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Banach’s Fixed Point Theorem

Let (X, d) be a metric space. A function f : X→ X is said to be
contracting

if there is a positive real number C < 1 such that
d(fx, fy) ≤ Cd(x, y) for all x, y ∈ X.

Theorem (Banach’s Fixed Point Theorem)

Every contracting function on a complete metric space (X, d) has a
unique fixed point.
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Ultrametric spaces

An ultrametric space (X, u) is a set X together with a function
u : X×X→ Γ,

where Γ is a totally ordered set with minimal
element 0, satisfying the following conditions for all γ ∈ Γ and
x, y, z ∈ X:
(1) u(x, y) = 0⇔ x = y
(2) u(x, y) = u(y, x)
(3) u(x, y) ≤ max{u(x, z), u(z, y)}

Example: Q together with the p-adic metric is an ultrametric
space. More generally, every (Krull) valuation induces an
ultrametric.
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Ultrametric spaces

A (“closed”) ball in an ultrametric space (X, u) is a set

Bγ(x) := {y ∈ X | u(x, y) ≤ γ} .

The beauty of ultrametric spaces: if γ ≤ δ and
Bγ(x) ∩ Bδ(x) 6= ∅, then Bγ(x) ⊆ Bδ(x).
In an ultrametric ball, each element is its center,
and in every triangle, at least two sides are equal.

A nest of balls is a nonempty collection of balls which is totally
ordered by inclusion.
An ultrametric space (X, u) is called spherically complete if the
intersection of every nest of balls is nonempty.
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An ultrametric fixed point theorem

Let (X, u) be an ultrametric space. A function f : X→ X is said
to be contracting

if u(fx, fy) < u(x, y) for all x, y ∈ X such that
x 6= y.

Theorem (S. Prieß-Crampe 1990)

Every contracting function f on a spherically complete ultrametric
space (X, u) has a unique fixed point.

In joint work with P. Ribenboim, Prieß-Crampe later extended
this theorem to the case of generalized ultrametric spaces
which have partially ordered value sets Γ.
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Questions

•What about topological spaces?

What about linear orderings?
What sort of completeness would be needed for fixed point
theorems in such spaces and structures?

• Are there “umbrella theorems” from which fixed point
theorems in each application can be derived?

• How can the respective completeness properties of various
spaces and ordered structures be linked with each other and
compared? Is there a reasonable definition of their “strength”,
and how can it be measured?
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Ball spaces

A ball space is a pair (X,B), where X is a nonempty set and B
is a nonempty collection of nonempty subsets of X (balls).

A nest of balls is a nonempty collection of balls which is totally
ordered by inclusion.

A ball space (X,B) is called spherically complete if the
intersection of every nest of balls is nonempty.

To every ultrametric space (X, u) we can associate a ball space
(X,B) by taking B to be the collection of all closed ultrametric
balls. Then (X, u) is spherically complete if and only if (X,B) is.
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An example of a basic FPT for ball spaces

Take a function f : X→ X.

A subset B ⊆ X is called f -closed if
f (B) ⊆ B, and it is called f -contracting if it is a singleton
containing a fixed point or satisfies f (B) ( B.

Theorem
Take a spherically complete ball space (X,B) and a function
f : X→ X.

If every f -closed subset of X contains an f -contracting ball, then
f has a fixed point in every f -closed subset of X.
If every f -closed subset of X is an f -contracting ball, then f has a
unique fixed point.

The ultrametric FPT is a direct consequence of the second part
of this theorem.
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What are the balls in topological spaces?

The nonempty open sets?

Not a good idea!
A topological space is compact if and only if every chain of
closed sets has a nonempty intersection.

If X is a topological space, then we will consider the ball space
(X,B) where B consists of all nonempty closed sets. Hence we
have:

Theorem
The ball space (X,B) is spherically complete if and only if X is
compact.
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Ordered sets, abelian groups and fields

Let (X,≤) be any nonempty totally ordered set.

Define

B := {[a, b] | a, b ∈ X, a ≤ b} .

Under which conditions is (X,B) spherically complete?

A Dedekind cut in X is a pair (D, E) of nonempty subsets of X
such that D∪ E = X and d < e for all d ∈ D, e ∈ E.
(X,<) is cut complete if every Dedekind cut is filled, i.e., D has
a maximal element or E has a minimal element.

Does the spherical completeness of (X,B) imply cut
completeness? Then it would not be interesting for ordered
abelian groups and fields since all cut complete densely
ordered abelian groups and ordered fields are isomorphic to R.
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Asymmetric cuts

If (D, E) is a cut where the cofinality of D is smaller than the
coinitiality of E (= the cofinality of E under the reverse
ordering),

then a nest {[aν, bν] | ν < λ} will never be able to
“zoom in” on the cut because if it is a sequence whose length is
the coinitiality of E, then the aν will eventually become
stationary, and their eventual value will be an element in the
intersection of the nest.

A symmetric argument works when the cofinality of D is larger
than the coinitiality of E.

The cut (D, E) is called asymmetric if the cofinality of D is not
equal to the coinitiality of E. By what we have seen above, nests
of intervals [aν, bν] over asymmetric cuts will always have
nonempty intersection.
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Ordered sets, abelian groups and fields

An ordered set in which every cut is asymmetric is called
symmetrically complete.

Theorem
(X,B) is spherically complete if and only if X is symmetrically
complete.
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Ordered sets, abelian groups and fields

Do symmetrically complete ordered abelian groups and fields
(other than R) exist?

(1908) F. Hausdorff constructed ordered sets in which
every cut is asymmetric.
(2004) S. Shelah introduced the notion of “symmetrically
complete ordered field” and proved that every ordered
field can be extended to a symmetrically complete ordered
field.
(2013) In joint work with S. Shelah we extended his result
to ordered sets and abelian groups, characterized all
symmetrically complete ordered abelian groups and fields,
and proved an analogue of the Banach FPT. (Israel J. Math.
208 (2015))
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Partially ordered sets

Take a nonempty partially ordered set (poset) (T,<).

We define
[a, ∞) := {b ∈ T | a ≤ b} and B := {[a, ∞) | a ∈ T}.
A poset is inductively ordered if every chain in (T,<) has an
upper bound. (Then by Zorn’s Lemma, (T,<) has maximal
elements.)
A poset is chain complete if every chain in (T,<) has a least
upper bound.
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Partially ordered sets

Theorem
Take a nonempty partially ordered set (T,<). Then the following
assertions hold.

1) The ball space (T,B) is spherically complete if and only if (T,<) is
inductively ordered. If this is the case, then the intersection of every
nest in (T,B) contains a ball.
2) (T,<) is chain complete if and only if it has a smallest element and
the intersection of every nest of balls in B is again a ball.

Observe that in both 1) and 2) the ball spaces have a stronger
property than just spherical completeness: intersections of
nests contain balls or are themselves balls. We will later
introduce a classification of ball spaces according to these
stronger properties.
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Metric spaces

But what about metric spaces?

We can consider the associated
ball space given by taking B to be the collection of all closed
metric balls

{x | d(x− a) ≤ r} .

But: the spherical completeness of this ball space is in general
stronger than the completeness of the metric space. (To get
equivalence, one has to restrict to nests with the radii of the
balls converging to 0.)

Moreover, metric fixed point theorems are usually proved by
use of Cauchy sequences instead of closed metric balls. Using
the latter is more difficult and not efficient.

Is there an alternative for our choice of balls in the metric case?
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The Caristi-Kirk FPT

A function ϕ from a metric space (X, d) to R is called lower
semicontinuous

if for every y ∈ X,

lim inf
x→y

ϕ(x) ≥ ϕ(y) .

Theorem (Caristi-Kirk)

Take a complete metric space (X, d) and a lower semicontinuous
function ϕ : X→ R which is bounded from below. If a function
f : X→ X satisfies the Caristi condition
(CC) d(x, fx) ≤ ϕ(x)− ϕ(fx),
then f has a fixed point on X.
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Caristi-Kirk balls

We set
Bx := {y ∈ X | d(x, y) ≤ ϕ(x)− ϕ(y)}

for each x ∈ X.

Note that despite the notation, these sets will in
general not be metric balls. We call these sets Caristi-Kirk balls.
Further, we define

Bϕ := {Bx | x ∈ X} .

If ϕ is lower semicontinuous and bounded from below, then we
will call (X,Bϕ) a Caristi-Kirk ball space associated with (X, d).
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Caristi-Kirk balls

Theorem
Let (X, d) be a metric space. Then the following statements are
equivalent:

(i) The metric space (X, d) is complete.

(ii) Every Caristi-Kirk ball space (X,Bϕ) associated with (X, d) is
spherically complete.

(iii) For every continuous function ϕ : X→ R bounded from below,
the Caristi-Kirk ball space (X,Bϕ) associated with (X, d) is
spherically complete.

There is a generic FPT for ball spaces which together with this
theorem proves the Caristi-Kirk FPT.
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What we got so far

spaces balls completeness
property

ultrametric spaces all closed spherically
ultrametric balls complete

topological spaces all nonempty closed sets compact
linearly ordered sets, all intervals symmetrically
ordered abelian [a, b] with a ≤ b complete
groups and fields
posets all intervals [a, ∞) inductively

ordered
metric spaces metric balls with radii complete

in suitable sets of
positive real numbers

Caristi-Kirk balls *
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Centered and directed systems of balls

In ball spaces we are concerned with intersections of balls, so
we introduce the following definitions.

A nonempty collection of balls is a centered system if the
intersection of any finite subcollection is nonempty.
A nonempty collection of balls is a directed system if for every
two balls in this collection there is a ball in the collection that is
contained in their intersection.

nest ⇒ directed ⇒ centered.

What about ball spaces in which all intersections of directed
systems, or of centered systems, are nonempty?
Moreover, observe that in a topological space arbitrary
intersections of closed sets are again closed. What about ball
spaces in which all (nonempty) intersections of nests, directed
systems, or centered systems, are again balls?
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Hierarchy of spherical completeness

S1: The intersection of each nest is nonempty.

S2: The intersection of each nest contains a ball.
S3: The intersection of each nest contains a maximal ball.
S4: The intersection of each nest contains a largest ball.
S5: The intersection of each nest is a ball.

(S1 is our original notion of “spherically complete”.)

Sd
i : The same as Si, but with “directed system” in place of

“nest”.

Sc
i : The same as Si, but with “centered system” in place of

“nest”.

We will also write S∗ for Sc
5 because this turns out to be the

“star” (the strongest) among the ball spaces:
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Hierarchy of spherical completeness

S1 ⇐ Sd
1 ⇐ Sc

1
⇑ ⇑ ⇑
S2 ⇐ Sd

2 ⇐ Sc
2

⇑ ⇑ ⇑
S3 ⇐ Sd

3 ⇐ Sc
3

⇑ ⇑ ⇑
S4 ⇐ Sd

4 ⇐ Sc
4

⇑ ⇑ ⇑
S5 ⇐ Sd

5 ⇐ Sc
5 =: S∗
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Intersection closed ball spaces

A ball space (X,B) will be called finitely intersection closed if B
is closed under nonempty intersections of any finite collection
of balls,

and it will be called intersection closed if B is closed
under nonempty intersections of arbitrary collections of balls.

Theorem

1) If the ball space (X,B) is finitely intersection closed, then Sd
i is

equivalent to Sc
i , for i = 1, 2, 3, 4, 5.

2) If the ball space (X,B) is intersection closed, then all properties in
the hierarchy are equivalent.
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Intersection closed ball spaces

The ball space consisting of all nonempty closed sets in a
topological space

is intersection closed.
For an ultrametric space, the ball space given by the
collection of its closed ultrametric balls, is finitely
intersection closed. Its full ultrametric ball space, which
we obtain from the former by closing under unions and
nonempty intersections of nests, is intersection closed.
The ball space of a lattice with top and bottom, consisting
of all intervals of the form [a, b], is finitely intersection
closed, and it is intersection closed if and only if the lattice
is complete.
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Summary of S∗ ball spaces

An ultrametric space with totally ordered value set is S1
(spherically complete) if and only if the full ultrametric
ball space is S∗ .

A topological space is compact if and only if the ball space
consisting of its nonempty closed subsets is S∗ .
A poset is directed complete and bounded complete if and
only if the ball space defined by the final segments [a, ∞)
is S∗ .
A poset is a complete lattice if and only if it has a bottom
and a top element and the ball space defined by its
nonempty closed intervals [a, b] is S∗ .
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Spherical closure in S∗ ball spaces

Suppose that (X,B) is an S∗ ball space

and that S ⊆ B for some
B ∈ B.

The spherical closure of S is

sclB(S) :=
⋂
{B ∈ B | S ⊆ B}

sclB(S) ∈ B is the smallest ball containing S.
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Ball spaces that are not S∗

The ball space of a totally ordered set, ordered abelian group or
field,

consisting of all intervals of the form [a, b], is finitely
intersection closed. But:

Lemma
Assume that (T,<) is a totally ordered set whose associated ball
space is Sd

1 . Then (T,<) is cut complete.

The only cut complete densely ordered abelian groups or
ordered fields are the reals. So we have:

Proposition

The associated ball space of R is S∗ . For all other densely ordered
abelian groups or ordered fields the associated ball space can at best be
S1 or S2 .
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Ball spaces that are not S∗

For a spherically complete ultrametric space, the ball space of
all closed ultrametric balls is Sc

2 ,

but in general not even S3.
However, the full ball space is S∗.

Theorem (W. Kubis, K)

There are spherically complete generalized ultrametric spaces with
partially ordered value set for which the associated full ultrametric
ball space is not even spherically complete.
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The Knaster-Tarski FPT

Theorem
Let X be a complete lattice and f : X→ X an order-preserving
function. Then the set of fixed points of f in X is nonempty and also a
complete lattice.

Is there an analogue for ball spaces?
Can it be used to transfer the Knaster-Tarski FPT to other
applications?
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The structure of fixed point sets in S∗ ball spaces

Theorem
Take a function f : X→ X. Assume that there is a ball space structure
(X,Bf ) on X for which the following conditions are satisfied:

(1) every B ∈ Bf is f -closed (i.e., f (B) ⊆ B),
(2) every B ∈ Bf contains a fixed point or some smaller ball B′ ∈ Bf ,
(3) (X,Bf ) is an S∗ ball space.
Let Fix(f ) be the set of fixed points of f , and set

Bf
Fix := {B∩ Fix(f ) | B ∈ Bf } .

Then (Fix(f ),Bf
Fix) is an S∗ ball space.
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The Knaster-Tarski FPT for ultrametric spaces

In the case of ultrametric spaces (X, u), where we take (X,B) to
be the full ultrametric ball space

and Bf to consist of all f -closed
balls in B,

(Fix(f ), {B∩ Fix(f ) | B ∈ Bf })

is equal to the full ultrametric ball space of (Fix(f ), u).

Theorem
Take a function f on a spherically complete ultrametric space (X, u)
such that for all x, y ∈ X:
1) u(fx, fy) ≤ u(x, y) (f is non-expanding),
2) u(fx, f 2x) < u(x, fx) if x 6= f (x) (f is contracting on orbits).
Then every f -closed ultrametric ball contains a fixed point, and
(Fix(f ), u) is again a spherically complete ultrametric space.
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The Knaster-Tarski FPT for topological spaces

Take a compact topological space X and the associated ball
space (X,B) where B consists of all nonempty closed sets of X.

If f : X→ X is any function, then the set Bf of all closed and
f -closed sets forms the collection of all closed sets of a (possibly
coarser) topology, as arbitrary unions and intersections of
f -closed sets are again f -closed.

Theorem
Take a compact topological space X and a function f : X→ X.
Assume that every closed, f -closed set contains a fixed point or a
smaller closed, f -closed set. Then the topology on the nonempty set
Fix(f ) of fixed points of f having {B∩ Fix(f ) | B ∈ Bf } as its
collection of closed sets is itself compact.
If in addition f is continuous, then Fix(f ) is compact under the
subspace topology.
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Products of ball spaces

Given a collection of ball spaces (Xj,Bj)j∈J,

we define their
product to be (∏j∈J Xj,Bpr), where

Bpr :=

{
∏
j∈J

Bj | for some k ∈ J, Bk ∈ Bk and ∀j 6= k : Bj = Xj

}
,

and their box product to be (∏j∈J Xj,Bbpr), where

Bbpr :=

{
∏
j∈J

Bj | ∀j ∈ J : Bj ∈ Bj

}
.
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The Tychonoff theorem for ball spaces

Theorem
The following assertions are equivalent:
a) the ball spaces (Xj,Bj), j ∈ J, are spherically complete,

b) their box product is spherically complete,
c) their product is spherically complete.
The equivalence of a) and b) also holds for all other properties in the
hierarchy, and the equivalence of a) and c) also holds for Sd

1, Sc
1, S2 ,

S3 , S4 , S5 .

From this theorem one can derive a Tychonoff theorem for
generalized ultrametric spaces.
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The Tychonoff theorem for topological spaces

In which way does Tychonoff’s theorem follow from its
analogue for ball spaces?

The problem in the case of topological
spaces is that the product ball space we have defined, while
containing only closed sets of the product, does not contain all
of them, as it is not necessarily closed under finite unions and
arbitrary intersections. If we close it under these operations, are
its spherical completeness properties maintained?

The answer is yes, as we will now see, so the Tychonoff
theorem can indeed be deduced from its ball spaces analogue.
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Closure under finite unions

Theorem
If (X,B) is an Sc

1 ball space and B′ is the closure of B under finite
unions,

then also (X,B′) is Sc
1 .

In order to prove this theorem, we need a lemma that is
inspired by Alexander’s Subbase Theorem:

Lemma
If S is a maximal centered system of balls in B′ (that is, no subset of
B′ properly containing S is a centered system), then there is a subset
S0 of S which is a centered system in B and has the same intersection
as S .
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Closure under nonempty intersections

Theorem
If (X,B) is an Sc

1 ball space and B′ is the closure of B under arbitrary
nonempty intersections,

then also (X,B′) is Sc
1 .
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Closure under unions and intersections

From the previous two theorems we obtain:

Theorem
Take a ball space (X,B). If B′ is obtained from B by first closing
under finite unions and then under arbitrary nonempty intersections,
then:

a) B′ is closed under finite unions,
b) B′ is intersection closed,
c) if (X,B) is Sc

1, then (X,B′) is an S∗ ball space.
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The topology associated to a ball space

Take B′ to be as in the previous theorem.

If we add X and ∅ to
B′, then the complements of the sets in B′ form a topology.

Theorem
This topology associated to B is compact if and only if (X,B) is an Sc

1
ball space.
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Ball continuous functions

Take two ball spaces (X,B) and (X′,B′)

and a function
f : X→ X′. We will call f ball continuous if the preimage of
every ball in B′ is a ball in B, and ball closed if the image of
every ball in B is a ball in B′.

Theorem
Take two ball spaces (X,B) and (X′,B′), and a function f : X→ X′ .
If f is ball continuous and (X,B) is spherically complete, then so is
(X′,B′). If f is ball closed and finite-to-one, and if (X′,B′) is
spherically complete, then so is (X,B).
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Categories of ball spaces

We define the category of ball spaces

to consist of all ball spaces
as objects and the ball continuous functions between them as
morphisms. With the products as defined above, we have:

Theorem
The category of ball spaces admits products and coproducts.

Theorem
The categories of spherically complete ball spaces, of S2 ball spaces, of
S3 ball spaces, of S4 ball spaces and of S5 ball spaces, all of them with
ball continuous functions as their morphisms, admit products and
coproducts.
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The end

Thank you for your attention — and

stay tuned for further developments!
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