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The Fundamental Inequality

To start with, we will reconsider the definition of “defectless
field”. To this end, we introduce the general form of the
Fundamental Inequality.
Take a valued field (K, v) and a finite extension L|K. Recall that
the set of all extensions of v from K to L is

{ṽσ | σ an embedding of L in K̃ over K} .

Therefore, as L|K is finite, the number g of distinct extensions of
v from K to L is smaller or equal to the extension degree [L : K].
More precisely, g is smaller or equal to the degree of the
maximal separable subextension of L|K. In particular, if L|K is
purely inseparable, then v has a unique extension from K to L.
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The Fundamental Inequality

We will denote the distinct extensions of v from K to L by
v1, . . . , vg . For each i ∈ {1, . . . , g}, ei := (viL : vK) is the
ramification index and fi := [Lvi : Kv] is the inertia degree of
(L|K, vi).

Theorem (Fundamental Inequality)

Assume that n := [L : K] is finite. Then for every i ∈ {1, . . . , g}, ei
and fi are finite, and the following holds:

n ≥
g

∑
i=1

eifi . (1)
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Defectless extensions revisited

We will say that L is defectless over (K, v) if equality holds in
the Fundamental Inequality (1). The following transitivity
holds:

Lemma
Take any valued field (K, v) and finite extensions L|K and N|L. Then
N is defectless over (K, v) if and only if L is defectless over (K, v) and
for every extension vi of v from K to L, N is defectless over (L, vi).
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Defectless fields revisited

An arbitrary valued field (K, v) is called a defectless field if
every finite extension L of K is defectless over (K, v). It is called
a separably defectless field if this holds for every finite
separable extension, and an inseparably defectless field if this
holds for every finite purely inseparable extension.
The following theorem shows that this definition for
“defectless” is compatible with our earlier one.

Theorem

Take a valued field (K, v) and a henselization (Kh, v). Then (K, v) is a
defectless field if and only if (Kh, v) is. The same holds for “separably
defectless” and for “inseparably defectless” in place of “defectless”.
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The Generalized Stability Theorem

In this lecture, we will discuss the following theorem and
sketch parts of its proof.

Theorem

(Generalized Stability Theorem)
Assume that v is an Abhyankar valuation on the function field F|K. If
(K, v) is a defectless field, then (F, v) is a defectless field. The same
holds for “inseparably defectless” in place of “defectless”. If vK is
cofinal in vF, then it also holds for “separably defectless” in place of
“defectless”.

From now on, we will abreviate “Generalized Stability
Theorem” by “GST”.
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The Generalized Stability Theorem

As a consequence of the GST, we find that even if nothing is
assumed about (K, v), defects in finite extensions of (F, v) can
be “cancelled out” by suitable finite extensions of K.

Corollary

Assume that v is an Abhyankar valuation on the function field F|K,
and E|F is a finite extension. Fix an extension of v from F to K̃.F .
Then there is a finite extension L0|K such that for every algebraic
extension L of K containing L0 , L.E is defectless over (L.F, v). If
(K, v) is henselian, then L0|K can be chosen to be purely wild, i.e.,
linearly disjoint from Kr|K.

Here, the compositum L.F of two subfields L and F of a
common field extension (such as F̃ in the present case) is the
smallest subfield of this common extension that contains both L
and F.
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History of the Generalized Stability Theorem

An early forerunner of the GST was proved by H. Grauert and
R. Remmert and was restricted to the case of algebraically
closed complete ground fields of rank 1. A generalization of the
Grauert–Remmert Stability Theorem was given by L. Gruson.
A good presentation of it can be found in the book
Non-Archimedean Analysis of S. Bosch, U. Güntzer and
R. Remmert (§5.3.2, Theorem 1). The proof uses methods of
non-archimedean analysis. Further generalizations are due to
M. Matignon and J. Ohm.
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History of the Generalized Stability Theorem

Ohm arrived at a quite general version of the Stability
Theorem. But like all of its forerunners, it is still restricted to
the case of trdeg(F|K) = trdeg(Fv|Kv) (the case of constant
reduction) and is therefore not sufficient for the applications we
will list below. Ohm deduces his theorem from Proposition 3
on page 215 of the book of Bosch, Güntzer and Remmert (more
precisely, from a generalized version of this proposition which
is proved but not stated in the book).
The name “Stability Theorem” originates from the fact that in
the tradition of non-archimedean analysis, defectless fields are
called “stable fields”.

Franz-Viktor Kuhlmann Defect and Local Uniformization



Method of proof

In contrast, we give a proof of the GST which replaces the
methods from non-archimedean analysis used by the
forerunners by valuation theoretical arguments. Such
arguments seem to be more adequate for a theorem that is of
valuation theoretical nature. First, using ramification theory we
reduce the proof to the study of Galois extensions of degree p of
special henselized function fields F. Then we deduce normal
forms which allow us to read off that the extensions are
defectless.
Our approach has some similarity with Abhyankar’s method of
using ramification theory in order to reduce resolution of
singularities to the study of Galois extensions of degree p, and
his search for suitable normal forms of Artin–Schreier–like
minimal polynomials.
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Application: Elimination of Ramification

The GST is used to provide a solution to our problem of
Elimination of Ramification in the case of Abhyankar
valuations.
Take a function field F|K and an Abhyankar valuation v of F|K
such that (K, v) is a defectless field. Assume that Fv|Kv is a
separable extension and vF/vK is torsion free.
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Application: Elimination of Ramification

Theorem

Under the above assumptions, (F|K, v) admits elimination of
ramification in the following sense: there is a transcendence basis

T = {x1, . . . , xρ, y1, . . . , yτ} (2)

of (F|K, v) such that

vF = vK(T ) = vK⊕Zvx1 ⊕ . . .⊕Zvxρ (3)

and

y1v, . . . , yτv form a separating transcendence basis of Fv|Kv , (4)

and for each such transcendence basis T and every extension of v to
the algebraic closure of F, (F, v) lies in the absolute inertia field of
(K(T ), v). In other words, (F|K, v) is inertially generated.
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Local Uniformization for Abhyankar places

This theorem in turn is a crucial ingredient in the proof of the
following theorem:

Theorem (Knaf&K, 2005)

Take a function field F|K and an Abhyankar place P on F|K. If FP|K
is separable, then (F|K, P) admits Local Uniformization.
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Another application: an embedding theorem

In model theory algebra, a good way to prove results is to base
them on the algebraic structure theory of the algebraic objects
under consideration. For the model theory of valued fields, an
efficient way is to use embedding theorems based on the
structure theory of valued function fields. The Elimination of
Ramification for Abhyankar valuations can be used to prove
the following embedding theorem:
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Another application: an embedding theorem

Theorem
Take a function field F|K and an Abhyankar valuation v of F|K such
that (K, v) is a defectless field. Assume that vF/vK is torsion free and
Fv|Kv is a separable extension. Assume further that (K∗, v) is a
henselian extension of (K, v) and there are embeddings

ιv : vF ↪→ vK∗ fixing the elements of vK

and
ιr : Fv ↪→ K∗v fixing the elements of Kv .

Then these embeddings can be lifted to a valuation preserving
embedding of (F, v) in (K∗, v) which fixes the elements of K.

We will give a quick sketch of the proof.
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Bourbaki helps

We recall the following theorem from the last lecture. Let
(L|K, v) be an extension of valued fields. Take elements
xi, yj ∈ L, i ∈ I, j ∈ J, such that the values vxi , i ∈ I, are
rationally independent over vK, and the residues yjv, j ∈ J, are
algebraically independent over Kv. If we write

f = ∑
k

ck ∏
i∈I

xµk,i
i ∏

j∈J
y

νk,j
j ∈ K[xi, yj | i ∈ I, j ∈ J]

in such a way that for every k 6= ` there is some i such that
µk,i 6= µ`,i or some j such that νk,j 6= ν`,j , then

vf = min
k

v ck ∏
i∈I

xµk,i
i ∏

j∈J
y

νk,j
j = min

k
vck + ∑

i∈I
µk,ivxi . (5)
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Bourbaki helps

In particular,

vK(xi, yj | i ∈ I, j ∈ J) = vK⊕
⊕
i∈I

Zvxi ,

K(xi, yj | i ∈ I, j ∈ J)v = Kv (yjv | j ∈ J) ,

and the valuation v on K(xi, yj | i ∈ I, j ∈ J) is uniquely
determined by its restriction to K, the values vxi and the
residues yjv.
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Sketch of the proof for the embedding theorem

Now assume that v is an Abhyankar valuation on the function
field F|K such that (K, v) is a defectless field. Take a
transcendence basis

T = {x1, . . . , xρ, y1, . . . , yτ}

satisfying conditions (3) and (4) as in the Elimination of
Ramification theorem. Choose elements x∗i ∈ K∗ such that

vx∗i = ιv(vxi) ,

and y∗j ∈ K∗ such that

y∗j v = ιr(yjv) .

Then by the Bourbaki theorem we just reviewed, sending xi to
x∗i and yj to y∗j induces a valuation preserving embedding ι0 of
(K(T ), v) in (K∗, v).
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Sketch of the proof for the embedding theorem

By our choice of T , the finite extension Fv|K(T )v is separable.
By the Theorem of the Primitive Element, we can pick some
ζ ∈ Fv such that Fv = (K(T )v)(ζ). Then we choose a monic
polynomial f with coefficients in K(T ) whose reduction under
v is the minimal polynomial of ζ over K(T )v. Using Hensel’s
Lemma, we find a root z ∈ Fh such that zv = ζ. We take f ∗ to be
the polynomial f with its coefficients replaced by their images
under ι0 . Then f ∗v is the minimal polynomial of ιr(ζ) over the
residue field of ι0(K(T )). As (K∗, v) is assumed to be henselian,
Hensel’s Lemma can be used to find a root z∗ of f ∗ with
z∗v = ιr(ζ).
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Sketch of the proof for the embedding theorem

Now we can extend ι0 to an embedding ι1 of K(T , z) by
sending z to z∗. Since

[K(T , z) : K(T )] = [(K(T )v)(ζ) : K(T )v] ,

the Fundamental Inequality shows that the extension of v from
K(T ) to K(T , z) is unique. This implies that ι1 is valuation
preserving.
By the universal property of the henselization the embedding ι1
of K(T , z) can be extended to an embedding ι of K(T , z)h in the
henselian field (K∗, v).
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Sketch of the proof for the embedding theorem

By our choice of T and the element z, the extension
(Fh|K(T , z)h, v) is immediate. On the other hand, the GST
shows that (K(T , z), v) is a defectless field, and the same holds
for (K(T , z)h, v). Therefore, Fh = K(T , z)h. Now the restriction
of ι to F is the embedding we are looking for.
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Application to the model theory of valued fields

To show how this embedding theorem leads to a model
theoretic result, we present the following Ax–Kochen–Ershov
Principle that is derived from it:

Theorem
Take a henselian defectless field (K, v) and a valued field extension
(L|K, v) without transcendence defect. If vK is existentially closed in
vL (in the language of ordered groups) and Kv is existentially closed
in Lv (in the language of fields), then (K, v) is existentially closed in
(L, v) (in the language of valued fields).

For (K, v) to be existentially closed in (L, v) it suffices that (K, v)
is existentially closed in every finitely generated subextension.
Such subextensions are valued function fields. Our embedding
theorem provides embeddings of them in certain elementary
extensions (K∗, v) of (K, v).
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Proof of the GST: some basics about the defect

Here are some basic facts we use in several instances in the
proof of the GST. Recall that the defect is multiplicative: if
(L|K, v) and (N|L, v) are finite unibranched extensions, then

d(N|K, v) = d(N|L, v) · d(L|K, v) .

Further:

Lemma
If L|K is a finite extension and (K, v) is a defectless field, then also
(L, v) is a defectless field.

This follows from the transitivity of the property “defectless
extension” that we have already mentioned. In order to prove
the first assertion of the GST, it thus suffices to prove it for the
rational function field generated by any transcendence basis of
the function field.
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Another tool: valuation disjoint extensions

We now present a tool that serves in two reduction steps in the
proof of the GST.
Recall that two subextensions L|K and F|K of some “universal”
field extension Ω|K are linearly disjoint if any number of
elements in F that are linearly independent over K remain
linearly independent over L. Passing to a suitable notion of
valuation independence of elements, one analogously defines
the notion of valuation disjoint subextensions (L|K, v) and
(F|K, v) of some fixed extension (Ω|K, v).
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Characterization of valuation disjoint extensions

Lemma

Let (Ω|K, v) be an extension of valued fields and F|K and L|K be
subextensions of Ω|K. Then (F|K, v) and (L|K, v) are valuation
disjoint if and only if
1) vF|vK and vL|vK are disjoint in vΩ, and
2) Fv|Kv and Lv|Kv are linearly disjoint in Ωv.

The first condition means that any number of elements in vF
that lie in distinct cosets modulo vK also lie in distinct cosets
modulo vL.
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Valuation disjoint extensions and the defect

Here is the reason why we consider valuation disjoint
extensions:

Proposition

Take an extension (F|K, v) and a finite unibranched extension
(L|K, v) that are valuation disjoint in (F̃, v). If also (L.F|F, v) is
unibranched, then

d(L.F|F, v) ≤ d(L|K, v) . (6)
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Valuation regular extensions

Recall that an extension F|K is called regular if F|K and K̃|K are
linearly disjoint in F̃|K, or equivalently, if F|K is separable and
K is relatively algebraically closed in F. We say that an
extension (F|K, v) is valuation regular if (F|K, v) and (K̃|K, v)
are valuation disjoint in (F̃|K, v) (this does not depend on the
extension of v from F to F̃), or equivalently, if
1) vF/vK is torsion free, and
2) Fv|Kv is regular.
Every valued field extension of an algebraically closed valued
field is valuation regular.
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An important example

Take a function field F|K with an Abhyankar valuation v. As
before, choose a transcendence basis

T = {x1, . . . , xρ, y1, . . . , yτ}

such that
the values vx1 , . . . , vxρ are rationally independent over vK, and
the residues y1v, . . . , yτv are algebraically independent over Kv.
Then by the Bourbaki theorem,

vK(T ) = vK⊕
⊕

1≤i≤ρ

Zvxi ,

K(T )v = Kv (yjv | 1 ≤ j ≤ τ) .

It follows that vK(T )/vK is torsion free and K(T )v|Kv is
regular. This shows that the extension (K(T )|K, v) is valuation
regular.
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Valuation regular extensions

Proposition

Take a valuation regular extension (F|K, v) and fix an extension of v
from F to F̃. Then the following assertions hold:
1) If (K, v) and (K̃.F, v) are defectless fields, then also (F, v) is a
defectless field.
2) If (K, v) and (K1/p∞

.F, v) are inseparably defectless fields, then
also (F, v) is an inseparably defectless field.

Here K1/p∞
denotes the perfect hull of K.
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Proof of the GST: reduction steps

The proof of the GST involves several reduction steps:
1) Reduction to algebraically closed ground fields.
2) Reduction to transcendence degree 1.
3) Reduction to finite rank.
4) Reduction to rank 1.
5) Reduction to Galois extensions of degree p = char Kv.
We will now sketch each of the reduction steps, as well as some
tools for the proof, and some special cases.
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Reduction to algebraically closed ground fields

For our function field F|K with Abhyankar valuation v, we
choose the transcendence basis T that we have just shown to
generate a valuation regular extension (K(T )|K, v). As (K, v) is
assumed to be a defectless field, part 1) of our theorem on
valuation regular extensions shows that in order to prove the
first assertion of the GST it suffices to show that (K̃(T ), v) is a
defectless field.
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The “inseparably defectless” case

Similarly, part 2) of our theorem on valuation regular
extensions shows that in order to prove that (K(T ), v) is an
inseparably defectess field it suffices to show that (K1/p∞

(T ), v)
is an inseparably defectless field. However, how can we then
conclude that the original function field (F, v) is an inseparably
defectess field? After all, in this case we cannot use the
transitivity as we have done before, since we could only deal
with purely inseparable extensions, while F|K(T ) may not be
purely inseparable.
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The “inseparably defectless” case

Let us discuss this problem right now, so that we can get
inseparable extensions out of the way once and for all. We ask:
if (E, v) is an inseparably defectless field, does the same hold
for every finite extension (F, v)? (We assume that
char E = p > 0 since otherwise everything is trivial.) The
answer is yes, and there is an easy proof if

[E : Ep]

is finite, in which case we say that E has finite p-degree. Recall
that in characteristic p > 0, the function a 7→ ap is a field
homomorphism, called the Frobenius. Therefore, Ep is indeed a
subfield of E.
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The “inseparably defectless” case

The Frobenius also sends the extension E1/p|E onto the
extension E|Ep, and likewise for every i ∈N, the extension
E1/pi+1 |E1/pi

onto the extension E1/pi |E1/pi−1
. Consequently, if

(E|Ep, v) is defectless, then so is every extension
(E1/pi+1 |E1/pi

, v). If E has finite p-degree, then each of these
unibranched extensions is finite. By the multiplicativity of the
defect, we conclude: if (E|Ep, v) is defectless, then also
(E1/pi |E, v) is defecless for every i ∈N; as every purely
inseparable extension of E can be embedded in E1/pi

for large
enough i, this implies that (E, v) is an inseparably defectless
field.
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The “inseparably defectless” case

If finite, then the unibranched extension (E|Ep, v) is defectless if
and only if

[E : Ep] = (vE : pvE)[Ev : (Ev)p] (7)

since vEp = pvE and Epv = (Ev)p. This proves:

Theorem
A valued field (E, v) of characteristic p and finite p-degree is an
inseparably defectless field if and only if it satisfies equation (7).
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The “inseparably defectless” case

If F|E is a finite extension, then [F : Fp] = [E : Ep],
(vF : pvF) = (vE : pvE), and [Fv : (Fv)p] = [Ev : (Ev)p]. This
shows:

Corollary

Take a finite extension (F|E, v) of valued fields of characteristic p > 0.
If (E, v) is an inseparably defectless field of finite p-degree, then so is
(F, v), and vice versa.

Hence in order to prove the “inseparably defectless” case it
suffices to prove that if K is perfect, then (K(T ), v) is an
inseparably defectless field of finite p-degree.
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The “inseparably defectless” case

Since K is perfect and T contains ρ + τ many elements that are
algebraically independent over K,

[K(T ) : K(T )p] = [K(T ) : K(T p)] = pρ+τ .

Hence K(T ) has finite p-degree. Likewise, as vK is p-divisible
and the values vxi are rationally independent modulo vK,

(vK(T ) : pvK(T )) = (vK⊕
⊕

1≤i≤ρ

Zvxi : vK⊕
⊕

1≤i≤ρ

pZvxi) = pρ ,

and as Kv is perfect and the residues yjv are algebraically
independent over Kv,

[K(T )v : (K(T )v)p] = [Kv(y1v, . . . , yτv) : Kv((y1v)p, . . . , (yτv)p)] = pτ.

This shows that (K(T ), v) satisfies equation (7), proving that it
is an inseparably defectless field.
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Reduction to transcendence degree 1

The reduction to transcendence degree 1 proceeds by induction
on the number ρ + τ in T . We are left to deal with two different
cases:
1) a value-transcendental extension (K(t)|K, v) with vt
non-torsion over vK,
2) a residue-transcendental extension (K(t)|K, v) with tv
transcendental over Kv.
In order to show that (K(t), v) is a defectless field, it suffices to
show that (K(t)h, v) is a defectless field.
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Reduction to finite rank

If (K(t)h(a1, . . . , ak)|K(t)h, v) is any finite extension, then we
have to show that it is defectless. To say that the elements
a1, . . . , ak are algebraic over K(t)h, it suffices to say that they are
algebraic over K(t). To do so, we only need finitely many
elements from K(t) as coefficients for the minimal polynomials
of the ai over K(t). These finitely many rational functions from
K(t) in turn need finitely many coefficients from K. These
finitely many elements from K give rise to a finitely generated
extension k0 of the prime field Fp of K. We take k to be the
algebraic closure of k0 (which is contained in the algebraically
closed field K). We obtain that also (k(t)h(a1, . . . , ak)|k(t)h, v) is a
finite extension.
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Reduction to finite rank

The finitely generated extension k0|Fp has finite transcendence
degree, and the same holds for k(t)h|Fp . As v is trivial on Fp (or
has rank at most 1 if p = 0, in which case Fp = Q), it follows
that the rank of (k(t)h, v) must be finite.
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Reduction to finite rank

One can prove that the extensions (k(t)h(a1, . . . , ak)|k(t)h, v) and
(K(t)h|k(t)h, v) are valuation disjoint in
(K(t)h(a1, . . . , ak)|k(t)h, v). Now the proposition on the
behaviour of the defect under valuation disjoint extensions
shows that

d(K(t)h(a1, . . . , ak)|K(t)h, v) ≤ d(k(t)h(a1, . . . , ak)|k(t)h, v) .

Hence if we have already shown that the valued field (k(t)h, v)
of finite rank is a defectless field, then the same follows for
(K(t)h, v).
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