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Preliminaries

The set of nonzero elements of R is denoted R∗.

The power product x1 · · · xn is abbreviated as x.

The polynomial ring K [x1, . . . , xn] is abbreviated as K [x].

The rational function field K (x1, . . . , xn) is abbreviated as K (x).

A monomial is a product of powers of variables.
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Ideal Membership in One Variable

Problem: Given f , f1, . . . , fs ∈ K [x ], determine whether

f ∈ I = 〈f1, . . . , fs〉.

Easy solution:

1 Write I = 〈g〉 where g =gcd(f1, . . . , fs).
2 Divide f by g to get quotient q and remainder r .
3 f ∈ I if and only if r = 0.
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Monomial Orders

Definition
A monomial order is a total order on the set of monomials such that

(i) xα ≥ 1;

(ii) xα > xβ ⇒ xαxγ > xβxγ .

Example (Lexicographical Order)

xα > xβ ⇔ the first nonzero coordinate of α− β is positive.

Example (Graded Lex Order)
Compare total degrees and break ties using lexicographic order.

Example: x2y >lex y5, but x2y <grlex y5.

Definition
Given a polynomial f ∈ K [x], the monomial of f that is larger than all of the other
monomials appearing in f is called the leading monomial, which we denote lm(f ).
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Reduction

Consider the following polynomials:

f = x2y + 4xy − 3y2, g = 2x + y + 1.

We perform one step of dividing f by g via long division (with graded lex):
1
2 xy

2x + y + 1 x2y + 4xy − 3y2

x2y + 1
2 xy2 + 1

2 xy

− 1
2 xy2 + 7

2 xy − 3y2

We denote this by

f
g−→ −

1
2

xy2 +
7
2

xy − 3y2.

Definition

Given F = {f1, . . . , fs}, we write f F−→ h whenever there exists a sequence of
reductions of the form

f
fi1−→ h1

fi2−→ h2
fi3−→ · · ·

fij−→ h.
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Gröbner Bases

Question
Does the ideal

〈f1, f2〉 = 〈2x2y − 5xy2 + y , 2xy2 − 5y3〉

contain y2?

Yes!
y2 = y · (2x2y − 5xy2 + y) + (−x) · (2xy2 − 5y3).

Unfortunately,

y2
{f1,f2}
6−→ 0

regardless of the choice of monomial order.

Definition (Gröbner Bases)
Let I be a nonzero ideal in K [x] and let G ⊆ I be a set of nonzero polynomials. Then G
is a Gröbner basis with respect to the monomial order ‘<’ if for all f ∈ K [x],

f ∈ I ⇔ f G−→ 0.

Theorem (Buchberger)
For any monomial order, every nonzero ideal in K [x] has a finite Gröbner basis with
respect to that monomial order.
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Intersections of Surfaces

Where do the following three surfaces intersect?

x2 + y2 + z2 = 4 y2 = z2 − 1 y = xz

A lexicographic Gröbner basis of 〈x2 + y2 + z2 − 4, xz − y, y2 − z2 + 1〉 is

{2z4 − 4z2 − 1, y2 − z2 + 1, x − 2yz3 + 4yz}.
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Valuations

Definition

Given a field extension L | K and a totally ordered abelian group (Γ,+, <), we say that

v : L→ Γ ∪ {∞}

is a K -valuation on L if for all f , g ∈ L, the following hold:

(i) v(f ) =∞ if and only if f = 0;

(ii) v(fg) = v(f ) + v(g);

(iii) v(f + g) ≥ min{v(f ), v(g)};
(iv) If v(f ) = v(g) 6=∞, then ∃!λ ∈ K such that v(f + λg) > v(f ).

Note that condition (iv) means that K is a field of representatives for the residue field
Ov/Mv .
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Valuations from Monomial Orders

Definition
Given a monomial order ’<’ on K [x], define v to be the K -valuation on K (x) such that
for all f ∈ K [x],

v(f ) = −exponent(lm(f )).

We say v comes from a monomial order on K [x].

Example
Using the lexicographic order,

v(x3y + x2y2) = (−3,−1) ∈ (Z≤0)2.

Lemma
Let v be a K -valuation on K (x). If v comes from a monomial order on K [x], then

v(K [x]∗) ∼= (Z≤0)n.

What about the converse?
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Monomial Orders in Suitable Variables

Definition
Given a K -algebra automorphism ϕ : K [x]→ K [x], define v to be the K -valuation on
K (x) such that for all f ∈ K [x],

v(f ) = −exponent(lm(ϕ(f ))).

We say v comes from a monomial order in suitable variables.

Define v(f ) = −exponent(lm(ϕ(f ))) with lexicographic order, where

K [x , y ]
ϕ−→ K [u, v ]

x 7→ u + v
y 7→ u − v .

Then v(K [x , y ]∗) ∼= (Z≤0)2 since

v(x − y) = −exponent(lm(2v)) = (0,−1),
v(x) = −exponent(lm(u + v)) = (−1, 0).

Theorem (M_, Sweedler)
Let v be a K -valuation on K (x). Then v comes from a monomial order in suitable
variables iff v(K [x]∗) ∼= (Z≤0)n.
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Value Monoids and Suitable Valuations

Definition

Recall that v : L→ Γ ∪ {∞} is a K -valuation on L if for all f , g ∈ L, the following hold

(i) v(f ) =∞ if and only if f = 0;

(ii) v(fg) = v(f ) + v(g);

(iii) v(f + g) ≥ min{v(f ), v(g)};
(iv) If v(f ) = v(g) 6=∞, then ∃!λ ∈ K such that v(f + λg) > v(f ).

Definition
We call v(K [x]∗) the value monoid of v with respect to K [x]. We say that the
K -valuation v on K (x) is suitable relative to K [x] if

(v) ∀f ∈ K [x]∗ : v(f ) = 0 iff f ∈ K∗;

(vi) v(K [x]∗) is a reversely well-ordered set.

Open Question
Which monoids are of the form v(K [x]∗) for a K -valuation on K (x) that is suitable
relative to K [x]?
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Generalized Gröbner Bases

Replacing monomial orders with K -valuations on K (x) that are suitable relative to K [x],
one can still do the following:

Divide one polynomial by another with respect to the valuation;

Reduce one polynomial by a finite collection of polynomials with respect to the
valuation.

Definition
Let v be a K -valuation on K (x) that is suitable relative to K [x], and let I be a nonzero
ideal of K [x]. Let G ⊆ I be a nonempty set of nonzero polynomials. Then G is a
Gröbner basis with respect to v if for all f ∈ K [x]∗,

f ∈ I ⇔ f G−→ 0.

Proposition (Sweedler)
Let v be a K -valuation on K (x) that is suitable relative to K [x]. There is a natural
algorithm that will produce a (potentially infinite) Gröbner basis with respect to v.
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Generalized Power Series

Definition
Given a function f : S → M, where M is an additive monoid, the support of f , denoted
Supp(f ), is the subset of the domain consisting of the elements that are not sent to 0.

Definition
The field of Hahn power series, K ((tQ)), is the set of all functions from Q to K with
well-ordered support. Addition is defined pointwise and multiplication is defined via
convolution. It is often useful to think of such functions z : Q→ K as series (in the
variable t , say) of the form

z =
∑
e∈Q

z(e)te.

Example

z = t−
1
2 + t−

1
4 + t−

1
8 + t−

1
16 + · · · .

Squaring z, the support of the resulting series no longer has ordinal type ω:

z2 = t−1 + 2t−
3
4 + 2t−

5
8 + 2t−

9
16 + 2t−

17
32 + · · ·+ t−

1
2 + · · · .
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Transcendental Series – Characteristic Zero

Theorem (Puiseux’s Theorem)

The series z ∈ K ((tQ)) is transcendental over the field of Laurent series K ((t)) if and
only if the set of denominators that appear in the reduced-form exponents of z is
infinite.

Corollary
If the set of denominators that appear in the reduced-form exponents of z is infinite,
then z is transcendental over K (t).

Open Question

How can we decide whether a given series z ∈ K ((tQ)) is algebraic or transcendental
over K (t)?
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Transcendental Series – Positive Characteristic

Example
Consider

z =
∞∑
i=1

t−p−i
= t−1/p + t−1/p2

+ t−1/p3
+ t−1/p4

+ · · · .

By Puiseux’s Theorem, z is transcendental over K (t) in case char K = 0. If char
k = p, then

zp =
( ∞∑

i=1

t−p−i)p
=
∞∑
i=1

t−p−i+1
=
∞∑
i=0

t−p−i
= t + z,

and so z is algebraic over K (t).

Theorem (Kedlaya)
When K has positive characteristic, the algebraic closure of the field of Laurent series
depends on both the support and the coefficients of the series.
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Value Group

Definition
Given a series z ∈ K ((tQ)) that is transcendental over K (t), define
ϕ : K (x , y)→ K ((tQ)) by

x 7→ t−1

y 7→ z =
∞∑
i=1

z(ei )tei .

Using this, we define a valuation vz : K (x , y)→ Q given by

vz (f ) = min(Supp(ϕ(f ))).

Example (z = t−
1
2 + t−

1
4 + t−

1
8 + · · · )

We have
ϕ(y2 − x) = z2 − t−1 = 2t−3/4 + 2t−5/8 + 2t−9/16 + · · ·

and so vz (y2 − x) = −3/4.

Proposition (MacLane, Schilling)
The value group vz (K (x , y)∗) is the additive subgroup of Q generated by
−1, e1, e2, e3, . . . .
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Bounded Growth

For n ≥ 0,
Vn = {f ∈ k [x , y ]∗ | degy (f ) ≤ n}.

Given z = t−1 + t−1/2 + t−1/4 + t−1/8 + · · · , with some work one can show

vz (V0) = Z≤0;

vz (V1) = Z≤0 ∪
(
Z≤0 −

1
2

)
;

vz (V2) = Z≤0 ∪
(
Z≤0 −

1
2

)
∪
(
Z≤0 −

3
4

)
;

vz (V3) = Z≤0 ∪
(
Z≤0 −

1
2

)
∪
(
Z≤0 −

3
4

)
∪
(
Z≤0 −

5
4

)
.

Proposition (M_, Sweedler)
The quotient of monoids vz (Vn)/vz (V0) has cardinality exactly n + 1.
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Exponents and Ramification

Given

z =
∞∑
i=1

z(ei )tei ,

where
ei =

ni

di
, gcd(ni , di ) = 1, ni ≥ 0,

the exponent sequence and ramification sequence of z are

e = (e1, e2, e3, . . . ),

r = (r0, r1, r2, . . . ),

where r0 = 1 and ri = lcm(d1, . . . , di ).

Example (z = t−9/2 + t−9/5 + t−17/10 + t−17/15 + · · · )
We have exponent and ramification sequences given by

e = (−9/2,−9/5,−17/10,−17/15, . . . ),

r = (1, 2, 10, 10, 30, . . . ).
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Reduced Ramification Series

Consider the following series

z = t−5/2 + t−2 + t−5/3 + t−3/4 + t−1/3 + t−1/4 + t−1/5 + · · · ,

which has ramification sequence 1, 2, 2, 6, 12, 12, 12, 60, . . . . If we remove repetitions
from the ramification sequence and then extract the corresponding first terms from the
original series, we obtain

zred = t−5/2 + t−5/3 + t−3/4 + t−1/4 + t−1/5 + · · · .

Proposition (M_)
The value monoids vz (K [x , y ]∗) and vzred (K [x , y ]∗) are identical.

Open Question
Although the value monoids vz (K [x , y ]∗) and vzred (K [x , y ]∗) are identical, the
valuations themselves are different. How can we classify equivalence classes of such
valuations that share the same value monoid?
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Explicit Value Semigroups

We now assume that z has negative support. Define

λ1 = e1,

λi+1 = (ri/ri−1)λi − ei + ei+1.

Theorem (M_)

Suppose that z ∈ K ((tQ)) has negative support such that no term of the ramification
sequence is divisible by char K and that there are no repetitions in the ramification
sequence. Then the value monoid vz (K [x]∗) is the submonoid of Q generated by
{−1, λ1, λ2, λ3, . . . }.

Open Question
For a given valuation, there are efficient algorithms to generate polynomials with a
prescribed image in the value monoid vz (K [x]∗). Surprisingly, the inverse problem is
more challenging. Given a polynomial, how does one efficiently compute its image in
the value monoid vz (K [x]∗)?
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A Pathological Example

Example
Given

z = t−
3
2 +

∞∑
i=2

t1−2−i
= t−

3
2 + t

3
4 + t

7
8 + t

15
16 + · · · ,

the corresponding value monoid vz (K [x , y ]∗) is nonpositive and reversely well ordered
when working over characteristic zero!

Open Question
Can the value monoid vz (K [x]∗) be easily described for examples like those
above where some of the support is positive?

When working over positive characteristic, do there exist examples of valuations
induced by series with partially positive support such that the corresponding value
monoid vz (K [x]∗) is reversely well ordered?

For which series does the induced valuation produce a reversely well-ordered
value monoid vz (K [x]∗)?
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Infinite Gröbner Bases

Example
Suppose char K 6= 2. The ideal 〈x , y〉 does not have a finite Gröbner basis with
respect to the valuation induced by

z = t−
1
2 + t−

1
4 + t−

1
8 + t−

1
16 + . . . .

Open Question
For any given nonzero ideal in a polynomial ring, there exists a finite set of generators
that form a Gröbner basis with respect to all possible monomial orders. Do there exist
any nonzero ideals such that there exists a finite set of generators that form a Gröbner
basis with respect to all valuations?
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An Interesting Gröbner Basis with Respect to a Valuation

Question (Bernd Sturmfels)
Given a Gröbner basis G with respect to a valuation, does it necessarily follow that
there exists a monomial order such that G is a Gröbner basis with respect to the
monomial order?

Example

Let K be a field that is not of characteristic 2. Define f1 = y2 − x and f2 = xy . Then

G = {f1, f2}

is a Gröbner basis for the ideal 〈f1, f2〉 with respect to the valuation induced by

z = t−
1
2 + t−

1
4 + t−

1
8 + t−

1
16 + . . . .

However, G is not a Gröbner basis with respect to any monomial order.
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Examples of Discrete Valuations of Rank 2

Endow Z2 with the lexicographic ordering so that its positive elements are ordered
pairs (a, b) such that either (i) a > 0 or (ii) a = 0 and b > 0.

Let v : K [x , y ]∗ → Z2 be a valuation. The shaded points below are nonpositive.

Question
Can v(K [x , y ]∗) be a reversely well-ordered subset of Z2 without being isomorphic to
(Z≤0)2?
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Generating Sets for Value Monoids

Example

There is a unique valuation v : K (x , y)→ Z2 such that

ν(x − y) = (0,−1),

ν(x) = (−1, 0).

As we have seen before, the value monoid is simply (Z≤0)2. It comes from a monomial
order in suitable variables.

Example

There is a unique valuation v : K (x , y)→ Z2 such that

ν(x) = (−2,−2),

ν(y) = (−3,−3),

ν(y2 + x3) = (−2,−1).

The value monoid vz (K [x , y ]∗) is nonpositive and reversely well ordered. It is minimally
generated by {(−2,−2), (−3,−3), (−2,−1)}.

Open Question
How can we classify value monoids v(K [x , y ]∗) based on the minimum number of
generators?
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A Most Surprising Example

Example

There is a unique valuation v : K (x , y)→ Z2 such that

ν(x) = (−2,−2),

ν(y) = (−3,−3),

ν(xy2 + y + x4) = (−2,−1).

This valuation exhibits interesting behaviors:

The value monoid is v(K [x , y ]∗) is contained in (Z<0)× Z, and hence, is
nonpositive.

However, v(K [x , y ]∗) is not reversely well ordered! In particular, it is not finitely
generated.

Open Question

Do there exist value monoids (contained in Z2) that are not reversely well ordered and
are not finitely-generated?
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