suh that for every i there is just one ai 2 Ki+1 suh that Dai 2 Ki and ondition 3)holds. In fat, ai = logi x for a ertain element x, where logi denotes the i-th iterate of log.Further, vai is rationally independent over vK. It follows that v(+0ai) = minfv; v0aigfor all ; 0 2 Ki , that is, the ultrametri spae underlying Vi is just the diret produt ofthe one underlying Ki and the one underlying Kiai . As the latter is isomorphi to the oneunderlying Ki , both are spherially omplete. By Proposition 10, their diret produt isspherially omplete. The foregoing theorem now proves the surjetivity of D.41



6.3 Di�erential equations on Rosenliht valued di�erential �eldsNow let us assume in addition that D(M) � M : (56)If K ontains an element x suh that vDx = 0 and vx < 0 (as it is the ase in R((t))LE,see below), then (56) is a onsequene of (54). In fat, (56) also holds in every Hardy�eld. If (56) does not hold for a derivation D, then we may replae D by the derivationaD, with 0 6= a 2 K; it follows from (54) that (56) will hold for aD in the plae of D forevery a of suÆiently high value va.Assumption (56) implies that Di(M) � M for eah i 2 N . We leave it to the readerto use this fat together with (54) to prove the following easy lemma by indution on i:Lemma 57 If (K;D; v) admits asymptoti integration, then for eah i 2 N , the mapDi :M �! MDi := [e2M(Die)O � M (57)is an immediate embedding of ultrametri spaes with value map va 7! vDia.Hene by Theorem 2, we have:Lemma 58 If (K;D; v) is spherially omplete and admits asymptoti integration, thenthe map (57) is an isomorphism of ultrametri spaes.When we try to prove a di�erential Hensel's Lemma for Rosenliht's di�erential val-uations, we have to deal with the problem that the onnetion between vDia and vDjafor i 6= j is not as nie as in the ase of D-�elds. The natural hypothesis on the partialderivatives as used in Theorem 5 may not suÆe. We need to set up a relation betweenthe values vy; vDy; : : : ; vDny. The key is de�nition (53) of a di�erential valuation. Byindution, it implies that for arbitrary e 2 M,vDiy + (n� i)vDe > vDny for 0 � i < n : (58)Beause of this relation, we will have to assume that the partial derivative of least valueappears at the variable Xn whih is assoiated with the highest power Dn of D. Thefollowing is a speial ase of Theorem 44 in Setion 5.3:Theorem 59 Let (K;D) be a di�erential �eld, endowed with a spherially omplete dif-ferential valuation v. Assume that (K;D; v) admits asymptoti integration. Take a poly-nomial g 2 O[X0; X1; : : : ; Xn℄ and assume that there are b 2 O and e 2 M suh that,with d := De, g(d�nX0; d1�nX1; : : : ; d�1Xn�1; Xn) 2 O[X0; X1; : : : ; Xn℄and v �g�Xn (b;Db; : : : ; Dnb) = min0�i�n vdi�n �g�Xi (b;Db; : : : ; Dnb) = 0 (59)42



and vgDb � vDne : (60)Then there is a unique element a 2 O suh that gDa = 0. It satis�es v(a� b) � ve.Proof: Set f(X0; : : : ; Xn) = g(d�nX0; d1�nX1; : : : ; d�1Xn�1; Xn) 2 O[X0; X1; : : : ; Xn℄.With di de�ned as in (25) of Proposition 38, it follows from (59) that 0 = vdn = mini vdi,whih shows that (33) of Proposition 43 is satis�ed. Further, we set �i := dn�iDi, B :=Mand B0 := MDn � M = dnM. Then by (58), v�na < v�ia for all i < n and a 2 M,showing that (32) holds. Sine �n(M) = Dn(M) � B0 �M, it follows that also �i(M) �M for 0 � i � n. Condition (60) tells us that ondition (38) of Theorem 44 is satis�ed.Finally, Lemma 57 tells us that Dn : M ! B0 is immediate and injetive. We haveproved that all onditions of Theorem 44 are satis�ed. Hene, there is a unique elementa 2 b +M suh that gDa = f(�0a; �1a; : : : ; �na) = 0, and it satis�es v�n(a � b) � v�ne.The latter means that vDn(a � b) � vDne, whih by (54) implies v(a � b) � ve sinea� b ; e 2 M. 2This theorem an be improved if one also onsiders the values of the higher deriva-tives of f . The formal higher derivatives f [ i ℄ have already been introdued and used inSetion 5.1. We will work with the Rosenliht system�i := Di ; ei := (De)n�ifor �xed n 2 N and some e 2 M. Then ondition (39) in Setion 5.4 is trivially satis�ed,and ondition (40) is satis�ed beause of (58). We will apply Theorem 47 to prove:Proposition 60 Take f 2 O[X0; X1; : : : ; Xn℄ and b 2 O suh thatdn = �f�Xn (b;Db; : : : ; Dnb) 6= 0and for all i 2 I = f0; : : : ; deg fgn+1 n f(0; : : : ; 0)g,vf [ i ℄(b;Db; : : : ; Dnb) � vdn + vek if k = minfj j ij 6= 0g : (61)Suppose further that for some balls B;B0 � M around 0, Dn : B ! B0 is immediate.Then b+B 3 x 7! fDx 2 fDb + dnB0 (62)is an immediate embedding of ultrametri spaes with value map va 7! vdn + vDna. If(K; v) is spherially omplete, it is an isomorphism of ultrametri spaes.Proof: All this follows from Proposition 46 and Theorem 2. It just remains to provethat (62) is an embedding of ultrametri spaes with value map va 7! vdn + vDna. Butthis follows from equation (48) of Proposition 46 and the fat that va 7! vDna for a 2 Mpreserves \<". 243



Theorem 61 Let (K;D) be a di�erential �eld, endowed with a spherially omplete dif-ferential valuation v. Assume that (K;D; v) admits asymptoti integration. Take a poly-nomial f 2 O[X0; X1; : : : ; Xn℄ and assume that there are b 2 O and e 2 M suh that8i : vf [ i ℄(b;Db; : : : ; Dnb) � v �f�Xn (b;Db; : : : ; Dnb)+(n�k)vDe if k = minfj j ij 6= 0g(63)and vfDb � vDne :Then there is a unique element a 2 M suh that f(a;Da; : : : ; Dna) = 0. It satis�esv(a� b) � ve.Proof: As in the proof of Theorem 59, we set B :=M and B0 :=MDn ; then Dn : B !B0 is immediate by Lemma 57. Now we apply Theorem 47 instead of Theorem 44. 2If K is of harateristi 0, then the usual higher derivativef ( i )(X) := �i0+:::+inf�i0X0 � � ��inXn (X)an be substituted for f [ i ℄(X) in the above theorem. Indeed,f ( i )(X) = i0! � : : : � in! � f [ i ℄(X)and therefore, vf ( i )(b;Db; : : : ; Dnb) = vf [ i ℄(b;Db; : : : ; Dnb) :In R((t))LE, the element x = t�1 satis�es vx < 0 andDx = 1. Suppose that 1 < r 2 R .Then e = 11�rx1�r 2 R((t))LE satis�es ve > 0 and De = x�r. With Ki as in the disussionat the end of Setion 6.2, take Mi to be the valuation ideal of Ki . Then 1x =2 (De)Miand it an be shown that for every a0 2 (De)Mi there is some a 2 eMi suh thatv(a0 � Da) > va0. As for the proof of Lemma 57, it an thus be dedued that for everyk � 1, Dk : eMi ! (Dke)Mi is an immediate embedding of ultrametri spaes. Hene onevery ball of the form eMi in Ki , di�erential equations of the above form an be solvedwithout any modi�ation of our approah.The union of an asending hain of henselian �elds is again henselian. With the sameidea of proof, working in Ki for all i large enough to ontain all oeÆients of h and thenpassing to the union of the Ki , one obtains, applying Theorem 61 with e as given aboveto the polynomial f(X0; : : : ; Xn) = g(X0; : : : ; Xn) + �Xn and b = 0 :Theorem 62 Let O denote the valuation ring of R((t))LE. Suppose thatg(X0; : : : ; Xn) 2 n�1Xi=0 x�(n�i)rXiO[Xi ; : : : ; Xn℄ + X2nO + XnM (64)44



and  2 x�r�n+1O :Then the di�erential equationDny = g(y;Dy; : : : ; Dny) +  (65)has a unique in�nitesimal solution in R((t))LE; this solution has value � vx1�r.This theorem implies the following result, whih was proved by Lou van den Driesin [D℄:Corollary 63 Suppose that p is a polynomial in one variable with oeÆients in R((t))LE,all of value � vtr for some r 2 R , r > 1. Then the di�erential equationDy = p(y)has a unique in�nitesimal solution in R((t))LE.7 Sums of spherially omplete valued abelian groupsLet (A; v) be a valued abelian group and A1; : : : ; An be subgroups of A. The restritionsof v to every Ai will again be denoted by v. We all the sum A1 + : : : + An � Apseudo-diret if for every a0 2 A1 + : : :+ An , a0 6= 0, there are ai 2 Ai suh thatv nXi=1 ai = min1�i�n vai and v  a0 � nXi=1 ai! > va0 : (66)Proposition 64 The sum A1 + : : : + An � A is pseudo-diret if and only if the grouphomomorphism f : A1� : : :�An ! A1+ : : :+An de�ned by f(a1; : : : ; an) := a1+ : : :+anis immediate.Proof: ): Assume that the sum A1 + : : :+ An is pseudo-diret. Take any a0 2 PiAiand hoose ai 2 Ai suh that (66) holds. Then a := (a1; : : : ; an) 2 A1 � : : :� An satis�es(IH1). If b = (b1; : : : ; bn) 2 A1 � : : :� An suh that vb � va, thenvfb = vXi bi � mini vbi = vb � va = mini vai = vXi ai = vfa :This shows that a also satis�es (IH2).(: Assume that f is immediate. Take any a0 2 PiAi , a0 6= 0. Choose a := (a1; : : : ; an) 2A1�: : :�An suh that (IH1) and (IH2) hold. Then v (a0 �Pi ai) = v(a0�fa) > va0. Nowhoose some j suh that vaj = mini vai . Then set bj = aj 2 Aj and bi = 0 2 Ai for i 6= j.For b = (b1; : : : ; bn), we thus have that va = mini vai = vaj = vbj = mini vbi = vb. Heneby (IH2), vPi ai = vfa � vfb = vbj = mini vai . We have proved that the elements aisatisfy (66). 245



If the groups (Ai; v) are spherially omplete, then by Proposition 10, the same is truefor their diret produt A := A1 � : : : � An , endowed with the minimum valuation asde�ned in (10). Hene, the foregoing proposition, Theorem 2 and Corollary 4 show:Theorem 65 Assume that the subgroups (Ai; v) of (A; v), 1 � i � n, are spheriallyomplete. If the sum A1 + : : : + An is pseudo-diret, then it is also spherially ompleteand has the optimal approximation property.
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