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On places of algebraic function fields

By F.-V. Kuhlmann at Heidelberg and A. Prestel*) at Konstanz

Introduction and notations

In this paper we study the space of all places of a function field in » variables. We
denote by F/k an (algebraic) function field, i.e. F is a finitely generated extension of k
of transcendence degree n= 1. By a place P of F/k we mean a place of F which is trivial
on k, i.e. the restriction of P to k yields an isomorphism. The image of x € F under P
will be denoted by x P; correspondingly, F P denotes the set of all images of elements of F.
Thus FP consists of the residue field of the valuation v, associated to P, together with oo,
the value which is assigned to x by P, if x has a “pole at P”. Nevertheless, in the following
we will simply call FP the residue field of P. The degree of transcendency of FP over k
is called the dimension of P. It is denoted by dim(P). In defining dim(P) we already
have identified k with its isomorphic image under P. This will be done frequently in the
following sections. The ordered abelian group of values taken by v, will be denoted by
vp(F). The rational rank of P is the dimension of vp(F) ®, Q over Q. It will be denoted
by rr (P). The rational rank should not be confused with the number of non-zero convex
subgroups of v, (F) which is sometimes called the rank of v,(F). In this paper we will con-
sider only non-trivial places P of F/k, i.e. P is never an isomorphism on F. Consequently,
the dimension of P is always at most n—1 and the rational rank is at least 1. Moreover,
k will always have characteristic zero.

The valuation theory used can be found in [2], [5], [7], [19].

For a place P of a function field F/k in n variables, the following inequalities are
well known and easily proved:

(i) 0=dim(P)=<n-1,
(i) 1=rr(P)=n,
(i) 1=dim(P)+rr(P)=<n.

Besides these restrictions, for #>2 almost everything is possible concerning the structure
of the residue field FP and the value group v,(F). In particular, FP need not be finitely
generated, hence need not be a function field over k too (see [19], Ch. VI, § 15). In dealing

*) The results of this paper were presented at the AMS Summer Institut on ‘Ordered fields and real
algebraic geometry’ at Boulder, July 1983.



182 Kuhlmann and Prestel, Places of algebraic function fields

with places of function fields this is a rather strong drawback. In applications like the
determination of certain rings of holomorphy this drawback had to be overcome by the
use of “Zariski’s Local Uniformization” (see e.g. [9], Lemma 5. 5). In this paper we
offer another possibility. The price for that is an application of the Ax-Kochen-Ershov
Theorem on the model completeness of certain classes of henselian fields.

In Section 1 we will state and explain the Ax-Kochen-Ershov Theorem. For the
convenience of the reader a proof of this important theorem is included as an appendix
to this paper.

In Section 2 we will prove that in a very strong sense the places with finitely
generated residue fields and finitely generated value groups form a dense subset of the
space of all places of F/k. To be more precise, we will prove the following:

Let Q be a place of the function field F/k in n variables. To every finite sequence

Xise ooy Xpps Xma1s- - -» Xmss € I there exists a place P of F/k with a finitely generated
residue field (over k) and a finitely generated value group such that!)
x;Q=x,P forall 1Zigm,

vo(x)=vp(x) forall m+1=i<m+s.

Moreover, we can prescribe the dimension and the rational rank of P to be the same as
that of Q. But also certain other prescriptions are possible subject only to the above
mentioned canonical restrictions (i)—(iii) together with

(iv) dim(Q)=<dim(P) and rr(Q)=rr(P).
This is the content of the Main Theorem.

In Section 3 we show that, under certain assumptions, we can obtain modifications
of the Main Theorem with an extended condition (iv). Using these modifications of the
Main Theorem we give some applications. One application will be on rings of holomorphy
like the real holomorphy ring or the p-adic holomorphy ring of some field?). Another
application of a certain modification of the Main Theorem (Theorem 3) is contained in
the second author’s paper [13] where a determination of those real polynomials in
X,,..., X, is given which can be written as a sum of 2m-th powers of rational functions
in X,,..., X, over R.

1. The Ax-Kochen-Ershov Theorem

There are several ways to state the Ax-Kochen-Ershov Theorem. We prefer to state
it in terms of “existentially closed”. For other possibilities we refer the reader to [2], [3],
[8], [10]. Before stating the theorem we have to explain first some notions from model
theory.

In model theory, a substructure 2, of a structure U, is called existentially closed
(e.c.) in U,, if every existential statement which holds in 2, also holds in ;. Such an
existential statement is expressed in the formal language corresponding to U, (including
parameters from 2I,). We will need the notion “existentially closed” only for three types
of structures. These are: fields, ordered abelian groups, and valued fields. In each case
we will explain separately what “existentially closed” means.

1) Here and in the following sections the residue field FP will always be contained in a fixed extension
of the given residue field FQ. Similarly, v,(F) will be contained in some fixed extension of v, (F).

2) For the study of these rings we refer the reader to [4] and [14].
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A field K, is e.c. in K, if for every finite sequence of polynomials
Jiooo o fie K [Xy,. ., X,

we have: whenever f,. . ., f, have a common zero in K,, they also have a common zero
in K. As an example we let K, be algebraically closed. Then K| is e.c. in every extension
field K,. This is just “Hilbert’s Nullstellensatz”. Another example is provided if K, is
real closed and K, is formally real. Then it follows from the Artin-Lang Homomorphism
Theorem that K| is e.c. in K.

An ordered abelian group I' is e.c. in I, if for all sequences of linear forms
Lo bl L eZ[Xy,. .., X,]

and sequences y;,..., ¥,, ¥i,- - ., s € ['; we have: whenever there are x,,.. ., x,, € I', such
that

(x)=y and [(x)>y; (1=isr 15j29),

then there are x,,..., x,, € I'y with the same properties. As an example, let I'; be divis-
ible and I', arbitrary. Then I'; is e.c. in I',. Another example is obtained if I'; is archi-
medean and dense. It then follows that I'; is e.c. in I, if I',/I'; is torsion free. (This fact
was communicated to us by V. Weispfenning.)

Finally we consider valued fields. Let the valuation be given by a valuation ring 0.
Then, a valued field (K;, O,) is e.c. in the valued field extension®) (K,, 0,) if for all
sequences of polynomials f,,. .., f, &, .-, & Py,- .., h € K[Xy,..., X,,] we have: when-
ever there exist x,,..., x,, € K, such that for all 1 Si<r, 1<j<s, 1S/

(%) fi(x)=0, g(x) el h(x)¢C,.
then there exist x,,.. ., x,, € K, having the same properties. Examples are provided by the

Theorem (Ax-Kochen-Ershov). Let (K, O,) be a henselian valued field and (K,, 0,)
a valued field extension of (K., 0;). We denote the corresponding value groups and residue
fields by T',, T, and K,, K, resp. If K, is e.c. in K,, the characteristic of K, is zero, and
Iy ise.c.inT, then (K|, 0,) is e.c. in (K, 0,).

In case K, is a function field over K, the fact that (K, 0,) is e.c. in (K,, 0,) can be
equivalently expressed by saying that every affine model of K, has K|-rational points,
lying dense in the valuation topology of the affine space. A proof of the Ax-Kochen-
Ershov Theorem is included as an appendix.

Let us remark that, in no case of the above explained examples, the existential
statements made are the most general. However, they suffice in order to test the property
of being e.c. The existential statement (for valued fields) which is used in the next section
can be easily transformed into one of the above type (%) by introducing new variables.
For example, the fact that the non-zero elements x, and x, have the same value can be
expressed by saying that

=1, xy,=1, xy,€0,, x,y,€0,

for some y,, y, € K,. Note that the usual formal language for fields does not include
inverses x~!, it only includes addition, multiplication and subtraction.

3) We say that (X,, 0,) extends (K;, 0,) if K, is a subfield of K; and 0, =K, N 0,.
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2. The main theorem

In this section we will state and prove the main theorem of this paper. Before doing
so let us introduce one more notation. Let I be an ordered abelian group. Any direct
product of the type

of I' with a finite number of copiés of Z is called a discrete lexicographic extension of I,
if this product is ordered lexicographically.

Main theorem. Let F/k be a function field in n variables with chark=0. Let Q be a
place of Flk and xy,. .., X, Xppi1s- - -» Xmss € F. Then there exists a place P of Flk with a
finitely generated value group and a finitely generated residue field (over k) such that

x;Q=x;P forall 1<i<m,

vo(x)=vp(x;) forall m+1=is<m+s.
Moreover, if r, and d, are natural numbers satisfying
dim(Q)£d, <n—1, m(Q)<r, sn—d,
then P may be chosen to satisfy in addition:

(1) dim(P)=d, and FP is a subfield of a purely transcendental extension of FQ,
finitely generated over k,

(2) rr(P)=r, and vp(F) is a finitely generated subgroup of a discrete lexicographic
extension of vy(F).

Proof. Let (L, Q) be the henselization of (F, Q), i.e. L is the henselian closure of F
with respect to the valuation v, on F. Since the extension of v, to L is immediate, we
use the same letter for the extension of the place Q from F to L. Let d=dim(Q). We
choose u,,. . ., u, € F such that the residue classes of these elements form a transcendence
basis of FQ over k. Let r=rr(Q). We then choose z,,..., z, € F such that their values
under vg are independent over Z. By [5], Ch. VI, § 10. 3, Theorem 1, u,,. .., u,, z,,. . ., 2,
are algebraically independent over k. Finally we let K’ be the relative algebraic closure
of k(uy,...,uy 2,,...,2,) in L and denote by Q' the restriction of Q to K'. We now
check that (K’, Q) is a henselian field such that

K'Q'=LQ and vy (K)=vy(L).
We first see that (K’, Q') is henselian. Using char LQ =0 we find next that K'Q'=LQ.
Finally, using the fact that any 1-unit of (L, Q) is a g-th power in L for every prime

g€ N, we find v, (K') = vQ(L).“) Hence, by the Ax-Kochen-Ershov Theorem, (K', Q") is
existentially closed in (L, Q). This fact will be used next.

4) For more details see Step 1 of the Appendix and the proof of Theorem 2 in Section 3.
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Let K'F=K'(t,,...,t,,y) where n"=n—(d+r) and ¢,,...,t, are algebraically
independent over K’. Furthermore, let fe K'[T;,. .., T,, Y] be irreducible and monic in
Y such that f(t, y)=0. We choose x,.. ., x,,,, in K’ such that
x;Q=x;,Q0 forall 1Zi<m,

Vo(x))=vg(x;) forall m+1<is<m+s.
The originally given elements x; will be represented as

gi(ta y) .
[ = 1<5i
X; X0 (15ism+ys),
where g; and A; are polynomials over K'. Since (K’, Q') is e.c. in (L, Q), we can find
elements t;,...,,,y in K’ such that

. 0
@ f(t,y)=0 and EJ; (t', y') *0,

(i) h{t)£0 (1<i<m+s),

(i) 5—%;?)—')(2”;(2 (A <ism),

i) v (g,f‘(tﬁ)>= 0o() (m+1Sism+s).

Indeed, the elements t and y from L satisfy (i) to (iv) resp. Hence the formula®) claiming
the existence of such elements holds in (L, Q) and thus must also hold in (K’, Q).

Now we let K; be the subfield of K’ which is generated over £ by

— Uy ey Uy Zyye ey 2y,
’ ! ’ ’ ’
— Xise e or Xmags Loe o os bys Vs

— the coefficients of f, g; and h; (1 Si<m +35).

Clearly, K, is a finite algebraic extension of k(u,,. .., u,, z,. . ., z,). Thus, we find from
[5], Ch. VI, § 10. 3, Corollary 1, that v, (K)) is a finitely generated subgroup of vy (F) of
rational rank r and that K, Q is a subfield of FQ of dimension d, finitely generated over k.
Let us denote by P, the restriction of Q to K.

At this point we may forget about the field L and its place Q. Starting from (X, P,)
we will construct some henselian extension (K, P) of (X,, P,) which will contain an
isomorphic copy of F. The construction of (K, P) will be in such a way that the restriction
of P to the embedded copy of F will satisfy the assertions of the theorem.

%) As already indicated in Section 1, it is easy to formalize (i) to (iv) in the language of valued fields
using a unary predicate for the valuation ring corresponding to Q.
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First we adjoin d, —d elements, algebraically independent over K, and extend P,
such that the value group does not change and the residue field extends purely transcen-
dental of degree d, — d. This can be done by an iterated application of [5], Ch. VI, § 10. 1,
Proposition 2. The result of this step is denoted by (K,, P,).

Next we adjoin r; —r elements, algebraically independent over K,, and extend P,
such that the residue field does not change and the value group extends to

2@ @LDvp(K)OZD - DL,

a discrete lexicographic extension of vp, (K;)=1vp, (K,) by r; —r copies of Z. The position
of vp, (K;) can be chosen arbitrarily. This extension exists by an iterated application of
[5], Ch. VI, § 10. 1, Proposition 1. The result of this step is denoted by (K3, P;).

Finally we adjoin n— (d, +r,) elements, algebraically independent over K,, and let
vp, be an immediate extension to this field. This is possible since the completion

— ~

(K, P;) of the valued field (Kj;, P;) carties an immediate extension P, of P and has an
infinite transcendence degree over the function field K,;°). The result of this step is
denoted by (K,, P,).

The henselian field (K, P) mentioned above now is the henselian closure of
(K,, P,). It remains to show that F can be embedded into K over k. Then P induces a
place on F which will satisfy the assertions of the theorem. Actually, we find an
embedding of K F over K| into K as follows.

We choose elements ¢f,. . ., t¥ € K, algebraically independent over K|, so close to
t,...,t, that by the Implicit Function Theorem (which holds in any henselian field,
cf. [15], Theorem 7. 4) we can find y* € K satisfying f(t*, y*) =0 and being so close to )’
that, in addition, (ii), (iii), and (iv) hold for t*, y* instead of t’, y’. Since t', y' satisfy
(it)—(iv) and these conditions define an open set in the valuation topology, such elements
tf,..., ¥, y* can be found in K. The fact that ¢¥,..., ¢ can be even chosen to be
algebraically independent over K, follows from the choice of the transcendence degree
of K over K, (which is n'=(d, —d) + (r, — r) + n— (d, +r,)), and the easily proved observa-
tion that, for any intermediate field K; = K* ¢ K which is relatively algebraically closed
in K, the elements of K\ K* lie dense in K. Applying this observation inductively yields
the result.

Now 7, t¥ (1 £i<n’) and y — y* defines an embedding of K, F into K. Let us
identify K, F with its image in K. By the construction we see that K,(t*, y*) is a finite
algebraic extension of F, having a purely transcendental extension of K; P, of degree
d, —d as its residue field and a discrete lexicographic extension of vp (K;) by r; —r copies
of Z as its value group. Thus FP and v, (F) satisfy the condition (1) and (2) of the theorem.

%) Since vp, (K3) is finitely generated, P, contains an isomorphic copy of the field k ((X)) of formal Laurent
series which has infinite transcendence degree over k.
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Lastly, we must check the conditions on x,..., x,,.,. After identification of K, F with
its image, we have

gi(t*, y*)
ST
Now the result follows from (iii) and (iv) for t*, y* together with x; P=x{Q=x;Q for
1<i<m and v,,(x)—vQ(x)-—uQ(x)form+1<z<m+\s g.e.d.

Remark. If in the Main Theorem we have n>d+r, then we actually obtain the
existence of infinitely many places P of F/k satisfying the asserted conditions. Indeed,
let us first fix a sequence (¢{");., in K, such that all r{” are so close to ¢; that we can find

y¥ in the henselian closure of (K;, P,) such that (9, ¢},... t., yY satisfy (i)—(iv)
instead of ¢,.. ., ¢,, y', and such that for all je N

j+1 ’ j ’
vp, (10— 1)) > vp, (17— 17).

Next we choose 17 b, * yU” as in the proof of the Main Theorem, corresponding
to tY, 15,..., t, y”’ such that in addition,

Up, (1" — 1) > Up, (1" —1).
It then follows that
vp, (0" — 1)) = vp, (1" — 17).

Thus the embeddings of K, F corresponding to different choices of j induce different
(equivalence classes of) places P on K, F. Since K, F is a finite algebraic extension of F,
we still get infinitely many (equivalence classes of) places P on F satisfying the assertions
of the Main Theorem.

3. Modifications and applications

In the preceding section we have been concerned with the problem of approximating
a given place Q of the function field F/k as close as possible by some other place P
having a finitely generated value group and a finitely generated residue field. The
approximation becomes better the more x;’s retain their residue classes or their values.
In applications, however, the number of x;’s is very often fixed (e.g. there is just one x).
In those cases we can put more conditions on the structure of the value group or on the
residue field. In particular, one would be interested in the value group to be Z or the
residue field to be k. Actually, it is possible to generalize the Main Theorem such as to
cover all these cases. We rather prefer to discuss some interesting special cases. From
this discussion the reader can see how to formulate a global generalization.

The procedure for obtaining generalizations will be always the same. In the con-
struction of the place P in the Main Theorem we make the following modification (using
the notation of the Main Theorem and its proof):

We choose ,,. .., u, in F such that their residue classes form (over k) a transcen-
dence base of the field generated by the residue classes of x,,.. ., x,,. Thus for example,
if all x,,..., x,, have their residue classes already lying in k, then the set uy,...,u, is
empty. Next we choose z,,. . ., z, € F such that the values of these elements form (over Z)
a maximal independent subset of the group generated by the values of x,,,,..., X, 44
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In case all elements x,,,,,..., X, have value zero (or in case s=0), we let r'=1 and
choose z, € F such that v,(z;) 0. Now the main point of the modification is the re-
placement of the henselian closure of (F, Q) by a suitable algebraic extension (L, Q) of
the henselian closure. The choice of the henselian extension (L, Q) of (F, Q) is such that
for the relative algebraic closure K’ of k(u,,. .., uy, z,,...,z,) in L we have

(a) K'Qise.c.in LQ,
(b) vp(K')ise.c.invy(L).

Clearly, the choice of L depends on the situation we are interested in. After having
made such a choice, we conclude from the Ax-Kochen-Ershov Theorem that (K’, Q') is
e.c. in (L, Q) where Q' is the restriction of Q to K'. Following the proof of the Main
Theorem we now end up with a modified version where the conditions on d, =dim(P)
and r, =rr(P) are replaced by

d<d sn—-1, rsr,=sn—d,

and, in the properties (1) and (2), the residue field FQ is replaced by K;Q and the value
group vy (F) is replaced by vy(K;). Thus, particular properties of FP and vp(F) are
reflected through K'Q and v, (K’) which depend on the choice of L. (Recall that K, is a
certain subfield of K'.) As in the Main Theorem we may even obtain infinitely many
places P satisfying these conditions in case we know that n>d’' +r'".

We will now consider three different choices of L and, at the same time, give
three applications of our method.

In the first case we choose L to be the algebraic closure of the function field F.
Then K’ is also algebraically closed. Hence K'Q is algebraically closed and v,y(K') is
divisible. Thus (as we explained in Section 1) the above conditions (a) and (b) are
satisfied. Applying this situation leads us to the following strengthening of a well known
theorem (cf. [18], Part. I, § 4).%)

Theorem 1. Let A be an affine domain over k and p a prime ideal of dimension d’ in A.
Then there exist places P of Quot (A4)/k which contain A and are centered at p such that

(1) the residue field of P is finitely generated over k of dimension d,,
(2) the value group of P is the r,-fold product 7 ® --- ® Z, ordered lexicographically,
where d, and r, may be chosen freely, subject only to
d<d =n—1 and 1=r, =n—d,
with n being the Krull dimension of A.

Proof. By Chevalley’s Place Existence Theorem we extend the canonical homo-
morphism 4 — A/p to some place Q of Quot(A4)/k into the algebraic closure of A/p.
Let x,,..., X, be generators of A. Thus, in the above explained modification of the
Main Theorem, we may take d'=dim(Q)=dimp and r'=1. The place P obtained by
this modification satisfies the conditions (1) and (2) of Theorem 1. Note that, in the
above construction, v, (K;) is generated by one element, hence is isomorphic to Z.

q.ed.

) Actually, we treat here only the case of char k =0. However, char k =p can be treated similarly using
A. Robinson’s result on the model completeness of the theory of algebraically closed fields with a fixed valuation
ring.
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In the second application we consider a class # of field extensions of k. We
assume that 4" is closed under subfields and purely transcendental extensions. Moreover,
we assume that & is e.c. in k; for every k, € 2#". Examples of such classes are

— the class of all extensions of an algebraically closed field k,
— the class of all formally real fields, extending a real closed field k&,

— the class of all formally p-adic fields of a fixed p-rank, extending a p-adically
closed field k of the same p-rank (cf. [14]),

— the class of all extensions k, of a field k in which k is e.c.,
— the class of all totally real extensions of a maximal PRC-field k (see [12]),
fffff the class of all totally real and regular extensions of a PRC-field k (see [11]).

A place P of a function field F/k in n variables will be called a # -place if FPe A .
We define the '-holomorphy ring of FJk to be

H('f’ F) = ﬂ (OP
where the intersection runs over all ) -places P and @, denotes the valuation ring of P.

Theorem 2. Let A" and H(A', F) be as introduced above. Then, for every 0 <d, <n—1,
H(XA,F)= () 0Op.

dim (P)=d;
vp(F)=2

The intersection is taken over A -places only. Moreover, we may restrict the intersection

to A -places P such that FP is a finitely generated subfield of a purely transcendental
extension of k.

Proof. Clearly, it suffices to prove that, if for some # -place Q and some non-zero
x € F we have xQ =0, we can find some .#-place P, admitted for the above intersection,
such that xP=0. We will obtain such a place in two steps. In the first step we deal
with the residue field, in the second step we deal with the value group.

By an application of the Main Theorem, we may already assume that the ¢ -place Q
has a finitely generated residue field FQ. By the assumption on ', k is e.c. in FQ.
By the lemma below, the function field FQ/k admits a rational place P. Thus the composi-
tion of Q with P yields a rational place of F/k sending x to 0. Hence we may assume
right from the beginning that Q is rational, i.e. FQ =k.

Now, let Q be a place of F/k such that FQ =k and xQ =0. In the above explained
modification of the Main Theorem, we let m=0, s=1 and x,,,, =x. Hence d'=0 and
r'=1. We choose L such that LQ =FQ and vy (L) is divisible. In particular, LQ=K"Q,
which yields condition (a). Moreover, using LQ = K'Q, we will show that v,5(L)/vo(K') is
torsion free. Indeed, let y € vy(L) such that gy e vg(K’) for some prime ge N. Let be L
have value y and a € K’ have value gy. Then b%a™" is a unit in L. Since LQ = K'Q, there
is some ee K’ such that b?-a 'Q=eQ. Hence b?-a '-e ! is a 1-unit in L. Since
char k=0, every 1-unit of the henselian field (L, Q) is a ¢-th power in L. Thus a-e is a
g-th power in L, and hence in K'. Consequently, y belongs to v, (K'). From vy (L)/vg(K")
being torsion free we see that vy(K’) is divisible too. Thus condition (b) also holds.
Therefore, we can find a place P satisfying (1) and (2) of the modified version such that
xP=0. Hence we may have v,(F)=Z, dim(P)=d,, and FP being a subfield of a
purely transcendental extension of K'Q=k. q.e.d.

91 Journal fiir Mathematik. Band 353
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For the convenience of the reader we add the following well known

Lemma. Let K/k be a function field such that k is existentially closed in K. Then
K/k admits a rational place.

Proof. Let K=k(xy,..., x;,y) where x,,...,x,€ K are algebraically independent
over k and fe k[x,..., x,;, Y] is the irreducible polynomial of y over k(x,. .., x,). Since
X1,. .., Xy, y satisfy

0
0 9=0 and L (x )+

in K, we infer from k being e.c. in K that there are q,. . ., a;, b € k satisfying

f(a,b)=0 and —aj:(a, b)+0.
oY
We consider the field L =k ((X,)) --- ((X,)) of iterated Laurent series. The iterated composi-
tion of the canonical places corresponding to the variables X; yields a place P of L
such that LP=k and vp(L)=2Z x --- xZ, d-times. Moreover, (L, P) is a henselian valued
field. Since X; +a,,. .., X, + a, are algebraically independent over k, the map x;+— X, +a;
yields an embedding of k(x,,..., x;) into L. Since the polynomial

fXi+ay,. .., X;+a,7Y)

has b as a simple zero in the residue field of (L, P), it also has a zero in L. Thus K embeds
into L. Therefore P induces a rational place on K/k. qg.ed.

In the proof of Theorem 2 we have used the assumption that k is e.c. in every
k, € A ". In case k fails to do so (i.e. o is just closed under subfields and purely transcen-
dental extensions), we can still conclude that

(3% %) HX, F)= () Op

PeDiv

where Div denotes the class of J'-places of codimension 1, i.e. dim(P)=n—1. This
follows from the second part of the above proof, arranging it such that LQ=K'Q=FQ.
However, we can no longer guarantee that FP is a subfield of a purely transcendental
extension of k.

For the class " of formally real extensions of k, (% %) was proved by E. Becker
in [4]. For k being real closed this was first proved by H. Schiilting in [16]. In view of
Schiilting’s result in [17], it should be pointed out that, in Theorem 2 for n>2, a finite
number of places may be always omitted in the intersection yielding H(X, F). Indeed,
in the last part of the proof of Theorem 2 we apply the modified version to the
case d'=0 and r'=1. Hence r'+d’'<n and thus we obtain infinitely many places P of
the desired form.

For the class " of formally real extensions of a real closed field k, C. Andradas
proved a theorem similar to Theorem 1 above ([1] Theorem 4. 6). It also results from
our more general approach.

In the third application we will again consider the situation where xQ =0 for some
non-zero element x € F. This time however, we do not care about the residue field. We
rather like to preserve as much information about the value vy (x) as possible.
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Theorem 3. Let Q be a place of F|k and let x € F be non-zero. For every fixed prime
g € N, there exists a place P of Flk with vp(F)=2Z and FP being a subfield of FQ, finitely
generated over k, such that for every integer l: if | is prime to q and does not divide
vo(x) in vy(F), then I does also not divide vp(x).

Proof. We let m=dim(Q), x, =uy,..., X,=u,, s=1 and x,,,, =x. In the above
modification of the Main Theorem we choose L such that LQ=FQ and vy(L) is the
g-divisible hull of vy (F). Thus K'Q=LQ and vQ(L)/vé(K') is torsionfree (cf. the proof
of Theorem 2). In particular, v, (K’) is archimedean and densely ordered. Since vy(L)/vg(K")
is torsionfree, we conclude that vy(K") is e.c. in vy(L)®). Applying now the modified
version to d;, =dim Q and r, =1, we obtain a place P of F/k such that FP is a subfield
of FQ, finitely generated over k, and vp(F)=2Z. Clearly, if / divides vp(x) in Z, it also
divides vy (x) =vp(x) in vy (L). Since g is prime to /, this divisibility remains true in vQ(Fg.

q.ed.

Using the same arguments as in the proof of Theorem 2, one can generalize
Theorem 3 similarly. If, for example, £ is e.c. in FQ, we may have in addition that
FP=k. This is used in [13].

Appendix

We will now give a proof of the Ax-Kochen-Ershov Theorem stated in Section 1.
Using two well known facts from general model theory, we will first reduce the theorem
to a specific assertion on embeddings of function fields into saturated fields. These
general facts from model theory will be used without explanation. For more informa-
tion the reader is refered to [6]. After having obtained the reduction, the rest of the
proof — which actually is the main part — is algebraic in nature, using only twice the
very definition of saturatedness.

By the Existence Theorem on elementary saturated extensions (cf. [6], Lemma 5. 1. 4)
we let (K*, 0*) be a |K,|*-saturated extension of (K, (,). Since this extension is
elementary, (K*, 0*) is a henselian valued field too. Moreover, the value group I'* is an
elementary and |K,|*-saturated extension of I';. Since I'; is e.c. in I',, we can embed
I, into I'* over I'y ([5], Lemma 5. 2.1). By the same argument we find that the residue
field K, can be embedded into the residue field K* of (K*, 0*) over K,. We identify I',
and K, with their images resp. Thus we have obtained the following situation:

(K*, 0%)
(K2, 02)

(Ky, 0y)
where (K;, 0;) and (K*, 0*) are henselian fields satisfying:
(i) (K*, 0%)is |K,|" -saturated,
(ii) K, cK,c<K* and K, is algebraically closed in K,,

(i) I'yeT,<T*, and I,/T is torsionfree.

8) See Section 1



192 Kuhlmann and Prestel, Places of algebraic function fields
Claim. Under these conditions, (K,, ©,) embeds into (K*, O¥).

Once we have proved this claim, we are done. Indeed, in the above construction,
(K*, 0*) is an elementary extension of (Kj, ;). Thus, an existential statement which
holds in (K, 0,) clearly must hold in (K, 0,). Note that, for the proof of the claim.
we do not require that (K*, 0*) elementarily extends (K;, 0,).

Proof. The proof of the claim proceeds in three steps. Let us first assume w.l.o.g.
that (K, 0,) is also henselian.

Step 1. In this step we extends the embedding of (K, @,) into (K*, 0*) (which is
the identity) to a subfield of (K,, 0,) which has residue field K,. Assume that (K, 0) is
a maximal subfield of (K,, 0,) having value group I'=TI;, such that (K, ¢) can be
embedded into (K*, 0*). We identify (K, 0) with its image. If K& K,, we let xe K,\K
and consider two cases, both leading to a contradiction to the maximality of (K, 0).

Case 1. X is algebraic over K. Let fe ®[X] be monic such that f is the minimal
polynomial of ¥ over K. Then f is irreducible over K. By Hensel’s Lemma it has zeros
x € K, and x* € K* both having residue class x. Now the assignment x +— x* defines an
embedding of K(x) into K* which is value-preserving. Therefore (K, () would not be
maximal.

Case 2. x is transcendental over K. Let x € K, and x* € K* be preimages of X resp.
Clearly, both are transcendental over K. Thus K(x) is isomorphic to K(x*) via x > x*.
This isomorphism is value-preserving, since there is a unique valuation on K(x) and
K(x*) resp., extending @ and assigning the residue class x to x and x* resp. (cf. [5],
Ch. VI, §10. 1, Proposition 2). Also in this case, (K, ¢) would not be maximal.

Step 2. In this step we extend the above embedding further to a subfield of
(K3, 0,) which has value group I',. Let now (K, ¢) be a maximal subfield of (K, ¢,) which
embeds into (K*, 0*) such that K=K, and I,/ is torsionfree. (As above, I' denotes
the value group of (K, 0).) Such a subfield exists by Zorn’s Lemma. We identify (K, 0)
with its image. Assume that I',\I" contains an element . By the assumption on I, we
have I' n Zy={0}. Let x € K, have value y. Assigning y to x defines a unique extension
of @ to the rational function field K(x) (cf. [5], Ch. VI, § 10.1, Proposition 1). From
K(x) we now pass to an algebraic extension K’ inside K, such that I',/I"’ is torsionfree
where I'" denotes the value group corresponding to 0’ =, n K'. This can be done in the
following manner. If some 6 € I',\(I" + Zy) satisfies g6 € I+ Zy for some prime g€ N,
we choose y € K, having value § and a € K(x) having value ¢d. Then »?-a~! is a unit
in 0,. Since K, = K(x) we find a unit e in K(x) such that y?-a~!-e~! is a 1-unit in 0,.
Since char K, =0, every 1-unit of @, is a g-th power in K,. Thus ae is a g-th power in
K,, say ae=2z? for some z € K,. Thus the value group of K(x, z) contains 4. Transfinite
repetitions of this procedure (or simply an application of Zorn’s Lemma) yield an
algebraic extension K’ of K(x) of the desired nature. It remains to find an embedding
of (K, 0') into (K*, O*).

At this place we use the fact that (K*, 0*) is |K,|*-saturated. Because of this
assumption it suffices to find an embedding into (K*, O*) for every subfield of (X', ©"),
finitely generated over K. It then follows that (K’, 0’) admits an embedding into (K*, 0*).
Therefore we may assume that (K', ¢’) itself is a finitely generated extension of K.
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From the maximality condition on (KX, 0) it follows that (K, O) is henselian. Since
K=K, and I,/T is torsionfree, it follows from char K =0 that K is relatively algebraically
closed in K,. Thus K'=K or K’ is a finitely generated extension of K of transcendence
degree 1. In the second case, I'’/I" must be isomorphic to Z, since it is torsionfree. Thus
I"'=TI+yZ with I n yZ = {0} for some y € I'". We choose y € K’ with value y. Then the
value group of the transcendental extension K(y) of K is I''=1I+yZ. The valuation on
K(p) is uniquely determined as an extension of ¢ by the assignment y - y (see above).
Thus, if we choose y* € K* having also value y, clearly y > y* defines a value-preserving
isomorphism of K(y) and K(y*). Since (K’, ¢") is an immediate extension of K(y), the
uniqueness of the henselian closure (together with char K'=0) yields an embedding of
(K', 0") into (K*, 0*). Thus (K, ©) would not be maximal with K, =K and I',/T" being
torsionfree, unless I',=1T.

Step 3. Let finally (K, 0) be a maximal subfield of (K,, ©,) such that K, =K and
I'y=T, and (K, 0) embeds into (K*, 0*). We identify (K, 0) with its image. Clearly, (K, 0)
is henselian. Using again char K =0, we see that K is relatively algebraically closed in K.
Thus, each x e K,N\K would be transcendental over K. We show that the existence of
such an element x would lead to a contradiction, thus proving that K, =K. This then
finishes the proof of the claim.

Let x € K,\ K. We first prove the existence of some x* € K* satisfying
v(x—a)=v*(x*—a) forall aek.

Here v and v* denote the valuations corresponding to @, and O* resp. Since I, =T,
we can find some b, € K such that v(x —a)=wv(b,). Hence x* would solve the system

v*(x*—a)=0v*@®, forall aek.

This system is easily expressed by a set of formulas over (K*, 0*), having cardinality
<|K,|. Thus, since (K*, O0*) is |K,|*-saturated, it suffices to solve every finite subsystem
of the above system. Let

(%) x*—a)=v¥(b) (1Zism)
be such a finite subsystem. We then consider the corresponding equations
v(x—a)=v(b) (1<i<m),
satisfied by our fixed element x e K,\K. Let a€ {a,,...,a,} have maximal value

x—a)___o and K, =K, we

v(x —a) =v(b) among the values v(x —a;) (1 £i<m). Since v

can find c e K such that v (x— a_ c) >0. Therefore we have

v(x—(a+bo)>v(b)=v(x—a).
Hence putting y=a+bc we see that
v(x—y)>v(x—a)Zv(x—a,).
Thus we have
v(y—a)=v((x—y)— (x—a))=v(x—a;)=0v(b).

Since y € K< K*, we have found a solution of (%) by taking x*=y.
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Now let x* € K* such that v*(x*—a)=uv(x—a) for all a e K. We observe first that
x* is transcendental over K. Thus x > x* defines an isomorphism of K(x) and K(x*)
as fields. We will show that this isomorphism is value-preserving. In fact, we prove by
induction on deg f that
o(f(x))=0v*(f(x*))
for all polynomials fe K[x].

The case degf=1 has just been proved. Assume we already proved this equation
for degf=n—1. Now let degf=n. By the induction hypothesis, we may assume that
f is irreducible. We consider the field F= K[x]/(f) which is isomorphic to

V=K+Kx+--+Kx"1,

viewed as a K-linear space. The restriction of the valuation v to the subset ¥ of K[x]
obviously induces a map (denoted by the same letter)

v:F—>T v {0},

satisfying all properties of a valuation on F, except perhaps the multiplicative law. Since
n=degf=[F:K]>1 and K is a henselian field with char K=0, either this multiplica-
tive law must fail or the residue field of F with respect to v must be a proper extension
of K. The second possibility cannot occur. Thus there must exist polynomials
g, he K[x] of degree <n such that

v(r) +v(g)+v(h)

where r is the unique polynomial of degree <n such that g-h=f-s+r for some
s € K[x]. From the above inequality we find

v(f)= —v(s) +min (v(g) + v(h), v(r)).

All polynomials on the RHS have degree <n. Thus by the induction hypothesis we
conclude that v(f(x))=v*(f(x*)). q.e.d.
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