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Two deep open problems

Longstanding open problems in positive characteristic
(their characteristic 0 counterparts were solved in the mid
1960’s by Hironaka and Ax & Kochen):
• Resolution of Singularities and its local form, Local
Uniformization,
• decidability of Laurent Series Fields over finite fields.

Closest approximations to the first problem to date:
Abhyankar, de Jong, Knaf & K, Temkin, Cossart & Piltant.
Closest approximations to the second problem to date: model
theory of tame valued fields (K), and of separably tame valued
fields (K & Pal).
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Affine algebraic varieties

Algebraic geometry considers solutions of systems of
polynomial equations. Take a polynomial ring K[X1, . . . , X`] in
several variables. Given polynomials

f1, . . . , fn ∈ K[X1, . . . , X`] ,

their zero set Z is defined to be the set of all common zeros of
f1, . . . , fn . It is equal to the set of common zeros of all
polynomials in the ideal (f1, . . . , fn) generated by f1, . . . , fn.
If this ideal is prime, then Z is called an (affine) algebraic
variety. We will denote algebraic varieties by V. The quotient

K[V] := K[X1, . . . , X`]/(f1, . . . , fn)

is then an integral domain, called the coordinate ring of V. Its
quotient field is called the function field of V and is denoted by
K(V).
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Affine algebraic varieties

As a prime ideal, (f1, . . . , fn) is a proper ideal and consequently,

K ∩ (f1, . . . , fn) = {0} .

Therefore, the canonical epimorphism

K[X1, . . . , X`]→ K[X1, . . . , X`]/(f1, . . . , fn)

embeds K in K[V]. Identifying K with its image, we can assume
that K is a subfield of K[V].
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The function field of an affine algebraic variety

We may write
K[V] = K[x1, . . . , x`] ,

where xi is the image of Xi under the canonical epimorphism.
Then

K(V) = K(x1, . . . , x`) ,

which is finitely generated over K. Every finitely generated
extension of a field K is called an (algebraic) function field
over K. Every function field over an arbitrary field K is in fact
the function field of a suitable variety defined over K.
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Resolution of Singularities

Arbitrary algebraic varieties may have singularities, and for
various reasons we want to avoid them. That is, we are looking
for a second variety having no singularities. But this new
variety cannot be arbitrary, it should be connected with the
given one in a certain way. What we want is that it is obtained
from the given one by a proper birational morphism. This
implies that both varieties have the same function field.
Finding for every given variety such a second variety without
singularities is the (global) solution to the problem known as
Resolution of Singularities.
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Some history of resolution

For varieties over fields of characteristic 0 it was achieved by
H. Hironaka in 1964. But for varieties over fields of positive
characteristic the problem remains open till the present day.
Only partial results are known:
• S. Abhyankar proved resolution for surfaces, and to some
extent also for dimension 3;
• A. J. de Jong proved resolution by alteration, which means
that one allows a finite extension of the function field;
• V. Cossart and O. Piltant proved resolution without
restrictions for dimension 3.
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Local Uniformization

If we cannot solve our problems globally, we try to solve them
locally. And if we are clever enough, we then may think of
patching the local solutions together to obtain a global solution.
Local Uniformization means eliminating (at least) one
singularity at a time by passing to a new, birationally
equivalent variety.
We are looking for a new variety where a chosen singular point
becomes non-singular. But wait, this was nonsense, because
what is our old, singular point on the new variety? We cannot
talk of the same points of two different varieties, unless we deal
with subvarieties. But passing from varieties to subvarieties or
vice versa will in general not provide the solution we are
looking for.
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Correspondence of points

O. Zariski introduced the use of places on the function field of
the variety in order to trace the point on the new variety which
corresponds to the original singular point.
Let us have a closer look at our notion of “point”. As we
consider just one singular point x0 on V (and are not interested
in other singular points), we can restrict our attention to an
affine neighborhood of x0 . So we may assume from the start
that V is an affine variety. Assume that V is defined over K by
polynomials f1, . . . , fn ∈ K[X1, . . . , X`] as described above.
Naively, by a point of V we then mean an `-tuple (a1, . . . , a`) of
elements in an arbitrary extension field L of K such that

fi(a1, . . . , a`) = 0

for 1 ≤ i ≤ n.
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Correspondence of points

This means that the kernel of the evaluation homomorphism

K[X1, . . . , X`] → L

defined by
Xi 7→ ai

contains the ideal (f1, . . . , fn). Thus it induces a
homomorphism η from the coordinate ring

K[V] = K[X1, . . . , X`]/(f1, . . . , fn)

into L over K (“over K” means that it leaves the elements of K
fixed).
Now that we identify points with homomorphisms on the
coordinate ring, why don’t we try the following. We mentioned
already that the new birationally equivalent variety V′ must
have the same function field as V, that is,

K(V) = K(V′) .
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Places

Why don’t we just extend the homomorphism η to
K(V) = K(V′), then restrict it to K[V′] and require that the
point it thus designates on V′ is non-singular?
The problem is that in general there are elements in K[V] that
are sent to 0 by η, so where should their inverses in K(V) be
sent? Any extension of η to K(V) will have to send them to ∞.
Hence such an extension cannot be a homomorphism, but it
can be a place P. Then we just need to find V′ such that the
valuation ring OP of P contains K[V′] so that the restriction of P
to K[V′] is a homomorphism and thus identifies a point of V′.
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Smooth points

We can forget about the variety V and the homomorphism η
and consider the function field F = K(V) together with a place
P instead. The task of Local Uniformization then is to find a
variety V′ with function field F and coordinate ring K[V′] on
which P singles out a non-singular point. This is essentially a
valuation theoretical problem, except how do we describe the
property of being non-singular?
The solution is to ask for a little bit more. We want the new
point to be smooth, meaning that the Implicit Function
Theorem is satisfied in this point. In the following example, the
point at the origin is not smooth.
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Example: the Neil curve

x

y

y2 = x3

Franz-Viktor Kuhlmann Defect and Local Uniformization



The topology

When most of us first learned about the Implicit Function
Theorem, the topology it used was provided by the usual
ordering of the real numbers. Here, however, we are dealing
with valued fields, most of which do not have an ordering. But
also valuations induce topologies. Note that in our (Krull) style
of writing valuations, two elements a and b are close to each
other if the value v(a− b) is large.

Recall that by O we denote the valuation ring of a given valued
field.
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The Implicit Function Theorem

Take polynomials

f1, . . . , fn ∈ O[X1, . . . , Xm, Y1, . . . , Yn] with m > 0.

Set Z = (X1, . . . , Xm, Y1, . . . , Yn) and

J(Z) :=


∂f1
∂Y1

(Z) . . . ∂f1
∂Yn

(Z)
...

...
∂fn
∂Y1

(Z) . . . ∂fn
∂Yn

(Z)

 .

Assume that f1, . . . , fn admit a common zero

z = (x1, . . . , xm, y1, . . . , yn) ∈ Om+n

and that the determinant of J(z) is nonzero. Then for all (x′1, . . . , x′m)
∈ Om with v(xi − x′i) > 2v det J(z), 1 ≤ i ≤ m, there exists a
unique tuple (y′1, . . . , y′n) ∈ On such that (x′1, . . . , x′m, y′1, . . . , y′n) is
a common zero of f1, . . . , fn and

min
1≤i≤n

v(yi − y′i) ≥ min
1≤i≤m

v(xi − x′i)− v det J(z) .
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Multidimensional Hensel’s Lemma

This is essentially the same as saying that the point satisfies the
assumptions of the Multidimensional Hensel’s Lemma:

Let f = (f1, . . . , fn) be a system of polynomials in the variables
X = (X1, . . . , Xn) and with coefficients in Ov. Consider the Jacobian
matrix

Jf (X) :=
(

∂fi
∂Xj

(X)

)
i,j

.

Assume that there exists a tuple b = (b1, . . . , bn) ∈ O n
v such that

vfi(b) > 0 for 1 ≤ i ≤ n and v det Jf (b) = 0 .

Then there exists a unique tuple a = (a1, . . . , an) ∈ O n
v such that

fi(a) = 0 and that v(ai − bi) > 0 for all i.
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Henselian fields

Both presented “theorems”, like the usual Hensel’s Lemma, are
rather properties of valued fields than theorems. Hence we ask:
which valued fields satisfy them? In fact, every henselian field,
i.e., valued field that satisfies Hensel’s Lemma, also satisfies the
Multidimensional Hensel’s Lemma and the Implicit Function
Theorem.
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Unique solutions

It is in fact the uniqueness that characterizes the property of
being smooth. Every point on the Neil curve, other than the
origin (0, 0), is smooth, even if we take it as a curve in Q×Q

where we do not have a solution of y2 = x3 for every x.

Hence we define a point b to be smooth if it satisfies the
assumption of the Implicit Function Theorem.
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Smooth Local Uniformization

Now we can formulate the task of Smooth Local
Uniformization as follows:
Given a function field F with a place P, does there exist a
variety V′ with coordinate ring K[V′] having quotient field F
and such that P singles out a smooth point? In other words, we
are looking for generators x1, . . . , xm of F, i.e., F = K(x1, . . . , xm),
such that K[x1, . . . , xm] is contained in OP and (x1P, . . . , xmP) is
a smooth point.
Among the generators we can choose a transcendence basis T.
One can show that Local Uniformization for (F, P) implies that
F|K is separably generated, that means that T can be chosen
such that the finite extension F|K(T) is separable. By the
Theorem of the Primitive Element, F|K(T) can then be
generated by a single element a.
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Smooth Local Uniformization

Our problem now is to find a transcendence basis
T = {t1, . . . , tn} ⊂ OP of F|K and an element a ∈ OP algebraic
over K(T) such that F = K(T, a) and the point (t1P, . . . , tnP, aP)
is smooth. Performing the passage from the Implicit Function
Theorem to Hensel’s Lemma (see the lecture notes for the
technical details), we find that this means that a satisfies the
assumptions of the usual Hensel’s Lemma:
denote by v the valuation on F associated with P, and let f be
the minimal polynomial of a over K(T); then vf (a) > 0 (which
is automatic as f (a) = 0) and vf ′(a) = 0.
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Disclaimer

At this point, a word of warning is in place. Local
Uniformization also requires that the new variety V′ is
connected with the one we started with by a proper birational
morphism. This amounts to an extra condition, one may see as
“Local Uniformization for (K(T), P)”, which we will ignore for
now.
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The extension (K(T, a)|K(T))

How do we know that the extension (K(T, a)|K(T), v) satisfies
the condition on a we have just derived?
The henselization of a valued field is the smallest algebraic
extension that is henselian. Does our condition on a mean that a
lies in the henselization of K(T)? The answer is NO. We will
need ramification theory to give the correct answer.
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Extensions of valuations in algebraic field extensions

Take a valued field (K, v) and set p = char Kv if this is positive,
and p = 1 otherwise. We choose an arbitrary extension ṽ of v to
the algebraic closure K̃ of K.
Take an algebraic extension L|K. Then for every σ ∈ Aut (K̃|K),
the map

ṽσ = ṽ ◦ σ : L 3 a 7→ ṽ(σa) ∈ ṽK̃

is a valuation of L which extends v.

Theorem

The set of all extensions of v from K to L is

{ṽσ | σ an embedding of L in K̃ over K} .

(We say that “all extensions of v from K to L are conjugate”.)
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Ramification groups

From now on, we assume that the algebraic extension L|K is
normal. Hence the set of all extensions of v from K to L is given
by {ṽσ | σ ∈ Aut (L|K)}. For simplicity, we denote the
restriction of ṽ to L again by v. The valuation ring of v on L will
be denoted by OL , and its unique maximal ideal byML . We
will now define distinguished subgroups of G := Aut (L|K).
The subgroup

Gd = Gd(L|K, v) := {σ ∈ G | ∀x ∈ OL : vσx ≥ 0}
= {σ ∈ G | σOL ⊆ OL}

is called the decomposition group of (L|K, v). It is easy to show
that σ sends OL into itself if and only if the valuations v and vσ
agree on L. Thus,

Gd = {σ ∈ G | vσ = v on L} .

Franz-Viktor Kuhlmann Defect and Local Uniformization



Ramification groups

Further, the inertia group is defined to be

Gi = Gi(L|K, v) := {σ ∈ G | ∀x ∈ OL : v(σx− x) > 0} ,

and the ramification group is

Gr = Gr(L|K, v) := {σ ∈ G | ∀x ∈ L× : v(σx− x) > vx} .
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Ramification fields

The fixed fields of Gd, Gi and Gr in the maximal separable
extension field Ls of K within L are called decomposition field,
inertia field and ramification field of (L|K, v), respectively. For
simplicity, let us abbreviate them by Z, T and V, respectively.
(These letters refer to the German words “Zerlegungskörper”,
“Trägheitskörper” and “Verzweigungskörper”.)
Remark: In contrast to the classical definition used by other
authors, we take decomposition field, inertia field and
ramification field to be the fixed fields of the respective groups
in the maximal separable subextension. The reason for this will
become clear later.
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Ramification fields

By our definition, V, T and Z are separable-algebraic extensions
of K, and Ls|V, Ls|T, Ls|Z are (not necessarily finite) Galois
extensions. Further,

1 ⊂ Gr ⊂ Gi ⊂ Gd ⊂ G and thus, Ls ⊃ V ⊃ T ⊃ Z ⊃ K .

Theorem

Gi and Gr are normal subgroups of Gd, and Gr is a normal subgroup
of Gi. Therefore, T|Z, V|Z and V|T are (not necessarily finite)
Galois extensions.
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The decomposition field

First, we consider the decomposition field Z. In some sense, it
represents all extensions of v from K to L.

Theorem

a) vσ = vτ on L if and only if στ−1 is trivial on Z.
b) vσ = v on Z if and only if σ is trivial on Z.
c) The extension of v from Z to L is unique.
d) The extension (Z|K, v) is immediate.

Assertions a) and b) are easy consequences of the definition of
Gd. Assertion c) follows from assertion b) by Theorem 1. For
assertion d), there is a simple proof using a trick which is
mentioned in the very useful appendix of a paper by J. Ax.
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The inertia field

Now we turn our attention to the inertia field T. For every
σ ∈ Gd(L|K, v) we have that σOL = OL , and it follows that
σML =ML. Hence, every such σ induces an automorphism σ
of OL/ML = Lv which satisfies σ a = σa. Since σ fixes K, it
follows that σ fixes Kv.

Lemma
Since L|K is normal, the same is true for Lv|Kv. The map

Gd(L|K, v) 3 σ 7→ σ ∈ Aut (Lv|Kv) (1)

is a group homomorphism.
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The inertia field

Theorem

a) The homomorphism (1) is onto and induces an isomorphism

Aut (T|Z) = Gd/Gi ' Aut (Tv|Zv) . (2)

b) For every finite subextension F|Z of T|Z,

[F : Z] = [Fv : Zv] . (3)

c) We have that vT = vZ = vK. Further, Tv is the relative
separable-algebraic closure of Kv in Lv, and therefore,

Aut (Tv|Zv) = Aut (Lv|Kv) . (4)
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p′-division

We will now turn to the ramification field. We need a quick
preparation.
Given any extension ∆ ⊂ ∆′ of abelian groups, the p′-divisible
closure of ∆ in ∆′ is defined to be the subgroup

{α ∈ ∆′ | ∃n ∈N | (p, n) = 1 ∧ nα ∈ ∆}

of all elements in ∆′ whose order modulo ∆ is prime to p.
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The ramification field

Theorem

a) There is an isomorphism

Aut (V|T) = Gi/Gr ' Hom
(
vV/vT , (Tv)×

)
, (5)

where the character group on the right hand side is the full character
group of the abelian group vV/vT. Since this group is abelian, V|T is
an abelian Galois extension.
b) For every finite subextension F|T of V|T,

[F : T] = (vF : vT) . (6)

c) We have that Vv = Tv, and vV is the p′-divisible closure of vK
in vL.
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The ramification field

Theorem

The ramification group Gr is a p-group and therefore, Ls|V is a
p-extension and the degree of every finite subextension of L|V is a
power of p.
Further, vL/vV is a p-group, and the residue field extension Lv|Vv is
purely inseparable.
If char Kv = 0, then V = Ls = L.
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Absolute ramification theory

Absolute ramification theory is ramification theory applied to
the normal extension K̃|K. We fix an extension of v to K̃ and
denote it again by v. We assume that v is non-trivial.
We denote by Ksep the separable-algebraic closure of K. Note
that

vK̃ = vKsep = ṽK ,

where ṽK denotes the divisible hull of vK, and

K̃v = Ksepv = K̃v .

Now we can present the basic facts of absolute ramification
theory in the following picture.
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Absolute ramification theory
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Elimination of Ramification

Ramification is the valuation theoretical expression of the
failure of the Implicit Function Theorem. So we wish to
eliminate ramification in a given valued function field (F|K, v).
However, ramification means more than just the change of the
value groups. Already in classical algebraic number theory one
calls an extension ramified also if the residue field extension is
not separable. Even more general, for us ramification is
everything that happens above the absolute inertia field. Then
Elimination of Ramification means to find a transcendence
basis T such that F lies in the absolute inertia field (also called
strict henselization) of (K(T), v). In other words, the element a
we talked about does not have to lie in K(T)h, but should lie in
K(T)i. We then also say that the extension (F|K, v) is inertially
generated.
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Elimination of Ramification

Hence the task of Elimination of Ramification for a given
valued function field (F|K, v) is to show that it is inertially
generated. Thus we are looking at the structure theory of
valued function fields.
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