
Maps on ultrametri
 spa
es, Hensel's Lemma, and di�erentialequations over valued �elds1Franz-Viktor Kuhlmann15. 4. 2009Abstra
t. We give a 
riterion for maps on ultrametri
 spa
es to be surje
tive andto preserve spheri
al 
ompleteness. We show how Hensel's Lemma and the multi-dimensional Hensel's Lemma follow from our result. We give an easy proof that thelatter holds in every henselian �eld. We also prove a basi
 in�nite-dimensional Im-pli
it Fun
tion Theorem. Further, we apply the 
riterion to dedu
e various versionsof Hensel's Lemma for polynomials in several additive operators, and to give a 
rite-rion for the existen
e of integration and solutions of 
ertain di�erential equations onspheri
ally 
omplete valued di�erential �elds, for both valued D-�elds in the senseof S
anlon, and di�erentially valued �elds in the sense of Rosenli
ht. We modify theapproa
h so that it also 
overs logarithmi
-exponential power series �elds. Finally,we give a 
riterion for a sum of spheri
ally 
omplete subgroups of a valued abeliangroup to be spheri
ally 
omplete. This in turn 
an be used to determine elementaryproperties of power series �elds in positive 
hara
teristi
.Contents1 Introdu
tion 21.1 The Ultrametri
 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Appli
ations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Ultrametri
 Spa
es 72.1 Proof of the Ultrametri
 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2 Produ
ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.3 Embeddings and isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Immediate maps on valued abelian groups 113.1 Immediate homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.2 Basi
 
riteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Immediate maps on valued �elds and their �nite-dimensional ve
tor spa
es 154.1 The minimum valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164.2 Pseudo-linear maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164.3 Polynomial maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174.4 Hensel's Lemma and Impli
it Fun
tion Theorem revisited . . . . . . . . . . . . . . . . . . 194.5 An in�nite-dimensional Impli
it Fun
tion Theorem . . . . . . . . . . . . . . . . . . . . . . 224.6 Power series maps on valuation ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254.7 Power series maps and in�nite-dimensional Impli
it Fun
tion Theorems . . . . . . . . . . 261I thank Lou van den Dries for inviting me to Urbana and for making the manus
ript [D℄ availableto me. This manus
ript was the main inspiration for the results of Se
tion 6.3. I also thank FlorianPop for the key idea in the proof of Theorem 24, and the referee for his thorough reading, many usefulsuggestions, and the proof of Lemma 50. This paper has undergone a major revision during my stay atthe Newton Institute at Cambridge; I gratefully a
knowledge its support.1



5 Polynomials in additive operators 275.1 A basi
 result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275.2 The 
ase of operators 
ompatible with a weak 
oeÆ
ient map . . . . . . . . . . . . . . . . 305.3 The 
ase of a dominant operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335.4 Rosenli
ht systems of operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 Immediate di�erentiation 376.1 VD-�elds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376.2 Integration on Rosenli
ht valued di�erential �elds . . . . . . . . . . . . . . . . . . . . . . . 406.3 Di�erential equations on Rosenli
ht valued di�erential �elds . . . . . . . . . . . . . . . . . 427 Sums of spheri
ally 
omplete valued abelian groups 451 Introdu
tionHensel's Lemma (see Theorem 22) is an important tool in the theory of valued �elds. Inre
ent years, it has witnessed several generalizations. For example, su
h generalizationsare important when the valued �elds are enri
hed by additional stru
ture like derivations.But attempts have also been made to formulate Hensel's Lemma in situations with lessstru
ture. For instan
e, forgetting about multipli
ation one may 
onsider valued abeliangroups or modules. Another interesting 
ase is that of a non-
ommutative multipli
ation.In view of these developments, it is logi
al to ask for the underlying prin
iple thatmakes Hensel's Lemma work. This prin
iple should be formulated using as little algebrai
stru
ture as possible so that one 
an derive new versions of Hensel's Lemma by addingwhatever stru
ture one is interested in.It has turned out that the stru
ture suitable for su
h an underlying prin
iple is that ofultrametri
 spa
es. In [P2℄, S. Prie�-Crampe proved an ultrametri
 Fixed Point Theorem.This theorem works with 
ontra
ting maps, and indeed the Newton algorithm used toprove Hensel's Lemma for the �eld of p-adi
 numbers readily provides su
h a map. But inother situations, 
ontra
ting maps are not always instantly available. For example, if onelooks for zeros of polynomial maps on a valued �eld, it 
an be more 
onvenient to dire
tlystudy the ultrametri
 properties of these maps. The problem 
ould then be solved byshowing surje
tivity of su
h maps when restri
ted to suitable subsets of the �eld. OurUltrametri
 Main Theorem (Theorem 2) is of this nature.In the next se
tion, we give a qui
k introdu
tion to the fa
ts about ultrametri
 spa
esthat are ne
essary to understand the Ultrametri
 Main Theorem. In Se
tion 1.2 we willthen give a summary of the various appli
ations that are derived in this paper.1.1 The Ultrametri
 Main TheoremLet (Y; u) be an ultrametri
 spa
e. That is, u is a map from Y �Y onto a totally orderedset � with last element 1, satisfying that for all x; y; z 2 Y ,(U1) u(y; z) =1 if and only if y = z,(U2) u(y; z) � minfu(y; x); u(x; z)g (ultrametri
 triangle law),2



(U3) u(y; z) = u(z; y) (symmetry).It follows that� u(y; z) > minfu(y; x); u(x; z)g ) u(y; x) = u(x; z),� u(y; x) 6= u(x; z) ) u(y; z) = minfu(y; x); u(x; z)g.We will use these properties freely. We set uY := fu(y; z) j y; z 2 Y; y 6= zg = � n f1gand 
all it the value set of (Y; u).We re
all some de�nitions. For y 2 Y and � 2 uY [ f1g, we de�ne the 
losed ballaround y with radius � as follows:B�(y) := fz 2 Y j u(y; z) � �g :To fa
ilitate notation, we will also useB(x; y) := Bu(x;y)(x) :It follows from the ultrametri
 triangle law that Bu(x;y)(x) = Bu(x;y)(y) and that B(x; y)is the smallest 
losed ball 
ontaining x and y. Similarly, it follows from the ultrametri
triangle law thatB(x; y) � B(z; t) if and only if x 2 B(z; t) and u(x; y) � u(z; t) : (1)(Note: the bigger u(x; y), the 
loser x and y; this is 
ompatible with the Krull notationof valuations.)A ball is the union of any non-empty 
olle
tion of 
losed balls whi
h 
ontain a 
ommonelement. If B1 and B2 are balls with non-empty interse
tion, then B1 � B2 or B2 � B1 .A set of balls in (Y; u) is 
alled a nest of balls if it is totally ordered by in
lusion;this is the 
ase as soon as every two balls in the set have a nonempty interse
tion. Theinterse
tion of the nest is de�ned to be the interse
tion of all of its balls. If it is non-empty, then it is again a ball.The ultrametri
 spa
e (Y; u) is 
alled spheri
ally 
omplete if every nest of balls hasa nonempty interse
tion. It is well known and easy to prove that this holds if and onlyif every nest of 
losed balls has a nonempty interse
tion. If (Y; u) is spheri
ally 
ompleteand B is a ball in Y , then also (B; u) is spheri
ally 
omplete.Let (Y; u) and (Y 0; u0) be non-empty ultrametri
 spa
es and f : Y ! Y 0 a map. Fory 2 Y , we will write fy instead of f(y). An element z0 2 Y 0 is 
alled attra
tor for f iffor every y 2 Y su
h that z0 6= fy, there is an element z 2 Y whi
h satis�es:(AT1) u0(fz; z0) > u0(fy; z0),(AT2) f(B(y; z)) � B(fy; z0).Condition (AT1) says that the approximation fy of z0 from within the image of f 
an beimproved, and 
ondition (AT2) says that this 
an be done in a somewhat 
ontinuous way.The following are our main theorems.Theorem 1 Assume that z0 2 Y 0 is an attra
tor for f : Y ! Y 0 and that (Y; u) isspheri
ally 
omplete. Then z0 2 f(Y ). 3



The map f will be 
alled immediate if every z0 2 Y 0 is an attra
tor for f .Theorem 2 Assume that f : Y ! Y 0 is immediate and that (Y; u) is spheri
ally 
om-plete. Then f is surje
tive and (Y 0; u0) is spheri
ally 
omplete. Moreover, for every y 2 Yand every ball B0 in Y 0 
ontaining fy, there is a ball B in Y 
ontaining y and su
h thatf(B) = B0.This theorem is a generalization of a result proved in [KU1℄ for additive maps on spheri-
ally 
omplete abelian groups (see Se
tion 3 for the de�nition). Theorem 2 also works inthe 
ase where the map f is not additive (or even when there is no addition at all). It isrelated to ultrametri
 �xed point theorems as proved in [P2℄, [PR1℄. Compared to them, ithas the advantage that it 
an be applied to situations where a natural 
ontra
ting map isnot at hand. There is also a variant of our \Attra
tor Theorem" (Theorem 1) whi
h worksfor ultrametri
 spa
es with partially ordered value sets ([PR2℄). For further informationand appli
ations of ultrametri
 �xed point theorems, see also [SCH℄ and [PR3℄.If f is just the embedding of an ultrametri
 subspa
e Y in an ultrametri
 spa
e Y 0, then(AT2) will automati
ally hold. Hen
e, we will say that Y is an immediate subspa
e ofY 0 if it is an ultrametri
 subspa
e of Y 0 and for all z0 2 Y 0 and y 2 Y there is z 2 Y su
hthat u0(z; z0) > u0(y; z0). Now Theorem 2 yields:Corollary 3 Assume that Y is an immediate ultrametri
 subspa
e of Y 0. If (Y; u) isspheri
ally 
omplete, then Y = Y 0.It should be noted that an immediate subspa
e is not ne
essarily a dense subspa
e.A subspa
e Y of Y 0 is said to have the optimal approximation property (in Y 0) iffor every z0 2 Y 0 there is z 2 Y su
h that u0(z; z0) = maxfu0(y; z0) j y 2 Y g. The elementz need not be uniquely determined. If the set fu0(y; z0) j y 2 Y g has no maximum, thenz0 is an attra
tor for the embedding of Y in Y 0. On the other hand, if z0 2 Y , then themaximum is u(z0; z0) =1. Thus, Theorem 1 yields:Corollary 4 Assume that Y is an ultrametri
 subspa
e of Y 0. If (Y; u) is spheri
ally
omplete, then it has the optimal approximation property.1.2 Appli
ations� The Additive Main TheoremIn some appli
ations, the map f is a homomorphism of abelian groups and the ultrametri
u is indu
ed by a group (or �eld) valuation (see Se
tion 3 for de�nitions). With thepresen
e of addition, balls 
an be shifted additively to balls that 
ontain 0. In thisway, the 
riteria for immediate maps be
ome mu
h easier to formulate and to 
he
k (seeProposition 11). In Se
tion 3.1 we will prove the additive version of our Ultrametri
 MainTheorem (Theorem 12), whi
h works for homomorphisms.In Se
tion 3.2 we will introdu
e the notion of pseudo-
ompanion for arbitrary mapson valued abelian groups. One 
an think of it as a linearization at a 
ertain point \up4



to terms of higher order", valuation theoreti
ally speaking. This notion will then play anessential role when we study polynomial maps.� Hensel's Lemma revisitedLet (K; v) be a valued �eld with valuation ring O and valuation ideal M. Further, takea polynomial f 2 O[X℄ and b 2 O su
h that s := f 0(b) 6= 0. In Se
tion 4.3 we 
onsider fas a map on K and prove that f indu
es an immediate inje
tive map from b + sM intof(b) + s2M (Proposition 20). Here, the pseudo-
ompanion is simply multipli
ation bys. From Theorem 2 we obtain that if (K; v) is spheri
ally 
omplete (i.e., its underlyingultrametri
 is spheri
ally 
omplete), then this map is onto (Theorem 21).This allows a new look at Hensel's Lemma: while it is always true for (K; v) spheri
ally
omplete and f 0(b) 6= 0 that the above map is onto, the 
ondition \vf(b) � 2vf 0(b)" ofHensel's Lemma guarantees that 0 2 f(b) + s2M and 
onsequently, there is a 2 Ksu
h that f(a) = 0 and v(a � b) > vf 0(b) (see Se
tion 4.4). We generalize this resultto systems of n polynomials in n variables and use it to prove that the multidimensionalHensel's Lemma holds in every spheri
ally 
omplete valued �eld (Theorem 23). By an easyargument due to F. Pop, we 
on
lude that the multidimensional Hensel's Lemma holdsin every henselian �eld (see Theorem 24). Further, we prove results on the surje
tivity offun
tions de�ned by power series in spheri
ally 
omplete valued �elds (see Se
tion 4.6).Our above approa
h to Hensel's Lemma has also been used in a non-
ommutativesetting. In [VC℄ it is applied to skew power series �elds over skew �elds.� In�nite-dimensional Impli
it Fun
tion TheoremsThe n-fold produ
t of a spheri
ally 
omplete ultrametri
 spa
e is again spheri
ally 
om-plete (see Se
tion 2.2). We use this fa
t for the proof of the multi-dimensional Hensel'sLemma. If one thinks of generalizing this to an in�nite-dimensional version, one runs intoproblems when trying to de�ne a suitable produ
t. But if one restri
ts the s
ope to valuedrings with well ordered value sets, then this is possible. Using the above mentioned notionof pseudo-
ompanion, we formulate in Se
tions 4.5 and 4.7 several in�nite-dimensional Im-pli
it Fun
tion Theorems, for polynomial and power series maps. Su
h theorems are ofinterest for B. Teissier's approa
h to lo
al uniformization in arbitrary 
hara
teristi
 (
f.[T℄, Theorem 5.56).� VD-�eldsA VD-�eld is a valued �eld (K; v) with an additive map D : K ! K satisfying 
onditionsthat are a relaxation of T. S
anlon's axioms for valued D-�elds (
f. [S1,2℄). S
anlon'snotion 
omprises both di�erential and di�eren
e �elds. Essential features of VD-�eldsare that the value vDa depends on the value va in a suÆ
iently simple way and that Dindu
es an additive map on the residue �eld of K (again denoted by D). The followingresult, proved in Se
tion 6.1, shows that in this setting, the notion of immediate mapappears in a very natural way: If (K;D; v) is a VD-�eld, then D is immediate if andonly if D is surje
tive on Kv (Theorem 48). Hen
e we obtain from Theorem 2 that if(K;D; v) is a spheri
ally 
omplete VD-�eld su
h that D is surje
tive on Kv, then D issurje
tive on K (see Theorem 49). 5



In Se
tion 6.1 we will also prove the following version of S
anlon's D-Hensel's Lemma(
f. [S1,2℄). By Di we denote the i-th iterate of D. The residue �eld Kv is said to belinearly D-
losed if ea
h operator Pni=0 
iDi with 
i 2 Kv is surje
tive on Kv.Theorem 5 Let (K;D; v) be a spheri
ally 
omplete VD-�eld whose residue �eld is linearlyD-
losed. Take a polynomial f 2 O[X0; X1; : : : ; Xn℄ and assume that there is some b 2 Osu
h that
 := min0�i�n v �f�Xi (b;Db; : : : ; Dnb) < 1 and vf(b;Db : : : ; Dnb) > 2
 :Then there is an element a 2 K su
h that f(a;Da; : : : ; Dna) = 0 and v(a� b) > 
.In fa
t, we will dedu
e this theorem from a mu
h more general Hensel's Lemma forpolynomials in several additive operators (Theorem 42 in Se
tion 5.2).� Rosenli
ht valued di�erential �eldsA valuation v on a di�erential �eld (K;D) is a di�erential valuation in the sense ofM. Rosenli
ht (
f. [R1℄) if it satis�es an axiom that is derived from de l'Hôpital's Rule.In this 
ase, there is in general no simple 
orresponden
e between the values vDa andva, and there is also no suitable map indu
ed on the residue �eld. Yet again, immediatemaps appear naturally. We say that (K;D) admits integration if D is surje
tive, andthat (K;D; v) admits asymptoti
 integration (
f. [R2℄) if for every a0 2 K nf0g, thereis some a 2 K su
h that v(a0 �Da) > va0 :In Se
tion 6.2, we will give the (easy) proof of the following fa
t: If v is a di�erentialvaluation on (K;D), then D is immediate if and only if (K;D; v) admits asymptoti
integration (see Proposition 54). Hen
e we obtain from Theorem 2: Let (K;D) be adi�erential �eld, endowed with a spheri
ally 
omplete di�erential valuation v. If (K;D; v)admits asymptoti
 integration, then (K;D) admits integration (Theorem 55).In Se
tion 6.2 we will also prove a theorem about integration on the union of anin
reasing 
hain of spheri
ally 
omplete Rosenli
ht valued di�erential �elds (Theorem 56).It 
an be used to show that the derivation on the logarithmi
-exponential power series�eld R((t))LE (
f. [DMM3℄) is surje
tive.When we try to prove a \di�erential Hensel's Lemma" for Rosenli
ht's di�erentialvaluations, we experien
e te
hni
al problems be
ause of the weak 
orresponden
e betweenthe values vDa and va. In this 
ase, the results are not as ni
e and simple as in the 
ase ofVD-�elds. The main results are Theorem 59, obtained from the more general Theorem 44proved in Se
tion 5.3, and Theorem 61, obtained from the more general Theorem 47proved in Se
tion 5.4. As a simple appli
ation we obtain a result whi
h was proved byLou van den Dries in [D℄ (see Corollary 63).� Sums of spheri
ally 
omplete valued abelian groups6



So far, we have been interested in the surje
tivity of maps. Here is an appli
ation wherewe use that the image of the map inherits spheri
al 
ompleteness. It is used in [KU2℄to determine elementary properties of the power series �eld F p((t)) in 
onne
tion withadditive polynomials. A polynomial f is 
alled additive on an in�nite �eld K if f(a+b) = f(a) + f(b) for all a; b 2 K (
f. [L℄, VIII, x11). For example, the polynomialsXp and Xp � X are additive on F p((t)) and every other �eld of 
hara
teristi
 p. Forevery additive polynomial f on a �eld K, the image f(K) is a subgroup of the additivegroup of K. If f1; : : : ; fn are additive polynomials with 
oeÆ
ients in K, then the sumf1(K) + : : :+ fn(K) is again a subgroup of the additive group of K.If K is a maximally valued �eld (like K = F p((t)) ; 
f. Se
tion 4), then the imagef(K) of every polynomial is spheri
ally 
omplete. Hen
e the question arises whether thesubgroup f1(K) + : : : + fn(K) is again spheri
ally 
omplete. In Se
tion 7 we will showthat the sum of spheri
ally 
omplete subgroups of a valued abelian group is spheri
ally
omplete (and hen
e has the optimal approximation property) if the sum is pseudo-dire
t(
f. Theorem 65). The optimal approximation property of a de�nable subgroup in a valuedabelian group is an elementary property in the language of groups with a predi
ate forthe valuation. If the subgroups are de�nable, then also the assertion that their sum ispseudo-dire
t is elementary. Hen
e, given additive polynomials f1; : : : ; fn with 
oeÆ
ientsin K = F p((t)), the assertionif f1(K) + : : :+ fn(K) is pseudo-dire
t, then it has the optimal approximation propertyis elementary in the language of valued �elds (enri
hed by names for the 
oeÆ
ients of thepolynomials fi). By Theorem 65, it holds for K = F p((t)), and for every other spheri
ally
omplete valued �eld (K; v). See [KU2℄ and [KU3℄ for further details.2 Ultrametri
 Spa
es2.1 Proof of the Ultrametri
 Main TheoremFor the proof of Theorem 1, we show the following more pre
ise statement:Lemma 6 Assume that z0 2 Y 0 is an attra
tor for f : Y ! Y 0 and that (Y; u) isspheri
ally 
omplete. Then for every y 2 Y there is z0 2 Y su
h that fz0 = z0 andf(B(y; z0)) � B(fy; z0).Proof: If z0 = fy then we set z0 = y and there is nothing to show. So assume thatz0 6= fy. Then by assumption on z0 there is z 2 Y su
h that (AT1) and (AT2) hold. Takeelements yi; zi 2 B(y; z), i 2 I, su
h that the balls B(yi; zi) form a nest inside of B(y; z),maximal with the following properties, for all i:i) z0 = fyi = fzi or u0(z0; fzi) > u0(z0; fyi),ii) f(B(yi; zi)) � B(fyi; z0),iii) for all j 2 I, u(yi; zi) < u(yj; zj) implies that u0(fyi; z0) < u0(fyj; z0).7



Non-empty nests with these properties exist. Indeed, the singleton fB(y; z)g is su
ha nest. Maximal nests with these properties exist by Zorn's Lemma. Take one su
hmaximal nest. As soon as we �nd z0 2 B(y; z) su
h that z0 = fz0 we are done be
ausef(B(y; z0)) � f(B(y; z)) � B(fy; z0).Assume �rst that this nest has a minimal ball, say, B(y0; z0). If z0 = fz0 then we aredone. So assume that z0 6= fz0, and set ~y := z0 . Then by assumption on z0, we 
an �nd~z 2 Y su
h that u0(f ~z; z0) > u0(f ~y; z0) and f(B(~y; ~z)) � B(f ~y; z0) :We have that u0(f ~y; z0) = u0(fz0; z0) > u0(fy0; z0) = u0(f ~y; fy0) ; (2)where the last equality follows from the ultrametri
 triangle law. So we know that fy0 =2B(f ~y; z0) and thus, y0 =2 B(~y; ~z). This shows that u(~y; ~z) > u(~y; y0) = u(z0; y0), and sin
e~y = z0 2 B(z0; y0), it follows that B(~z; ~y) �6= B(z0; y0). So we 
an enlarge our nest of ballsby adding B(~z; ~y), and 
onditions i) and ii) hold for the new nest. From iii) we see thatu0(fy0; z0) is maximal among the u0(fyi; z0), i 2 I; so (2) shows that also iii) holds for thenew nest. But this 
ontradi
ts the maximality of the 
hosen nest.Now assume that the nest 
ontains no smallest ball. Sin
e (Y; u) is spheri
ally 
ompleteby assumption, there is some z0 2 Ti2I B(yi; zi). Suppose that fz0 6= z0. Then we set~y := z0 . For all i, we have ~y 2 B(yi; zi) and f ~y 2 f(B(yi; zi)) � B(fyi; z0), showingthat u0(f ~y; z0) � u0(fyi; z0). We 
hoose ~z as before. We have f(B(~y; ~z)) � B(f ~y; z0) �B(fyi; z0) for all i. On the other hand, sin
e the nest 
ontains no smallest ball, the setfu(yi; zi) j i 2 Ig has no maximal element. So iii) implies that also the set fu0(fyi; z0) ji 2 Ig has no maximal element. Consequently, for all i 2 I there is j 2 I su
h thatu0(f ~y; z0) � u0(fyj; z0) > u0(fyi; z0) . Consequently, fyi =2 B(f ~y; z0), whi
h yields thatyi =2 B(~y; ~z). Therefore, B(~y; ~z) �6= B(yi; zi) and u(~y; ~z) > u(yi; zi) for all i. So we 
anenlarge our nest of balls by adding B(~y; ~z), and 
onditions i), ii) and iii) hold for the newnest. This again 
ontradi
ts the maximality of the 
hosen nest. Hen
e, fz0 = z0 and weare done. 2Corollary 7 Assume that f : Y ! Y 0 is immediate and that (Y; u) is spheri
ally 
om-plete. Then the following holds:(BB) for every y 2 Y and every ball B0 in Y 0 around fy, there is a ball B in Y aroundy su
h that f(B) = B0.Proof: Assume that y 2 Y and that B0 is any ball in Y 0 whi
h 
ontains fy. Then we
an write B0 = [z02B0 B(z0; fy) :A

ording to the foregoing lemma, for every z0 there is z0 2 Y su
h that z0 2 f(B(y; z0)) �B(fy; z0) � B0. Take B to be the union over all su
h balls B(y; z0) when z0 runs throughall elements of B0. Then B is a ball around y satisfying f(B) = B0. 28



The next lemma proves Theorem 2:Lemma 8 Assume that f : Y ! Y 0 is a map whi
h satis�es (BB), and that (Y; u) isspheri
ally 
omplete. Then f is surje
tive, and (Y 0; u0) is spheri
ally 
omplete.Proof: Taking B0 = Y 0, we obtain the surje
tivity of f .Now we take any nest of balls fB0j j j 2 Jg in Y 0. We have to show that this nesthas a nonempty interse
tion. We 
laim that in Y there exists a nest of balls Bi, i 2 I,maximal with the property thatI � J , and for all i 2 I, f(Bi) = B0i . (3)To show this, we �rst take any j 2 J and 
hoose some yj 2 Y su
h that fyj 2 B0j , makinguse of the surje
tivity of f . As f satis�es (BB), we 
an 
hoose a ball Bj in Y around yjand su
h that f(Bj) = B0j . So the nest fBjg has property (3). Hen
e, a maximal nestfBi j i 2 Ig with property (3) exists by Zorn's Lemma.We wish to show that the balls B0i , i 2 I, are 
oinitial in the nest B0j , j 2 J , that is,for every ball B0j there is some i 2 I su
h that B0i � B0j . On
e we have shown this we aredone: as Y is spheri
ally 
omplete, there is some y 2 Ti2I Bi, andfy 2 \i2I f(Bi) = \i2IB0i = \j2JB0jshows that Tj2J B0j is non-empty.Suppose the balls B0i , i 2 I, are not 
oinitial in the nest B0j , j 2 J . Then there issome j 2 J su
h that B0j �6= B0i for all i 2 I. Sin
e Y is spheri
ally 
omplete, there is somey 2 Ti2I Bi . We have that fy 2 Ti2I B0i =: B0, and also that B0j � B0. By assumption,there is a ball B around y su
h that f(B) = B0. If B0 happens to be the smallest ballamong the B0i , say, B0 = B0i0 with i0 2 I, then we just take B = Bi0 . If B0 �6= B0i , thenit follows that B �6= Bi . Hen
e in all 
ases, B � Bi for all i. Sin
e B0j � B0, we 
an
hoose ~y 2 B su
h that f ~y 2 B0j . By assumption, there is a ball Bj around ~y su
h thatf(Bj) = B0j . Sin
e ~y 2 Bi for all i 2 I, we know that Bi , i 2 I [fjg is a nest of balls. By
onstru
tion, it has property (3). Sin
e j =2 I, this 
ontradi
ts our maximality assumptionon I. This proves that the balls B0i , i 2 I, must be 
oinitial in the nest B0j , j 2 J . 22.2 Produ
tsLet (Yi; ui), i 2 I, be ultrametri
 spa
es whose value sets uiYi are all 
ontained in a
ommon ordered set, and assume that I is �nite or that Si2I uiYi is well ordered. Thentheir dire
t produ
t will be the 
artesian produ
t Qi2I Yi equipped with the ultrametri
u : Yi2I Yi �Yi2I Yi ! [i2I uiYi [ f1g9



de�ned by u ((yi)i2I ; (zi)i2I) := mini2I ui(yi; zi) :We leave it to the reader to verify that this map satis�es (U1), (U2) and (U3). Note thatindeed every element of Si2I uiYi appears as the distan
e of two suitably 
hosen elementsof Qi2I Yi .Lemma 9 Take k 2 I and let �k : Qi2I Yi ! Yk denote the proje
tion onto the k-th
omponent. If B is a ball in (Qi2I Yi; u), then for every k 2 I, �kB is a ball in (Yi; ui),and B = Yi2I �iB : (4)Proof: Sin
e B 6= ;, we have that �kB 6= ; and we 
an pi
k an element yk 2 �kB whi
his the proje
tion of some y = (yi)i2I 2 B. We 
laim that�kB = [z 2BB(yk; �kz) ; (5)where B(yk; �kz) is understood to designate a ball in (Yk; uk). Sin
e �kz 2 B(yk; �kz),the in
lusion \�" is trivial. Now take z = (zi)i2I 2 B and some xk 2 B(yk; �kz). Setx = (xi)i2I with xi := yi for k 6= i 2 I. Then u(y; x) = uk(yk; xk) � uk(yk; �kz) � u(y; z)and therefore, x 2 B and xk 2 �kB. This proves that \�", and hen
e equality holds in(5). As a union of balls with 
ommon element yk, �kB is itself a ball.The in
lusion \�" in (4) is trivial. For the 
onverse, pi
k an element x = (xi)i2I 2Qi2I �iB. Then there are elements zi 2 B su
h that xi = �izi for all i 2 I. Pi
k anarbitrary element y 2 B. Then for some j 2 I, u(y; x) = minui(yi; xi) = minui(yi; �izi) =uj(yj; �jzj) � u(y; zj). Sin
e y; zj 2 B, it follows that x 2 B. This proves the in
lusion\�" and hen
e equality in (4). 2Proposition 10 If the ultrametri
 spa
es (Yi; ui), i 2 I, are spheri
ally 
omplete, thenthe same holds for their dire
t produ
t (Qi2I Yi ; u).Proof: Let B = fBj j j 2 Jg be a nest of balls in the dire
t produ
t. We have toshow that the interse
tion of B is nonempty. For every i 2 I we 
onsider the proje
tions�iBj whi
h by the foregoing lemma are balls in (Yi; ui). Sin
e B is a nest, all interse
tionsBj \ Bk are non-empty and therefore, all interse
tions �iBj \ �iBk are non-empty. Thisproves that for ea
h i 2 I, f�iBj j j 2 Jg is a nest of balls in (Yi; ui). By our assumptionthat the ultrametri
 spa
es (Yi; ui) are spheri
ally 
omplete, there exist elements xi 2Tj2J �iBj for ea
h i. By equation (4) of the foregoing lemma, (xi)i2I 2 Bj for everyj 2 J , hen
e (xi)i2I 2 Tj2J Bj . 2
10



2.3 Embeddings and isomorphismsTake ultrametri
 spa
es (Y; u) and (Y 0; u0) and a map f : Y ! Y 0. A map ' : uY ! u0Y 0will be 
alled a value map for f if it preserves � and satis�es u0(fy; fz) = 'u(y; z)for all y; z 2 Y , y 6= z. From the latter it follows that f is inje
tive sin
e u0(fy; fz) ='u(y; z) 2 u0Y 0 means that u0(fy; fz) 6= 1, i.e., fy 6= fz. We 
all f an embedding ofultrametri
 spa
es (with value map ') if in addition, ' preserves < and hen
e isitself inje
tive. An embedding f is 
alled an isomorphism of ultrametri
 spa
es if itis onto. In this 
ase, also ' is onto. We set '1 =1.3 Immediate maps on valued abelian groupsA valued abelian group (G; v) is an abelian group G endowed with a valuation v.That is, a 7! va is a map from G onto vG [ f1g, where vG is a totally ordered set and1 is an element bigger than all elements of vG, and the following laws hold:(V1) va =1, a = 0 ,(V2) v(a� b) � minfva; vbg (ultrametri
 triangle law).The value set of (G; v) is vG. For every valued abelian group (G; v), the set G endowedwith the map u : G�G! vG [ f1g ; u(a; b) := v(a� b)is an ultrametri
 spa
e. We note the following translations of properties of the ultrametri
:� v(a� b) > minfva; vbg ) va = vb,� va 6= vb ) v(a� b) = minfva; vbg,� va = v(�a).A valued abelian group (G; v) is 
alled spheri
ally 
omplete if the underlying ultra-metri
 spa
e (G; u) is spheri
ally 
omplete. Standard examples for spheri
ally 
ompleteabelian groups are the Hahn produ
ts (see, e.g., [KU4℄).Observe that in a valued abelian group, any ball around 0 is a subgroup. Sin
e ballsare unions of 
losed balls, this has only to be proved for 
losed balls. Note thatB�(0) = fz 2 G j u(0; z) � �g = fz 2 G j vz � �gsin
e u(0; z) = v(0 � z) = v(�z) = vz. Take a; b 2 B�(0). Then va � � and vb � �,when
e v(a � b) � � by (V2), that is, a � b 2 B�(0). This proves that every B�(0) andevery other ball B 
ontaining 0 is a subgroup of G. Let us note that sin
e every ball B
ontaining 0 is a union of 
losed balls B�(0), it follows thaty 2 B and vz � vy ) z 2 B :Every ball ~B in (G; v) 
an be written in the form b+B where b 2 ~B and B = fa� b ja 2 ~Bg is a ball around 0. Hen
e the balls in (G; v) are pre
isely the 
osets with respe
tto the subgroups that are balls. 11



3.1 Immediate homomorphismsIn this se
tion we will give a handy 
riterion for group homomorphisms to be immediate.Throughout, let (G; v) and (G0; v0) be valued abelian groups.Proposition 11 Let f : G! G0 be a map su
h that f0 = 0. If f is immediate, then forevery a0 2 G0 n f0g there is some a 2 G su
h that(IH1) v0(a0 � fa) > v0a0,(IH2) for all b 2 G, va � vb implies v0fa � v0fb .The 
onverse is true if f is a group homomorphism.Proof: Suppose �rst that f is immediate, and take any a0 2 G0, a0 6= 0. Set z0 := a0and y := 0. Take z 2 G su
h that 
onditions (AT1) and (AT2) hold, and set a := z.Then v0(a0 � fa) = u0(z0; fz) > u0(z0; fy) = v0(a0 � f0) = v0a0. Hen
e, (IH1) holds. Also,we obtain from the ultrametri
 triangle law that v0a0 = v0fa. Further, 
ondition (AT2)shows thatf(fb j vb � vag) = f(B(0; a)) = f(B(y; z))� B(fy; z0) = B(0; a0) = fb0 j v0b0 � v0a0 = v0fag :That is, va � vb) v0fa � v0fb, i.e., (IH2) holds.For the 
onverse, take any y 2 G and z0 2 G0 n ffyg. Set a0 := z0 � fy 6= 0.Choose a 2 G su
h that 
onditions (IH1) and (IH2) hold, and set z := y + a. Thenu0(z0; fz) = v0(z0 � fz) = v0(z0 � fy � fa) = v0(a0 � fa) > v0a0 = v0(z0 � fy) = u0(z0; fy).So (AT1) holds. Also, we obtain from the ultrametri
 triangle law that v0fa = v0(z0�fy).To show that (AT2) holds, take any x 2 B(y; z). Then v(x� y) � v(z � y) = va. Hen
eby (IH2), v0(fx� fy) = v0f(x� y) � v0fa = v0(z0 � fy), so fx 2 B(fy; z0). 2By Theorem 2, we obtain:Theorem 12 Let f : G ! G0 a group homomorphism whi
h satis�es (IH1) and (IH2).Assume further that (G; v) is spheri
ally 
omplete. Then f is surje
tive and (G0; v0) isspheri
ally 
omplete.Lemma 13 Let f; ~f : G ! G0 be group homomorphisms. Suppose that f is immediateand for all a 2 G, v0( ~fa� fa) > v0fa or ~fa = fa = 0 : (6)Then also ~f is immediate.Proof: If f satis�es (IH1) of Proposition 11, then v0(a0� ~fa) � minfv0(a0� fa); v0( ~fa�fa)g > v0 ~fa = v0a0, showing that also ~f satis�es (IH1). Sin
e (6) implies that v0 ~fa = v0fa,~f will satisfy (IH2) whenever f does. Hen
e by Proposition 11, ~f is immediate wheneverf is. 212



For an arbitrary map f : G! G0 we will say that a 2 G is f-regular if it is non-zeroand satis�es 
ondition (IH2). We will denote the set of all f -regular elements by Reg (f).Then the following holds:Proposition 14 If f : G! G0 is an immediate group homomorphism, thenva 7! v0fafor a 2 Reg (f) indu
es a well de�ned and �-preserving map from fva j a 2 Reg (f)gonto v0G0.Proof: If a; b 2 Reg (f) su
h that va = vb, then by (IH2), v0fa � v0fb and v0fa � v0fb,when
e v0fa = v0fb. This shows that the map is well de�ned. Again be
ause of (IH2), itpreserves �. Now take any a0 2 v0G0, a0 6= 0. Then by (IH1), there is a 2 G su
h thatv0(a0 � fa) > v0a0, when
e v0a0 = v0fa by the ultrametri
 triangle law. This proves thatthe map is onto. 23.2 Basi
 
riteriaEven if the map f that we 
onsider on a valued abelian group is not a homomorphism,the presen
e of addition helps us to give handy and natural 
riteria for the map to beimmediate. We just have to work a little harder. In this se
tion, we present basi
 
riteriathat will 
over all our appli
ations in the non-additive 
ase.Proposition 15 Take valued abelian groups (G; v) and (G0; v0), an element b 2 G, a ballB around 0 in G, a ball B0 around 0 in G0, and a map f : b+B ! fb+B0. Assume that� : B ! B0 is a map su
h that for all a0 2 B0 n f0g there is a 2 Reg (�) with the followingproperties: v0(a0 � �a) > v0a0 = v0�a ; (7)andv0(fy � fz � �(y � z)) > v0�a for all y; z 2 b+B su
h that v(y � z) � va . (8)Then f is immediate.If �0 = 0 then (8) needs to be 
he
ked only for y 6= z.Proof: Take z0 2 fb + B0 and y 2 b + B su
h that z0 6= fy. Applying our assumptionto a0 := fy � z0 we �nd that there is some a 2 Reg (�) su
h that by (7),v0(fy � z0 � �a) > v0(fy � z0) = v0�a ; (9)13



and su
h that (8) holds. Set z := y � a 2 y � B = y + B = b + B. Then y � z = a andhen
e by (8) and (9),v0(fy � fz � �(y � z)) > v0�a = v0(fy � z0) :Consequently,v0(z0 � fz) � minfv0(z0 � fy + �a) ; v0(fy � fz � �a)g= minfv0(fy � z0 � �a) ; v0(fy � fz � �(y � z))g> v0(fy � z0) = v0(z0 � fy) :Hen
e (AT1) holds. Now take x 2 B(y; z) � b + B, i.e., v(y � x) � v(y � z) = va.Then v0�(y � x) � v0�a be
ause a 2 Reg (�), and v0(fy � fx � �(y � x)) > v0�a by (8).Therefore,v0(fy � fx) � maxfv0(fy � fx � �(y � x)) ; v0�(y � x)g � v0�a = v0(fy � z0) ;when
e fx 2 B(fy; z0). Hen
e (AT2) holds.Assume that �0 = 0. Observe that �a 6= 0 sin
e a0 6= 0 and v0a0 = v0�a. Hen
e ify = z then v0(fy� fz � �(y� z)) = v00 =1 > v0�a, whi
h shows that (8) need only be
he
ked for y 6= z. 2Note that by the ultrametri
 triangle law, the equality in (7) is a 
onsequen
e of theinequality. Further, observe that this proposition proves the dire
tion \(" of Proposi-tion 11: if we take B = G, B0 = G0 and � = f , then (IH1) implies (7) and (IH2) impliesthat a 2 Reg (�), while (8) is trivially satis�ed. Hen
e if for every a0 2 G0 n f0g thereis a 2 G su
h that (IH1) and (IH2) hold, then the above proposition shows that f isimmediate.The following is a spe
ial 
ase of the above 
riterion, with ni
er properties.Proposition 16 Take valued abelian groups (G; v) and (G0; v0), an element b 2 G, a ballB in G around 0, a ball B0 in G0 around 0, and a map f : b +B ! G0. Assume that(PC1) � : B ! B0 is immediate,(PC2) for all y; z 2 b +B,v0(fy � fz � �(y � z)) > v0(fy � fz) = v0�(y � z) or fy � fz = �(y � z) = 0 :Then f(b+B) � fb+B0, and f : b +B ! fb +B0 is immediate.If in addition � is inje
tive, then so is f , and if � is an embedding of ultrametri
spa
es with value map ', then so is f .Proof: Taking y = z, we obtain from (PC2) that �(0) = 0. So we 
an apply Proposi-tion 11 to �nd that � satis�es (IH1) and (IH2). Therefore, for a0 2 B0 nf0g we 
an 
hoosea 2 Reg (�) n f0g su
h that v0(a0 � �a) > v0a0.14



Take y; z 2 b+B su
h that v(y� z) � va . By the regularity of a, v0�(y� z) � v0�a .Hen
e by (PC2), v0(fy � fz � �(y � z)) = v0�(y � z) > v0�a. Now it follows fromProposition 15 that f is immediate. If in addition, � is inje
tive, it follows from (PC2)that also f is inje
tive. If � is an embedding of ultrametri
 spa
es with value map ',then v0�(y � z) = 'v(y � z) shows that also f is an embedding with value map '. 2If the map � satis�es the 
onditions (PC1) and (PC2) of the foregoing proposition, itwill be 
alled a pseudo-
ompanion of f on b +B.We will later need the following fa
t:Lemma 17 Let the situation be as in Proposition 16 and let �; ~� : B ! B0 be grouphomomorphisms. Suppose that v0(~�a� �a) > v0�a or ~�a = �a = 0 for all a 2 G. If � isa pseudo 
ompanion for f on b +B, then so is ~�.Proof: Assume that � is a pseudo-
ompanion of f on b+B. Then by Proposition 13, also~� is immediate. Now take y; z 2 b+B. If �(y� z) = 0 then by assumption, ~�(y� z) = 0.Otherwise, v0(fy�fz� ~�(y�z)) � minfv0(fy�fz��(y�z)); v0(�(y�z)� ~�(y�z))g >v0�(y�z) = v0(fy�fz). This shows that also ~� is a pseudo-
ompanion of f on b+B. 2
4 Immediate maps on valued �elds and their �nite-dimensional ve
tor spa
esLet (K; v) be a valued �eld. That is, v is a valuation of its additive group, vK is a totallyordered abelian group, and the following additional law holds:(V3) v(ab) = va+ vb.The value group of (K; v) is vK := v(K�). Throughout this paper, its valuation ringfy 2 K j vy � 0g will be denoted by O, and its valuation ideal fy 2 K j vy > 0gby M. The �eld O=M is 
alled the residue �eld and is denoted by Kv. Note that
O = fy 2 K j vy � v
g = Bv
(0) and 
O = fy 2 K j vy > v
g.A valued �eld (K; v) is 
alled spheri
ally 
omplete if the underlying valued addi-tive group is spheri
ally 
omplete (i.e., if the underlying ultrametri
 spa
e is spheri
ally
omplete).Main examples for spheri
ally 
omplete �elds are the power series �elds k((G))with their 
anoni
al valuation. Here, k 
an be any �eld and G any ordered abeliangroup, and k((G)) 
onsists of all formal sums a = Pg2G 
gtg with 
g 2 k and well orderedsupport supp(a) = fg 2 G j 
g 6= 0g. The 
anoni
al valuation on k((G)) is given byva := min supp(a) 2 G and v0 :=1. Its value group is G, and its residue �eld is k.An extension (L;w) � (K; v) of valued �elds is 
alled immediate if the 
anoni
alembedding of vK in wL and the 
anoni
al embedding of Kv in Lw are onto. It is wellknown that this holds if and only if as ultrametri
 spa
es, (K; v) is an immediate subspa
e15



of (L; v) (
f. [KU4℄). A valued �eld is 
alled maximally valued if it admits no properimmediate extensions. It was shown by Krull ([KR℄; see also [G℄) that for every valued�eld (K; v) there is a maximal immediate extension �eld; this is maximally valued byde�nition.A valued �eld is maximally valued if and only if it is spheri
ally 
omplete (
f. [P1℄,[P2℄, [KU4℄). This was essentially proved by Kaplansky in [KA℄, using the notion of\pseudo Cau
hy sequen
e" instead of \nest of balls". Every power series �eld is spheri
ally
omplete (
f. [P2℄, [KU4℄). Hen
e it is maximally valued.4.1 The minimum valuationFor every n 2 N , the valuation v of K indu
es a valuation of the n-dimensionalK-ve
tor spa
e Kn, 
alled the minimum valuation:v(a1; : : : ; an) := min1�i�n vai (10)for all (a1; : : : ; an) 2 Kn. This valuation satis�es (V1) and (V2) for all a; b 2 Kn, so(Kn; v) is a valued abelian group. Instead of (V3), it satis�es(V30) v(
a) = v
+ va for all 
 2 K, a 2 Kn.Again, u(a; b) := v(a � b) makes Kn into an ultrametri
 spa
e with value set vK.If 0 6= 
 2 K, then we write (
O)n for the n-fold produ
t 
O � : : : � 
O whi
h is thesubgroup of ve
tors in Kn whose entries all have value � v
 ; (
M)n is de�ned similarly.Note that (
O)n = f
a j a 2 Ong = 
On and (
M)n = 
Mn. For b 2 Kn, 
 2 K,b+
On = fa 2 Kn j v(a�b) � v
g = Bv
(b) and b+
Mn = fa 2 Kn j v(a�b) > v
g :We will say that (Kn; v) is spheri
ally 
omplete if its underlying ultrametri
 spa
e(Kn; u) is. Proposition 10 of Se
tion 2.2 implies:Lemma 18 If (K; v) is spheri
ally 
omplete, then so is (Kn; v).4.2 Pseudo-linear mapsTake Y � Kn, 0 6= s 2 K and f a map from Y into Kn. We will say that f is pseudo-linear with pseudo-slope s if for all y; z 2 Y su
h that y 6= z,v(fy � fz � s(y � z)) > v(fy � fz) = vs(y � z) : (11)If B is any ball in (Kn; v) around 0, then sB is again a ball in (Kn; v) around 0 andthe map B 3 x 7! sx 2 sB is an isomorphism of ultrametri
 spa
es with value map' : � 7! � + vs. Hen
e pseudo-linear maps are maps with a parti
ularly simple pseudo-
ompanion given by multipli
ation with a suitable s
alar. From Proposition 16 we obtain:16



Proposition 19 Take b 2 Kn and B a ball in (Kn; v) around 0. Assume that f : b+B !Kn is pseudo-linear with pseudo-slope s. Then f(b +B) � fb+ sB, andf : b +B ! fb+ sBis an immediate embedding of ultrametri
 spa
es with value map ' : � 7! � + vs.If in addition, (K; v) is spheri
ally 
omplete, then f is an isomorphism of ultrametri
spa
es from b+B onto fb+ sB.4.3 Polynomial mapsTake any n 2 N . For any system f = (f1; : : : ; fn) of n polynomials in n variables with
oeÆ
ients in K, we denote by Jf(b) its Ja
obian matrix at b 2 Kn. We will denote byJ�f (b) the adjoint matrix of Jf(b).Proposition 20 a) Take a polynomial f 2 O[X℄ and b 2 O su
h thats := f 0(b) 6= 0 :Then f indu
es a pseudo-linear map with pseudo-slope s from b + sM into f(b) + s2M.b) Take n polynomials in n variables f1; : : : ; fn 2 O[X1; : : : ; Xn℄ and b 2 On su
h thats := det Jf(b) 6= 0for f = (f1; : : : ; fn). If vs = 0, then Jf(b) is a pseudo-
ompanion of f on b +M and findu
es an embedding from b+M into f(b) +M with value map ' = id.In the general 
ase, J�f (b) f indu
es a pseudo-linear map with pseudo-slope s fromb + sMn into J�f (b)f(b) + s2MnProof: Note that whenever we prove pseudo-linearity, the assertions about the range ofthe fun
tions will follow from Proposition 19.a): For a polynomial f in one variable over a �eld of arbitrary 
hara
teristi
, we denoteby f [i℄ its i-th formal derivative (
f. [KA℄, [KU4℄). These polynomials are de�ned su
hthat the following Taylor expansion holds in arbitrary 
hara
teristi
:f(b+ ") = f(b) + deg fXi=1 "if [i℄(b) : (12)Note that f 0 = f [1℄. Sin
e f 2 O[X℄, we have that f [i℄ 2 O[X℄. Sin
e b 2 O, we alsohave that f [i℄(b) 2 O. Now take y; z 2 b + sM. Write y = b + "y and z = b + "z with"y; "z 2 sM. Then by (12),f(y)� f(z) = ("y � "z)f 0(b) + deg fXi=2 ("iy � "iz)f [i℄(b) = s(y � z) + S(b; "y; "z) : (13)17



Sin
e"iy � "iz = ("y � "z)("i�1y + (i� 1)"i�2y "z + : : :+ (i� 1)"i�2y "i�2z + "i�1y ) 2 ("y � "z)sMfor every i � 2, and sin
e f [i℄(b) 2 O, we �nd thatS(b; "y; "z) 2 ("y � "z)sM = s(y � z)M :This proves that v(f(y)� f(z)� s(y � z)) = vS(b; "y; "z) > vs(y � z) (14)whi
h implies that (11) holds. This proves a).b): We write J = Jf (b) and J� = J�f (b). Then JJ� = (det J)E = sE where E is the n�nidentity matrix. Note that J; J� 2 On�n by our assumptions on f and b. If y 2 Kn thenwe 
an write y = 
z with 
 2 K, v
 = vy, z 2 On and vz = 0. Then Jy = 
Jz 2 
On,hen
e vJy = v
+ vJz � v
 = vy. Similarly, vJ�y � vy for all y 2 Kn.Take "1; "2 2 sMn. The multidimensional Taylor expansion gives the following ana-logue of (13): f(b + "1)� f(b + "2) = J("1 � "2) + S(b; "1; "2) (15)with vS(b; "1; "2) > vs("1 � "2) : (16)Assume �rst that vs = 0. Then also J�1 = 1sJ� 2 On�n, so for all y 2 Kn, vJ�1y � vy.But then, vy = vEy = vJ�1Jy � vJy � vy, so equality must hold. We �nd thatfor all y 2 Kn, vJy = vy and similarly, vJ�y = vy. In parti
ular, this yields that Jindu
es a value-preserving automorphism of the valued abelian group (Mn;+), and anisomorphism of ultrametri
 spa
es fromMn ontoMn with value map ' = id, with inversemaps indu
ed by J�1. From (15) and (16) we obtain that for y = b + "1 and z = b + "2in b +M, v(f(y)� f(z) � J(y � z)) > vs(y � z) = v(y � z) = vJ(y � z) :This proves that J is a pseudo-
ompanion of f on b +M. From Proposition 16 we inferthat f indu
es an embedding from b +M into f(b) + JM = f(b) +M with value map' = id.Now we turn to the general 
ase. We 
ompute:J�f(y)� J�f(z) = J�(f(b+ y � b)� f(b+ z � b))= J�J(y � z) + J�S(b; y � b; z � b)= s(y � z) + J�S(b; y � b; z � b) :By (16), vJ�S(b; y � b; z � b) � vS(b; y � b; z � b) > vs(y � z) :18



Hen
e, v (J�f(y)� J�f(z)� s(y � z)) = vJ�S(b; y � b; z � b) > vs(y � z) :This proves our assertion for the map J�f (b) f . 2Note that in the one-dimensional 
ase (n = 1), we may write det Jf(b) = f 0(b) andJ�f (b) = 1; in this way, the de�nition of fhbi in the one-dimensional 
ase be
omes a spe
ial
ase of the de�nition for the multi-dimensional 
ase.If vs > 0 in the multi-dimensional 
ase, then in general Jf(b) will not be a pseudo-
ompanion of f . It is ne
essary to transform f in order to obtain suitable pseudo-
ompanions. We have shown above that this 
an be done so that one even obtainspseudo-linear fun
tions.From Proposition 20 together with Propositions 19 and 16, we obtain:Theorem 21 Assume that (K; v) is spheri
ally 
omplete.a) Take a polynomial f 2 O[X℄ and b 2 O su
h that s := f 0(b) 6= 0. Then f indu
esa pseudo-linear isomorphism of ultrametri
 spa
es from b + sM onto f(b) + s2M, withpseudo-slope s.b) Take n polynomials in n variables f1; : : : ; fn 2 O[X1; : : : ; Xn℄ and b 2 On su
h thats := det Jf(b) 6= 0 for f = (f1; : : : ; fn). If vs = 0, then f indu
es an embedding ofultrametri
 spa
es from b+M onto f(b) +M.In the general 
ase, J�f (b) f indu
es a pseudo-linear isomorphism of ultrametri
 spa
esfrom b+ sMn onto J�f (b) f(b) + s2Mn, with pseudo-slope s.4.4 Hensel's Lemma and Impli
it Fun
tion Theorem revisitedLet us apply Theorem 21 to prove that Hensel's Lemma holds for every spheri
ally 
om-plete valued �eld (K; v). We prove the following version of Hensel's Lemma, whi
h isoften 
alled \Newton's Lemma":Theorem 22 Let (K; v) be a spheri
ally 
omplete valued �eld. Then (K; v) satis�es theone-dimensional Newton's Lemma:Take f 2 O[X℄ and assume that b 2 O is su
h that vf(b) > 2vf 0(b). Then there exists aunique root a of f su
h that v(a� b) = vf(b)� vf 0(b) > vf 0(b).Proof: The inequality vf(b) > 2vf 0(b) implies that s := f 0(b) 6= 0. Hen
e by Theorem 21,f indu
es a pseudo-linear isomorphism of ultrametri
 spa
es from b+sM onto f(b)+s2M,with pseudo-slope s. Sin
e vf(b) > 2vf 0(b) = vs2, we have that f(b) 2 s2M, that is,f(b)+ s2M = s2M. Therefore, 0 2 f(b)+ s2M. Sin
e f indu
es a bije
tion from b+ sMonto f(b) + s2M, there is a unique a 2 b + sM su
h that f(a) = 0. We have thatv(a� b) = v(f(a)� f(b))� vf 0(b) = vf(b)� vf 0(b) > vf 0(b). 2Here is the multi-dimensional version: 19



Theorem 23 Let (K; v) be a spheri
ally 
omplete valued �eld. Then (K; v) satis�es themulti-dimensional Newton's Lemma:Let f = (f1; : : : ; fn) be a system of n polynomials in n variables with 
oeÆ
ients in O.Assume that b 2 O n is su
h that vf(b) > 2v det Jf (b). Then there exists a unique a 2 O nsu
h that f(a) = 0 and v(a� b) = vJ�f (b)f(b)� v det Jf(b) > v det Jf(b).Proof: The inequality vf(b) > 2v det Jf(b) implies that s := det Jf (b) 6= 0. Hen
eby Theorem 21, J�f indu
es an isomorphism of ultrametri
 spa
es from b + sMn intoJ�f(b)+s2Mn, where J� = J�f (b). Sin
e vf(b) > vs2, we have that f(b) 2 s2Mn and hen
ealso J�f(b) 2 s2Mn (sin
e J� 2 On�n). That is, J�f(b) + s2Mn = s2Mn. Therefore,0 2 J�f(b) + s2Mn. Sin
e J�f indu
es a bije
tion from b + sMn onto J�s�2f(b) +Mn,there is a unique a 2 b+ sMn su
h that J�f(a) = 0. Sin
e J� is invertible, we have thatf(a) = 0, J�f(a) = 0. Hen
e, a is the unique element in b+sMn su
h that f(a) = 0. Wehave that v(a� b) = v �J�f (b)f(a)� J�f (b)f(b)�� v det Jf(b) = vJ�f (b)f(b)� v det Jf(b) >v det Jf(b). 2Note that like in the one-dimensional 
ase, also in the multi-dimensional 
ase the proofof Newton's Lemma 
an be redu
ed by transformation to a simpler 
ase where we wouldin fa
t obtain the identity as a pseudo-
ompanion. But as we have already shown thateven in the general 
ase we 
an derive suitable pseudo-linear maps from f , it is mu
heasier to employ them dire
tly in the proof of the multidimensional Newton's Lemma.A valued �eld (K; v) is 
alled henselian if the extension of v to the algebrai
 
losure~K of K is unique. It is well known that this holds if and only if (K; v) satis�es theone-dimensional Newton's Lemma (see, e.g., [KU4℄). We are now going to show that themulti-dimensional Newton's Lemma holds in every henselian �eld.Theorem 24 A valued �eld (K; v) is henselian if and only if it satis�es the multidimen-sional Newton's Lemma.Proof: ): Let (K; v) be henselian. Take (L; v) to be a maximal immediate extensionof (K; v). Then (L; v) is spheri
ally 
omplete. By the foregoing theorem, (L; v) satis�esthe multidimensional Newton's Lemma. Denote by O the valuation ring of K, and byOL that of L. Now assume that the hypothesis of the multidimensional Newton's Lemmais satis�ed by a system f of polynomials with 
oeÆ
ients in O and by b 2 O n. Itfollows that there is a unique a = (a1; : : : ; an) 2 O nL su
h that f(a) = 0 and v(a � b) >v det Jf(b). From the latter, it follows that v det Jf (a) = v det Jf (b) and in parti
ular,det Jf(a) 6= 0. Now [L℄, Chapter X, x7, Proposition 8, shows that the elements a1; : : : ; anare separable algebrai
 over K. On the other hand, for every � 2 Aut ( ~KjK), the element�a = (�a1; : : : ; �an) satis�es f(�a) = �f(a) = 0 and v(�a � b) = mini v(�ai � bi) =mini v�(ai�bi) = mini v(ai�bi) = v(a�b) > v det Jf(b) (note that v� = v be
ause (K; v)is henselian). By the uniqueness of a, it follows that �a = a for every � 2 Aut ( ~KjK),that is, a 2 Kn, as required. 20



(: If n = 1, then det Jf(b) = f 01(b1), and the assertion is pre
isely the assertion of theone-dimensional Newton's Lemma. Hen
e the multidimensional Newton's Lemma impliesthat (K; v) is henselian. 2Using the multidimensional Newton's Lemma, one 
an prove the multidimensionalImpli
it Fun
tion Theorem:Theorem 25 Let (K; v) be a henselian �eld, and let f1; : : : ; fn 2 O[X1; : : : ; Xm; Y1; : : : ; Yn℄with m < n. Set Z = (X1; : : : ; Xm; Y1; : : : ; Yn) andJ(Z) := 0BB� �f1�Y1 (Z) : : : �f1�Yn (Z)... ...�fm�Y1 (Z) : : : �fm�Yn (Z) 1CCA :Assume that f1; : : : ; fn admit a 
ommon zero z = (x1; : : : ; xm; y1; : : : ; yn) 2 Om+n andthat the determinant of J(z) is nonzero. Then for all (x01; : : : ; x0m) 2 Om with v(xi �x0i) > 2v det J(z), 1 � i � m, there exists a unique tuple (y01; : : : ; y0n) 2 On su
h that(x01; : : : ; x0m; y01; : : : ; y0n) is a 
ommon zero of f1; : : : ; fm , andmin1�i�n v(yi � y0i) � min1�i�m v(xi � x0i)� v det J(z) :Proof: We observe that the entries of J(Z) and its adjoint matrix J�(Z) are polynomialsin X1; : : : ; Xm; Y1; : : : ; Yn with 
oeÆ
ients in O. We set b = (x01; : : : ; x0m; y1; : : : ; yn). ThenJ�(b) is the adjoint matrix for J(b), and the entries of both matri
es lie inO. In parti
ular,this implies that vJ�(b)f(b) � vf(b).By assumption, fi(z) = 0 for 1 � i � m. Hen
e, the 
ondition v(xi�x0i) > 2 det vJ(a),1 � i � m, will imply thatvfi(b) = v (fi(x01; : : : ; x0m; y1; : : : ; yn)� f(x1 : : : ; xm; y1; : : : ; yn)) � min1�i�m v(xi � x0i)> 2v det J(x1 : : : ; xm; y1; : : : ; yn) = 2v det J(x01; : : : ; x0m; y1; : : : ; yn) = 2v det J(b)for 1 � i � m. In parti
ular, det J(b) 6= 0. Hen
e by Theorem 24, there is a unique
ommon zero (y01; : : : ; y0n) 2 On of the polynomials fi(x01; : : : ; x0m; Y1; : : : ; Yn), 1 � i � n,su
h thatmin1�i�n v(yi � y0i) � vJ�(b)f(b)� v det J(b) = vJ�(b)f(b)� v det J(z)� min1�i�m vfi(b)� v det J(z) � min1�i�m v(xi � x0i)� v det J(z)This proves our assertion. 2
21



4.5 An in�nite-dimensional Impli
it Fun
tion TheoremFrom our result in Se
tion 2.2 it follows that an in�nite power Y I of an ultrametri
 spa
e Y
an be equipped with an ultrametri
 uI (analogous to the minimum valuation) if the valueset uY is well ordered. In this 
ase, if (Y; u) is spheri
ally 
omplete, then so is (Y I ; uI).So we obtain the following 
orollary to our Main Theorem 2 and to Proposition 16:Corollary 26 a) Take two ultrametri
 spa
es (Y; u) and (Y 0; u0), and an arbitrary indexset I. Assume that uY is well ordered, f : Y I ! Y 0 is immediate and that (Y; u) isspheri
ally 
omplete. Then f is surje
tive and (Y 0; u0) is spheri
ally 
omplete.b) Take two valued abelian groups (G; v) and (G0; v0), and an arbitrary index set I.Assume that vG is well ordered, b 2 GI, B is a ball around 0 in GI, f : GI ! G0 has apseudo-
ompanion on b+B, and that (G; v) is spheri
ally 
omplete. Then f is surje
tiveand (G0; v0) is spheri
ally 
omplete.In the 
ase of a valued �eld (K; v) we 
annot do the same sin
e if the valuation isnon-trivial, the value group will not be well ordered. If the valuation is not dis
rete (i.e.,its value group is not isomorphi
 to Z), then not even the value set vO := v(Onf0g) of thevaluation ring is well ordered. But we may be interested in in�nite systems of polynomialswith 
oeÆ
ients in a subring R of O with well ordered value set vR := v(R n f0g). Weset MR := fa 2 R j va > 0g.Note that (R; v) is not ne
essarily spheri
ally 
omplete, even if (K; v) is. So we willassume that (R; v) is spheri
ally 
omplete.We generalize the de�nitions of minimum valuation and of pseudo linear map inthe obvious way. If a = (ai)i2I 2 RI , then va := mini2I vai . If Y � RI , 0 6= s 2 R andf a map from Y into RI , then f is pseudo-linear with pseudo-slope s if (11) holds forall y; z 2 Y su
h that y 6= z. We then have the following appli
ation of Proposition 16together with Proposition 10:Proposition 27 Take b 2 RI and B a ball in (RI ; v) around 0. Assume that f : b+B !RI is pseudo-linear with pseudo-slope s 2 R and that (R; v) is spheri
ally 
omplete. Thenf is an isomorphism of ultrametri
 spa
es from b +B onto fb+ sB.If the map is given by an in�nite system of polynomials f = (fk)k2I in in�nitely manyvariables Xi , i 2 I, and with 
oeÆ
ients in R, then we may 
onsider the in�nite matrixJf (b) 2 RI�I . Note that this matrix has only �nitely many non-zero entries in every row.We denote by R(I�I) all matri
es in RI�I whi
h have only �nitely many non-zero entriesin every row and every 
olumn. If every variable appears only in �nitely many fk, thenJf (b) 2 R(I�I).If we assume that R is spheri
ally 
omplete, we 
an 
onsider a larger 
lass of matri
es.We denote by R((I�I)) all matri
es in RI�I whi
h for ea
h � 2 vR have only �nitelymany entries of value � � in every row and every 
olumn. For every two matri
es inR((I�I)), their produ
t 
an be 
omputed and lies again in R((I�I)). It is possible thatJf (b) 2 R((I�I)) even when there are variables that appear in in�nitely many fk.22



We de�neM(I�I)R andM((I�I))R analogously and note that R(I�I), R((I�I)),M(I�I)R andM((I�I))R are all 
losed under matrix addition and multipli
ation and under s
alar multi-pli
ation. Further, R(I�I)M(I�I)R � M(I�I)R , M(I�I)R R(I�I) � M(I�I)R , R((I�I))M((I�I))R �M((I�I))R and M((I�I))R R((I�I)) �M((I�I))R .We are not able to use determinants here. Still, we 
an use our original approa
h ifJf (b) has an inverse. But we 
an even work with less than invertibility. Given matri
esM;MÆ in R(I�I), or in R((I�I)) if R is spheri
ally 
omplete, we will say that MÆ is apseudo-inverse of M if the matri
es MMÆ � E and MÆM � E are in MI�IR , where Edenotes the I � I-identity matrix.A
tually, we also do not need that the ring R is a subring of a valued �eld. It suÆ
esto assume that it is a valued abelian group with its multipli
ation satisfying (V3), andthat its value set is a well ordered subset of an ordered abelian group. It then follows thatthe value set does not 
ontain negative elements. In parti
ular, all entries of M 2 RI�Ihave value � 0. This implies that vMa � va for all a 2 RI . Sin
e vR is well ordered, it
ontains a minimal positive value �0. If M is inM(I�I)R or inM((I�I))R , then all entries ofM have value � �0. It then follows that vMa � va+ �0 > va for all a 2 RI .Lemma 28 Take M;MÆ in R(I�I), or in R((I�I)) if R is spheri
ally 
omplete. Assumethat MÆ is a pseudo-inverse of M . Then the following holds:1) For all a 2 RI, vMa = va and vMÆa = va; in parti
ular, M;MÆ =2 MI�IR and thevalue set vR must 
ontain 0.2) If M 0 is in R(I�I), or in R((I�I)) respe
tively, su
h that M 0 �M 2 MI�IR , then MÆ isalso a pseudo-inverse of M 0.3) Both M and MÆ indu
e immediate embeddings of the ultrametri
 spa
e RI in itselfwith value map id, and the same holds on every ball around 0 in RI.Proof: 1): For all a 2 RI we have that v(MMÆa � a) = v((MMÆ � E)a > va andhen
e va = vMMÆa � vMÆa � va. It follows that equality holds everywhere, whi
h givesvMÆa = va. Inter
hanging M and MÆ, we obtain vMa = va.2): We 
ompute: M 0MÆ �E = (M 0�M)MÆ +MMÆ �E 2 MI�IR , and similarly forMÆM 0 � E.3): It suÆ
es to show that for every ball B around 0 in RI , M indu
es an immediateembedding of B into itself with value map id. Sin
e vMa = va for all a 2 RI , we haveMB � B and that M indu
es an inje
tive map on B with value map id. As M indu
esa group homomorphism, we only have to show now that for every a0 2 B n f0g there isa 2 B su
h that (IH1) and (IH2) of Proposition 11 hold for M in the pla
e of f . AsvMÆa0 = va0, we have that a := MÆa0 2 B. Further, v(a0 �Ma) = v(a0 �MMÆa0) =v(E �MMÆ)a0 > va0. Finally, if b 2 B with va � vb, then vMa = va � vb = vMb. 2Proposition 29 Assume that (R; v) is spheri
ally 
omplete. Take any index set I anda system of polynomials f = (fk)k2I in variables Yi , i 2 I, with 
oeÆ
ients in R. Take23



b 2 RI and suppose that Jf(b) lies in R((I�I)) and admits a pseudo-inverse in R((I�I)).Then Jf (b) is a pseudo-
ompanion of f on b+MIR, and f is an isomorphism from b+MIRonto f(b) +MIR with value map id. The system f has a zero on b +MIR (whi
h then isunique) if and only if vf(b) > 0.Proof: Sin
e J = Jf (b) has a pseudo-inverse, we know from the previous lemma that Jindu
es an immediate embedding of MIR in itself with value map id.Take "1; "2 2 MIR. An in�nite-dimensional version of the multidimensional Taylorexpansion gives the in�nite-dimensional analogue of (15) and (16), with s = 1. We obtainthat for y = b + "1 and z = b + "2 in b +MIR with y 6= z,v(f(y)� f(z) � J(y � z)) > v(y � z) = vJ(y � z) :This proves that J is a pseudo-
ompanion of f on b+MIR. From Proposition 16 we inferthat f indu
es an embedding of b +MIR in f(b) + JMIR � f(b) +MIR with value map' = id.The remaining assertions now follow from Proposition 16 and Theorem 2. 2Now we 
an prove an in�nite-dimensional Impli
it Fun
tion Theorem:Theorem 30 Take any index sets I and I 0 and a system of polynomials f = (fk)k2I invariables Xj , j 2 I 0, and Yi , i 2 I, with 
oeÆ
ients in R, and su
h that ea
h variableYi appears in only �nitely many fk. Assume that (R; v) is spheri
ally 
omplete. SetZ = (Xj; Yi j j 2 I 0; i 2 I) and J(Z) :=  �fk�Yi (Z)!k;i2I :Assume that the polynomials fk, k 2 I, admit a 
ommon zero z = (xj; yi j j 2 I 0; i 2 I)in RI0[I su
h that J(z) admits a pseudo-inverse in R((I�I)). Then for all (x0j)j2I0 2 RI0with v(xj � x0j) > 0 there exists a unique (y0i)i2I 2 RI su
h that z0 = (x0j; y0i j j 2 I 0; i 2 I)is a 
ommon zero of the polynomials fk , k 2 I, andmini2I v(yi � y0i) � minj2I0 v(xj � x0j) :Proof: We set ~z := (x0j; yi j j 2 I 0; i 2 I) and observe that our 
ondition thatv(xj � x0j) > 0 implies that v ��fk�Yi (~z)� �fk�Yi (z)� > 0. From part 2) of Lemma 28 itthus follows that the pseudo-inverse of J(z) is also a pseudo inverse of J(~z). (Note thatJ(z); J(~z) 2 R(I�I) by our 
ondition on the variables Yi.)For ea
h k 2 I we set gk(Yi j j 2 I) := fk(x0j; Yi j j 2 I 0; i 2 I). Further, we setb := (yi j i 2 I). We 
onsider the system g = (gk)k2I. From Proposition 29 we infer thatJg(b) = J(~z) is a pseudo-
ompanion of g on b+MIR. By assumption, fk(z) = 0 for k 2 I.Hen
e, the 
ondition v(xj � x0j) > 0 will imply thatvgk(b) = vfk(~z) = v(fk(~z)� fk(z)) � minj2I0 v(xj � x0j) > 0 :24



Hen
e vg(b) > 0 and by Proposition 29 the system g has a unique zero a = (y0i j i 2 I) onb +MIR. It satis�esmini2I v(yi � y0i) = v(b� a) = v(g(b)� g(a)) = vg(b) � minj2I0 v(xj � x0j) : 2Remark 31 In our theorem we needed the assumption on the variables Yi in order tohave only �nitely many non-zero polynomials in ea
h row and ea
h 
olumn of J(Z).Without this it is not automati
 that the 
onditions J(z) 2 R((I�I)) and v(xj � x0j) > 0imply that J(~z) 2 R((I�I)). We 
an drop the 
ondition on the variables if we assumeinstead that J(~z) 2 R((I�I)) and that it has a pseudo-inverse in R((I�I)).4.6 Power series maps on valuation idealsTake any �eld k and any ordered abelian group G. We endow k((G)) with the 
anoni
alvaluation v and denote the valuation ideal by M. Every power seriesf(X) =Xi2N 
iX i 2 k[[X℄℄ (17)de�nes in a 
anoni
al way a map f :M!M (note: 0 =2 N in our notation). This 
an beshown by use of Neumann's Lemma, 
f. [DMM1℄. We note that for every integer r > 1and every y; z 2 M, v(yr � zr) > v(y � z) : (18)Therefore, if 
1 6= 0, we have thatv(f(y)� f(z)� 
1(y � z)) = vXi�2 
i(yi � zi) > v(y � z) = v
1(y � z) (19)be
ause v
i = 0 for all i. So we see that f is pseudo-linear with slope 
1 if 
1 6= 0. ByProposition 19, we obtain:Theorem 32 If f : M!M is de�ned by the power series (17), then f is an isomor-phism of ultrametri
 spa
es.A similar result holds for power series with generalized exponents (whi
h for instan
eare dis
ussed in [DS℄). Take any subgroup G of R and a generalized power series of theform f(X) =Xi2N 
iXri 2 k[[XG℄℄ (20)where ri , i 2 N , is an in
reasing sequen
e of positive real numbers in G. Suppose thatthe power fun
tions y 7! yri are de�ned on M for all i. Then again, the generalizedpower series (20) de�nes a map f :M!M. We note that (18) also holds for every real25



number r > 1 for whi
h y 7! yr is de�ned on M. Hen
e if 
1 6= 0 and r1 = 1, then (19)holds, with the exponent i repla
ed by ri . This shows again that f is pseudo-linear withpseudo-slope 
1 . If, however, r1 6= 1, we may think of writing f(y) = ~f(yr1) with~f(X) = Xi2N 
iXri=r1 :If the power fun
tions y 7! yri=r1 are de�ned onM for all i, then ~f de�nes a pseudo-linearmap from M to M with pseudo-slope 
1 . So we obtain:Theorem 33 Suppose that the power fun
tions y 7! yri and y 7! yri=r1 are de�ned onM for all i, and that y 7! yr1 is surje
tive. If f :M!M is de�ned by the power series(20) with 
1 6= 0, then f is surje
tive.4.7 Power series maps and in�nite-dimensional Impli
it Fun
-tion TheoremsWe use again the notations and assumptions from Se
tion 4.5. We take R[[Xj; Yi j j 2I 0; i 2 I℄℄ to be the set of all formal power series in the variables Xj; Yi in whi
h for everyn 2 N only �nitely many of the Xj; Yi appear to a power less than n. In the previousse
tion, our power series had well de�ned values be
ause we were operating in a powerseries �eld k((G)). Here, we will assume throughout that R is spheri
ally 
omplete. Butthis alone does not a priori give us well de�ned values of the power series on MI0[IR .So we will assume that we have some 
anoni
al way to determine the value of a givenpower series at an element of MIR. This holds for instan
e if vR is ar
himedean, i.e., is asubsemigroup of an ar
himedean ordered abelian group.To every power series g 2 R[[Yi j i 2 I℄℄ we asso
iate its 0-linear part L0g, by whi
hwe mean the sum of all of its monomials of total degree 1 and with a 
oeÆ
ient in R ofvalue 0. This is a polynomial, i.e., 
ontains only �nitely many of the variables Yi. We setY = (Yi j i 2 I).Theorem 34 Assume that (R; v) is spheri
ally 
omplete. Take any index sets I andI 0 and a system f = (fk)k2I where fk 2 R[[Xj; Yi j j 2 I 0; i 2 I℄℄. Assume that fk,k 2 I, admit a 
ommon zero z = (x; y), x 2 MI0R, y 2 MIR, su
h that for the mapL(Y ) = L0f(x;Y )(Y ) : MIR ! MIR the following holds: for every a0 2 MIR n f0g there issome a 2 MIR su
h that v(a0 � La) > va0 and va = va0 :Take x0 = (x0j)j2I0 2 MI0R, set � = v(x� x0) and g(Y ) = f(x0; Y ) and suppose thatv(gw� gw0 � L(w � w0)) > v(gw � gw0) for all distin
t w;w0 2 B�(y) : (21)Then there exists a unique (y0i)i2I 2 MIR su
h that z0 = (x0j; y0i j j 2 I 0; i 2 I) is a 
ommonzero of fk , k 2 I, and mini2I v(yi � y0i) � � :26



Proof: Note that Lf(x0;Y )(Y ) = Lf(x;Y )(Y ) = L(Y ). We 
laim that L is a pseudo-
ompanion of f(x0; Y ) : MIR ! MIR on B�(y). Condition (PC2) holds by assumption.As L is a group homomorphism, our 
onditions together with Proposition 11 show thatL :MIR !MIR is immediate; note that (IH2) holds be
ause if va � vb then vLa = va �vb � vLb. Now the assertion of our theorem follows as in earlier proofs. 2The following version of the above theorem has a similar proof:Theorem 35 Assume that (R; v) is spheri
ally 
omplete. Take any index sets I and I 0and a system f = (fk)k2I where fk 2 R[Xj j j 2 I 0℄[[Xj j i 2 I℄℄. Assume that fk, k 2 I,admit a 
ommon zero z = (x; y), x 2 RI0, y 2 MIR, su
h that L(Y ) = L0f(x;Y )(Y ) satis�esthe same 
ondition as in Theorem 34. Take x0 = (x0j)j2I0 2 RI0 su
h that � = v(x�x0) > 0.Suppose that (21) holds for g(Y ) = f(x0; Y ). Then there exists a unique (y0i)i2I 2 MIRsu
h that z0 = (x0j; y0i j j 2 I 0; i 2 I) is a 
ommon zero of the polynomials fk , k 2 I, andmini2I v(yi � y0i) � �.Alternatively, in order to obtain maps on all of R, one 
an 
onsider 
onvergent powerseries. We let RffXj; Yi j j 2 I 0; i 2 Igg be the set of all formal power series in thevariables Xj; Yi in whi
h for every � 2 vR only �nitely many monomials have 
oeÆ
ientsof value less than �. Again we assume that R is spheri
ally 
omplete. Then every
onvergent power series de�nes a map from R into R. In a similar way as before, one 
anprove:Theorem 36 Assume that (R; v) is spheri
ally 
omplete. Take any index sets I and I 0and a system f = (fk)k2I where fk 2 RffXj; Yi j j 2 I 0; i 2 Igg. Assume that fk, k 2 I,admit a 
ommon zero z = (x; y), x 2 RI0, y 2 RI, su
h that L(Y ) = L0f(x;Y )(Y ) satis�esthe same 
ondition as in Theorem 34. Take x0 = (x0j)j2I0 2 RI0 su
h that � = v(x�x0) > 0.Suppose that (21) holds for g(Y ) = f(x0; Y ). Then there exists a unique (y0i)i2I 2 RI su
hthat z0 = (x0j; y0i j j 2 I 0; i 2 I) is a 
ommon zero of the polynomials fk , k 2 I, andmini2I v(yi � y0i) � �.5 Polynomials in additive operatorsIn this se
tion, we will 
onsider polynomials f 2 O[X0; X1; : : : ; Xn℄ over valued �elds(K; v) and additive operators �i : K ! K, 0 � i � n. We write � = (�0; : : : ; �n). We willtry to solve equations in one variable of the formf�X := f(�0X; �1X; : : : ; �nX) = 0 :5.1 A basi
 resultFor any polynomial f in n+1 variables over a �eld of arbitrary 
hara
teristi
, we denote byf [ i ℄ its i-th formal derivative, where i = (i0; : : : ; in) is a multi-index. These polynomials27



are de�ned su
h that the following analogue of (12) holds in arbitrary 
hara
teristi
:f(b + ") = f(b) +Xi2I f [ i ℄(b)"i for all b; " 2 Kn+1 ; (22)where I = f0; 1; : : : ; deg fgn+1 n f(0; : : : ; 0)g and "i = "i00 � : : : � "inn . Note that if i =(0; : : : ; 0; 1; 0; : : : ; 0) with the 1 in the j-th pla
e, then f [ i ℄ = �f�Xj (X0; : : : ; Xn).Lemma 37 Take f 2 O[X0; : : : ; Xn℄ and b 2 On+1, s 2 O su
h thatvs = min0�i�n v �f�Xi (b) < 1 :Then for all distin
t y = (y0; : : : ; yn) and z = (z0; : : : ; zn) in b + sMn+1,v  f(y)� f(z) � nXi=0(yi � zi) �f�Xi (b)! > vs+ min0�i�n v(yi � zi) (23)and v(f(y)� f(z)) � vs+ min0�i�n v(yi � zi) : (24)In parti
ular, f(b+ sMn+1) � f(b) + s2Mn+1 :Proof: Sin
e f 2 O[X0; : : : ; Xn℄, we have that f [ i ℄ 2 O[X0; : : : ; Xn℄. Sin
e b 2 On+1,we also have that f [ i ℄(b) 2 O. Write y = b + Æ and z = b + " with Æ = (Æ0; : : : ; Æn); " =("0; : : : ; "n) 2 sMn+1. Then by (22),f(y)� f(z) = nXi=0(Æi � "i) �f�Xi (b) + Xi2I0(Æi � "i)f [ i ℄(b)where I 0 = fi 2 I j jij � 2g with jij := i0 + : : :+ in .Choose 
 2 M su
h that v
 = mini v(Æi�"i) = mini v(yi�zi). Pi
k j 2 f0; : : : ; ng andtake i 2 I 0 su
h that ij 6= 0. Let i0 2 I be the multi-index obtained from i by subtra
ting1 in the j-th pla
e. ThenÆi � "i = ÆjÆi0 � "j"i0 = (Æj � "j)Æi0 + "j(Æi0 � "i0)Suppose we have already shown by indu
tion on jij that Æi0 � "i0 2 
O. Sin
e Æj� "j 2 
Oand Æi0 ; "j 2 sM, we then �nd that Æi � "i 2 s
Mfor every multi-index i with jij � 2. Sin
e also f [ i ℄(b) 2 O, we obtain thatf(y)� f(z) � nXi=0(Æi � "i) �f�Xi (b) = Xi2I0(Æi � "i)f [ i ℄(b) 2 s
M :28



This proves (23). To prove (24), we observe thatv nXi=0(yi � zi) �f�Xi (b) � min0�i�n v(yi � zi) �f�Xi (b) � vs+ min0�i�n v(yi � zi)and therefore,v(f(y)� f(z)) �� min(v  f(y)� f(z) � nXi=0(yi � zi) �f�Xi (b)! ; v nXi=0(yi � zi) �f�Xi (b))� vs+ min0�i�n v(yi � zi) :The last assertion is obtained by applying (23) with z = b. 2Proposition 38 Take� additive operators �i : O ! O , 0 � i � n,� f 2 O[X0; : : : ; Xn℄,� b 2 O su
h that at least one of the following derivatives is not zero:di := �f�Xi (�0b; �1b; : : : ; �nb) (0 � i � n); (25)� s 2 O su
h that vs = min0�i�n vdi : (26)Suppose that(V�) v�ia � va for all a 2 O (0 � i � n)holds and that the additive operator� := nXi=0 di�i : sM�! s2Mhas the property that for all a0 2 s2M there is some a 2 sM su
h that v(a0 � �a) > va0and va = va0 � vs. Then the maps � andb + sM3 x 7! f�x 2 f�b + s2Mare immediate.Proof: For all a 2 sM, the de�nition of s together with (V�) yieldsv�a = v nXi=0 di�ia � min0�i�n vdi�ia � min0�i�n vdi + va = vs+ va : (27)29



We wish to apply Proposition 15 to the map f�. Take distin
t elements y; z 2 b + sM.From (V�) it follows that bi := �ib 2 O, yi := �iy 2 O, zi := �iz 2 O with yi�bi = �i(y�b) 2 sM and zi�bi = �i(z�b) 2 sM, so (y0; : : : ; yn) ; (z0; : : : ; zn) 2 (b0; : : : ; bn)+sMn+1.Thus we 
an apply Lemma 37 to obtainv(f�y � f�z � �(y � z)) = v  f�y � f�z � nXi=0 di�i(y � z)!= v  f(�0y; : : : ; �ny)� f(�0z; : : : ; �nz)� nXi=0(�iy � �iz) �f�Xi (�0b; : : : ; �nb)!> vs+mini v(�iy � �iz) = vs+mini v�i(y � z) � vs+ v(y � z) :We also obtain that f�(b+ sM) � f�b + s2M.Now take any a0 2 s2M. By assumption, there is some a 2 sM su
h that v(a0��a) >va0 and va = va0 � vs = v�a � vs. Take distin
t elements y; z 2 b + sM su
h thatv(y� z) � va. By what we have shown above, v(f�y� f�z� �(y� z)) > vs+ v(y� z) �vs+ va = v�a.We have to show that a 2 Reg (�). Indeed, if va � vb, then v�a = vs + va �vs+ vb � v�b by (27). It now follows from Proposition 11 that � is immediate, and fromProposition 15 that f� is immediate. 2In the next se
tion, we give a 
riterion whi
h guarantees that the hypothesis of Propo-sition 38 on the operator � is satis�ed.5.2 The 
ase of operators 
ompatible with a weak 
oeÆ
ientmapLet us start with the following useful observation.Lemma 39 Let (K; v) be any valued �eld. For all � 2 vK, 
hoose elementsm� 2 K su
h that vm� = � and m0 = 1 : (28)De�ne 
o 0 := 0 and 
o a := (m�va a) v for all a 2 K n f0g :Then 
o has the following properties:(WCM0) 
o a = 0 if and only if a = 0,(WCM1) if va = 0, then 
o a = av,(WCM2) if va1 = va2 = : : : = vak and Pki=1 
o ai 6= 0, then 
o (Pki=1 ai) = Pki=1 
o ai ,(WCM3) if 
o a = 
o b and va = vb, then v(a� b) > va,(WCM4) if 
 2 vK and 0 6= a 2 Kv, then 9a 2 K : 
o a = a and va = 
.30



Proof: Sin
e (m�va a)v 6= 0 for a 6= 0, (WCM0) holds. Sin
e m0 = 1, also (WCM1)holds.If va1 = va2 = : : : = vak and Pki=1 
o ai 6= 0, then m�va1 = m�va2 = : : : = m�vak and0 6= kXi=1 
o ai = kXi=1(m�vai ai) v = kXi=1(m�va1 ai) v =  m�va1 kXi=1 ai! v ;when
e vm�va1 Pki=1 ai = 0 and therefore, vPki=1 ai = va1 . Hen
e,kXi=1 
o ai =  m�va1 kXi=1 ai! v = 
o  kXi=1 ai! :This shows that (WCM2) holds.If va = vb and 
o a = 
o b, then(m�va a) v = 
o a = 
o b = (m�vb b) v = (m�va b) v ;so 0 < v(m�vaa �m�vab) = vm�va + v(a � b) = �va + v(a � b), that is, v(a � b) > va.This shows that (WCM3) holds.If 
 2 vK and 0 6= a 2 Kv, we 
hoose a0 2 O� su
h that a0v = a. Then we seta = m�1�
a0. This gives va = �vm�
 = 
 and 
o a = (m�
(m�1�
a0))v = a0v = a. Hen
e,(WCM4) holds. 2A map 
o with properties (WCM0) { (WCM4) will be 
alled a weak 
oeÆ
ient map.We will assume that the operators �i satisfy (V�); hen
e they indu
e additive operators�i on Kv: for all a 2 O, �i(av) = (�ia)v (0 � i � n) : (29)We will need some stronger 
ompatibility of the �i with the weak 
oeÆ
ient map:Lemma 40 Assume that the operators �i satisfy (V�) and that the elements m� in (28)
an be 
hosen su
h thatfor all a 2 O, v(�im�vaa � m�va�ia) > 0 (0 � i � n) : (30)Thenfor all a 2 O and all d 2 O�, (
o d) �i 
o a = ( 
o (d�ia) if v�ia = va0 if v�ia > va (31)Proof: Take any d 2 O�; then vd = 0 and hen
e, 
o d = dv. We have that(
o d) �i
o a = (dv) �i((m�vaa)v) = (dv) (�im�vaa)v= (dv) (m�va�ia)v = (m�vad�ia)v :31



Here, the se
ond equality holds by equation (29), and the third equality holds by (30).Now we distinguish two 
ases. Suppose �rst that v�ia = va. Then(m�vad�ia)v = (m�v�iad�ia)v = (m�vd�iad�ia)v = 
o (d�ia) :Now suppose that v�ia > va. Then vm�vad�ia > 0 and hen
e, (m�vad�ia)v = 0. Thisproves that (31) holds. 2Property (31) 
an be expressed by saying that unit multiples of the additive operators
ommute with the 
oeÆ
ient map.Proposition 41 Let the assumptions on f , b, di and s be as in Proposition 38. Assumethat the additive operators �i satisfy (V�), that 
o is a weak 
oeÆ
ient map and that(31) holds. Suppose further that the additive operatornXi=0 
i�i with 
i = ( 
o s�1di if vdi = vs0 if vdi > vson the residue �eld Kv is surje
tive. Then the mapb + sM3 x 7! f�(x) 2 f�(b) + s2Mis immediate.Proof: We de�ne � as in Proposition 38. Now we just have to show that � satis�esthe assumptions of that proposition. So take any a0 2 s2M, a0 6= 0. Sin
e Pni=0 
i�i issurje
tive on Kv by assumption, there is some a 2 Kv su
h that Pni=0 
i�i a = 
o s�1a0.Property (WCM4) of the 
oeÆ
ient map allows us to 
hoose a 2 K su
h that 
o a = a andva = va0� vs. Thus, 0 6= a 2 sM. Set I = fi j 0 � i � n with vdi = vs and �i 
o a 6= 0g.Then by the de�nition of the 
i ,
o s�1a0 = nXi=1 
i�i a = Xi2I 
o (s�1di) �i 
o a= Xi2I 
o (s�1di�ia) = 
o (Xi2I s�1di�ia) ;where the third equality holds by (31). The last equality follows from (WCM2) sin
e theleft hand side is non-zero, being equal to 
o s�1a0, and be
ause for ea
h i 2 I, �i 
o a 6= 0implies v�ia = va by (31), and vdi = vs then yields vs�1di�ia = va so that all values areequal. By (WCM3), it follows thatv  s�1a0 � Xi2I s�1di�ia! > vs�1a0 :32



Consequently,v  a0 � Xi2I di�ia! = v  s�1a0 � Xi2I s�1di�ia!+ vs > vs�1a0 + vs = va0 :On the other hand, take i 2 I 0 := f0; : : : ; ng n I. In the 
ase of vdi > vs, sin
e v�ia �va = va0 � vs, we �nd that vdi�ia � vdi + va0 � vs > va0. Observe that a 6= 0 impliesd�ia 6= 0, and this implies 
o d�ia 6= 0. Hen
e in the 
ase of �i 
o a = 0, (31) shows thatv�ia > va and we obtain that vdi�ia > vdi + va = vdi + va0 � vs � va0. Therefore,v Xi2I0 di�ia � mini2I0 vdi�ia > va0 :This gives usv(a0 � �a) = v  a0 � nXi=0 di�ia! � min8<:v  a0 � Xi2I di�ia! ; v Xi2I0 di�ia9=; > va0 :So the 
onditions of Proposition 38 are satis�ed and we are done. 2In the same way as for the original Hensel's Lemma (ex
ept for the uniqueness as-sertion), Proposition 41 yields the following generalized Hensel's Lemma in the presentsetting:Theorem 42 In addition to the assumptions of Proposition 41, suppose that (K; v) isspheri
ally 
omplete and that vf�(b) > 2vs :Then there is an element a 2 K su
h that f�(a) = 0 and v(a� b) > vs.5.3 The 
ase of a dominant operatorIn this se
tion, we 
onsider the 
ase where one of the additive operators, say �n (withoutloss of generality), is dominant on some ball B around 0, that is,8 a 2 B : v�na < min0�j�n�1 v�ja or �0a = �1a = : : : = �na = 0 : (32)We will not assume that (V�) holds, so we 
annot apply Proposition 38. Instead, weprove:Proposition 43 Let �i : O ! O, 0 � i � n, be additive operators satisfying 
ondition(32). With f , b and di as in Proposition 38, assume thatvdn = min0�i�n vdi : (33)Suppose further that for some balls B;B0 � dnM around 0, the map �n : B ! B0 isimmediate. Then the map b+B 3 x 7! f�x 2 f�b + dnB0 (34)is immediate. If �n is inje
tive on B, then (34) is inje
tive, too.33



Proof: We set s = dn . Take distin
t elements y; z 2 b + B � b + sM and setbi := �ib 2 O, yi := �iy 2 O, zi := �iz 2 O. It follows from (32) that v(yi � bi) =v�i(y� b) � v�n(y� b), and our assumption on �n yields that yi � bi 2 B0 for 0 � i � n.We obtain yi 2 bi + B0 � bi + sM and similarly, zi 2 bi + sM. Thus we 
an applyLemma 37 to obtain that f�(b +B) � f�b + dnB0 :We shall apply Proposition 15 in order to show that g : b+B ! f�b+dnB0 is immediate.We set � := dn�n . Pi
k any a0 2 dnB0, a0 6= 0. Sin
e �n : B ! B0 is immediate,Proposition 11 shows that there is some a 2 B su
h that a 6= 0 andv  a0dn � �na! > v a0dn (35)and va � vb =) v�na � v�nb : (36)We obtain that v(a0��a) > va0 and va � vb! v�a � v�b, whi
h shows that (7) of Propo-sition 15 is satis�ed. Now take distin
t y; z 2 b + B. As in the proof of Proposition 38,we 
an apply Proposition 37 to obtain thatv  f�y � f�z � nXi=0 di�i(y � z)! > vs+mini v(�iy � �iz) = vs+mini v�i(y � z) :By (32), vs+mini v�i(y � z) = vs+ v�n(y � z) = vdn�n(y � z) :Again by (32), v n�1Xi=0 di�i(y � z) > vdn�n(y � z) ;and we 
on
lude thatv(f�y�f�z� dn�n(y�z)) � minfv(f�y�f�z� nXi=0 di�i(y�z)) ; n�1Xi=0 di�i(y�z)g > vdn�n(y�z) :(37)If v(y � z) � va, then by (36), vdn�n(y � z) � vdn�na and thus, (37) yieldsv(f�y � f�z � �(y � z)) = v(f�y � f�z � dn�n(y � z)) > vdn�na = v�a :Sin
e �0 = 0 as � is additive, this shows that (8) is satis�ed for f� in the pla
e of f . NowProposition 15 proves that f� is immediate.If �n is inje
tive on B, then y 6= z implies vdn�n(y � z) < 1, when
e f�y 6= f�z by(37). Hen
e in this 
ase, (34) is inje
tive. 2Proposition 43 yields the following Hensel's Lemma for the 
ase of a dominant opera-tor: 34



Theorem 44 In addition to the assumptions of Proposition 43, suppose that (K; v) isspheri
ally 
omplete and that for some e 2 B,vf�b � vdn + v�ne : (38)Then there is an element a 2 b + B su
h that f�a = 0 and v�n(a � b) � v�ne. If �n isinje
tive on B, then a is unique.Proof: It just remains to show that v�n(a� b) � v�ne. By (38),vdn + v�ne � vf�b = v(f�b � f�a) = vdn + v�n(b� a) ;where the last equality follows from (37) by the ultrametri
 triangle law. Hen
e, v�n(a�b) = v�n(b� a) � v�ne. 2In Se
tion 6.3 we will dedu
e from this theorem a Hensel's Lemma for Rosenli
htvalued di�erential �elds. But this Hensel's Lemma is not strong enough. To improveit, we 
onsider also the values of the higher derivatives of f . So we need to modify ourapproa
h, whi
h we will do in the next se
tion.5.4 Rosenli
ht systems of operatorsWe will 
all �0; �1; : : : ; �n a Rosenli
ht system of operators if ea
h �i : O ! O isadditive and there exist elements ei 2 O su
h thaten = 1 and ve0 � ve1 � : : : � ven = 0 ; (39)and for all i < n, vei + v�ia > v�na for all a 2 M; a 6= 0 : (40)The latter impli
itly in
ludes the 
ondition that �n is inje
tive on M.The following is an adaptation of Lemma 37.Lemma 45 Take f 2 O[X0; X1; : : : ; Xn℄ and b 2 On+1 su
h thatdn = �f�Xn (b) 6= 0and for all i 2 I = f0; : : : ; deg fgn+1 n f(0; : : : ; 0)g,vf [ i ℄(b) � vdn + vek if k = minfj j ij 6= 0g (41)where the elements ei 2 K satisfy (39). Take y = (y0; : : : ; yn) and z = (z0; : : : ; zn) inb +Mn+1 su
h that vei + v(yi � zi) > v(yn � zn) for 0 � i < n : (42)Then the following holds:v(f(y)� f(z) � dn(yn � zn)) > vdn(yn � zn) = v(f(y)� f(z)) : (43)35



Proof: Write y = b + Æ 2 b +Mn+1 and z = b + " 2 b +Mn+1, where Æ = (Æ0; : : : ; Æn)and " = ("0; : : : ; "n) satisfyvei + v(Æi � "i) = vei + v(yi � zi) > v(yn � zn) for 0 � i < n : (44)We note that ven + v(Æn � "n) = v(yn � zn); so we havevei + v(Æi � "i) � v(yn � zn) for 0 � i � n : (45)Take i 2 I, jij � 2, and let i0 be the multi-index obtained from i by subtra
ting 1 in thek-th pla
e, where k = minfj j ij 6= 0g. ThenÆi � "i = (Æk � "k)Æi0 + "k(Æi0 � "i0) :Suppose that we have already shown by indu
tion on ji0j thatve` + v(Æi0 � "i0) � v(yn � zn) for ` = minfj j i0j 6= 0g ;with the indu
tion start for ji0j = 1 being 
overed by (45). We have that ` � k, hen
evek � ve` by (39); therefore, also vek + v(Æi0 � "i0) � v(yn� zn). Sin
e vek + v(Æk � "k) �v(yn � zn) by (45), and sin
e Æi0 ; "k 2 M, we then �ndvek + v(Æi � "i) � minfvek + v(Æk � "k) + vÆi0 ; vek + v"k + v(Æi0 � "i0)g> v(yn � zn) : (46)Take i 2 I 0 := I n f(0; : : : ; 0; 1)g. Then be
ause of (44), inequality (46) also holds in the
ase of jij = 1. Hen
e by hypothesis (41),v(Æi � "i)f [ i ℄(b) � vdn + vek + v(Æi � "i) > vdn + v(yn � zn) :Sin
e f(y)� f(z) = dn(Æn � "n) + Xi2I0(Æi � "i)f [ i ℄(b)by (22), this yieldsv(f(y)� f(z) � dn(yn � zn)) = v(f(y)� f(z) � dn(Æn � "n))= vXi2I0(Æi � "i)f [ i ℄(b) > vdn + v(yn � zn) ;whi
h gives the inequality in (43). The equality in (43) follows from the inequality by theultrametri
 triangle law. 2Proposition 46 Let �0; : : : ; �n be a Rosenli
ht system of operators satisfying (39) and(40). Take f , b and dn as in Proposition 45 su
h that (41) holds. Suppose further thatfor some balls B;B0 �M around 0, the map �n : B ! B0 is immediate. Thenb+B 3 x 7! f�x 2 f�b + dnB0 (47)is immediate and inje
tive. 36



Proof: We modify the proof of Proposition 43 as follows. In order to apply Lemma 45,we set yi = �iy and zi = �iz. From (40) it follows thatvei + v(yi � zi) = vei + v(�iy � �iz) = vei + v�i(y � z)> v�n(y � z) = v(�ny � �nz) = v(yn � zn)for all y; z 2 b + B and 0 � i < n. Therefore, we 
an apply Lemma 45, and (43) showsthat v(f(y)� f(z)) = vdn�n(y � z) = vdn + v�n(y � z) (48)for all y; z 2 b +B. It follows thatf�(b +B) � f�b + dnB0 :As in the proof of Proposition 43 we use Proposition 15 to show that f� : b + B !f�b + dnB0 is immediate. The proof that (7) and (8) hold 
an be taken over literally,ex
ept that instead of dedu
ing (37) we just apply inequality (43) of Lemma 45 to obtainthat v(f�y � f�z � dn�n(y � z)) > vdn�n(y � z) :Sin
e �n is inje
tive on M (as a 
onsequen
e of 
ondition (40)), it follows as in theproof of Proposition 43 that g is inje
tive. 2Proposition 46 yields the following generalized Hensel's Lemma for the 
ase of a Rosen-li
ht system of operators:Theorem 47 The assertion of Theorem 44 also holds under the assumptions of Propo-sition 46.6 Immediate di�erentiationFrom now on our �i will be the i-th iterates Di of an additive operator D, with D0 beingthe identity. For a polynomials f in n+1 variables, we set fD(X) = f(X;DX;D2X; : : : ; DnX).6.1 VD-�eldsWe will 
all a valued �eld (K; v) with an additive map D : K ! K a VD-�eld if thefollowing 
onditions are satis�ed:(VDF1) vDa � va for all a 2 K,(VDF2) vK = fva j a 2 K with vDa > vag,(VDF3) there is e 2 O su
h that D(ab) = aDb+ bDa + e(Da)(Db) for all a; b 2 K.Together with (VDF1), the additivity of D implies:(VDF4) D indu
es an additive map on Kv, again denoted by D, su
h that (Da)v =D(av), 37



Proposition 48 Let (K;D; v) be a VD-�eld. Then D is immediate if and only if D issurje
tive on Kv.Proof: \)": Take any a0 2 O; we have to show that D(av) = a0v for some a 2 O.Condition (IH1) implies that there is a 2 K su
h that v(a0 � Da) > va0 � 0, when
ea0v = (Da)v = D(av).\(": Take any a0 2 K n f0g. By (VDF2), we 
hoose 
 2 K su
h that v
 = va0 withvD
 > v
, and set a00 = a0=
. Then va00 = 0, and sin
e D is surje
tive on Kv, there issome a0 2 O su
h that a00v = D(a0v) = (Da0)v. Hen
e, v(a00�Da0) > 0. We set a = 
a0 .We have that va0D
 = va0 + vD
 � vD
 > v
 and ve(D
)(Da0) = ve + vD
 + vDa0 �vD
 > v
. Hen
e,v(a0 �Da) = v(
a00 �D
a0) = v(
a00 � 
Da0 � a0D
� e(D
)(Da0))� minfv
+ v(a00 �Da0) ; va0D
 ; ve(D
)(Da0)g > v
 = va0 :This shows that (IH1) holds. Sin
e D(a0v) = a00v 6= 0, we know that a0v 6= 0, that is,va0 = 0. Therefore, vDa = va0 = v
 = v
a0 = va. So we obtain from (VDF1) thatva � vb implies vDa = va � vb � vDb, for all b 2 K. Hen
e, also (IH2) is satis�ed. 2The next theorem is an immediate 
onsequen
e of this proposition and Theorem 2.Theorem 49 Let (K;D; v) be a spheri
ally 
omplete VD-�eld. Assume that D is surje
-tive on Kv. Then D is surje
tive on K.As a preparation for our \D-Hensel's Lemma", we need the following fa
ts:Lemma 50 In every VD-�eld, D1 = 0.Proof: Suppose that D1 6= 0. From (VDF3) with b = 1 we then obtain eDa = �afor all a 2 K. With a = 1 this yields e = �(D1)�1, so ve � 0 sin
e vD1 � v1 = 0 by(VDF1). But by (VDF2), e 2 O, so we get ve = 0. But then eDa = �a shows thatvDa = va for all a 2 K, in 
ontradi
tion to (VDF2). 2Re
all that by Di we denote the i-th iterate of D, with D0 being the identity map.Lemma 51 Let (K; v) be a VD-�eld and m 2 K su
h that vDm > vm. Thenv �Di(ma)�mDia� > vma (49)for all a 2 K�, and vDm�1 > vm�1 : (50)38



Proof: By assumption, vaDm = va + vDm > va + vm = vma and ve(Dm)(Da) =ve + vDm+ vDa � vDm+ va > vm+ va = vma. Hen
e by (VDF3),v (D(ma)�mDa) � minfvaDm ; ve(Dm)(Da)g > vma :Now we pro
eed by indu
tion on i. Suppose that j > 1 and that we have already shown(49) for all i < j and all a 2 K. Thenv �Dj(ma)�mDja� == v �DDj�1(ma)�D(mDj�1a) +D(mDj�1a)�mDDj�1a�� minfvD �Dj�1(ma)�mDj�1a� ; v �D(mDj�1a)�mDDj�1a�g> minfvma ; vmDj�1ag = vmasin
e vDj�1a � va. This proves (49).By Lemma 50 and (VDF3),0 = D1 = D(mm�1) = mDm�1 +m�1Dm+ e(Dm)(Dm�1) :From this together with veDm � vDm > vm, we infervDm�1 = vm�1Dm� v(m+ eDm) = vm�1 + vDm� vm > vm�1 ;whi
h proves (50). 2In every VD-�eld, 
ondition (V�) holds for the additive operators �i = Di. Thisfollows by indu
tion on i (and we have used it already in the last proof). Again byindu
tion on i, (VDF4) implies that(Dia)v = Di(av) for every i � 1 ; (51)that is, the map indu
ed by Di on Kv is the i-th iterate of the map indu
ed by Don Kv. Indeed, having already shown that (Di�1a)v = Di�1(av), we obtain (Dia)v =(D(Dia))v = D((Dia)v) = D(Di(av)) = Di(av).Now we 
an prove the following theorem:Theorem 52 Let (K;D; v) be a spheri
ally 
omplete VD-�eld. Take a polynomial f 2O[X0; X1; : : : ; Xn℄ and assume that1) there is b 2 O and s 2 K with vDs > vs su
h thatvs = min0�i�n v �f�Xi (b;Db; : : : ; Dnb) <1 and vfDb > 2vs ;2) the additive operatornXi=0 
iDi with 
i =  s�1 �f�Xi (b;Db : : : ; Dnb)! v (52)on the residue �eld Kv is surje
tive.Then there is an element a 2 K su
h that fDa = 0 and v(a� b) > vs.39



Proof: By (VDF2), we 
an 
hoose elements m� with vm� = � and vDm� > vm�for � 2 vK; we set m0 = 1. By Lemma 39, this gives rise to a weak 
oeÆ
ient map
o . Inequality (49) of Lemma 51 shows that 
ondition (30) of Lemma 40 holds for theelements m� and the additive operators �i = Di. Therefore, 
o satis�es (31) for theseoperators. Sin
e vDs > vs, inequality (50) of Lemma 51 shows that vDs�1 > vs�1. Thus,we 
an 
hoose mvs = s and obtain that 
o a = (s�1a)v whenever va = vs. With di de�nedas in Proposition 38, we thus obtain that the elements 
i de�ned above 
oin
ide with theelements 
i de�ned in Proposition 41 and that the operator Pni=0 
iDi 
oin
ides with theoperator Pni=0 
i�i of Proposition 41. The former being surje
tive on Kv, our theoremnow follows from Theorem 42. 2This theorem yields Theorem 5. Indeed, if the assumptions of that theorem are satis-�ed, then by use of (VDF2) we pi
k s 2 K with vDs > vs su
h that vs = 
. Sin
e Kv isassumed to be linearly D-
losed, the operator (52) on Kv is surje
tive, and we 
an applyTheorem 52.6.2 Integration on Rosenli
ht valued di�erential �eldsLet (K;D) be a di�erential �eld with �eld of 
onstants C = fa 2 K j Da = 0g. FollowingM. Rosenli
ht [R1℄, a valuation v of K is 
alled a di�erential valuation if C is a �eldof representatives for the residue �eld of (K; v) (that is, v is trivial on C and for everyy 2 K with vy = 0 there is a unique 
 2 C s.t. v(y � 
) > 0), and v satis�es8a; b 2 K : va � 0 ^ vb > 0 ^ b 6= 0 ) v  bDaDb ! > 0 : (53)Be
ause of our assumption on C, this 
ondition is equivalent to8a; b 2 K n f0g; va 6= 0; vb 6= 0 : va � vb , vDa � vDb : (54)Lemma 53 Assume that v is a di�erential valuation with respe
t to D. Then for every~a 2 K there is some a 2 K su
h that va 6= 0 and Da = D~a. Moreover,8a; b 2 K : (0 6= va ^ va � vb) ) vDa � vDb : (55)This shows that fa 2 K j va 6= 0g � Reg (D).Proof: If v~a = 0 then by our assumption that the �eld of 
onstants is a �eld ofrepresentatives for the residue �eld, there is some 
onstant 
 su
h that v(~a�
) > 0; hen
efor a := ~a� 
 we have that va 6= 0 and Da = D~a�D
 = D~a.To prove (55), assume that 0 6= va and va � vb. If vb = 0, then we 
hoose a 
onstant
 su
h that v(b� 
) > 0. So we 
an infer from (54) that vDa � vD(b� 
) = vDb. 240



Proposition 54 Let v be a di�erential valuation on (K;D). Then D : (K; v)! (K; v)is immediate if and only if (K;D; v) admits asymptoti
 integration.Proof: \)": Condition (IH1) implies that (K;D; v) admits asymptoti
 integration.\(": Take any a0 2 K n f0g. Sin
e (K;D; v) admits asymptoti
 integration, there issome a 2 K su
h that v(a0 � Da) > va0, that is, (IH1) holds. By Lemma 53, a 
an be
hosen su
h that va 6= 0 and (IH2) holds. 2The next theorem is an immediate 
onsequen
e of this proposition and Theorem 2.Theorem 55 Let (K;D) be a di�erential �eld, endowed with a spheri
ally 
omplete dif-ferential valuation v. Assume further that (K;D) admits asymptoti
 integration. Then(K;D) admits integration.For 
ertain appli
ations, one has to work with a �eld K whi
h is a union of an in
reas-ing sequen
e of power series �elds Ki , i 2 N . If this sequen
e does not be
ome stationary,then K itself will not be spheri
ally 
omplete. However, we still 
an prove the following:Theorem 56 Let (K; v) be the union of an in
reasing 
hain (Ki; v) of spheri
ally 
om-plete valued �elds, i 2 N . Let D be a derivation on K su
h that v is a di�erential valuationwith respe
t to D. Assume further that for ea
h i there are elements ai;j 2 Ki+1 , j 2 Ii ,su
h that1) Dai;j 2 Ki for all j 2 Ii ,2) the valued Ki-subve
tor spa
e Vi := Ki +Pj2Ii Kiai;j of Ki+1 is spheri
ally 
omplete,3) for every b 2 Ki there is some a 2 Vi su
h that v(b�Da) > vb.Then (K;D) admits integration.Proof: It suÆ
es to show that for ea
h i, D is a surje
tive map from Vi onto Ki . Sin
eK = Si2NKi it then follows that D is surje
tive on K.Be
ause of 1), we have that DVi � Ki . We set Y = Vi and Y 0 = Ki . As in the proofof Proposition 54 one uses 3) to show that D : Y ! Y 0 is immediate. From 2) togetherwith Theorem 2, one obtains that DVi = Ki . 2This theorem implies that the derivation on the logarithmi
-exponential power series�eld R((t))LE (
f. [DMM3℄) is surje
tive. The argument is as follows. It 
an be shownthat R((t))LE is the union over an in
reasing sequen
e of di�erential power series �eldsKi su
h that for every i there is just one ai 2 Ki+1 su
h that Dai 2 Ki and 
ondition 3)holds. In fa
t, ai = logi x for a 
ertain element x, where logi denotes the i-th iterate of log.Further, vai is rationally independent over vK. It follows that v(
+
0ai) = minfv
; v
0aigfor all 
; 
0 2 Ki , that is, the ultrametri
 spa
e underlying Vi is just the dire
t produ
t ofthe one underlying Ki and the one underlying Kiai . As the latter is isomorphi
 to the oneunderlying Ki , both are spheri
ally 
omplete. By Proposition 10, their dire
t produ
t isspheri
ally 
omplete. The foregoing theorem now proves the surje
tivity of D.41



6.3 Di�erential equations on Rosenli
ht valued di�erential �eldsNow let us assume in addition that D(M) � M : (56)If K 
ontains an element x su
h that vDx = 0 and vx < 0 (as it is the 
ase in R((t))LE,see below), then (56) is a 
onsequen
e of (54). In fa
t, (56) also holds in every Hardy�eld. If (56) does not hold for a derivation D, then we may repla
e D by the derivationaD, with 0 6= a 2 K; it follows from (54) that (56) will hold for aD in the pla
e of D forevery a of suÆ
iently high value va.Assumption (56) implies that Di(M) � M for ea
h i 2 N . We leave it to the readerto use this fa
t together with (54) to prove the following easy lemma by indu
tion on i:Lemma 57 If (K;D; v) admits asymptoti
 integration, then for ea
h i 2 N , the mapDi :M �! MDi := [e2M(Die)O � M (57)is an immediate embedding of ultrametri
 spa
es with value map va 7! vDia.Hen
e by Theorem 2, we have:Lemma 58 If (K;D; v) is spheri
ally 
omplete and admits asymptoti
 integration, thenthe map (57) is an isomorphism of ultrametri
 spa
es.When we try to prove a di�erential Hensel's Lemma for Rosenli
ht's di�erential val-uations, we have to deal with the problem that the 
onne
tion between vDia and vDjafor i 6= j is not as ni
e as in the 
ase of D-�elds. The natural hypothesis on the partialderivatives as used in Theorem 5 may not suÆ
e. We need to set up a relation betweenthe values vy; vDy; : : : ; vDny. The key is de�nition (53) of a di�erential valuation. Byindu
tion, it implies that for arbitrary e 2 M,vDiy + (n� i)vDe > vDny for 0 � i < n : (58)Be
ause of this relation, we will have to assume that the partial derivative of least valueappears at the variable Xn whi
h is asso
iated with the highest power Dn of D. Thefollowing is a spe
ial 
ase of Theorem 44 in Se
tion 5.3:Theorem 59 Let (K;D) be a di�erential �eld, endowed with a spheri
ally 
omplete dif-ferential valuation v. Assume that (K;D; v) admits asymptoti
 integration. Take a poly-nomial g 2 O[X0; X1; : : : ; Xn℄ and assume that there are b 2 O and e 2 M su
h that,with d := De, g(d�nX0; d1�nX1; : : : ; d�1Xn�1; Xn) 2 O[X0; X1; : : : ; Xn℄and v �g�Xn (b;Db; : : : ; Dnb) = min0�i�n vdi�n �g�Xi (b;Db; : : : ; Dnb) = 0 (59)42



and vgDb � vDne : (60)Then there is a unique element a 2 O su
h that gDa = 0. It satis�es v(a� b) � ve.Proof: Set f(X0; : : : ; Xn) = g(d�nX0; d1�nX1; : : : ; d�1Xn�1; Xn) 2 O[X0; X1; : : : ; Xn℄.With di de�ned as in (25) of Proposition 38, it follows from (59) that 0 = vdn = mini vdi,whi
h shows that (33) of Proposition 43 is satis�ed. Further, we set �i := dn�iDi, B :=Mand B0 := MDn � M = dnM. Then by (58), v�na < v�ia for all i < n and a 2 M,showing that (32) holds. Sin
e �n(M) = Dn(M) � B0 �M, it follows that also �i(M) �M for 0 � i � n. Condition (60) tells us that 
ondition (38) of Theorem 44 is satis�ed.Finally, Lemma 57 tells us that Dn : M ! B0 is immediate and inje
tive. We haveproved that all 
onditions of Theorem 44 are satis�ed. Hen
e, there is a unique elementa 2 b +M su
h that gDa = f(�0a; �1a; : : : ; �na) = 0, and it satis�es v�n(a � b) � v�ne.The latter means that vDn(a � b) � vDne, whi
h by (54) implies v(a � b) � ve sin
ea� b ; e 2 M. 2This theorem 
an be improved if one also 
onsiders the values of the higher deriva-tives of f . The formal higher derivatives f [ i ℄ have already been introdu
ed and used inSe
tion 5.1. We will work with the Rosenli
ht system�i := Di ; ei := (De)n�ifor �xed n 2 N and some e 2 M. Then 
ondition (39) in Se
tion 5.4 is trivially satis�ed,and 
ondition (40) is satis�ed be
ause of (58). We will apply Theorem 47 to prove:Proposition 60 Take f 2 O[X0; X1; : : : ; Xn℄ and b 2 O su
h thatdn = �f�Xn (b;Db; : : : ; Dnb) 6= 0and for all i 2 I = f0; : : : ; deg fgn+1 n f(0; : : : ; 0)g,vf [ i ℄(b;Db; : : : ; Dnb) � vdn + vek if k = minfj j ij 6= 0g : (61)Suppose further that for some balls B;B0 � M around 0, Dn : B ! B0 is immediate.Then b+B 3 x 7! fDx 2 fDb + dnB0 (62)is an immediate embedding of ultrametri
 spa
es with value map va 7! vdn + vDna. If(K; v) is spheri
ally 
omplete, it is an isomorphism of ultrametri
 spa
es.Proof: All this follows from Proposition 46 and Theorem 2. It just remains to provethat (62) is an embedding of ultrametri
 spa
es with value map va 7! vdn + vDna. Butthis follows from equation (48) of Proposition 46 and the fa
t that va 7! vDna for a 2 Mpreserves \<". 243



Theorem 61 Let (K;D) be a di�erential �eld, endowed with a spheri
ally 
omplete dif-ferential valuation v. Assume that (K;D; v) admits asymptoti
 integration. Take a poly-nomial f 2 O[X0; X1; : : : ; Xn℄ and assume that there are b 2 O and e 2 M su
h that8i : vf [ i ℄(b;Db; : : : ; Dnb) � v �f�Xn (b;Db; : : : ; Dnb)+(n�k)vDe if k = minfj j ij 6= 0g(63)and vfDb � vDne :Then there is a unique element a 2 M su
h that f(a;Da; : : : ; Dna) = 0. It satis�esv(a� b) � ve.Proof: As in the proof of Theorem 59, we set B :=M and B0 :=MDn ; then Dn : B !B0 is immediate by Lemma 57. Now we apply Theorem 47 instead of Theorem 44. 2If K is of 
hara
teristi
 0, then the usual higher derivativef ( i )(X) := �i0+:::+inf�i0X0 � � ��inXn (X)
an be substituted for f [ i ℄(X) in the above theorem. Indeed,f ( i )(X) = i0! � : : : � in! � f [ i ℄(X)and therefore, vf ( i )(b;Db; : : : ; Dnb) = vf [ i ℄(b;Db; : : : ; Dnb) :In R((t))LE, the element x = t�1 satis�es vx < 0 andDx = 1. Suppose that 1 < r 2 R .Then e = 11�rx1�r 2 R((t))LE satis�es ve > 0 and De = x�r. With Ki as in the dis
ussionat the end of Se
tion 6.2, take Mi to be the valuation ideal of Ki . Then 1x =2 (De)Miand it 
an be shown that for every a0 2 (De)Mi there is some a 2 eMi su
h thatv(a0 � Da) > va0. As for the proof of Lemma 57, it 
an thus be dedu
ed that for everyk � 1, Dk : eMi ! (Dke)Mi is an immediate embedding of ultrametri
 spa
es. Hen
e onevery ball of the form eMi in Ki , di�erential equations of the above form 
an be solvedwithout any modi�
ation of our approa
h.The union of an as
ending 
hain of henselian �elds is again henselian. With the sameidea of proof, working in Ki for all i large enough to 
ontain all 
oeÆ
ients of h and thenpassing to the union of the Ki , one obtains, applying Theorem 61 with e as given aboveto the polynomial f(X0; : : : ; Xn) = g(X0; : : : ; Xn) + 
�Xn and b = 0 :Theorem 62 Let O denote the valuation ring of R((t))LE. Suppose thatg(X0; : : : ; Xn) 2 n�1Xi=0 x�(n�i)rXiO[Xi ; : : : ; Xn℄ + X2nO + XnM (64)44



and 
 2 x�r�n+1O :Then the di�erential equationDny = g(y;Dy; : : : ; Dny) + 
 (65)has a unique in�nitesimal solution in R((t))LE; this solution has value � vx1�r.This theorem implies the following result, whi
h was proved by Lou van den Driesin [D℄:Corollary 63 Suppose that p is a polynomial in one variable with 
oeÆ
ients in R((t))LE,all of value � vtr for some r 2 R , r > 1. Then the di�erential equationDy = p(y)has a unique in�nitesimal solution in R((t))LE.7 Sums of spheri
ally 
omplete valued abelian groupsLet (A; v) be a valued abelian group and A1; : : : ; An be subgroups of A. The restri
tionsof v to every Ai will again be denoted by v. We 
all the sum A1 + : : : + An � Apseudo-dire
t if for every a0 2 A1 + : : :+ An , a0 6= 0, there are ai 2 Ai su
h thatv nXi=1 ai = min1�i�n vai and v  a0 � nXi=1 ai! > va0 : (66)Proposition 64 The sum A1 + : : : + An � A is pseudo-dire
t if and only if the grouphomomorphism f : A1� : : :�An ! A1+ : : :+An de�ned by f(a1; : : : ; an) := a1+ : : :+anis immediate.Proof: ): Assume that the sum A1 + : : :+ An is pseudo-dire
t. Take any a0 2 PiAiand 
hoose ai 2 Ai su
h that (66) holds. Then a := (a1; : : : ; an) 2 A1 � : : :� An satis�es(IH1). If b = (b1; : : : ; bn) 2 A1 � : : :� An su
h that vb � va, thenvfb = vXi bi � mini vbi = vb � va = mini vai = vXi ai = vfa :This shows that a also satis�es (IH2).(: Assume that f is immediate. Take any a0 2 PiAi , a0 6= 0. Choose a := (a1; : : : ; an) 2A1�: : :�An su
h that (IH1) and (IH2) hold. Then v (a0 �Pi ai) = v(a0�fa) > va0. Now
hoose some j su
h that vaj = mini vai . Then set bj = aj 2 Aj and bi = 0 2 Ai for i 6= j.For b = (b1; : : : ; bn), we thus have that va = mini vai = vaj = vbj = mini vbi = vb. Hen
eby (IH2), vPi ai = vfa � vfb = vbj = mini vai . We have proved that the elements aisatisfy (66). 245



If the groups (Ai; v) are spheri
ally 
omplete, then by Proposition 10, the same is truefor their dire
t produ
t A := A1 � : : : � An , endowed with the minimum valuation asde�ned in (10). Hen
e, the foregoing proposition, Theorem 2 and Corollary 4 show:Theorem 65 Assume that the subgroups (Ai; v) of (A; v), 1 � i � n, are spheri
ally
omplete. If the sum A1 + : : : + An is pseudo-dire
t, then it is also spheri
ally 
ompleteand has the optimal approximation property.
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