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Two deep open problems

Longstanding open problems in positive characteristic

(their characteristic 0 counterparts were solve in the mid 1960’s
by Hironaka and Ax & Kochen):
• resolution of singularities and its local form, local
uniformization,
• decidability of Laurent Series Fields over finite fields.

Closest approximations to the first problem to date:
Abhyankar, de Jong, Knaf & K, Temkin, Cossart & Piltant.
Closest approximations to the second problem to date: model
theory of tame valued fields (K), and of separably tame fields
(K & Pal).
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Valued fields, equal and mixed characteristic

Given a valued field (K, v), we denote by vK its value group,

by
Kv its residue field, and by OK its valuation ring with maximal
idealMK .

We are interested in valued fields (K, v) in the following two
cases:
positive equal characteristic: char K = char Kv = p > 0,
mixed characteristic: char K = 0, char Kv = p > 0.
In the following, p will always be the characteristic of the
residue field.
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Our enemy: the defect

By (L|K, v) we denote a field extension L|K where v is a
valuation on L and K is endowed with the restriction of v.

If (L|K, v) is a finite extension of valued fields and the valuation
v of K admits a unique extension to the field L, then by the
Lemma of Ostrowski,

[L : K] = pν · (vL : vK)[Lv : Kv] ,

where ν ≥ 0 is an integer. (If the characteristic of the residue
fields is 0, the formula remains true if we set p = 1.)
The factor d(L|K, v) = pν is called the defect of the extension
(L|K, v). If pν > 1, then (L|K, v) is called a defect extension. If
pν = 1, then we call (L|K, v) a defectless extension.
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Tame extensions

An algebraic extension (L|K, v) of henselian fields is called
tame

if every finite subextension E|K of L|K satisfies the
following conditions:
(T1) the ramification index (vE : vK) is not divisible by char Kv,
(T2) the residue field extension Ev|Kv is separable,
(T3) (E|K, v) is defectless.
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Tame and separably tame fields

A henselian valued field (K, v) is called a tame field

if every
algebraic extension is tame, and a separably tame field if this
holds for all separable-algebraic extensions.
All tame fields are perfect, with perfect residue field, and their
value group is divisible by the characteristic of the residue field
(if it is > 0). It follows from condition (T3) that tame fields do
not admit any defect extensions.
Remark: the absolute ramification field of a henselian field is its
largest tame extension; hence the field is a tame field if and
only if its absolute ramification field is algebraically closed.
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Properties of tame fields

Tame fields have many good properties. For example:

Theorem (K)

Tame fields (K, v) satisfy model completeness and decidability relative
to the elementary theories of their value groups vK and their residue
fields Kv. In the equal characteristic case, also relative completeness
holds.

(But QE is an unsolved problem for tame fields.)
Similar results hold for separably tame fields (which are very
close to tame fields).
Valued function fields over tame fields have a relatively good
structure theory. This is used to prove the above theorem, and
it also has been applied to the problem of local uniformization
(Knaf & K).
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Beyond tame fields

Can the condition of tameness be relaxed

while preserving
some parts of the structure theory that still could lead to good
model theoretic results? Could we allow some defect? At least
some harmless type of defect?

What will follow now contains no new model theoretic results
(so far). The aim is to build a structure theory that then,
hopefully, can be used by model theorists to push beyond tame
fields.
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A classification of the defect in equal characteristic

Originally a classification of defect extensions was only
introduced in the positive equal characteristic case.

There, a
Galois extension of prime degree was said to have dependent
defect if in a certain way it is dependent on a purely
inseparable defect extension of prime degree. Otherwise, we
spoke of independent defect.
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A classification of the defect, generalized

Recently, we have been able to generalize this definition to the
mixed characteristic case

by a unified definition that works
simultaneously for both cases. Take a Galois defect extension
E = (L|K, v) of prime degree p. Then the set

Σσ :=
{

v
(

σf − f
f

)∣∣∣∣ f ∈ L×
}

is independent of the choice of a generator σ of Gal (L|K), and
we denote it by ΣE . We say that E has independent defect if

ΣE = {α ∈ vK | α > HE}

for some proper convex subgroup HE of vK; otherwise we say
that E has dependent defect. (Note: rank 1 implies HE = {0}.)
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The importance of this classification

There are several results

(Temkin, Cutkosky & Piltant in
conjunction with ElHitti & Ghezzi) which indicate that the
dependent defect is more harmful than the independent defect
for the solution of the above mentioned open problems.
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Perfectoid fields and their shortcomings

In the equal characteristic case, a perfect valued field

(such as
Fp((t))1/p∞

) has no dependent defect extensions. The same
holds if we pass to the completion of our example, which then
is one of those famous perfectoid fields. What about perfectoid
fields in mixed characteristic?
It turns out that perfectoid fields are too special for our
purposes. By definition they are complete, with value group
embeddable in R (then we speak of rank 1). Both conditions are
not first order axiomatizable. It is better to work with deeply
ramified fields in the sense of the book “Almost ring theory” by
Gabber and Ramero.
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Deeply ramified fields

Following Gabber and Ramero,

a valued field (K, v) is deeply
ramified if

ΩOKsep |OK
= 0 , (1)

where OK is the valuation ring of K, OKsep is the valuation ring
of the separable-algebraic closure of K, and ΩB|A denotes the
module of relative differentials when A is a ring and B is an
A-algebra.
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Characterization of rank 1 deeply ramified fields

Theorem (Gabber & Ramero)

Take a valued field (K, v) of rank 1.

In the positive equal characteristic
case, (K, v) is deeply ramified if and only if its completion is perfect.
In the mixed characteristic case, (K, v) is deeply ramified if and only
if the value vp is not the smallest positive value in vK and

OK/pOK 3 x 7→ xp ∈ OK/pOK

is surjective (“the Frobenius on OK is surjective modulo p”).
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Shortcomings of deeply ramified fields

For valued fields of higher rank,

Gabber & Ramero’s
characterization of deeply ramified fields is more complicated
and involves an additional property of the value groups that
makes no sense for our purposes (namely, no archimedean
component is discrete). Therefore, we have introduced the
larger class of generalized deeply ramified fields (gdr fields) by
taking the characterizations of the theorem of Gabber &
Ramero as a definition in arbitrary rank.
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Gdr fields and defect

We denote by (vK)vp the smallest convex subgroup of vK that
contains vp if char K = 0,

and set (vK)vp = vK otherwise.

Theorem (Rzepka & K)

Take a valued field (K, v) with char Kv = p > 0. Then (K, v) is a gdr
field if and only if (vK)vp is p-divisible, Kv is perfect, and every
Galois defect extension of prime degree has independent defect.

We call a valued field an independent defect field if every
Galois defect extension of prime degree has independent
defect.
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Beyond tame fields, more concretely

The important question arises whether structure results on
tame fields

that are important for our open problems can be
generalized to deeply ramified or even gdr fields.
Another possible direction of generalization is offered by the
class of extremal fields —studied in joint work with Durhan
(formerly Azgin), Pop, Anscombe— but this is another story.
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Semitame fields

To answer this question, we may want to stay,

at least initially,
relatively close to the tame fields, meaning that we only relax
our conditions by allowing independent defect extensions. We
call (K, v) a semitame field if it is a gdr field and its value group
is p-divisible (if char Kv = p > 0).
Semitame fields are our best bet when it comes to generalizing
the results we have proved in the past for tame fields.
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Fields with finitely many Artin-Schreier extensions

Chernikov, Kaplan and Simon showed that an infinite field of
positive characteristic that is definable in an NTP2 theory

has
only finitely many Artin-Schreier extensions. The following
result was inspired by discussions at the Münster conference in
2019:

Theorem (K)

A nontrivially valued field of characteristic p > 0 which has only
finitely many Artin-Schreier extensions is dense in its perfect hull.
Consequently, it is a semitame field.
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A hierarchy of fields

Theorem (Rzepka & K)

1) If (K, v) is a nontrivially valued field with char Kv = p > 0,

then
the following logical relations between its properties hold:

tame field⇒ separably tame field⇒ semitame field⇒
deeply ramified field⇒ gdr field⇒ independent defect field.

Note that in positive equal characteristic, semitame, deeply
ramified and gdr fields coincide and are exactly those that are
dense in their perfect hull.
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Good news for model theorists

Theorem (Rzepka & K)

The classes of semitame, deeply ramified and gdr fields

of fixed
characteristic and residue characteristic are first order axiomatizable
in the language of valued fields.
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Algebraic extensions of deeply ramified fields

From Gabber & Ramero’s definition (1) of deeply ramified
fields the following result is easy to deduce:

Theorem (Gabber & Ramero)

Algebraic extensions of deeply ramified fields are again deeply
ramified fields.

From this theorem, the same follows for gdr fields via the
characterization theorem of Gabber & Ramero. However, the
proof of that theorem is quite involved.
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Proof of the extension theorem

In our work we have shown that in order to prove the above
extension theorem

without referring to Gabber & Ramero’s
definition (1) of deeply ramified fields, it suffices to prove that
every Galois defect extension of prime degree of a deeply
ramified field (which can be assumed equal to its absolute
ramification field) is again a deeply ramified field.
Challenge: prove this directly in a purely valuation theoretical
approach by studying the behaviour of valuation rings under
such defect extensions.
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Extensions in the absolute ramification field

Our reduction goes by the following theorem,

for which we
give a constructive proof:

Theorem (Rzepka & K)

If (L, v) is contained in the absolute ramification field of (K, v), then
(K, v) is a gdr field if and only if (L, v) is.

Note that if (K, v) is henselian, then the condition on (L, v) just
means that it is a tame extension of (K, v).
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The second argument in the reduction

For the reduction, we then also use the fact that the absolute
Galois group of an absolute ramification field

of residue
characteristic p > 0 is a p-group, which implies that every finite
extension of this field is a tower of normal extensions of
degree p.
By the way, this argument had already been used by
Abhyankar in his work on resolution of singularities in positive
characteristic.

Franz-Viktor Kuhlmann Deeply ramified fields and their relatives



The second argument in the reduction

For the reduction, we then also use the fact that the absolute
Galois group of an absolute ramification field of residue
characteristic p > 0

is a p-group, which implies that every finite
extension of this field is a tower of normal extensions of
degree p.
By the way, this argument had already been used by
Abhyankar in his work on resolution of singularities in positive
characteristic.

Franz-Viktor Kuhlmann Deeply ramified fields and their relatives



The second argument in the reduction

For the reduction, we then also use the fact that the absolute
Galois group of an absolute ramification field of residue
characteristic p > 0 is a p-group, which implies that

every finite
extension of this field is a tower of normal extensions of
degree p.
By the way, this argument had already been used by
Abhyankar in his work on resolution of singularities in positive
characteristic.

Franz-Viktor Kuhlmann Deeply ramified fields and their relatives



The second argument in the reduction

For the reduction, we then also use the fact that the absolute
Galois group of an absolute ramification field of residue
characteristic p > 0 is a p-group, which implies that every finite
extension of this field is a tower of normal extensions of
degree p.

By the way, this argument had already been used by
Abhyankar in his work on resolution of singularities in positive
characteristic.

Franz-Viktor Kuhlmann Deeply ramified fields and their relatives



The second argument in the reduction

For the reduction, we then also use the fact that the absolute
Galois group of an absolute ramification field of residue
characteristic p > 0 is a p-group, which implies that every finite
extension of this field is a tower of normal extensions of
degree p.
By the way, this argument had already been used by
Abhyankar

in his work on resolution of singularities in positive
characteristic.

Franz-Viktor Kuhlmann Deeply ramified fields and their relatives



The second argument in the reduction

For the reduction, we then also use the fact that the absolute
Galois group of an absolute ramification field of residue
characteristic p > 0 is a p-group, which implies that every finite
extension of this field is a tower of normal extensions of
degree p.
By the way, this argument had already been used by
Abhyankar in his work on resolution of singularities in positive
characteristic.

Franz-Viktor Kuhlmann Deeply ramified fields and their relatives



Independent defect fields

By our earlier theorem, every gdr field is an independent defect
field.

There are many open problems about independent defect
fields. For instance, if (K, v) is an independent defect field, does
the same hold for its absolute ramification field? (The converse
holds.)
Questions of this type are very hard to study when the valued
field under consideration does not have a p-divisible value
group or does not have a perfect residue field.
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Further results and work in progress

In our joint paper we also characterized independent defect of
Galois extensions (L|K, v)

via ramification jumps and
ramification ideals connected with higher ramification groups,
as well as via distances from K of suitably chosen generators of
the extension. Further, we computed the trace of the valuation
idealML of v on L and proved:

Theorem (Rzepka & K)

Take a Galois defect extension (L|K, v) of prime degree. Then (L|K, v)
has independent defect if and only if the trace Tr L|K (ML) is a
valuation ideal on K which is contained inMK .
(Rank 1 implies that it can only be equal toMK .)

Presently ongoing work is aimed at proving that (L|K, v) has
independent defect if and only if ΩOL|OK

= 0.
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Theorem (Rzepka & K)

Take a Galois defect extension (L|K, v) of prime degree. Then (L|K, v)
has independent defect if and only if

the trace Tr L|K (ML) is a
valuation ideal on K which is contained inMK .
(Rank 1 implies that it can only be equal toMK .)

Presently ongoing work is aimed at proving that (L|K, v) has
independent defect if and only if ΩOL|OK

= 0.
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Thank you for your attention!

Preprints and further materials are available at:

The Valuation Theory Home Page
http://math.usask.ca/fvk/Valth.html
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