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Definition (minimal pair)

A pair (α, δ) ∈ K̃ × ṽ K̃ is said to be a minimal pair (more precisely, a
(K , v)-minimal pair) if for every β ∈ K̃ we have

ṽ(α− β) ≥ δ ⇒ [K (α) : K ] ≤ [K (β) : K ],

i.e. α has least degree over K in the closed ball

B(α, δ) = {β ∈ K̃ | ṽ(α− β) ≥ δ}.

Example (minimal pair)

Let f (x) ∈ O[x ] be a monic polynomial of degree m ≥ 1 with
(
fv
)
(x)

irreducible over Kv and let α be the root of f (x) in K̃ . Then (α, δ) is a
minimal pair for every positive δ ∈ vK̃ .
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Valuation given by a minimal pair

Let (α, δ) ∈ K̃ × ṽ K̃ be a (K , v)-minimal pair. The mapping w̃αδ defined
on K̃ (x) associated with this minimal pair is given by

w̃αδ

( n∑
i=0

ci (x − α)i
)

= min
i

{
ṽ(ci ) + iδ

}
, ci ∈ K̃ . (1)

It is shown in [1] that w̃αδ is indeed a valuation on K̃ . By wαδ we will
denote the restriction of w̃αδ to K .

Example
For the (K , v)-minimal pair (0, 0) we acquire the well known Gauss
valuation:

w̃αδ

( n∑
i=0

cix
i

)
= min

i

{
ṽ(ci )}.
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Let (α, δ) ∈ K̃ × ṽ K̃ be a (K , v)-minimal pair. The mapping w̃αδ defined
on K̃ (x) associated with this minimal pair is given by

w̃αδ

( n∑
i=0

ci (x − α)i
)

= min
i

{
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Question: what do we know about wαδ? If we have a given valuation w on
K (x), when is it given by a minimal pair?

Theorem A, [2]

The valuation wαδ defined by (1) is a residue transcendental extension of
v to K (x). Conversely, for any residue transcendental extension of v to
K (x) there exists a minimal pair (α, δ) such that w = wαδ.

Theorem B, [2]

If (α, δ), (β, η) are two (K , v)-minimal pairs then wαδ = wβη if and only if
δ = η and ṽ(α′ − β) ≥ δ for some K -conjugate α′ of α.
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Minimal pairs – different approach

Let w be a given extension of v to K (x) and w̃ an extension of w to
K̃ (x). Consider the set

w̃(x − K̃ ) := {w̃(x − a) | a ∈ K̃}.

Theorem 1, [3]

w is a residue transcendental extension if and only if:
1 ṽ K̃ = w̃ K̃ (x),
2 the set w̃(x − K̃ ) is upper bounded in w̃ K̃ (x),
3 w̃ K̃ (x) contains its upper bound.

Let δ be the upper bound of w̃(x − K̃ ). Then there exists α ∈ K̃ such
that δ = w̃(x − α) and thus ([3]) w̃ is a residue transcendental extension
of ṽ defined by (1). The pair (α, δ) is called a pair of definition.
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Definition
A pair of definition (α, δ) is called minimal (or minimal relative to K ) if it
is a minimal pair in the sense of the previous definition.
Let w1,w2 be two residue transcendental extensions of v to K (x). We say
that w2 dominates w1 (written w1 ≤ w2) if w1

(
f (x)

)
≤ w2

(
f (x)

)
for all

polynomials f ∈ K [x ]. If w2 ≥ w1 and there exists f ∈ K [x ] such that
w1(f ) < w2(f ), we say that w2 well dominates w1, which we will denote as
w1 < w2.

Proposition 1, [4]

Let K be algebraically closed and let w1,w2 be two residue transcendental
extensions of v to K (x). Let (αi , δi ) be a pair of definition of wi , i = 1, 2.
The following statements are equivalent:
1 w1 ≤ w2
2 δ1 ≤ δ2 and v(α1 − α2) ≥ δ1.

Moreover, w1 < w2 if and only if δ1 < δ2 and v(α1 − α2) ≥ δ1.
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By an ordered system of residue transcendental extensions of v to K (x)
(for brevity call it an ordered system) we mean a family (wi )i∈I of residue
transcendental extensions of v to K (x), where I is a well ordered set
without a last element and such that wj dominates wi when i < j .

For an ordered system (wi )i∈I and any given f ∈ K [x ] let us define the
mapping

w(f ) := sup
i∈I

wi (f ).

As stated in [4], w is a valuation on K [x ]. It will be called the limit of the
given system (wi )i∈I and denoted by w = supi wi .
For each i ∈ I we denote by (αi , δi ) a pair of definition of wi . Then by
Proposition 1, the set (δi )i∈I is a well ordered subset of vK . Moreover, if
for every i , j ∈ I , i < j , wj well dominates wi , then (αi )i∈I is a
pseudo-convergent sequence on K .
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Theorem 2, [4]

Let K be a field, and let (w̃i )i∈I be an ordered system of residue
transcendental extensions of ṽ to K̃ (x). For every i ∈ I we denote by
(αi , δi ) a fixed minimal pair of definition of w̃i with respect to K . Denote
by wi the restriction of w̃i to K (x) and by vi the restriction of ṽ to K (αi ),
i ∈ I . Then

a) For all i , j ∈ I , j < j one has wi < wj , i.e. (wi )i∈I is an ordered
system of residue transcendental extensions of v to K (x).

b) For all i , j ∈ I , i < j one has Kvi ⊆ Kvj and viK ⊆ vjK .

c) Assume that w̃ = sup w̃i and w̃ is not a residue transcendental
extension of ṽ to K̃ (x). Let w be the restriction of w̃ to K (x). Then
w = supi wi . Moreover, one has

Kw =
⋃
i∈I

Kvi and wK =
⋃
i∈I

viK .
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Theorem 3, [4]

Let w be a given value transcendental extension of v to K (x). Consider a
cofinal well ordered set {δi | i ∈ I} ⊆ vK and some αi such that

w(x − αi ) = δi , i ∈ I .

Let wi = wαiδi . Then

a) wi < wj if i < j , i.e. {wi}i∈I is an ordered system of residue
transcendental extensions of v to K (x). Moreover, for every i < j wj

well dominates wi .

b) wi ≤ w for all i ∈ I and w = supi∈I wi .
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Theorem 4, [4]

Let w be a value transcendental extension of v to K (x). Then there exists
a pair (α, δ) ∈ K × wK (x) such that w(x − α) = δ. Moreover,
wK (x) = vK ⊕ Zδ and w is defined by

w

( n∑
i=0

ai (x − α)i
)

= inf
i

(
v(ai ) + iδ

)
, ai ∈ K . (2)

Conversely, let Γ be an ordered group which contains vK as a subgroup,
and δ ∈ Γ be such that Zδ ∩ vK = 0. Let α ∈ K and let w : K (x)→ Γ be
defined by the equality (2). Then w is a value transcendental extension of
v to K (x). Moreover, wK (x) = vK ⊕ Zδ and Kw = Kv .
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Theorem 5, [4]

Let w be a value transcendental extension of v to K (x), let {δi | i ∈ I} be
a set cofinal in w̃ K̃ (x). Choose αi ∈ K̃ , i ∈ I , such that (αi , δi ) are
minimal pairs. Take wi to be the restriction of wαiδi to K (x) and vi to be
the restriction of ṽ to K (αi ). Then

wi < wj , Kvi ⊆ Kvj and viK ⊆ vjK whenever i < j .

(wi )i∈I is an ordered system of residue transcendental extensions of v
to K (x) and w = supi wi . Moreover, we have

K (x)w =
⋃
i∈I

Kvi , wK (x) =
⋃
i∈I

viK .

H.Ćmiel,P.Szewczyk (University of Szczecin) Pairs of Definition and Minimal Pairs Szczecin, 8.05.2018 11 / 17



Theorem 6, [4]

Let w be a value transcendental extension of v to K (x) and (α, δ) a
minimal pair of definition of w with respect to K . Denote by f the monic
minimal polynomial of α over K and let γ = w(f ). If g ∈ K [x ] is a
polynomial with f -expansion of the form

g =
n∑

i=0

gi f
i , gi ∈ K [x ], deg gi < deg f ,

then
w(g) = inf

(
v
(
gi (α)

)
+ iγ

)
.

Moreover, if v1 is the restriction of ṽ to K (α), then

K (x)w = K (α)v1 and wK (x) = v1K (α)⊕ Zγ.
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Results on minimal pairs

Given an element α ∈ K̃ , are we able to find δ ∈ ṽ K̃ such that (α, δ) is a
minimal pair?

Theorem, [5]

Let (K , v) be henselian.

If α ∈ K̃ is separable over K , then there exists an element δ ∈ ṽ K̃
such that (α, δ) is a minimal pair.

If K is complete with respect to v , then there exists an element
δ ∈ ṽ K̃ such that (α, δ) is a minimal pair.
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Results on minimal pairs

Given some extension Γ of vK and some extension k of Kv , can we
construct an extension w of v to K (x) such that wK (x) = Γ and
K (x)w = k?

The following results can be found in [4] and [6].
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Results on minimal pairs

Assume first that (Γ : vK ) <∞ and [k : Kv ] <∞.

Then

a) there exists a value transcendental extension w such that

K (x)w = k and wK (x) = Γ⊕ Zλ (3)

for λ in some group extension for any given ordering;

b) there exists a residue transcendental extension w such that

wK (x) = Γ and K (x)w = k(t). (4)

Conversely,

a) if w is a value transcendental extension then 3 holds;

b) if w is a residue transcendental extension then 4 holds. In particular,
K (x)w is a rational function field over a finite extension of Kv (Ruled
Residue Theorem, [7]).
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Results on minimal pairs

Assume now that Γ ⊇ vK and k ⊇ Kv are countably generated and at
least one of them is infinite.

Then there exists an extension w such that

wK (x) = Γ and K (x)w = k. (5)

Conversely, if (5) holds, then both extensions are countably generated.
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