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Abstract. We give a criterion for maps on ultrametric spaces to be surjective and
to preserve spherical completeness. We show how Hensel’s Lemma and the multi-
dimensional Hensel’s Lemma follow from our result. We give an easy proof that the
latter holds in every henselian field. We also prove a basic infinite-dimensional Im-
plicit Function Theorem. Further, we apply the criterion to deduce various versions
of Hensel’s Lemma, for polynomials in several additive operators, and to give a crite-
rion for the existence of integration and solutions of certain differential equations on
spherically complete valued differential fields, for both valued D-fields in the sense
of Scanlon, and differentially valued fields in the sense of Rosenlicht. We modify the
approach so that it also covers logarithmic-exponential power series fields. Finally,
we give a criterion for a sum of spherically complete subgroups of a valued abelian
group to be spherically complete. This in turn can be used to determine elementary
properties of power series fields in positive characteristic.
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1 Introduction

Hensel’s Lemma (see Theorem 22) is an important tool in the theory of valued fields. In
recent years, it has witnessed several generalizations. For example, such generalizations
are important when the valued fields are enriched by additional structure like derivations.
But attempts have also been made to formulate Hensel’s Lemma in situations with less
structure. For instance, forgetting about multiplication one may consider valued abelian
groups or modules. Another interesting case is that of a non-commutative multiplication.

In view of these developments, it is logical to ask for the underlying principle that
makes Hensel’s Lemma work. This principle should be formulated using as little algebraic
structure as possible so that one can derive new versions of Hensel’s Lemma by adding
whatever structure one is interested in.

It has turned out that the structure suitable for such an underlying principle is that of
ultrametric spaces. In [P2], S. PrieS-Crampe proved an ultrametric Fixed Point Theorem.
This theorem works with contracting maps, and indeed the Newton algorithm used to
prove Hensel’s Lemma for the field of p-adic numbers readily provides such a map. But in
other situations, contracting maps are not always instantly available. For example, if one
looks for zeros of polynomial maps on a valued field, it can be more convenient to directly
study the ultrametric properties of these maps. The problem could then be solved by
showing surjectivity of such maps when restricted to suitable subsets of the field. Our
Ultrametric Main Theorem (Theorem 2) is of this nature.

In the next section, we give a quick introduction to the facts about ultrametric spaces
that are necessary to understand the Ultrametric Main Theorem. In Section 1.2 we will
then give a summary of the various applications that are derived in this paper.

1.1 The Ultrametric Main Theorem

Let (Y, u) be an ultrametric space. That is, u is a map from Y x Y onto a totally ordered
set [' with last element oo, satisfying that for all z,y,z € Y,

(Ul) u(y,z) =o0 if and only if y = 2,

(U2) wu(y,z) > min{u(y,z),u(x,z)} (ultrametric triangle law),



(U3) u(y,z) =u(z,y) (symmetry).

It follows that

e u(y,z) > min{u(y, x),u(z, 2)} = uly,z) =u(x, z),

o u(y,z) # u(z,2) = uly,z) =min{u(y,x),u(z, z)}.

We will use these properties freely. We set uY = {u(y,2) | y,z2 € Y,y # 2} =T\ {o0}
and call it the value set of (Y, u).

We recall some definitions. For y € Y and a € uY U {oo}, we define the closed ball
around y with radius « as follows:

Ba(y) == {z€Y |u(y,z) 2 a} .
To facilitate notation, we will also use

B(x,y) 1= Buygay)(z) .

It follows from the ultrametric triangle law that By, () = Bye,y)(y) and that B(z,y)
is the smallest closed ball containing  and y. Similarly, it follows from the ultrametric
triangle law that

B(z,y) C B(z,t) ifand only if z € B(z,t) and u(z,y) > u(z,t) . (1)

(Note: the bigger u(z,y), the closer x and y; this is compatible with the Krull notation
of valuations.)

A ball is the union of any non-empty collection of closed balls which contain a common
element. If B; and B, are balls with non-empty intersection, then B; C By or By C B; .

A set of balls in (Y, u) is called a nest of balls if it is totally ordered by inclusion;
this is the case as soon as every two balls in the set have a nonempty intersection. The
intersection of the nest is defined to be the intersection of all of its balls. If it is non-
empty, then it is again a ball.

The ultrametric space (Y, u) is called spherically complete if every nest of balls has
a nonempty intersection. It is well known and easy to prove that this holds if and only
if every nest of closed balls has a nonempty intersection. If (Y, u) is spherically complete
and B is a ball in Y, then also (B, u) is spherically complete.

Let (Y,u) and (Y’, ') be non-empty ultrametric spaces and f: Y — Y’ a map. For
y €Y, we will write fy instead of f(y). An element 2’ € Y is called attractor for f if
for every y € Y such that 2z’ # fy, there is an element z € Y which satisfies:
(AT1) o/'(fz,72) > d'(fy,7),
(AT2) f(B(y,z)) € B(fy,?").
Condition (AT1) says that the approximation fy of 2’ from within the image of f can be

improved, and condition (AT2) says that this can be done in a somewhat continuous way.
The following are our main theorems.

Theorem 1 Assume that 2’ € Y' is an attractor for f : Y — Y' and that (Y,u) is
spherically complete. Then 2’ € f(Y).



The map f will be called immediate if every 2z’ € Y’ is an attractor for f.

Theorem 2 Assume that f: Y — Y' is immediate and that (Y, u) is spherically com-
plete. Then f is surjective and (Y',u') is spherically complete. Moreover, for everyy € Y
and every ball B" in Y" containing fy, there is a ball B in'Y containing y and such that
f(B) =B

This theorem is a generalization of a result proved in [KU1] for additive maps on spheri-
cally complete abelian groups (see Section 3 for the definition). Theorem 2 also works in
the case where the map f is not additive (or even when there is no addition at all). It is
related to ultrametric fixed point theorems as proved in [P2], [PR1]. Compared to them, it
has the advantage that it can be applied to situations where a natural contracting map is
not at hand. There is also a variant of our “Attractor Theorem” (Theorem 1) which works
for ultrametric spaces with partially ordered value sets ([PR2]). For further information
and applications of ultrametric fixed point theorems, see also [SCH] and [PR3].

If f is just the embedding of an ultrametric subspace Y in an ultrametric space Y, then
(AT2) will automatically hold. Hence, we will say that Y is an immediate subspace of
Y if it is an ultrametric subspace of Y and for all 2’ € Y" and y € Y there is z € Y such
that u'(z,2") > u/(y,2"). Now Theorem 2 yields:

Corollary 3 Assume that Y is an immediate ultrametric subspace of Y'. If (Y, u) is
spherically complete, then Y =Y.

It should be noted that an immediate subspace is not necessarily a dense subspace.

A subspace Y of Y is said to have the optimal approximation property (in Y”) if
for every 2’ € Y' there is z € Y such that u/(z, 2’) = max{v/(y, ') | y € Y}. The element
z need not be uniquely determined. If the set {u/(y, ') | y € Y} has no maximum, then
Z' is an attractor for the embedding of Y in Y’. On the other hand, if 2’ € Y, then the
maximum is u(z’,z") = co. Thus, Theorem 1 yields:

Corollary 4 Assume that Y is an ultrametric subspace of Y'. If (Y,u) is spherically
complete, then it has the optimal approximation property.

1.2 Applications
e The Additive Main Theorem

In some applications, the map f is a homomorphism of abelian groups and the ultrametric
u is induced by a group (or field) valuation (see Section 3 for definitions). With the
presence of addition, balls can be shifted additively to balls that contain 0. In this
way, the criteria for immediate maps become much easier to formulate and to check (see
Proposition 11). In Section 3.1 we will prove the additive version of our Ultrametric Main
Theorem (Theorem 12), which works for homomorphisms.

In Section 3.2 we will introduce the notion of pseudo-companion for arbitrary maps
on valued abelian groups. One can think of it as a linearization at a certain point “up
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to terms of higher order”, valuation theoretically speaking. This notion will then play an
essential role when we study polynomial maps.

e Hensel’s Lemma revisited

Let (K,v) be a valued field with valuation ring O and valuation ideal M. Further, take
a polynomial f € O[X] and b € O such that s := f'(b) # 0. In Section 4.3 we consider f
as a map on K and prove that f induces an immediate injective map from b+ sM into
f(b) + s*M (Proposition 20). Here, the pseudo-companion is simply multiplication by
s. From Theorem 2 we obtain that if (K, v) is spherically complete (i.e., its underlying
ultrametric is spherically complete), then this map is onto (Theorem 21).

This allows a new look at Hensel’s Lemma: while it is always true for (K, v) spherically
complete and f'(b) # 0 that the above map is onto, the condition “vf(b) > 2vf'(b)” of
Hensel’s Lemma guarantees that 0 € f(b) + s2M and consequently, there is a € K
such that f(a) = 0 and v(a — b) > vf’(b) (see Section 4.4). We generalize this result
to systems of n polynomials in n variables and use it to prove that the multidimensional
Hensel’s Lemma holds in every spherically complete valued field (Theorem 23). By an easy
argument due to F. Pop, we conclude that the multidimensional Hensel’s Lemma holds
in every henselian field (see Theorem 24). Further, we prove results on the surjectivity of
functions defined by power series in spherically complete valued fields (see Section 4.6).

Our above approach to Hensel’s Lemma has also been used in a non-commutative
setting. In [VC] it is applied to skew power series fields over skew fields.

e Infinite-dimensional Implicit Function Theorems

The n-fold product of a spherically complete ultrametric space is again spherically com-
plete (see Section 2.2). We use this fact for the proof of the multi-dimensional Hensel’s
Lemma. If one thinks of generalizing this to an infinite-dimensional version, one runs into
problems when trying to define a suitable product. But if one restricts the scope to valued
rings with well ordered value sets, then this is possible. Using the above mentioned notion
of pseudo-companion, we formulate in Sections 4.5 and 4.7 several infinite-dimensional Im-
plicit Function Theorems, for polynomial and power series maps. Such theorems are of
interest for B. Teissier’s approach to local uniformization in arbitrary characteristic (cf.
[T], Theorem 5.56).

e VD-fields

A VD-field is a valued field (K, v) with an additive map D : K — K satisfying conditions
that are a relaxation of T. Scanlon’s axioms for valued D-fields (cf. [S1,2]). Scanlon’s
notion comprises both differential and difference fields. Essential features of VD-fields
are that the value vDa depends on the value va in a sufficiently simple way and that D
induces an additive map on the residue field of K (again denoted by D). The following
result, proved in Section 6.1, shows that in this setting, the notion of immediate map
appears in a very natural way: If (K, D,v) is a VD-field, then D is immediate if and
only if D is surjective on Kv (Theorem 48). Hence we obtain from Theorem 2 that if
(K, D,v) is a spherically complete VD-field such that D is surjective on Kv, then D is
surjective on K (see Theorem 49).



In Section 6.1 we will also prove the following version of Scanlon’s D-Hensel’s Lemma
(cf. [S1,2]). By D' we denote the i-th iterate of D. The residue field Kv is said to be
linearly D-closed if each operator >, ¢;D* with ¢; € Kv is surjective on Kv.

Theorem 5 Let (K, D,v) be a spherically complete VD-field whose residue field is linearly
D-closed. Take a polynomial f € O[Xo, X1,...,X,] and assume that there is some b € O
such that

v = min v%(b,Db,...,D”b) < oo and wvf(byDb...,D"b) > 2v.

0<i<n  0X;
Then there is an element a € K such that f(a,Da,...,D"a) =0 and v(a — b) > 7.

In fact, we will deduce this theorem from a much more general Hensel’s Lemma for
polynomials in several additive operators (Theorem 42 in Section 5.2).

e Rosenlicht valued differential fields

A valuation v on a differential field (K, D) is a differential valuation in the sense of
M. Rosenlicht (cf. [R1]) if it satisfies an axiom that is derived from de I’'Hopital’s Rule.
In this case, there is in general no simple correspondence between the values vDa and
va, and there is also no suitable map induced on the residue field. Yet again, immediate
maps appear naturally. We say that (K, D) admits integration if D is surjective, and
that (K, D,v) admits asymptotic integration (cf. [R2]) if for every o' € K\ {0}, there
is some a € K such that
v(a" — Da) > vd'.

In Section 6.2, we will give the (easy) proof of the following fact: If v is a differential
valuation on (K, D), then D is immediate if and only if (K, D,v) admits asymptotic
integration (see Proposition 54). Hence we obtain from Theorem 2: Let (K, D) be a
differential field, endowed with a spherically complete differential valuation v. If (K, D, v)
admits asymptotic integration, then (K, D) admits integration (Theorem 55).

In Section 6.2 we will also prove a theorem about integration on the union of an
increasing chain of spherically complete Rosenlicht valued differential fields (Theorem 56).
It can be used to show that the derivation on the logarithmic-exponential power series
field R((¢))L® (cf. [DMMS3]) is surjective.

When we try to prove a “differential Hensel’s Lemma” for Rosenlicht’s differential
valuations, we experience technical problems because of the weak correspondence between
the values vDa and va. In this case, the results are not as nice and simple as in the case of
VD-fields. The main results are Theorem 59, obtained from the more general Theorem 44
proved in Section 5.3, and Theorem 61, obtained from the more general Theorem 47
proved in Section 5.4. As a simple application we obtain a result which was proved by
Lou van den Dries in [D] (see Corollary 63).

e Sums of spherically complete valued abelian groups



So far, we have been interested in the surjectivity of maps. Here is an application where
we use that the image of the map inherits spherical completeness. It is used in [KU2]
to determine elementary properties of the power series field F,((¢)) in connection with
additive polynomials. A polynomial f is called additive on an infinite field K if f(a +
b) = f(a) + f(b) for all a,b € K (cf. [L], VIIL, §11). For example, the polynomials
X? and X? — X are additive on F,((¢)) and every other field of characteristic p. For
every additive polynomial f on a field K, the image f(K) is a subgroup of the additive
group of K. If fi,..., f, are additive polynomials with coefficients in K, then the sum
Ji(K) + ...+ fu(K) is again a subgroup of the additive group of K.

If K is a maximally valued field (like K = F,((¢)); cf. Section 4), then the image
J(K) of every polynomial is spherically complete. Hence the question arises whether the
subgroup f1(K) + ...+ f,(K) is again spherically complete. In Section 7 we will show
that the sum of spherically complete subgroups of a valued abelian group is spherically
complete (and hence has the optimal approximation property) if the sum is pseudo-direct
(cf. Theorem 65). The optimal approximation property of a definable subgroup in a valued
abelian group is an elementary property in the language of groups with a predicate for
the valuation. If the subgroups are definable, then also the assertion that their sum is
pseudo-direct is elementary. Hence, given additive polynomials f1, ..., f, with coefficients
in K =T,((t)), the assertion

if f1(K) + ...+ fu(K) is pseudo-direct, then it has the optimal approximation property

is elementary in the language of valued fields (enriched by names for the coefficients of the
polynomials f;). By Theorem 65, it holds for K’ =F,((t)), and for every other spherically
complete valued field (K, v). See [KU2] and [KU3] for further details.

2 Ultrametric Spaces

2.1 Proof of the Ultrametric Main Theorem

For the proof of Theorem 1, we show the following more precise statement:

Lemma 6 Assume that 2’ € Y' is an attractor for f : Y — Y’ and that (Y,u) is
spherically complete. Then for every y € Y there is zo € Y such that fzy = 2 and

f(B(y,2)) € B(fy,?).

Proof: If 2/ = fy then we set zp = y and there is nothing to show. So assume that
2" # fy. Then by assumption on 2’ there is z € Y such that (AT1) and (AT2) hold. Take
elements y;, z; € B(y, ), @ € I, such that the balls B(y;, z;) form a nest inside of B(y, 2),
maximal with the following properties, for all ¢:

1) 2= fyi=fzi or W(Z, fz) > W(, fyi),

i) f(B(yi,2)) € B(fyi,2"),
iii) for all j € I, u(y;, z;) < u(y;, z;) implies that u'( fy;, 2') < u'(fy;, ).



Non-empty nests with these properties exist. Indeed, the singleton {B(y,2)} is such
a nest. Maximal nests with these properties exist by Zorn’s Lemma. Take one such
maximal nest. As soon as we find 2y € B(y, z) such that 2’ = fz, we are done because
f(B(y,20)) € f(B(y,2)) € B(fy, 7).

Assume first that this nest has a minimal ball, say, B(yo, z0). If 2’ = fzy then we are
done. So assume that 2z’ # [z, and set § := z5. Then by assumption on z’, we can find
Z € Y such that

u'(fZ,2") > u'(f,2) and  f(B(5,2)) € B(f7,%) .

We have that

u'(f7,2') = u'(fz0,2") > u'(fyo, ') = W' (F7, fyo) (2)
where the last equality follows from the ultrametric triangle law. So we know that fy, ¢
B(fy, ') and thus, yo ¢ B(y, 2). This shows that u(g, 2) > u(g, yo) = u(z0, yo), and since
J =z € B(z0, ), it follows that B(Z,9) & B(z,y0). So we can enlarge our nest of balls
by adding B(Z,7), and conditions i) and ii) hold for the new nest. From iii) we see that
u'(fyo, 2') is maximal among the u'(fy;, 2'), i € I; so (2) shows that also iii) holds for the
new nest. But this contradicts the maximality of the chosen nest.

Now assume that the nest contains no smallest ball. Since (Y, ) is spherically complete
by assumption, there is some zy € ;e B(vi, z;). Suppose that fzp # z’. Then we set
g := zp. For all i, we have § € B(y;,2;) and fy € f(B(yi,2:)) € B(fyi, 2'), showing
that u'(fg,2") > v/ (fy;, 2"). We choose Z as before. We have f(B(7,2)) C B(fy,2") C
B(fy;,7') for all i. On the other hand, since the nest contains no smallest ball, the set
{u(y;, z;) | i € I'} has no maximal element. So iii) implies that also the set {u'(fy;, 2') |
i € I} has no maximal element. Consequently, for all i € I there is j € I such that
u'(fy,2') > u'(fy;,2") > u'(fy;,2"). Consequently, fy; ¢ B(fy,z'), which yields that
yi ¢ B(3,%). Therefore, B(7,2) S B(y;, ) and u(y, Z) > u(y, %) for all i. So we can
enlarge our nest of balls by adding B(7, Z), and conditions i), ii) and iii) hold for the new
nest. This again contradicts the maximality of the chosen nest. Hence, fzy = 2’ and we
are done. a

Corollary 7 Assume that f: Y — Y’ is immediate and that (Y, u) is spherically com-
plete. Then the following holds:

(BB) for everyy € Y and every ball B' in'Y' around fy, there is a ball B in'Y around
y such that f(B) = B'.

Proof:  Assume that y € Y and that B’ is any ball in Y’ which contains fy. Then we
can write
B = U B(Z, fy) .
z'eB’
According to the foregoing lemma, for every 2’ there is zo € Y such that 2’ € f(B(y, 20)) C

B(fy,z') € B'. Take B to be the union over all such balls B(y, zp) when 2’ runs through
all elements of B'. Then B is a ball around y satisfying f(B) = B'. O
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The next lemma proves Theorem 2:

Lemma 8 Assume that f : Y — Y' is a map which satisfies (BB), and that (Y,u) is
spherically complete. Then f is surjective, and (Y',u') is spherically complete.

Proof:  Taking B’ =Y’ we obtain the surjectivity of f.

Now we take any nest of balls {B} | j € J} in Y'. We have to show that this nest
has a nonempty intersection. We claim that in Y there exists a nest of balls B;, ¢ € I,
maximal with the property that

ICJ,andforallie I, f(B;) = B;. (3)

To show this, we first take any j € J and choose some y; € Y such that fy; € B}, making
use of the surjectivity of f. As f satisfies (BB), we can choose a ball B; in Y around y;
and such that f(B;) = B}. So the nest {B;} has property (3). Hence, a maximal nest
{B; | i € I} with property (3) exists by Zorn’s Lemma.

We wish to show that the balls B}, i € I, are coinitial in the nest B;-, j € J, that is,
for every ball B’ there is some i € I such that B; C B} . Once we have shown this we are
done: as Y is spherically complete, there is some y € ;c; B;, and

fy e N f(B) = (1B = (] B]

el el jedJ

shows that N;c, B} is non-empty.

Suppose the balls B!, i € I, are not coinitial in the nest B;-, j € J. Then there is
some j € J such that B} g Bl for all ¢ € I. Since Y is spherically complete, there is some
Y € Nier Bi. We have that fy € N, B; =: B', and also that B; C B'. By assumption,
there is a ball B around y such that f(B) = B’. If B’ happens to be the smallest ball
among the B}, say, B’ = Bj with ig € I, then we just take B = B;,. If B’ S Bj, then
it follows that B & B;. Hence in all cases, B C B; for all i. Since B; C B, we can
choose § € B such that f§ € B;. By assumption, there is a ball B; around g such that
f(Bj) = B}. Since § € B; for all i € I, we know that B;, i € TU{j} is a nest of balls. By
construction, it has property (3). Since j ¢ I, this contradicts our maximality assumption

on /. This proves that the balls B;, i € I, must be coinitial in the nest B, j € J. a

2.2 Products

Let (Y;,u;), i € I, be ultrametric spaces whose value sets u;Y; are all contained in a
common ordered set, and assume that I is finite or that U;c; u;Y; is well ordered. Then
their direct product will be the cartesian product [[;c; Y; equipped with the ultrametric

u: HYiXHYi — UuiYiU{oo}

el el el



defined by
w ((Yi)ier » (2i)ier) = rzﬂellnuz(yuzz) .

We leave it to the reader to verify that this map satisfies (U1), (U2) and (U3). Note that
indeed every element of U;c; u;Y; appears as the distance of two suitably chosen elements

of [I;e; Yi-

Lemma 9 Take k € I and let m; : [l;c;Yi — Yi denote the projection onto the k-th
component. If B is a ball in (IT;c; Yi,u), then for every k € I, m,B is a ball in (Y;, u;),
and

B = [[mB. (4)

el

Proof:  Since B # (), we have that 7B # () and we can pick an element y; € B which
is the projection of some y = (y;);c; € B. We claim that

mB = | By, mk2) , (5)

zeB

where B(yg, rz) is understood to designate a ball in (Y, ug). Since mxz € B(yg, mr2),
the inclusion “C” is trivial. Now take z = (2;)ie; € B and some zy, € B(yg, mx2). Set
x = (2;)ier with x; :==y; for k # i € I. Then u(y, z) = ug(yg, Tr) > ug(yg, 7,2) > u(y, 2)
and therefore, x € B and x, € 7, B. This proves that “O”, and hence equality holds in
(5). As a union of balls with common element v, 7B is itself a ball.

The inclusion “C” in (4) is trivial. For the converse, pick an element z = (x;);c; €
[l;c; mB. Then there are elements 2 € B such that z; = m;2" for all i € I. Pick an
arbitrary element y € B. Then for some j € I, u(y,z) = minu;(y;, ;) = min u;(y;, 7;2") =
uj(yj, mz7) > u(y, 2?). Since y, 27 € B, it follows that x € B. This proves the inclusion
“D” and hence equality in (4). O

Proposition 10 If the ultrametric spaces (Y;, u;), i € I, are spherically complete, then
the same holds for their direct product (I1;c; Yi, u).

Proof: ~ Let B = {B; | j € J} be a nest of balls in the direct product. We have to
show that the intersection of B is nonempty. For every i € I we consider the projections
7;B; which by the foregoing lemma are balls in (Y7, u;). Since B is a nest, all intersections
B; N By, are non-empty and therefore, all intersections m; B; N m; B, are non-empty. This
proves that for each i € I, {m;B; | j € J} is a nest of balls in (Y}, u;). By our assumption
that the ultrametric spaces (Y;, u;) are spherically complete, there exist elements x; €
Njes mB; for each i. By equation (4) of the foregoing lemma, (;);c; € Bj for every
JjE J, hence (l‘i)iej < ﬂjEJ Bj . (I
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2.3 Embeddings and isomorphisms

Take ultrametric spaces (Y, u) and (Y',u') and amap f:Y — Y’ Amap ¢:uY — u'Y’
will be called a value map for f if it preserves < and satisfies u'(fy, fz) = pu(y, 2)
for all y,z € Y, y # z. From the latter it follows that f is injective since u/(fy, fz) =
ou(y,z) € v'Y" means that u'(fy, fz) # oo, i.e., fy # fz. We call f an embedding of
ultrametric spaces (with value map ¢) if in addition, ¢ preserves < and hence is
itself injective. An embedding f is called an isomorphism of ultrametric spaces if it
is onto. In this case, also ¢ is onto. We set poo = oo.

3 Immediate maps on valued abelian groups

A valued abelian group (G,v) is an abelian group G endowed with a valuation v.
That is, a — va is a map from G onto vG U {oo}, where vG is a totally ordered set and
oo is an element bigger than all elements of vG, and the following laws hold:

(V1) va=00<a=0,

(V2) v(a—0b) > min{va,vb} (ultrametric triangle law).

The value set of (G, v) is vG. For every valued abelian group (G, v), the set G endowed

with the map
u:GxG—vGU{co}, u(a,b):=v(a—D0)
is an ultrametric space. We note the following translations of properties of the ultrametric:
e v(a — b) > min{va, vb} = wva = vb,
e va # vb = v(a —b) = min{va, vb},
e va = v(—a).
A valued abelian group (G, v) is called spherically complete if the underlying ultra-

metric space (G, u) is spherically complete. Standard examples for spherically complete
abelian groups are the Hahn products (see, e.g., [KU4]|).

Observe that in a valued abelian group, any ball around 0 is a subgroup. Since balls
are unions of closed balls, this has only to be proved for closed balls. Note that

B,(0) = {z€G |u(0,z) >a} = {z€G|vz>a}

since u(0,2) = v(0 — z) = v(—z) = vz. Take a,b € B,(0). Then va > « and vb > «a,
whence v(a — b) > « by (V2), that is, a — b € B,(0). This proves that every B,(0) and
every other ball B containing 0 is a subgroup of G. Let us note that since every ball B
containing 0 is a union of closed balls B,(0), it follows that

ye Bandvz>vy = 2z€B.

Every ball B in (G,v) can be written in the form b+ B where b € B and B = {a — b |
a € B} is a ball around 0. Hence the balls in (G, v) are precisely the cosets with respect
to the subgroups that are balls.
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3.1 Immediate homomorphisms

In this section we will give a handy criterion for group homomorphisms to be immediate.
Throughout, let (G,v) and (G’,v') be valued abelian groups.

Proposition 11 Let f: G — G' be a map such that fO = 0. If f is immediate, then for
every a' € G"\ {0} there is some a € G such that

(IH1) '(a’ — fa) > v'd,

(IH2) for allbe G, va <wvb implies v'fa <v'fb.

The converse is true if f is a group homomorphism.

Proof:  Suppose first that f is immediate, and take any a' € G', @' # 0. Set 2/ := d’
and y := 0. Take z € G such that conditions (AT1) and (AT2) hold, and set a := z.
Then v'(a' — fa) =u'(¢, fz) > (2, fy) = v'(a' — f0) = v'a’. Hence, (IH1) holds. Also,
we obtain from the ultrametric triangle law that v'a’ = ¢’ fa. Further, condition (AT2)
shows that

f{bvb=wa}) = [f(B(0,a)) = f(B(y,>2))
C B(fy,?) = B(0,d") = {V' | vV >v'd =v'fa} .

That is, va < vb = v'fa < v'fb, i.e., (IH2) holds.

For the converse, take any y € G and 2’ € G'\ {fy}. Set ¢ := 2/ — fy # 0.
Choose a € G such that conditions (IH1) and (IH2) hold, and set z := y + a. Then
u(, fz) =02 — fz2) =0'(2 — fy— fa) =v'(d — fa) > v'd =V'(2' — fy) = (¢, fy).
So (AT1) holds. Also, we obtain from the ultrametric triangle law that o' fa = v'(2' — fy).
To show that (AT2) holds, take any = € B(y, z). Then v(zx —y) > v(z — y) = va. Hence

by (IH2), v'(fz — fy) = v'f(z —y) > v'fa=v'(z' — fy), so fx € B(fy,). =

By Theorem 2, we obtain:

Theorem 12 Let f : G — G’ a group homomorphism which satisfies (IH1) and (IH2).
Assume further that (G,v) is spherically complete. Then f is surjective and (G',v") is
spherically complete.

Lemma 13 Let f,f : G — G' be group homomorphisms. Suppose that f is immediate
and for all a € G,

v'(fa— fa) > v'fa or fa=fa=0. (6)
Then also f 15 tmmediate.
Proof:  If f satisfies (IH1) of Proposition 11, then v'(a’ — fa) > min{v'(a' — fa), v'(fa—
fa)} >v'fa =v'd’, showing that also f satisfies (IH1). Since (6) implies that v’ fa = v'fa,

f will satisfy (IH2) whenever f does. Hence by Proposition 11, f is immediate whenever
f is. a
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For an arbitrary map f : G — G’ we will say that a € G is f-regular if it is non-zero
and satisfies condition (IH2). We will denote the set of all f-regular elements by Reg (f).
Then the following holds:

Proposition 14 If f : G — G’ is an immediate group homomorphism, then
va — v fa

for a € Reg(f) induces a well defined and <-preserving map from {va | a € Reg(f)}
onto v'G'.

Proof: If a,b € Reg(f) such that va = vb, then by (IH2), v'fa < v'fb and v'fa > V' fb,
whence v’ fa = v’ fb. This shows that the map is well defined. Again because of (IH2), it
preserves <. Now take any o' € v'G’, @’ # 0. Then by (IH1), there is @ € G such that
v'(a' — fa) > v'd’, whence v'a’ = v’ fa by the ultrametric triangle law. This proves that
the map is onto. O

3.2 Basic criteria

Even if the map f that we consider on a valued abelian group is not a homomorphism,
the presence of addition helps us to give handy and natural criteria for the map to be
immediate. We just have to work a little harder. In this section, we present basic criteria
that will cover all our applications in the non-additive case.

Proposition 15 Take valued abelian groups (G,v) and (G',v"), an element b € G, a ball
B around 0 in G, a ball B" around 0 in G', and a map f: b+ B — fb+ B'. Assume that
¢ : B — B'is a map such that for all ' € B'\ {0} there is a € Reg (¢) with the following
properties:

v'(d" = ¢ga) >v'd = voa, (7)

and

V(fy—fz — dly—2)) > v'oa forall y,z € b+ B such that v(y —z) >va. (8)

Then f is immediate.
If 0 = 0 then (8) needs to be checked only for y # z.

Proof:  Take 2’ € fb+ B’ and y € b+ B such that 2’ # fy. Applying our assumption
to o' := fy — 2’ we find that there is some a € Reg (¢) such that by (7),

V(fy =2 = da) > v'(fy =) = v'éa, (9)
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and such that (8) holds. Set z:=y—a€y—B=y+B=b+ B. Then y — 2 = a and
hence by (8) and (9),

V(fy—fr—0ly—2)) > v'ga = V' (fy—2).
Consequently,

V(< —[2) > min{o'(s — fy + da), o' (fy — fz - pa)}
= win{v'(fy - 2" = ¢a), V'(fy - fz - ¢y — 2))}
> V(fy=2) = (@ = fy).
Hence (AT1) holds. Now take z € B(y,z) C b+ B, ie., v(y —z) > v(y — z) = va.

Then v'¢(y — z) > v'¢a because a € Reg (¢), and v'(fy — fx — ¢(y — z)) > v'¢a by (8).
Therefore,

V(fy = fr) = max{v'(fy — fr — d(y — ), oy —2)} = v'da = v(fy—2),

whence fz € B(fy,2'). Hence (AT2) holds.

Assume that ¢0 = 0. Observe that ¢a # 0 since a' # 0 and v'a’ = v'¢a. Hence if
y =z then v'(fy — fz — ¢(y — 2)) = v'0 = 0o > v'¢pa, which shows that (8) need only be
checked for y # z. a

Note that by the ultrametric triangle law, the equality in (7) is a consequence of the
inequality. Further, observe that this proposition proves the direction “<” of Proposi-
tion 11: if we take B = G, B' = G' and ¢ = f, then (IH1) implies (7) and (IH2) implies
that a € Reg(¢), while (8) is trivially satisfied. Hence if for every o' € G'\ {0} there
is a € G such that (IH1) and (IH2) hold, then the above proposition shows that f is
immediate.

The following is a special case of the above criterion, with nicer properties.

Proposition 16 Tuake valued abelian groups (G,v) and (G',v"), an element b € G, a ball
B in G around 0, a ball B" in G' around 0, and a map f :b+ B — G'. Assume that

(PC1) ¢: B — B’ is immediate,
(PC2) forally,z€b+ B,

V(fy—fz=9ly—2) > ' (fy—f2) = v'oly—2) or fy—fz=¢(y—2) =0.

Then f(b+ B) C fo+B', and f: b+ B — fb+ B’ is immediate.

If in addition ¢ is injective, then so is f, and if ¢ is an embedding of ultrametric
spaces with value map ¢, then so is f.

Proof:  Taking y = z, we obtain from (PC2) that ¢(0) = 0. So we can apply Proposi-
tion 11 to find that ¢ satisfies (IH1) and (IH2). Therefore, for ' € B"\ {0} we can choose
a € Reg (o) \ {0} such that v'(a’ — ¢a) > v'd’.
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Take y, z € b+ B such that v(y — z) > va. By the regularity of a, v'¢(y — z) > v'¢a .
Hence by (PC2), o'(fy — fz — ¢y — 2)) = v'o(y — z) > v'¢a. Now it follows from
Proposition 15 that f is immediate. If in addition, ¢ is injective, it follows from (PC2)
that also f is injective. If ¢ is an embedding of ultrametric spaces with value map o,
then v'¢(y — z) = pv(y — z) shows that also f is an embedding with value map ¢. O

If the map ¢ satisfies the conditions (PC1) and (PC2) of the foregoing proposition, it
will be called a pseudo-companion of f on b+ B.

We will later need the following fact:

Lemma 17 Let the situation be as in Proposition 16 and let ¢,<5 : B — B' be group
homomorphisms. Suppose that v'(¢a — pa) > v'¢a or pa = ¢pa =0 for all a € G. If ¢ is
a pseudo companion for f on b+ B, then so is ¢.

Proof: ~ Assume that ¢ is a pseudo-companion of f on b+B. Then by Proposition 13, also

¢ is immediate. Now take y,z € b+ B. If ¢(y — z) = 0 then by assumption, ¢(y — z) = 0.

Otherwise, o'(fy— fz—¢(y —2)) = min{v'(fy — fz—d(y—2)),v"(¢(y —2) —d(y —2))} >
v'¢(y—z) = v'(fy— fz). This shows that also ¢ is a pseudo-companion of f on b+B. O

4 Immediate maps on valued fields and their finite-
dimensional vector spaces

Let (K, v) be a valued field. That is, v is a valuation of its additive group, vK is a totally
ordered abelian group, and the following additional law holds:

(V3) wv(ab) = va + vb.

The value group of (K,v) is vK := v(K*). Throughout this paper, its valuation ring
{y € K | vy > 0} will be denoted by O, and its valuation ideal {y € K | vy > 0}
by M. The field O/M is called the residue field and is denoted by Kv. Note that
cO={ye K |vy>vc}=B,(0) and cO = {y € K | vy > vc}.

A valued field (K, v) is called spherically complete if the underlying valued addi-
tive group is spherically complete (i.e., if the underlying ultrametric space is spherically
complete).

Main examples for spherically complete fields are the power series fields k((G))
with their canonical valuation. Here, k£ can be any field and G any ordered abelian
group, and k((G)) consists of all formal sums a = Y- ¢ ¢ 29 with ¢, € k and well ordered
support supp(a) = {g € G | ¢, # 0}. The canonical valuation on k((G)) is given by
va := minsupp(a) € G and v0 := oco. Its value group is G, and its residue field is k.

An extension (L,w) D (K, v) of valued fields is called immediate if the canonical
embedding of vK in wL and the canonical embedding of Kv in Lw are onto. It is well
known that this holds if and only if as ultrametric spaces, (K, v) is an immediate subspace
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of (L,v) (cf. [KU4]). A valued field is called maximally valued if it admits no proper
immediate extensions. It was shown by Krull ([KR]; see also [G]) that for every valued
field (K,v) there is a maximal immediate extension field; this is maximally valued by
definition.

A valued field is maximally valued if and only if it is spherically complete (cf. [P1],
[P2], [KU4]). This was essentially proved by Kaplansky in [KKA], using the notion of
“pseudo Cauchy sequence” instead of “nest of balls”. Every power series field is spherically
complete (cf. [P2], [KU4|). Hence it is maximally valued.

4.1 The minimum valuation

For every n € N, the valuation v of K induces a valuation of the n-dimensional
K-vector space K™, called the minimum valuation:

v(ay, ..., a,) = 1121<nn va; (10)

for all (ay,...,a,) € K™ This valuation satisfies (V1) and (V2) for all a,b € K", so
(K™, v) is a valued abelian group. Instead of (V3), it satisfies

(V3') v(ca) =vc+wva forallce K, ae K"

Again, u(a,b) := v(a — b) makes K" into an ultrametric space with value set vK.
If 0 # ¢ € K, then we write (cO)" for the n-fold product cO x ... x cO which is the
subgroup of vectors in K™ whose entries all have value > ve; (eM)™ is defined similarly.
Note that (cO)" = {ca |a € O"} = cO" and (¢cM)" =cM™. Forbe K", c € K,

b+cO" = {a€ K" |v(a—0b) > vc} = By(b) and b+cM" = {a € K" | v(a—0b) > vc}.

We will say that (K™, v) is spherically complete if its underlying ultrametric space
(K™, u) is. Proposition 10 of Section 2.2 implies:

Lemma 18 If (K,v) is spherically complete, then so is (K™, v).

4.2 Pseudo-linear maps
Take Y C K™, 0 # s € K and f a map from Y into K. We will say that f is pseudo-
linear with pseudo-slope s if for all y, 2 € Y such that y # z,

v(fy—fz—s(y—2) > v(fy—fz) = vs(y—2). (11)

If B is any ball in (K", v) around 0, then sB is again a ball in (K", v) around 0 and
the map B > « — sx € sB is an isomorphism of ultrametric spaces with value map
¢« — a+wvs. Hence pseudo-linear maps are maps with a particularly simple pseudo-
companion given by multiplication with a suitable scalar. From Proposition 16 we obtain:
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Proposition 19 Takeb € K" and B a ball in (K™, v) around 0. Assume that f : b+B —
K™ is pseudo-linear with pseudo-slope s. Then f(b+ B) C fb+ sB, and

fib+B — fb+sB

1s an immediate embedding of ultrametric spaces with value map ¢ : o +— a + vs.

If in addition, (K, v) is spherically complete, then f is an isomorphism of ultrametric
spaces from b+ B onto fb+ sB.

4.3 Polynomial maps

Take any n € N. For any system f = (fi,..., fn) of n polynomials in n variables with
coefficients in K, we denote by J(b) its Jacobian matrix at b € K. We will denote by
J7(b) the adjoint matrix of J¢(b).

Proposition 20 a) Tuke a polynomial f € O[X] and b € O such that

s = f'(b) £ 0.

Then f induces a pseudo-linear map with pseudo-slope s from b+ sM into f(b) + s* M.
b) Take n polynomials in n variables fi,..., f, € O[Xy,..., X,] and b € O™ such that

s = det Jg(b) # 0

for f=(fi,..., fn). If vs =0, then J¢(b) is a pseudo-companion of f on b+ M and f
induces an embedding from b+ M into f(b) + M with value map ¢ = id.
In the general case, J}‘(b)f induces a pseudo-linear map with pseudo-slope s from

b+ sM™ into J5(b) f(b) + s M"

Proof:  Note that whenever we prove pseudo-linearity, the assertions about the range of
the functions will follow from Proposition 19.

a): For a polynomial f in one variable over a field of arbitrary characteristic, we denote
by fUi its i-th formal derivative (cf. [KA], [KU4]). These polynomials are defined such
that the following Taylor expansion holds in arbitrary characteristic:

Fo+e) = f(b) + 3 (). (12)

Note that f' = flll. Since f € O[X], we have that fl!! € O[X]. Since b € O, we also
have that fll(b) € O. Now take y,z € b+ sM. Write y = b+¢, and 2z = b + ¢, with
gy, €, € sM. Then by (12),

fly) = f(z) = (g, — &) f'(b) + Z (62 — D)D) = s(y—2) + S(b,ey,e.) . (13)



eh—el = (gy—e) e + (i =) e+ 4+ (i — D)e, b+ ey 1) € (ey — &2)sM
for every i > 2, and since fll(b) € O, we find that
S(b,ey, ;) € (ey —€2)sM = s(y —2)M..
This proves that

v(f(y) = f(2) = s(y = 2)) = vS(bey,e.) > vs(y - 2) (14)
which implies that (11) holds. This proves a).

b): We write J = J;(b) and J* = J7(b). Then JJ* = (det J)E = sE where E is the n xn
identity matrix. Note that J, J* € O™*" by our assumptions on f and b. If y € K™ then
we can write y = cz with ¢ € K, ve = vy, z € O™ and vz = 0. Then Jy = c¢Jz € cO",
hence vJy = ve +vJz > ve = vy. Similarly, vJ*y > vy for all y € K™.
Take 1,69 € sM"™. The multidimensional Taylor expansion gives the following ana-
logue of (13):
Fb+e)— flb+ey) = J(e1 — &) + S(b,eq,£2) (15)
with
vS(b,e1,62) > vs(e; —e2) . (16)
Assume first that vs = 0. Then also J~' = 1J* € O™*" so for all y € K", vJ 'y > vy.
But then, vy = vEy = vJ 'Jy > vJy > vy, so equality must hold. We find that
for all y € K", vJy = vy and similarly, vJ*y = vy. In particular, this yields that J
induces a value-preserving automorphism of the valued abelian group (M",+), and an
isomorphism of ultrametric spaces from M™ onto M" with value map ¢ = id, with inverse
maps induced by J~!'. From (15) and (16) we obtain that for y = b+ &, and 2z = b + &
in b+ M,

o(f(y) = f(2) — Jy—2)) > vs(y—2) = v(y—2) = vJ(y—=2).

This proves that J is a pseudo-companion of f on b + M. From Proposition 16 we infer
that f induces an embedding from b+ M into f(b) + JM = f(b) + M with value map
@ =id.

Now we turn to the general case. We compute:
Jfy) =T f(z) = T(fb+y—b) —fb+z—0)
= J'J(y—=z2) + J*S(b,y—b,z—10)
= s(y—=z) + J*S(b,y—b,z—0) .

By (16),
vJ*S(b,y — b,z —b) > vS(b,y—b,z—b) > vs(y—z2) .
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Hence,
o (T f(y) — T f(2) = s(y — 2)) = v"S(by — bz —b) > vs(y —2) .

This proves our assertion for the map J3(b) f. a

Note that in the one-dimensional case (n = 1), we may write det J¢(b) = f'(b) and
J}‘(b) = 1; in this way, the definition of f4 in the one-dimensional case becomes a special
case of the definition for the multi-dimensional case.

If vs > 0 in the multi-dimensional case, then in general J;(b) will not be a pseudo-
companion of f. It is necessary to transform f in order to obtain suitable pseudo-
companions. We have shown above that this can be done so that one even obtains
pseudo-linear functions.

From Proposition 20 together with Propositions 19 and 16, we obtain:

Theorem 21 Assume that (K,v) is spherically complete.
a) Take a polynomial f € O[X]| and b € O such that s := f'(b) # 0. Then f induces

a pseudo-linear isomorphism of ultrametric spaces from b+ sM onto f(b) + s°M, with
pseudo-slope s.

b) Take n polynomials in n variables fy,..., f, € O[Xy,...,X,] and b € O™ such that
s = det Jp(b) # 0 for f = (f1,...,fa). If vs = 0, then f induces an embedding of
ultrametric spaces from b+ M onto f(b) + M.

In the general case, J}(b) f induces a pseudo-linear isomorphism of ultrametric spaces

from b+ sM™ onto Ji(b) f(b) + s> M", with pseudo-slope s.
f

4.4 Hensel’s Lemma and Implicit Function Theorem revisited

Let us apply Theorem 21 to prove that Hensel’s Lemma holds for every spherically com-
plete valued field (K,v). We prove the following version of Hensel’s Lemma, which is
often called “Newton’s Lemma”:

Theorem 22 Let (K,v) be a spherically complete valued field. Then (K, v) satisfies the
one-dimensional Newton’s Lemma:

Take f € O[X] and assume that b € O is such that vf(b) > 2vf'(b). Then there exists a
unique root a of f such that v(ia —b) = vf(b) —vf'(b) > vf'(b).

Proof: The inequality v f(b) > 2vf'(b) implies that s :== f'(b) # 0. Hence by Theorem 21,
f induces a pseudo-linear isomorphism of ultrametric spaces from b+sM onto f(b)+s*M,
with pseudo-slope s. Since vf(b) > 2vf'(b) = vs? we have that f(b) € s°M, that is,
f(b) + s*°M = s> M. Therefore, 0 € f(b) +s*M. Since f induces a bijection from b+ sM
onto f(b) + s> M, there is a unique a € b+ sM such that f(a) = 0. We have that

v(a—0) =v(f(a) = f(b)) —vf'(b) =vf(b) —vf'(b) > vf'(b). O
Here is the multi-dimensional version:

19



Theorem 23 Let (K,v) be a spherically complete valued field. Then (K, v) satisfies the
multi-dimensional Newton’s Lemmoa:

Let f = (f1,..., fn) be a system of n polynomials in n variables with coefficients in O.
Assume that b € O™ is such that vf(b) > 2vdet J;(b). Then there exists a unique a € O™
such that f(a) =0 and v(a —b) = vJ5(b) f(b) — vdet J;(b) > vdet J;(D).

Proof: ~ The inequality vf(b) > 2vdet J;(b) implies that s := det J;(b) # 0. Hence
by Theorem 21, J*f induces an isomorphism of ultrametric spaces from b 4+ sM"™ into
J* f(b)+s*M", where J* = J;(b). Since vf(b) > vs®, we have that f(b) € s>M™ and hence
also J*f(b) € s2M™ (since J* € O™*™). That is, J*f(b) + s*°M" = s?°M". Therefore,
0 € Jf(b) + s>M™. Since J*f induces a bijection from b + sM™ onto J*s72f(b) + M™",
there is a unique a € b+ sM™ such that J*f(a) = 0. Since J* is invertible, we have that
f(a) =04 J*f(a) = 0. Hence, a is the unique element in b+sM" such that f(a) = 0. We
have that v(a — b) = v (J5(b) f(a) — J;(b) F(b)) — v det J;(b) = v.J5(b) f(b) — v det J;(b) >
vdet J¢(b). 0

Note that like in the one-dimensional case, also in the multi-dimensional case the proof
of Newton’s Lemma can be reduced by transformation to a simpler case where we would
in fact obtain the identity as a pseudo-companion. But as we have already shown that
even in the general case we can derive suitable pseudo-linear maps from f, it is much
easier to employ them directly in the proof of the multidimensional Newton’s Lemma.

A valued field (K, v) is called henselian if the extension of v to the algebraic closure
K of K is unique. It is well known that this holds if and only if (K, v) satisfies the
one-dimensional Newton’s Lemma (see, e.g., [KU4]). We are now going to show that the
multi-dimensional Newton’s Lemma holds in every henselian field.

Theorem 24 A valued field (K, v) is henselian if and only if it satisfies the multidimen-
stonal Newton’s Lemma.

Proof: = Let (K, v) be henselian. Take (L,v) to be a maximal immediate extension
of (K,v). Then (L,v) is spherically complete. By the foregoing theorem, (L, v) satisfies
the multidimensional Newton’s Lemma. Denote by O the valuation ring of K, and by
Oy, that of L. Now assume that the hypothesis of the multidimensional Newton’s Lemma
is satisfied by a system f of polynomials with coefficients in O and by b € O". It
follows that there is a unique a = (ay,...,a,) € O such that f(a) = 0 and v(a — b) >
vdet Jr(b). From the latter, it follows that vdet J;(a) = vdet J¢(b) and in particular,
det Js(a) # 0. Now [L], Chapter X, §7, Proposition 8, shows that the elements a4, ..., a,
are separable algebraic over K. On the other hand, for every o € Aut (K |K), the element
oa = (oay,...,oa,) satisfies f(oa) = of(a) = 0 and v(ca — b) = min; v(oa; — b;) =
min; vo(a; —b;) = min; v(a; —b;) = v(a—b) > vdet J;(b) (note that vo = v because (K, v)
is henselian). By the uniqueness of a, it follows that oa = a for every o € Aut (K|K),
that is, a € K", as required.
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«: If n =1, then det J;(b) = fi(b1), and the assertion is precisely the assertion of the
one-dimensional Newton’s Lemma. Hence the multidimensional Newton’s Lemma implies
that (K, v) is henselian. 0

Using the multidimensional Newton’s Lemma, one can prove the multidimensional
Implicit Function Theorem:

Theorem 25 Let (K,v) be a henselian field, and let f1,..., fn € Ol X1, ..., X, Y1, ..., Y]
with m < n. Set Z = (Xy,..., X, Y1,...,Y,) and

Lz ... (2
J(2) = : :

Ofm Ofm

He2) o He2)
Assume that fi,..., fn admit a common zero z = (T1,...,Tm,Y1,--,Yn) € O™ and
that the determinant of J(2) is nonzero. Then for all (z',...,2!,) € O™ with v(z; —
xt) > 2vdet J(2), 1 < i < m, there exists a unique tuple (y,...,y.) € O" such that
(@, ..., Yy, ..., yh) is a common zero of fi,..., fm, and

i ——y4 i LA
121;171?)(% yi) > min v(x; — x;) —vdet J(2) .

Proof:  We observe that the entries of J(Z) and its adjoint matrix J*(Z) are polynomials
in Xy,..., X5, Y1,..., Y, with coefficients in O. We set b = (z!,...,2} ,y1,...,y,). Then
J*(b) is the adjoint matrix for J(b), and the entries of both matrices lie in O. In particular,
this implies that v.J*(b) f(b) > v f(b).

By assumption, f;(z) = 0 for 1 < i < m. Hence, the condition v(z; —x}) > 2det v.J(a),
1 <1 <'m, will imply that
Ufl(b) = U(f’i(xl]_J"'ngquyIJ"'Jyn)_f(xl"'Jmeyla"'Jyn)) Z 1I<I%i<I}nv(xl_x;)

> 2udet J(xy .., Ty Y1, -5 Yn) = 20det J(2, .. 2l vy, ., yn) = 2vdet J(b)

for 1 < ¢ < m. In particular, det J(b) # 0. Hence by Theorem 24, there is a unique
common zero (y,...,y.) € O™ of the polynomials f;(z},...,2! ,Y1,...,Y,), 1 <i <mn,
such that

1I£II<II vy — i) > vJ*(b)f(b) —vdet J(b) = vJ*(b)f(b) — vdet J(2)
T . i _ . L ! _
> in vfi(b) —vdet J(z) > in v(z; — ;) —wvdet J(2)
This proves our assertion. O
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4.5 An infinite-dimensional Implicit Function Theorem

From our result in Section 2.2 it follows that an infinite power Y/ of an ultrametric space Y
can be equipped with an ultrametric u! (analogous to the minimum valuation) if the value
set uY is well ordered. In this case, if (Y, u) is spherically complete, then so is (Y1, uf).
So we obtain the following corollary to our Main Theorem 2 and to Proposition 16:

Corollary 26 a) Take two ultrametric spaces (Y, u) and (Y',u'), and an arbitrary index
set 1. Assume that uY is well ordered, f : Y! — Y’ is immediate and that (Y,u) is
spherically complete. Then f is surjective and (Y',u') is spherically complete.

b) Take two valued abelian groups (G,v) and (G',v'), and an arbitrary index set I.
Assume that vG is well ordered, b € G', B is a ball around 0 in G, f: G! — G’ has a
pseudo-companion on b+ B, and that (G, v) is spherically complete. Then f is surjective
and (G',v") is spherically complete.

In the case of a valued field (K,v) we cannot do the same since if the valuation is
non-trivial, the value group will not be well ordered. If the valuation is not discrete (i.e.,
its value group is not isomorphic to Z), then not even the value set vO := v(O\{0}) of the
valuation ring is well ordered. But we may be interested in infinite systems of polynomials
with coefficients in a subring R of O with well ordered value set vR := v(R \ {0}). We
set Mp:={a € R |va > 0}.

Note that (R,v) is not necessarily spherically complete, even if (K, v) is. So we will
assume that (R, v) is spherically complete.

We generalize the definitions of minimum valuation and of pseudo linear map in
the obvious way. If a = (a;)ic; € R!, then va := minc;va;. If Y C RI, 0 # s € R and
f a map from Y into R!, then f is pseudo-linear with pseudo-slope s if (11) holds for
all y,z € Y such that y # 2. We then have the following application of Proposition 16
together with Proposition 10:

Proposition 27 Take b € R' and B a ball in (R',v) around 0. Assume that f : b+ B —
R is pseudo-linear with pseudo-slope s € R and that (R,v) is spherically complete. Then
f s an isomorphism of ultrametric spaces from b+ B onto fb+ sB.

If the map is given by an infinite system of polynomials f = (fi)kes in infinitely many
variables X;, i € I, and with coefficients in R, then we may consider the infinite matrix
J;(b) € R™!. Note that this matrix has only finitely many non-zero entries in every row.
We denote by RU*!) all matrices in R’*! which have only finitely many non-zero entries
in every row and every column. If every variable appears only in finitely many fx, then
J;(b) € RUEXD),

If we assume that R is spherically complete, we can consider a larger class of matrices.
We denote by R(U*D) all matrices in R™! which for each a € vR have only finitely
many entries of value < « in every row and every column. For every two matrices in
RWUXD) their product can be computed and lies again in R(*1) It is possible that
J;(b) € RUXD) even when there are variables that appear in infinitely many fy.
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We define M%XI) and M%IXI)) analogously and note that RU*D  R(Ix1), M%XI) and
M%IXI)) are all closed under matrix addition and multiplication and under scalar multi-
plication. Further, RO*D M €m0 - pgiD pxny ¢ pg{D - gy a0 ¢
M%IXI)) and M%Ix[))R((IXI)) C M%Ix[)).

We are not able to use determinants here. Still, we can use our original approach if
J(b) has an inverse. But we can even work with less than invertibility. Given matrices
M, M° in RU*D or in RUXD) if R is spherically complete, we will say that M° is a
pseudo-inverse of M if the matrices MM° — E and M°M — E are in MY where E
denotes the I x I-identity matrix.

Actually, we also do not need that the ring R is a subring of a valued field. It suffices
to assume that it is a valued abelian group with its multiplication satisfying (V3), and
that its value set is a well ordered subset of an ordered abelian group. It then follows that
the value set does not contain negative elements. In particular, all entries of M € R!*!
have value > 0. This implies that vMa > va for all a € R!. Since vR is well ordered, it
contains a minimal positive value ag. If M is in M%XI) or in M%IXI)), then all entries of
M have value > «. It then follows that vMa > va + ag > va for all « € RL.

Lemma 28 Take M, M° in RUD | or in RUXD) if R is spherically complete. Assume
that M° s a pseudo-inverse of M. Then the following holds:

1) For alla € R', vMa = va and vM°a = va; in particular, M, M° ¢ ML and the
value set vR must contain 0.

2) If M' is in RI*D | or in RUXD) respectively, such that M' — M € MY, then M° is
also a pseudo-inverse of M'.

8) Both M and M° induce immediate embeddings of the ultrametric space R' in itself
with value map id, and the same holds on every ball around 0 in R'.

Proof:  1): For all a € R! we have that v(MM°a — a) = v(MM° — F)a > va and
hence va = vMM°a > vM°a > va. It follows that equality holds everywhere, which gives
vM°a = va. Interchanging M and M°, we obtain vMa = va.

2): We compute: M'M° —E = (M'— M)M°+MM° — E € ME' and similarly for
M°M'— E.

3): It suffices to show that for every ball B around 0 in R/, M induces an immediate
embedding of B into itself with value map id. Since vMa = va for all a € R!, we have
MB C B and that M induces an injective map on B with value map id. As M induces
a group homomorphism, we only have to show now that for every o' € B\ {0} there is
a € B such that (IH1) and (IH2) of Proposition 11 hold for M in the place of f. As
vM°a' = va', we have that a :== M°d’ € B. Further, v(a' — Ma) = v(d' — MM°d') =
v(E — MMP°)d' > vd'. Finally, if b € B with va < vb, then vMa =va < vb=vMb. O

Proposition 29 Assume that (R,v) is spherically complete. Take any index set I and
a system of polynomials f = (fi)ker in variables Y;, i € I, with coefficients in R. Take
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b € R and suppose that J¢(b) lies in RUIXD) gnd admits a pseudo-inverse in R(U*1).

Then J¢(b) is a pseudo-companion of f on b+ M, and f is an isomorphism from b+ M4
onto f(b) + ML with value map id. The system f has a zero on b+ ML (which then is
unique) if and only if vf(b) > 0.

Proof:  Since J = J;(b) has a pseudo-inverse, we know from the previous lemma that J
induces an immediate embedding of MY, in itself with value map id.

Take 1,65, € M%L. An infinite-dimensional version of the multidimensional Taylor
expansion gives the infinite-dimensional analogue of (15) and (16), with s = 1. We obtain
that for y = b+¢; and 2 = b+ &9 in b+ ML with y # 2,

v(fy) = f(z) = Jy=2)) > vly—2) = vy —2).

This proves that J is a pseudo-companion of f on b+ MZL. From Proposition 16 we infer
that f induces an embedding of b + ML in f(b) + JML C f(b) + ML with value map
v =id.

The remaining assertions now follow from Proposition 16 and Theorem 2. a

Now we can prove an infinite-dimensional Implicit Function Theorem:

Theorem 30 Take any index sets I and I' and a system of polynomials f = (fi)ker in
variables X;, 7 € I', and Y;, © € I, with coefficients in R, and such that each variable
Y; appears in only finitely many fi. Assume that (R,v) is spherically complete. Set
Z=(X;Yi|jel,iel) and

12) = (90 (Z))W

Assume that the polynomials fi, k € I, admit a common zero z = (xj,y; | j € I',i € I)
in R"O" such that J(z) admits a pseudo-inverse in R\ Then for all (z})jep € R
with v(x; — a) > 0 there exists a unique (y;)ic; € R' such that 2" = («},y; | j € I';i € I)
15 a common zero of the polynomaials fr., k € I, and

minv(y; — y;) > minov(x; — 1) .

icl — jer J
Proof: We set z := (2},y; | j € I';i € I) and observe that our condition that
v(z; — x%) > 0 implies that v (g—Q(Z) - g—{l:(z)) > 0. From part 2) of Lemma 28 it

thus follows that the pseudo-inverse of J(z) is also a pseudo inverse of J(Z). (Note that
J(2),J(2) € R¥*D by our condition on the variables Y;.)

For each k € I we set g,(Yi | j € I) == fi(2},Y; | j € I';i € I). Further, we set
b:= (y; | i € I). We consider the system g = (gx)res. From Proposition 29 we infer that
J,(b) = J(Z) is a pseudo-companion of g on b+ M%. By assumption, fx(z) =0 for k € I.
Hence, the condition v(x; — %) > 0 will imply that

vgr(b) = vfi(3) = o(fe(®) = fi(2)) 2 mino(a; — o) > 0.
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Hence vg(b) > 0 and by Proposition 29 the system g has a unique zero a = (y; | i € I) on
b+ ML, Tt satisfies

minv(y; —y;) = v(b—a) = v(g(b) = g(a)) = vg(b) > minv(z; —aj) .

Remark 31 In our theorem we needed the assumption on the variables Y; in order to
have only finitely many non-zero polynomials in each row and each column of J(Z).
Without this it is not automatic that the conditions J(z) € R and v(z; — ) > 0
imply that J(2) € RU*D), We can drop the condition on the variables if we assume
instead that J(2) € R(U*D) and that it has a pseudo-inverse in R((*1)),

4.6 Power series maps on valuation ideals

Take any field £ and any ordered abelian group G. We endow k((G)) with the canonical
valuation v and denote the valuation ideal by M. Every power series

f(X) =3 X' € k[[X]] (17)

1€N

defines in a canonical way a map f : M — M (note: 0 ¢ N in our notation). This can be
shown by use of Neumann’s Lemma, cf. [DMM1]|. We note that for every integer r > 1
and every y,z € M,

v(y"—2") > vy —=z). (18)

Therefore, if ¢; # 0, we have that

v(f (W) = f(2) —aly—2) = vd aly' —2') > v(ly—2) = valy—z)  (19)

1>2

because ve; = 0 for all i. So we see that f is pseudo-linear with slope ¢; if ¢; # 0. By
Proposition 19, we obtain:

Theorem 32 If f : M — M is defined by the power series (17), then f is an isomor-
phism of ultrametric spaces.

A similar result holds for power series with generalized exponents (which for instance
are discussed in [DS]). Take any subgroup G of R and a generalized power series of the
form

FX) =X € kX)) (20)

1€N
where r;, © € N, is an increasing sequence of positive real numbers in G. Suppose that
the power functions y — y" are defined on M for all i. Then again, the generalized
power series (20) defines a map f : M — M. We note that (18) also holds for every real
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number r > 1 for which y — 3" is defined on M. Hence if ¢; # 0 and r; = 1, then (19)
holds, with the exponent ¢ replaced by ;. This shows again that f is pseudo-linear with

pseudo-slope ¢ . If, however, 1 # 1, we may think of writing f(y) = f(y™) with

FX) = Y gxrilm.

1eN

If the power functions y — y"/™ are defined on M for all i, then f defines a pseudo-linear
map from M to M with pseudo-slope ¢; . So we obtain:

Theorem 33 Suppose that the power functions y — y' and y — y"/™ are defined on
M for all i, and that y — y"* is surjective. If f : M — M is defined by the power series
(20) with ¢, # 0, then f is surjective.

4.7 Power series maps and infinite-dimensional Implicit Func-
tion Theorems

We use again the notations and assumptions from Section 4.5. We take R[[X;,Y; | j €
I' i € I]] to be the set of all formal power series in the variables X;,Y; in which for every
n € N only finitely many of the X;,Y; appear to a power less than n. In the previous
section, our power series had well defined values because we were operating in a power
series field k£((G)). Here, we will assume throughout that R is spherically complete. But
this alone does not a priori give us well defined values of the power series on MQUI )
So we will assume that we have some canonical way to determine the value of a given
power series at an element of M%. This holds for instance if vR is archimedean, i.e., is a
subsemigroup of an archimedean ordered abelian group.

To every power series g € R[[Y; | i € I]] we associate its O-linear part Lg, by which
we mean the sum of all of its monomials of total degree 1 and with a coefficient in R of

value 0. This is a polynomial, i.e., contains only finitely many of the variables Y;. We set
Y =(Y;|iel).

Theorem 34 Assume that (R,v) is spherically complete. Take any index sets I and
I' and a system f = (fi)rer where fr € R[[X;,Y; | j € I';i € I|]. Assume that f,
k € I, admit a common zero z = (v,y), v € ML, y € ML, such that for the map
L(Y) = L y)(Y) : My = ME, the following holds: for every a' € M\ {0} there is
some a € MY, such that
v(a'— La) > vd" and wva = vad' .

Take ' = (@) jer € ME set o= wv(x — ') and g(Y) = f(2',Y) and suppose that

v(gw — gw' — L(w — w')) > v(gw — gw') for all distinct w,w' € By(y) . (21)
Then there exists a unique (y;)icr € My, such that 2' = (2, y; | j € I';i € I) is a common

zero of fr, keI, and

ol — 1) >
rlnellpv(yZ yi) > .
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Proof: Note that Ly y)(Y) = Lfwuy)(Y) = L(Y). We claim that L is a pseudo-
companion of f(z',Y) : ML — ML on B,(y). Condition (PC2) holds by assumption.
As L is a group homomorphism, our conditions together with Proposition 11 show that
L : M, — ML is immediate; note that (IH2) holds because if va < vb then vLa = va <
vb < wLb. Now the assertion of our theorem follows as in earlier proofs. O

The following version of the above theorem has a similar proof:

Theorem 35 Assume that (R,v) is spherically complete. Take any index sets I and I'
and a system f = (fi)wer where fi, € RIX; | j € I'|[[X; | i € I]]. Assume that fi, k € I,
admit a common zero z = (v,y), v € RY, y € Mk, such that L(Y) = L}y (Y) satisfies
the same condition as in Theorem 34. Take ' = (1)) jer € R such that o = v(z—2a") > 0.
Suppose that (21) holds for g(Y) = f(2',Y). Then there exists a unique (y.)ic; € M,
such that 2" = (x5, y; | j € I';i € I) is a common zero of the polynomials fy,, k € I, and

min;er v(y; — y;) > a.

Alternatively, in order to obtain maps on all of R, one can consider convergent power
series. We let R{{X;,Y; | j € I';i € I}} be the set of all formal power series in the
variables X;,Y; in which for every oo € vRR only finitely many monomials have coefficients
of value less than «. Again we assume that R is spherically complete. Then every
convergent power series defines a map from R into R. In a similar way as before, one can
prove:

Theorem 36 Assume that (R,v) is spherically complete. Take any index sets I and I'
and a system f = (fi)rer where fi, € R{{X;,Y;|jeI';i € I}}. Assume that fi, k € I,
admit a common zero z = (z,y), * € R, y € R, such that L(Y) = L}y)(Y) satisfies

the same condition as in Theorem 34. Take ' = (1)) er € R such that o = v(z—2a") > 0.

Suppose that (21) holds for g(Y) = f(2',Y). Then there exists a unique (y.)ic; € R! such
that 2" = (2}, y; | j € I';i € I) is a common zero of the polynomials fy, k € I, and
min;er v(y; — y;) > a.

5 Polynomials in additive operators

In this section, we will consider polynomials f € O[Xy, Xy,...,X,] over valued fields
(K, v) and additive operators o; : K — K, 0 < i < n. We write 0 = (09, ...,0,). We will
try to solve equations in one variable of the form

f°X = f(ooX,00X,...,0,X) = 0.

5.1 A basic result

For any polynomial f in n+1 variables over a field of arbitrary characteristic, we denote by
flilits i-th formal derivative, where i = (i, ...,4,) is a multi-index. These polynomials
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are defined such that the following analogue of (12) holds in arbitrary characteristic:
flo+e) = fb)+> )t forall be € K™ (22)
iel

where I = {0,1,...,deg f}**'\ {(0,...,0)} and €& = £ - ... ¢ Note that if i =

n

(0,...,0,1,0,...,0) with the 1 in the j-th place, then flZ = ;—)gj(Xo, LX)

Lemma 37 Take f € O[X,,...,X,] and b€ O""', s € O such that

_ of
vs = Org@ X, (b) < o0.

Then for all distinct y = (Yo, - -, Yn) and z = (20, -+, 2,) 0 b+ sM™ L,

(I =16 = D=5 0) > vk i o) @)
and
o(f)~ F2) 2 vs + min oy~ =) 1)

In particular,

f(b+sM™) C f(b) + s* M.

Proof:  Since f € O[Xy,...,X,], we have that fl¢} € O[X,,..., X,]. Since b € O"*!,
we also have that flt(b) € O. Write y = b+ 8 and 2 = b+ ¢ with 6 = (6, ...,8,),6 =
(€0 ---,&n) € sSM™ L. Then by (22),

F) = £(2) = 36— <) ) + X6 - <700

where I' = {i € I | |i| > 2} with |i] :=dg+ ... +ip .

Choose ¢ € M such that ve = min; v(§; —¢;) = min; v(y; — z;). Pick j € {0,...,n} and
take ¢ € I' such that i; # 0. Let ¢’ € I be the multi-index obtained from i by subtracting
1 in the j-th place. Then

0t — el = §;00 — et = (8; — ;)0 +¢;(0¢ — L)

Suppose we have already shown by induction on |i| that 6% —&? € ¢O. Since §; —¢; € cO
and 8¢ &; € sM, we then find that

t— et € seM

for every multi-index i with |i| > 2. Since also fl¢J(b) € O, we obtain that

)~ 1) — Y6 - =) ;}; () = (5 — ) () € seM .

1=0 iel’
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This proves (23). To prove (24), we observe that

- 0 , 0
03— 2 g B) > s o~ 2 S 0) > v i vl 2

1=

and therefore,
o(fly) — f(z) >
> min {v (f(y) —fz) = D (i — Zl)aa)J;( )) U (Y — Zz)aa—;;(b)}

> —Zi) .
> vs—l-orglnnv(y 2i)

The last assertion is obtained by applying (23) with z = b. a

Proposition 38 Take
e additive operators o; : O — O, 0<1<n,
L4 fEO[Xo,...,Xn],

e b < O such that at least one of the following derivatives is not zero:

of

di = X, (o0b, 01b, . . ., 0,b) (0<i<n), (25)
o s O such that
vs = min vd,; . (26)
0<i<n

Suppose that
(V>) voya > va forall a € O (0<i<n)
holds and that the additive operator

= Zdiai : sM — M

has the property that for all a' € s M there is some a € sM such that v(a' — ¢pa) > va'
and va = va' — vs. Then the maps ¢ and

b+sM>z — [z e f7b+ s*M
are immediate.

Proof:  For all a € sM, the definition of s together with (V>) yields

vopa = vzzodaza > Orglnnvd o,a > 0mln vd; + va = vs+va . (27)

29



We wish to apply Proposition 15 to the map f?. Take distinct elements y, z € b 4+ sM.
From (V>) it follows that b; := 0;b € O, y; ;== 0,y € O, z; := 0,2 € O with y;—b; = 0;(y —
b) € sMand z;—b; = 0;(2—b) € sM, 50 (Yo,--,Yn) > (Z0y---52n) € (bo, ..., by)+sM L
Thus we can apply Lemma 37 to obtain

oY= = oty =) = o (£ 1o > dly =)

& 9,

= v (f(aoy, coryony) — flooz, ..., 002) — Z(Uiy — Oiz)_&);{: (oob, . .. ,anb)>
i=0 i

> ws+minv(o;y —0;2) = vs+minvo;(y —z) > vs+v(y — z2) .

We also obtain that f7(b+ sM) C f7b + s> M.

Now take any a’ € s> M. By assumption, there is some a € sM such that v(a' — ¢a) >
va' and va = va' — vs = vea — vs. Take distinct elements y,z € b+ sM such that
v(y — z) > va. By what we have shown above, v(fy — f72 — ¢(y — 2)) > vs+v(y —z) >
vs + va = voa.

We have to show that a € Reg(¢). Indeed, if va < vb, then vpa = vs + va <
vs +vb < veb by (27). It now follows from Proposition 11 that ¢ is immediate, and from
Proposition 15 that f7 is immediate. a

In the next section, we give a criterion which guarantees that the hypothesis of Propo-
sition 38 on the operator ¢ is satisfied.

5.2 The case of operators compatible with a weak coefficient
map

Let us start with the following useful observation.
Lemma 39 Let (K,v) be any valued field. For all « € vK, choose elements
me € K such that vm, = o« and mg=1. (28)
Define co0 := 0 and
coa = (m_yea)v forall a€ K\ {0}.

Then co has the following properties:

(WCMO) coa =0 if and only if a = 0,

(WCM1) ifva =0, then coa = av,

(WCM2) ifva, =vay =...=wva, and ¥ coa; # 0, then co (X, a;) = X5, coay,
(WCM3) ifcoa =cob and va = vb, then v(a — b) > va,

(WCM4) ify€evK and 0+#a € Kv, then Ja € K : coa =a and va = .
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Proof:  Since (m_,,a)v # 0 for a # 0, (WCMO) holds. Since my = 1, also (WCM1)
holds.

If va; = vay, = ... = va, and Zle coa; # 0, then m_yq, = M_yq, = ... = M_y,, and

k k

k k
0 # Zcoai = Z(m,wi a;)v = Ej(m,w1 a;))v = (mwl Zai> v,
i=1 =1

i=1 i=1
whence vm_,q, Zle a; = 0 and therefore, v Zle a; = va; . Hence,
k k k
S con (m_ Zai> v = o (Z ai> |

This shows that (WCM2) holds.

If va = vb and coa = cob, then
(m_yea)v = coa = cob = (Mm_pb)v = (M _yab) v,

50 0 < v(M_pea@ — M_yeb) = vMm_y, +v(a — b) = —va + v(a — b), that is, v(a — b) > va.
This shows that (WCM3) holds.

If vy € vK and 0 # @ € Kv, we choose ay € O* such that ayv = @. Then we set
a = m~}ay. This gives va = —vm_, = v and coa = (m_,(m~ag))v = apv = @. Hence,
(WCM4) holds. 0

A map co with properties (WCMO0) — (WCM4) will be called a weak coefficient map.
We will assume that the operators o; satisfy (V>); hence they induce additive operators
7; on Ku:

foralla € O, 7;(av) = (0;a)v (0<i<n). (29)

We will need some stronger compatibility of the o; with the weak coefficient map:

Lemma 40 Assume that the operators o; satisfy (V>) and that the elements mg, in (28)
can be chosen such that

foralla € O, v(oym yea — m_y40;a) > 0 (0<i<n). (30)

Then

co (doa) if voa =va

0 if voja > va (31)

for alla € O and all d € O*, (cod)T;coa = {

Proof:  Take any d € O*; then vd = 0 and hence, cod = dv. We have that

(cod)Ticoa = (dv)T;((m_yea)v) = (dv) (o;m_yea)v

= (dv) (m_w0ia)v = (M _yedoa)v .
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Here, the second equality holds by equation (29), and the third equality holds by (30).
Now we distinguish two cases. Suppose first that vo;a = va. Then

(m_yedoja)v = (M _y,qdoia)v = (M _yge,adoa)v = co (doja) .

Now suppose that vo;a > va. Then vm_,,do;a > 0 and hence, (m_,,do;a)v = 0. This
proves that (31) holds. O

Property (31) can be expressed by saying that unit multiples of the additive operators
commute with the coefficient map.

Proposition 41 Let the assumptions on f, b, d; and s be as in Proposition 38. Assume
that the additive operators o; satisfy (V>), that co is a weak coefficient map and that
(31) holds. Suppose further that the additive operator

" . cos td; if vd; =vs
Zcﬁi with ¢; = { :
pard 0 if vd; > vs

on the residue field Kv is surjective. Then the map
b+sM>a— f7(x) € f7(b) + s°M
s immediate.

Proof: We define ¢ as in Proposition 38. Now we just have to show that ¢ satisfies
the assumptions of that proposition. So take any o' € s°M, a’ # 0. Since Y1, ¢;0; is
surjective on Kv by assumption, there is some @ € Kv such that Y ,¢;5;a@ = cos™'d'.
Property (WCM4) of the coefficient map allows us to choose a € K such that coa = @ and
va = va' —vs. Thus, 0 #a € sM. Set I = {i | 0 <i <n with vd; = vs and 7; coa # 0}.
Then by the definition of the c¢;,

n
cos td = Y cvia = > co (s 'd;)Ticoa
i—1 il
= > co(s 'dioia) = co(d_ s 'dioia) ,
icl icl

where the third equality holds by (31). The last equality follows from (WCM2) since the
left hand side is non-zero, being equal to cos~'a’, and because for each i € I, 7;coa # 0

implies vo;a = va by (31), and vd; = vs then yields vs~'d;o;a = va so that all values are
equal. By (WCM3), it follows that

v (8_1a' - Zs_ldiaia> > vs ta .

el
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Consequently,
v (a' — dem) =0 (sla' — Zsldiaia> +ovs > vs td +vs = vd .
i€l i€l
On the other hand, take i € I' := {0,...,n} \ I. In the case of vd; > vs, since vo;a >
va = va' — vs, we find that vd;o;a > vd; + va’ — vs > va’'. Observe that a # 0 implies

do;a # 0, and this implies codo;a # 0. Hence in the case of ;coa = 0, (31) shows that
vo;a > va and we obtain that vd;o;a > vd; + va = vd; + va’ — vs > va'. Therefore,

v Y dioja > minvd;oa > vd .
iel’ el

This gives us

v(d —da) = v (a' — deﬂ) > min {v (a' — deﬂ) U Zdiaia} > vad .
i=0

el el’

So the conditions of Proposition 38 are satisfied and we are done. O

In the same way as for the original Hensel’s Lemma (except for the uniqueness as-
sertion), Proposition 41 yields the following generalized Hensel’s Lemma in the present
setting:

Theorem 42 In addition to the assumptions of Proposition 41, suppose that (K,v) is
spherically complete and that
vf7(b) > 2vus .

Then there is an element a € K such that f°(a) =0 and v(a — b) > vs.

5.3 The case of a dominant operator

In this section, we consider the case where one of the additive operators, say o, (without
loss of generality), is dominant on some ball B around 0, that is,

YVa€e B: wvo,a < min wvoja or ocpa=o00=...=0,a=0. (32)
0<j<n-1 7

We will not assume that (V>) holds, so we cannot apply Proposition 38. Instead, we
prove:

Proposition 43 Let 0; : O — O, 0 < 1 < n, be additive operators satisfying condition
(32). With f, b and d; as in Proposition 38, assume that

vd, = min vd; . (33)

0<i<n

Suppose further that for some balls B, B" C d, M around 0, the map o, : B — B’ is
immediate. Then the map

b+B>3>x— ffxe fb+d,B (34)

is immediate. If o, is injective on B, then (34) is injective, too.
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Proof: We set s = d,,. Take distinct elements y,2 € b+ B C b+ sM and set
b :==o0;b € O,y =0y € O, z =0,z € O. It follows from (32) that v(y; — b;) =
vo;(y — b) > vo,(y — b), and our assumption on o, yields that y; — b; € B’ for 0 < i < n.
We obtain y; € b; + B" C b; + sM and similarly, z; € b; + sM. Thus we can apply
Lemma 37 to obtain that

ffb+B) C f°b+d,B .

We shall apply Proposition 15 in order to show that g : b+ B — f°b+d, B’ is immediate.
We set ¢ := d,o,. Pick any o' € d,B', ' # 0. Since 0, : B — B’ is immediate,
Proposition 11 shows that there is some a € B such that a # 0 and

! /
v (C%n - ana> > v ;—n (35)
and

va < vb = vo,a < vopb. (36)

We obtain that v(a'—¢a) > va’ and va < vb — vpa < veb, which shows that (7) of Propo-
sition 15 is satisfied. Now take distinct v,z € b+ B. As in the proof of Proposition 38,
we can apply Proposition 37 to obtain that

v (f"y — [Tz = > dioi(y — z)) > vs +minv(oy — 0;2) = vs + minvo;(y — z) .
— [ [

By (32),
vs +minvo;(y — 2) = vs+vo,(y —2) = vd,o,(y — 2) .
Again by (32),
vy dioi(y — z) > vduon(y —2) ,

and we conclude that

n—1

v(foy—f°2—dyon(y—2)) > min{u(f7y—f7z Zdal y—2)), Y dioi(y—2)} > vd,o,(y—2) .

i=0
(37)
If v(y — z) > va, then by (36), vd,0,(y — 2) > vd,ona and thus, (37) yields

v(fTy—f72 — oy —2)) = v(fy— 72 — dwon(y — 2)) > vdnona = véa .

Since ¢0 = 0 as ¢ is additive, this shows that (8) is satisfied for f7 in the place of f. Now
Proposition 15 proves that f? is immediate.

If o, is injective on B, then y # z implies vd,0,(y — z) < 0o, whence f7y # f7z by
(37). Hence in this case, (34) is injective. O

Proposition 43 yields the following Hensel’s Lemma for the case of a dominant opera-
tor:
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Theorem 44 In addition to the assumptions of Proposition 43, suppose that (K,v) is
spherically complete and that for some e € B,

vfob > vd, + vo,e . (38)

Then there is an element a € b+ B such that f7a = 0 and vo,(a — b) > voye. If 0y, is
injective on B, then a 1s unique.

Proof: It just remains to show that vo,(a — b) > vo,e. By (38),
vd, +vope < vf’b = v(f°b — fa) = vd, + vo,(b—a),

where the last equality follows from (37) by the ultrametric triangle law. Hence, vo,,(a —
b) = vo,(b— a) > voye. 0

In Section 6.3 we will deduce from this theorem a Hensel’s Lemma for Rosenlicht
valued differential fields. But this Hensel’s Lemma is not strong enough. To improve
it, we consider also the values of the higher derivatives of f. So we need to modify our
approach, which we will do in the next section.

5.4 Rosenlicht systems of operators

We will call og,01,...,0, a Rosenlicht system of operators if each o; : O — O is
additive and there exist elements e; € O such that

e, = 1 and wveg > ve; >...> ve, = 0, (39)

and for all 7 < n,
ve; +vo;a > vopa foralla e M, a#0. (40)
The latter implicitly includes the condition that o, is injective on M.

The following is an adaptation of Lemma 37.

Lemma 45 Take f € O[Xy, X1,...,X,] and b € O™ such that

_of
dy = aXn(b) # 0
and for all 1 € T ={0,...,deg f}"™\ {(0,...,0)},
vfli(b) > wd, +vep if k=min{j|i; #£ 0} (41)

where the elements e; € K satisfy (39). Take y = (yo,...,Yn) and z = (2o,...,2,) in
b+ M"L such that

vep +v(yi — 2) > v(yn —2,) for 0<i<n. (42)
Then the following holds:
v(f(y) - f(Z) - dn(yn - Zn)) > vdn(yn - Zn) = v(f(y) - f(Z)) : (43)

35



Proof: Writey=b+d €b+ M" and z =b+¢e € b+ M" where § = (dy,...,0,)
and € = (gg,...,¢&,) satisfy

ve; +v(8; —g;) = ve;+v(y; — 2) > v(yp —2,) for 0<i<n. (44)

We note that ve, + v(0, — &,) = v(y, — 2,); so we have
ve; +v(0; —e;) > v(y, —2z,) for 0<i<n. (45)
Take i € I, |i] > 2, and let i’ be the multi-index obtained from i by subtracting 1 in the
k-th place, where £ = min{j | ¢; # 0}. Then
0 — el = (0 — ex)0F +x(0F — &b .
Suppose that we have already shown by induction on |i| that
veg +v(68 —&¥) > w(yp — 2,) for £ = min{j | iy # 0},

with the induction start for || = 1 being covered by (45). We have that ¢ > k, hence
vey > vep by (39); therefore, also vey, + v(di' — 51') > U(Yp — 2n). Since veg + v(0 — €g) >
v(yn — 2,) by (45), and since 6% , €, € M, we then find
vep +v(0t —t) > minfvey +v(0 — £x) + v, vey + vy, + (6 — b))}

> U(Yn — Zn) - (46)
Take i € I' :== I\ {(0,...,0,1)}. Then because of (44), inequality (46) also holds in the
case of |i| = 1. Hence by hypothesis (41),

v(6t — B FLEN(b) > wd, +ve, +v(0 — £8) > vdy +v(yn — 2n) -

Since

F) = f(2) = da(0n —£0) + D_(0% — &4 1) (b)

el’

by (22), this yields

v(f(y) = f(2) = dulyn —2)) = v(f(y) - f(z) t(0n — &n))
= vy (0t — D) > vdy + V(Y — 20)

el

which gives the inequality in (43). The equality in (43) follows from the inequality by the
ultrametric triangle law. O

Proposition 46 Let oy, ...,0, be a Rosenlicht system of operators satisfying (39) and
(40). Take f, b and d, as in Proposition 45 such that (41) holds. Suppose further that
for some balls B, B' C M around 0, the map o, : B — B’ is immediate. Then

b+B>xw— ffx € f'b+d,B (47)

15 1mmediate and injective.
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Proof: ~ We modify the proof of Proposition 43 as follows. In order to apply Lemma 45,
we set y; = o;y and z; = 0;2. From (40) it follows that

ve, +0(y; — zi) = ve; +v(owy —0i2) = ve; +vo(y — 2)
> won(y —2) = v(0nY — 0nz) = V(Yn — 2a)

for all y,z € b+ B and 0 < i < n. Therefore, we can apply Lemma 45, and (43) shows
that

o(f(y) = f(2)) = vduon(y — 2) = vdyp + vou(y = 2) (48)
for all y,z € b+ B. It follows that

fo(b+B) C fb+d,B' .

As in the proof of Proposition 43 we use Proposition 15 to show that f : b+ B —
f7b + d, B’ is immediate. The proof that (7) and (8) hold can be taken over literally,
except that instead of deducing (37) we just apply inequality (43) of Lemma 45 to obtain
that

v(fy — f72 — dpon(y — 2)) > vdpon(y — 2) .
Since o, is injective on M (as a consequence of condition (40)), it follows as in the
proof of Proposition 43 that ¢ is injective. O

Proposition 46 yields the following generalized Hensel’s Lemma for the case of a Rosen-
licht system of operators:

Theorem 47 The assertion of Theorem 44 also holds under the assumptions of Propo-
sition 46.

6 Immediate differentiation

From now on our o; will be the i-th iterates D of an additive operator D, with D° being
the identity. For a polynomials f in n+1 variables, we set f”(X) = f(X, DX, D*X,..., D"X).

6.1 VD-fields

We will call a valued field (K,v) with an additive map D : K — K a VD-field if the
following conditions are satisfied:

(VDF1) vDa > va for alla € K,
(VDF2) vK = {va|a € K with vDa > va},
(VDF3) there is e € O such that D(ab) = aDb + bDa + e(Da)(Db) for all a,b € K.

Together with (VDF1), the additivity of D implies:
(VDF4) D induces an additive map on Kv, again denoted by D, such that (Da)v =
D(av),
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Proposition 48 Let (K, D,v) be a VD-field. Then D is immediate if and only if D is
surjective on Kwv.

Proof:  “=7: Take any ¢’ € O; we have to show that D(av) = a'v for some a € O.
Condition (IH1) implies that there is ¢ € K such that v(a’ — Da) > va’ > 0, whence
a'v = (Da)v = D(av).

“<": Take any o' € K \ {0}. By (VDF2), we choose ¢ € K such that vc = va' with
vDc > ve, and set aj = a'/c. Then vaj = 0, and since D is surjective on Kwv, there is
some ag € O such that ajv = D(agv) = (Dag)v. Hence, v(ay— Dagy) > 0. We set a = ca .
We have that vagDc = vag + vDc > vDe > ve and ve(De)(Dag) = ve + vDc + vDay >
vDc > ve. Hence,

v(a'— Da) = w(cayg— Decag) = v(cay — cDay — agDe — e(Dc)(Day))
> min{vc + v(ay — Day) , vagDc, ve(Dc)(Dag)} > ve = vd' .

This shows that (IH1) holds. Since D(agv) = afv # 0, we know that agv # 0, that is,
vag = 0. Therefore, vDa = va’ = ve = veayg = va. So we obtain from (VDF1) that
va < vb implies vDa = va < vb < vDb, for all b € K. Hence, also (IH2) is satisfied. O

The next theorem is an immediate consequence of this proposition and Theorem 2.

Theorem 49 Let (K, D,v) be a spherically complete VD-field. Assume that D is surjec-
tive on Kv. Then D is surjective on K.

As a preparation for our “D-Hensel’s Lemma”, we need the following facts:
Lemma 50 In every VD-field, D1 = 0.
Proof: ~ Suppose that D1 # 0. From (VDF3) with b = 1 we then obtain eDa = —a
for all @ € K. With @ = 1 this yields e = —(D1)7!, so ve < 0 since vD1 > vl = 0 by

(VDF1). But by (VDF2), e € O, so we get ve = 0. But then eDa = —a shows that
vDa = va for all @ € K, in contradiction to (VDF2). O

Recall that by D’ we denote the i-th iterate of D, with D° being the identity map.
Lemma 51 Let (K,v) be a VD-field and m € K such that vDm > vm. Then
v (Di(ma) - mDia) > vma (49)

for all a € K*, and
vDm™" > vm™! . (50)
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Proof: By assumption, vaDm = va + vDm > va + vm = vma and ve(Dm)(Da) =
ve +vDm + vDa > vDm + va > vm + va = vma. Hence by (VDF3),

v (D(ma) —mDa) > min{vaDm , ve(Dm)(Da)} > vma .
Now we proceed by induction on i. Suppose that j > 1 and that we have already shown
(49) for all i < j and all @ € K. Then
v (Dj (ma) — ija) =

= v (DDj’l(ma) — D(mD’ 'a) + D(mD’ 'a) — mDDj’la)

> min{vD (Dj’l(ma) — ij’la) , U (D(ij’la) — mDDj’la)}

> min{vma, vmD’ 'a} = vma
since vD’~'q > va. This proves (49).

By Lemma 50 and (VDF3),
0 = D1 = D(mm™") = mDm™" +m™'Dm + e(Dm)(Dm™") .

From this together with veDm > vDm > vm, we infer

1 1

vDm™ ' = vm 'Dm —v(m+eDm) = vm ' +vDm—ovm > vm !,

which proves (50). O

In every VD-field, condition (V>) holds for the additive operators o; = D'. This
follows by induction on 7 (and we have used it already in the last proof). Again by
induction on i, (VDF4) implies that

(D'a)v = D'(av) forevery i >1, (51)
that is, the map induced by D! on Kwv is the i-th iterate of the map induced by D
on Kv. Indeed, having already shown that (D" 'a)v = D !(av), we obtain (D'a)v =
(D(D'a))v = D((D'a)v) = D(D"(av)) = D*(av).

Now we can prove the following theorem:

Theorem 52 Let (K, D,v) be a spherically complete VD-field. Take a polynomial f €
O[ Xy, Xi,..., X,] and assume that
1) there isb € O and s € K with vDs > vs such that

vs = min v f(b,Db,...,D"b)<oo and vfPb > us

0<i<n  0X;

2) the additive operator

Y D' with ¢ = (8_1 of (b, Db .. . .,D”b)) v (52)
= 0X;

on the residue field Kv is surjective.
Then there is an element a € K such that fPa =0 and v(a — b) > vs.
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Proof: By (VDF2), we can choose elements m, with vm, = a and vDm, > vm,
for a € vK; we set my = 1. By Lemma 39, this gives rise to a weak coefficient map
co. Inequality (49) of Lemma 51 shows that condition (30) of Lemma 40 holds for the
elements m, and the additive operators o; = D’. Therefore, co satisfies (31) for these
operators. Since vDs > vs, inequality (50) of Lemma 51 shows that vDs™! > vs~!. Thus,
we can choose m,s = s and obtain that coa = (s 'a)v whenever va = vs. With d; defined
as in Proposition 38, we thus obtain that the elements ¢; defined above coincide with the
elements ¢; defined in Proposition 41 and that the operator 37", ¢; D" coincides with the
operator Y1, ¢;0; of Proposition 41. The former being surjective on Kv, our theorem
now follows from Theorem 42. a

This theorem yields Theorem 5. Indeed, if the assumptions of that theorem are satis-
fied, then by use of (VDF2) we pick s € K with vDs > vs such that vs = 7. Since Kv is
assumed to be linearly D-closed, the operator (52) on Kwv is surjective, and we can apply
Theorem 52.

6.2 Integration on Rosenlicht valued differential fields

Let (K, D) be a differential field with field of constants C' = {a € K | Da = 0}. Following
M. Rosenlicht [R1], a valuation v of K is called a differential valuation if C is a field
of representatives for the residue field of (K, v) (that is, v is trivial on C' and for every
y € K with vy = 0 there is a unique ¢ € C s.t. v(y — ¢) > 0), and v satisfies

bD
Va,bEK:va20/\vb>0/\b5£0:>v<D—;>>O. (53)

Because of our assumption on C', this condition is equivalent to
Va,b € K\ {0},va#0,vb#0: va <vb < vDa <vDb. (54)

Lemma 53 Assume that v is a differential valuation with respect to D. Then for every
a € K there is some a € K such that va # 0 and Da = Da. Moreover,

Va,b € K : (0 # va Ava <vb) = vDa <vDb. (55)
This shows that {a € K | va # 0} C Reg (D).

Proof: If va = 0 then by our assumption that the field of constants is a field of
representatives for the residue field, there is some constant ¢ such that v(a—c) > 0; hence
for a := @ — ¢ we have that va # 0 and Da = Da — Dc = Da.

To prove (55), assume that 0 # va and va < vb. If vb = 0, then we choose a constant
¢ such that v(b —¢) > 0. So we can infer from (54) that vDa < vD(b— ¢) = vDb. O
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Proposition 54 Let v be a differential valuation on (K, D). Then D : (K,v) — (K,v)
is immediate if and only if (K, D,v) admits asymptotic integration.

Proof:  “=": Condition (IH1) implies that (K, D,v) admits asymptotic integration.

“<”: Take any ¢’ € K \ {0}. Since (K, D,v) admits asymptotic integration, there is
some a € K such that v(a' — Da) > vd, that is, (IH1) holds. By Lemma 53, a can be
chosen such that va # 0 and (IH2) holds. O

The next theorem is an immediate consequence of this proposition and Theorem 2.

Theorem 55 Let (K, D) be a differential field, endowed with a spherically complete dif-
ferential valuation v. Assume further that (K, D) admits asymptotic integration. Then
(K, D) admits integration.

For certain applications, one has to work with a field K which is a union of an increas-
ing sequence of power series fields K;, © € N. If this sequence does not become stationary,
then K itself will not be spherically complete. However, we still can prove the following:

Theorem 56 Let (K,v) be the union of an increasing chain (K;,v) of spherically com-
plete valued fields, 1 € N. Let D be a derivation on K such that v is a differential valuation
with respect to D. Assume further that for each ¢ there are elements a;; € K1, j € I;,
such that

1) Da;j; € K; forall j €1,

2) the valued K;-subvector space V; := K; + >jer Kiaij of Kiyy is spherically complete,
3) for every b € K; there is some a € V; such that v(b — Da) > vb.

Then (K, D) admits integration.

Proof: It suffices to show that for each 7, D is a surjective map from V; onto K;. Since
K = U;en K it then follows that D is surjective on K.

Because of 1), we have that DV; C K;. We set Y =V, and Y’ = K;. As in the proof
of Proposition 54 one uses 3) to show that D : Y — Y is immediate. From 2) together
with Theorem 2, one obtains that DV; = K. O

This theorem implies that the derivation on the logarithmic-exponential power series
field R((¢))** (cf. [DMM3]) is surjective. The argument is as follows. It can be shown
that R((¢))** is the union over an increasing sequence of differential power series fields
K; such that for every i there is just one a; € K;;; such that Da; € K; and condition 3)
holds. In fact, a; = log; x for a certain element =, where log; denotes the i-th iterate of log.
Further, va; is rationally independent over v K. It follows that v(c+c'a;) = min{ve, vd'a; }
for all ¢, € K;, that is, the ultrametric space underlying V; is just the direct product of
the one underlying K; and the one underlying K;a; . As the latter is isomorphic to the one
underlying F;, both are spherically complete. By Proposition 10, their direct product is
spherically complete. The foregoing theorem now proves the surjectivity of D.
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6.3 Differential equations on Rosenlicht valued differential fields

Now let us assume in addition that

DM) € M. (56)

If K contains an element z such that vDz = 0 and vz < 0 (as it is the case in R((t))“,

see below), then (56) is a consequence of (54). In fact, (56) also holds in every Hardy
field. If (56) does not hold for a derivation D, then we may replace D by the derivation
aD, with 0 # a € K; it follows from (54) that (56) will hold for aD in the place of D for
every a of sufficiently high value va.

Assumption (56) implies that D*(M) C M for each i € N. We leave it to the reader
to use this fact together with (54) to prove the following easy lemma by induction on i:

Lemma 57 If (K, D,v) admits asymptotic integration, then for each i € N, the map

D':M — Mpi = [J(D'e)O C M (57)
eeEM

is an immediate embedding of ultrametric spaces with value map va — vD'a.
Hence by Theorem 2, we have:

Lemma 58 If (K, D,v) is spherically complete and admits asymptotic integration, then
the map (57) is an isomorphism of ultrametric spaces.

When we try to prove a differential Hensel’s Lemma for Rosenlicht’s differential val-
uations, we have to deal with the problem that the connection between vD‘a and vD’a
for ¢ # j is not as nice as in the case of D-fields. The natural hypothesis on the partial
derivatives as used in Theorem 5 may not suffice. We need to set up a relation between
the values vy,vDy,...,vD"y. The key is definition (53) of a differential valuation. By
induction, it implies that for arbitrary e € M,

vD'y + (n—i)vDe > vD"  for0<i<n. (58)

Because of this relation, we will have to assume that the partial derivative of least value
appears at the variable X,, which is associated with the highest power D™ of D. The
following is a special case of Theorem 44 in Section 5.3:

Theorem 59 Let (K, D) be a differential field, endowed with a spherically complete dif-
ferential valuation v. Assume that (K, D,v) admits asymptotic integration. Take a poly-
nomial g € O[Xo, X1,...,X,| and assume that there are b € O and e € M such that,
with d := De,

g(d™"Xo,d" "Xy, ..., d7" X210, X,) € O[Xo, X1, ..., Xy

and
ag n _ : —n ag n _
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and
vg”b > vD"e. (60)

Then there is a unique element a € O such that gPa = 0. It satisfies v(a — b) > ve.

Proof:  Set f(Xy,...,X,) = g(d™"Xy,d"™X,,...,d7'X,, 1,X,) € O[Xy, Xy,...,X,].
With d; defined as in (25) of Proposition 38, it follows from (59) that 0 = vd,, = min; vd;,
which shows that (33) of Proposition 43 is satisfied. Further, we set o; := d* 'D', B := M
and B' := Mp. C M = d, M. Then by (58), vo,a < voja for all i < n and a € M,
showing that (32) holds. Since 0, (M) = D"(M) C B’ C M, it follows that also o;(M) C
M for 0 < i < n. Condition (60) tells us that condition (38) of Theorem 44 is satisfied.
Finally, Lemma 57 tells us that D™ : M — B’ is immediate and injective. We have
proved that all conditions of Theorem 44 are satisfied. Hence, there is a unique element
a € b+ M such that g%a = f(opa,01a,...,0,a) = 0, and it satisfies vo,(a — b) > voye.
The latter means that vD"(a — b) > vD"e, which by (54) implies v(a — b) > wve since
a—b,ee M. O

This theorem can be improved if one also considers the values of the higher deriva-
tives of f. The formal higher derivatives flZ/ have already been introduced and used in
Section 5.1. We will work with the Rosenlicht system

o; == D', ¢ = (De)""

for fixed n € N and some e € M. Then condition (39) in Section 5.4 is trivially satisfied,
and condition (40) is satisfied because of (58). We will apply Theorem 47 to prove:

Proposition 60 Tuke f € O[Xy, X1,...,X,] and b € O such that

of
= —(b,Db,...,D"
dy, 8Xn(b’ b,...,D") # 0
and for all i € I ={0,...,deg f}"*1\ {(0,...,0)},
vfl8(b, Db, ..., D") > vd, +wve, if k=min{j|i; #0}. (61)

Suppose further that for some balls B,B' C M around 0, D™ : B — B’ is immediate.
Then
b+ B>z fPre fPb+d,B (62)

15 an immediate embedding of ultrametric spaces with value map va — vd,, + vD"a. If
(K, v) is spherically complete, it is an isomorphism of ultrametric spaces.

Proof:  All this follows from Proposition 46 and Theorem 2. It just remains to prove
that (62) is an embedding of ultrametric spaces with value map va — vd,, + vD"a. But
this follows from equation (48) of Proposition 46 and the fact that va — vD™a for a € M
preserves “<”. O

43



Theorem 61 Let (K, D) be a differential field, endowed with a spherically complete dif-
ferential valuation v. Assume that (K, D,v) admits asymptotic integration. Take a poly-
nomial f € O[Xy, X1,...,X,| and assume that there are b € O and e € M such that

Vi: vflei(b, Db,..., D"b) > vﬁ(b,pb,...,D”b)+(n—k)vDe if k=min{j|i; #0}

0X,
(63)

and
vfPb > vD" .

Then there is a unique element a € M such that f(a,Da,...,D") = 0. It satisfies
v(a — b) > ve.

Proof:  As in the proof of Theorem 59, we set B := M and B’ := Mpn; then D" : B —
B’ is immediate by Lemma 57. Now we apply Theorem 47 instead of Theorem 44. O

If K is of characteristic 0, then the usual higher derivative

f(i)(X) - ai0+...+inf

= aioXo---aian(X)

can be substituted for fl¢J(X) in the above theorem. Indeed,
FOX) = dgl iyl FIE(X)

and therefore, , ,
vf (b, Db,...,D") = vfltl(b,Db,...,D") .

In R((¢))“¥, the element z = ¢! satisfies vz < 0 and Dz = 1. Suppose that 1 < r € R.
Then e = o' € R((t))* satisfies ve > 0 and De = z~". With Kj as in the discussion
at the end of Section 6.2, take M; to be the valuation ideal of K;. Then : ¢ (De)M,;
and it can be shown that for every ¢ € (De)M,; there is some a € eM; such that
v(a' — Da) > va’. As for the proof of Lemma 57, it can thus be deduced that for every
k>1,DF:eM; — (D’“e)./\/li is an immediate embedding of ultrametric spaces. Hence on
every ball of the form eM; in K;, differential equations of the above form can be solved
without any modification of our approach.

The union of an ascending chain of henselian fields is again henselian. With the same
idea of proof, working in K; for all 7 large enough to contain all coefficients of A and then
passing to the union of the K, one obtains, applying Theorem 61 with e as given above
to the polynomial f(Xy,...,X,)=¢(Xo,...,X,)+c— X, and b=0:

Theorem 62 Let O denote the valuation ring of R((¢))XF. Suppose that

n—1
9( X0, X,) € Y X 01X, L, X)) 4+ X20 + XM (64)

1=0
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and
cex T O.

Then the differential equation

D"y = g(y,Dy,...,D"y) + ¢ (65)

has a unique infinitesimal solution in R((t))“¥; this solution has value > vx'~".

This theorem implies the following result, which was proved by Lou van den Dries
in [D]:

Corollary 63 Suppose that p is a polynomial in one variable with coefficients in R((t))*¥,
all of value > vt" for some r € R, r > 1. Then the differential equation

Dy = p(y)

has a unique infinitesimal solution in R((t))LF.

7 Sums of spherically complete valued abelian groups

Let (A, v) be a valued abelian group and Ay, ..., A, be subgroups of A. The restrictions
of v to every A; will again be denoted by v. We call the sum A; + ...+ 4, € A
pseudo-direct if for every ' € A; + ...+ A, , a' # 0, there are a; € A; such that

n n
v 21 a; = 1121<nn va; and v (a' — 21 ai> > va' . (66)
1= - 1=

Proposition 64 The sum A, + ...+ A, C A is pseudo-direct if and only if the group
homomorphism f: Ay x...x A, = A1 +...+ A, defined by f(ai,...,a,) =a1+...+a,
15 immediate.

Proof:  =-: Assume that the sum A; + ...+ A, is pseudo-direct. Take any o’ € Y, A;
and choose a; € A; such that (66) holds. Then a := (ai,...,a,) € A; X ... x A, satisfies
(IH1). If b= (by,...,b,) € Ay X ... x A, such that vb > va, then

vfb = vai > miinvbi =vb > va = miinvai = UZCM = vfa.

1 )

This shows that a also satisfies (IH2).

<: Assume that f is immediate. Take any o' € }°; A;, @’ # 0. Choose a := (a4, ...,a,) €
Ay x...x A, such that (IH1) and (IH2) hold. Then v (a' — ¥>; a;) = v(a'— fa) > va'. Now
choose some j such that va; = min; va; . Then set b; = a; € A; and b; =0 € A; for ¢ # j.

For b = (by,...,b,), we thus have that va = min; va; = va; = vb; = min; vb; = vb. Hence
by (IH2), v3;a; = vfa < vfb = vb; = min;va;. We have proved that the elements a;
satisfy (66). O
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If the groups (A;, v) are spherically complete, then by Proposition 10, the same is true
for their direct product A := A; x ... x A,,, endowed with the minimum valuation as
defined in (10). Hence, the foregoing proposition, Theorem 2 and Corollary 4 show:

Theorem 65 Assume that the subgroups (A;,v) of (A,v), 1 < i < n, are spherically
complete. If the sum Ay + ...+ A, is pseudo-direct, then it is also spherically complete
and has the optimal approximation property.
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