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Abstract. Using the ramification theory of tame and Kaplansky
fields, we show that maximal Kaplansky fields contain maximal
immediate extensions of each of their subfields. Likewise, alge-
braically maximal Kaplansky fields contain maximal immediate
algebraic extensions of each of their subfields. This study is in-
spired by problems that appear in henselian valued fields of rank
higher than 1 when a Hensel root of a polynomial is approximated
by the elements generated by a (transfinite) Newton algorithm.
The main result of this article has been applied in the theory of
separated (also called vector space defectless) extensions of valued
fields.

1. Introduction

For real functions, the Newton Algorithm is a nice tool to approxi-
mate their zeros. An analogue works in valued fields, such as the fields
of p-adic numbers. Take a complete discretely valued field K with val-
uation ring O and a polynomial f in one variable with coefficients in
O. If b ∈ O satisfies vf(b) > 2vf ′(b), then set x0 := b and

xi+1 := xi −
f(xi)

f ′(xi)

for i ≥ 0. It can easily be shown, using the Taylor expansion of f ,
that this sequence is a Cauchy sequence, and if a limit exists, then it
is a root of f . This fact can be used to prove Hensel’s Lemma in the
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complete fields of p-adic numbers, which states the existence of p-adic
roots of suitable polynomials.

Hensel’s Lemma also holds in other valued fields (such as power
series fields with arbitrary ordered abelian groups of exponents), which
can be much larger than the fields of p-adic numbers. Still, it can
be proved using the Newton algorithm, but if the value group of the
field is not archimedean ordered (i.e., if it is not an ordered subgroup
of R), then the algorithm may not deliver the root after the first ω
many iterations, and transfinite induction is needed. For those who
do not like the technicalities of transfinite induction, S. Prieß-Crampe
presented in 1990 an elegant alternative (see [11]). The setting of the
Newton algorithm gives rise to a contracting function

Φ(x) := x − f(x)

f ′(x)

defined on a suitable subset of the field, whose unique fixed point, if
it exists, is a root of the polynomial. The existence is guaranteed if
f satisfies the assumptions of Hensel’s Lemma and the valued field
from which its coefficients are taken is spherically complete (which
is a property shared by all power series fields). While it is not the
original definition, it suffices here to say that a valued field is spherically
complete if and only if every pseudo Cauchy sequence in the sense of
[4] has a (pseudo) limit.

The members of the sequence obtained from the Newton algorithm
are approximations to a root of f . If the value group of the field in
which we are working is not archimedean ordered, then the problem
can appear that the sequence is not Cauchy, but only a pseudo Cauchy
sequence. The limits of pseudo Cauchy sequences which are not Cauchy
are not uniquely determined. In a recent paper [12], Prieß-Crampe
considers the question whether this situation can be repaired, for a
given polynomial f , by passing to a suitable subfield of K in which the
sequence becomes Cauchy and has a limit. She proves that this can
indeed be done when K is a spherically complete Kaplansky field. Let
us provide the necessary definitions and background.

We will work with (Krull) valuations v and write them in the classical
additive way, that is, the value group of v on a field K, denoted by vK,
is an additively written ordered abelian group, and the ultrametric
triangle law reads as v(a + b) ≥ min{va, vb}. We denote by Kv the
residue field of v on K, by va the value of an element a ∈ K, and by
av its residue.

A polynomial f over a field of characteristic p > 0 is called additive
if f(a + b) = f(a) + f(b) for all elements a, b in any extension of the
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field. This holds if and only if f is of the form
∑

0≤i≤n ciX
pi . Following

Kaplansky, we call a polynomial g a p-polynomial if g = f + c where
f is an additive polynomial and c is a constant.

A valued field (K, v) is called a Kaplansky field if charKv = 0 or
if it satisfies Kaplansky’s hypothesis A: for charKv = p > 0,

(A1) every p-polynomial with coefficients in Kv has a zero in Kv,

(A2) vK is p-divisible.

Prieß-Crampe proves her main result in [12] by a direct application
of this formulation of hypothesis A. While this proof is not without
interest, a more modern approach can lead to more insight, as we wish
to show in the present paper. A lot of important work has been done
over time by several authors in order to better understand Kaplansky’s
hypothesis A, e.g. by G. Whaples in [14], by F. Delon in her thesis, and
in the paper [10]. The final touch to this development was given by
Kaplansky himself, in cooperation with D. Leep (see [5, Section 9]). We
will use the following characterization. By Theorem 1 of [14] as well as
the other cited sources, hypothesis A is equivalent to the conjunction
of the following three conditions, where p denotes the characteristic of
the residue field:

(K1) if p > 0, then the value group is p-divisible,

(K2) the residue field is perfect,

(K3) the residue field admits no finite separable extension of degree
divisible by p.

A valued field is henselian if it satisfies Hensel’s Lemma, or equi-
valently, admits a unique extension of its valuation to its algebraic
closure. Note that every algebraic extension of a henselian field is
again henselian, with respect to the unique extension of the valuation.
A henselization of a valued field (K, v) is an algebraic extension which
is henselian and minimal in the sense that it can be embedded over K
in every other henselian extension field of (K, v). Henselizations exist
for every valued field (K, v), in fact, every henselian extension field of
(K, v) contains a henselization of (K, v). Henselizations are unique up
to valuation preserving isomorphism over K. Therefore, we will speak
of “the henselization of (K, v)” and denote it by (Kh, v).

An extension (L|K, v) of valued fields is called immediate if the
canonical embeddings of vK in vL and of Kv in Lv are onto, or in
other words, value group and residue field remain unchanged under the
extension. A valued field is called maximal if it does not admit any
nontrivial immediate extensions; by [4, Theorem 4], this holds if and
only if it is spherically complete. A valued field is called algebraically
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maximal if it does not admit any nontrivial immediate algebraic ex-
tension. Since henselizations are immediate algebraic extensions, every
algebraically maximal field is henselian.

The notion of “purely wild extension” (an algebraic extension of a
henselian field that is linearly disjoint from all tame extensions) was
introduced in [10]. We will give the precise definitions for both types
of extensions in the Preliminaries Section.

The following is our main theorem:

Theorem 1.1. Take a valued field extension (L|K, v), with (L, v) an
algebraically maximal Kaplansky field. Then L contains a maximal
immediate algebraic extension of (K, v), as well as a maximal purely
wild extension of the henselization of (K, v) inside of (L, v).

If in addition (L, v) is maximal, then it also contains a maximal
immediate extension of (K, v).

This theorem is used to prove Theorem 4.9 in [1], which states:

Assume that (K, v) is a Kaplansky field and that (L, v) is an alge-
braic extension of (K, v). If L|K is linearly disjoint from every im-
mediate extension M |K (in every common field extension), then the
extension (L|K, v) is vector space defectless, i.e., every finitely gener-
ated K-vector subspace of L admits a basis b1, . . . , bn such that for any
choice of ci ∈ K,

v
n∑
i=1

cibi = min
1≤i≤n

v(cibi) .

Modulo the fact that a valued field is maximal if and only if it is
spherically complete, the last assertion of Theorem 1.1 is proved in
[12, Theorem 3.5]. As already indicated, we present a different proof,
which will be based on the ramification theory of Kaplansky fields and
tame fields. A crucial tool in this proof is the following analogue of
Lemma 3.7 of [9], which deals with the case of tame fields. Interestingly,
in the case of algebraically maximal Kaplansky fields we do not need
the assumption of that lemma that the residue field extension Lv|Kv be
algebraic. Note that this assumption also guarantees that vK is pure
in vL, but without it, this cannot even be achieved when charKv = 0
(see [6, Example 3.9]).

Proposition 1.2. Take an algebraically maximal Kaplansky field (L, v)
and let K be a relatively algebraically closed subfield of L. Then also
(K, v) is an algebraically maximal Kaplansky field, with its residue field
is relatively algebraically closed in that of L.
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These results are a nice complement to the theory of tame fields
as developed in [9]. The proofs of the above results will be given in
Section 3, along with some more facts about algebraically maximal
Kaplansky fields.

2. Preliminaries

We start with the following well known fact:

Lemma 2.1. If (L, v) is henselian and K a relatively algebraically
closed subfield of L, then also (K, v) is henselian.

Proof. Assume that f is a polynomial with coefficients in the valuation
ring of (K, v) which satisfies the conditions of Hensel’s Lemma. Since
the valuation ring of (K, v) is contained in that of (L, v) and (L, v)
is henselian, f admits a root a in L which satisfies the assertions of
Hensel’s Lemma. Being a root of f , a is algebraic over K and since K
is relatively algebraically closed in L, we have that a ∈ K. �

Take a finite extension (L|K, v) of valued fields. The Lemma of
Ostrowski says that whenever the extension of v from K to L is
unique, then

(1) [L : K] = pν · (vL : vK) · [Lv : Kv] with ν ≥ 0 ,

where p is the characteristic exponent of Lv, that is, p = charLv if
this is positive, and p = 1 otherwise. For the proof, see [13, Théorème
2, p. 236]) or [15, Corollary to Theorem 25, p. 78]). If pν = 1, then
we say that the extension (L|K, v) is defectless. Note that (L|K, v) is
always defectless if charKv = 0. We call a henselian field a defectless
field if all of its finite extensions are defectless. Each valued field of
residue characteristic 0 is a defectless field. The Lemma of Ostrowski
shows that every henselian defectless field is algebraically maximal;
however, the converse does not hold (see [7, Theorem 3.26]).

An algebraic extension (L|K, v) of henselian fields is called tame if
every finite subextension E|K of L|K satisfies the following conditions:

(TE1) the ramification index (vE : vK) is not divisible by charKv,

(TE2) the residue field extension Ev|Kv is separable,

(TE3) the extension (E|K, v) is defectless.

A tame valued field (in short, tame field) is a henselian field
for which all algebraic extensions are tame. From the definition of a
tame extension it follows that (K, v) is a tame field if and only if it
is a defectless field satisfying conditions (K1) and (K2). Indeed, it is
an easy observation that every extension of a defectless field (K, v)
satisfying conditions (K1) and (K2) must be tame and so (K, v) must
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be a tame field. The converse can be derived from the arguments in
the second part of the proof of Proposition 3.1 below.

By (K1) and (K2), the perfect hull of a tame field is an immediate
extension, and by (TE3), this extension must be trivial. This shows
that every tame field is perfect.

If charKv = 0, then conditions (TE1) and (TE2) are void, and every
finite extension of (K, v) is defectless. Hence every algebraic extension
of a henselian field of residue characteristic 0 is a tame extension, and
every henselian field of residue characteristic 0 is a tame field.

While “algebraically maximal” does in general not imply “defectless”
as we have remarked above, Theorem 3.2 of [9] shows that a valued field
is tame if and only if it is algebraically maximal and satisfies conditions
(K1) and (K2). Together with the facts about tame fields that we have
mentioned above, this implies:

Lemma 2.2. Every algebraically maximal valued field satisfying con-
ditions (K1) and (K2), and in particular every algebraically maximal
Kaplansky field, is a tame field and hence a perfect and defectless field.

The converse of this lemma does not hold: as noted above, an alge-
braically maximal field that satisfies conditions (K1) and (K2) (such
as the power series field Fp((Q)) ) is a tame field, but its residue field
may have finite separable extensions of degree divisible by p.

Take a valued field (K, v), fix an extension of v to the separable-
algebraic closure Ksep of K and call it again v. The fixed field of the
closed subgroup

Gr := {σ ∈ Gal (Ksep|K) | v(σa− a) > va for all a ∈ OKsep \ {0}}
of Gal(Ksep|K) (cf. [2, Corollary (20.6)]) is called the absolute ram-
ification field of (K, v). For the following fact, see [2, (20.15 b)].

Lemma 2.3. Take a henselian field (K, v) and denote by Z the absolute
ramification field of (K, v). If (K ′, v) is an extension of (K, v) inside
of Z, then Z is also the absolute ramification field of (K ′, v).

The next result follows from [2, Theorem (22.7)] (see also [10, Propo-
sition 4.1]).

Proposition 2.4. The absolute ramification field Z of a henselian field
(K, v) is the maximal tame extension of (K, v), that is, every tame
extension of (K, v) lies in Z. Hence (K, v) is tame if and only if Z is
algebraically closed.

An algebraic extension of a henselian field is called purely wild if
it is linearly disjoint from the absolute ramification field and thus from
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every tame extension. If (K, v) is tame, then it does not admit any
nontrivial purely wild extension. In [10] it was shown that maximal
purely wild extensions are field complements to the absolute ramifica-
tion field. In the case of Kaplansky fields, they are at the same time
maximal immediate algebraic extensions, and they are unique up to
isomorphism. See the cited paper for details.

Lemma 2.5. Every immediate algebraic extension of a henselian field
is purely wild.

Proof. By [9, Lemma 2.6], every immediate algebraic extension of a
henselian field is linearly disjoint from every tame extension, as every
finite subextension of the latter is defectless. �

Finally, we will need the following results about the absolute ramifi-
cation field.

Lemma 2.6. Take an algebraic extension (L|K, v) of henselian fields.
Denote by Z the absolute ramification field of (K, v). Then (Z ∩ L, v)
is a tame extension of (K, v) maximal with respect to being contained
in L, and (L, v) is a purely wild extension of (Z ∩ L, v).

Proof. Write Z0 := Z ∩L. By Proposition 2.4, (Z0, v) is a tame exten-
sion of (K, v). Assume that (E, v) is a tame extension of (K, v) inside
of (L, v). Applying Proposition 2.4 shows that E lies in Z and hence
in Z ∩ L = Z0 . This proves that (Z0, v) is a tame extension of (K, v)
maximal with respect to being contained in L.

Now we wish to prove that (L|Z0, v) is a purely wild extension.
Lemma 2.3 shows that Z is also the absolute ramification field of
(Z0, v). Hence it suffices to show that L|Z0 is linearly disjoint from
Z|Z0. Since Z0 = Z ∩ L, this follows from the fact that according to
[3, Theorem 5.3.3 (2)], Z|Z0 is a Galois extension. �

3. Results on algebraically maximal Kaplansky fields

We start with the following characterization of algebraically maximal
Kaplansky fields:

Proposition 3.1. A valued field (K, v) is an algebraically maximal
Kaplansky field if and only if it is henselian and does not admit any
finite extension of degree divisible by charKv.

Proof. If charKv = 0, then the assertion is trivial since in this case,
(K, v) is an algebraically maximal Kaplansky field if and only if it is
henselian, and 0 does not divide the degree of any finite extension.
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Now we consider the case of charKv = p > 0. Assume first that
(K, v) is an algebraically maximal Kaplansky field. Then in particular,
it is henselian. By Lemma 2.2, it is a defectless field, that is, every
finite extension (K ′|K, v) satisfies

[K ′ : K] = (vK ′ : vK) · [K ′v : Kv] .

Since (K, v) satisfies (K1), (vK ′ : vK) is not divisible by p. Because of
(K2) and (K3), the same holds for [K ′v : Kv]. Hence also [K ′ : K] is
not divisible by p.

Now assume that (K, v) is henselian and does not admit any finite
extension of degree divisible by p. Pick any finite extension (K ′|K, v).
By the Lemma of Ostrowski,

[K ′ : K] = pν · (vK ′ : vK) · [K ′v : Kv]

with ν ≥ 0. Since [K ′ : K] is not divisible by p, it follows that ν = 0.
This implies that (K, v) is a defectless field and thus also an alge-
braically maximal field. Further, if there was an element α ∈ vK not
divisible by p, then adjoining to K the p-th root of any element of K
having value α would generate an extension of K of degree p. This
shows that vK must be p-divisible, i.e., (K, v) satisfies (K1). Finally, if
there was a finite extension of Kv with a degree divisible by p, then it
could be lifted to an extension of K of the same degree, which should
not exist. This shows that Kv does not admit any finite extension of
degree divisible by p, so (K, v) satisfies (K2) and (K3). �

Proof of Proposition 1.2. Since (L, v) is algebraically maximal, it
is henselian, and by Lemma 2.1, also (K, v) is henselian. Hence if
charKv = 0, then Proposition 3.1 proves the first assertion.

Let us now assume that charKv = p > 0. Since L is perfect by
Lemma 2.2, the same holds for its relatively algebraically closed sub-
field K. Take any finite extension K ′|K. Since K is perfect and rel-
atively algebraically closed in L, K ′|K is linearly disjoint from L|K.
Therefore, [K ′ : K] = [L.K ′ : L], which according to Proposition 3.1
is not divisible by p. Using Proposition 3.1 again, we conclude that
(K, v) is also an algebraically maximal Kaplansky field.

By what we have shown so far, K is perfect, hence so is Kv. Sup-
pose that Kv is not relatively algebraically closed in Lv. Then there
exists some ā ∈ Lv \Kv separable-algebraic over Kv. Lift its minimal
polynomial f̄ over Kv up to a polynomial f over K of the same degree.
Since ā is a simple root of f̄ , Hensel’s Lemma yields the existence of
a root a ∈ L of f with av = ā. Then a is algebraic over, but not in
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K, which contradicts our assumption that K is relatively algebraically
closed in L. Hence Kv is relatively algebraically closed in Lv. �

Proposition 3.2. Take an algebraically maximal Kaplansky field (L, v)
and a henselian subfield K such that L|K is algebraic. Denote the
absolute ramification field of (K, v) by Z and set Z0 := Z ∩ L. Then
the following assertions hold:

a) (Z0, v) is a tame extension of (K, v) maximal with respect to being
contained in L,
b) (L, v) is a maximal purely wild extension of (Z0, v),
c) (K3) also holds for (Z0, v).

Proof. The assertions are trivial if charKv = 0, in which case Z is
algebraically closed, Z0 = L, and there are no nontrivial purely wild
extensions; so let us assume that charKv = p > 0.

It follows from Lemma 2.6 that (Z0, v) is a tame extension of (K, v)
maximal with respect to being contained in L, and that (L|Z0, v) is
purely wild. In fact, (L, v) is a maximal purely wild extension of (Z0, v)
since by Lemma 2.2 it is a tame field. Since (L|Z0, v) is purely wild,
the extension of the respective residue fields is purely inseparable. As
L satisfies (K3), the same is consequently true for Z0 . �

Proposition 3.3. Take an algebraically maximal Kaplansky field (L, v)
and a subfield K such that L|K is algebraic. Then (L, v) contains:

a) a maximal immediate algebraic extension of (K, v),
b) a henselization (Kh, v) of (K, v) and a maximal purely wild exten-
sion of (Kh, v).

Proof. The algebraically maximal field (L, v) is henselian, hence it con-
tains a henselization Kh of (K, v), and this is an immediate algebraic
extension of (K, v). If charKv = 0, then it is the maximal immediate
algebraic extension of (K, v) and the assertions of our proposition are
trivial. Therefore, let us assume that charKv = p > 0; we may also
assume that (K, v) itself is henselian.

For the proof of part a), we take (K ′, v) to be an immediate extension
of (K, v), maximal with respect to being contained in L. Then (K ′, v)
is henselian since it is an algebraic extension of the henselian field
(K, v). We set Z0 := Z ∩ L, where Z is the absolute ramification field
of (K ′, v). Suppose that (K ′, v) is not algebraically maximal. Then
there exists a nontrivial immediate algebraic extension (K ′(a)|K ′, v);
let f be the minimal polynomial of a over K ′. By Lemma 2.5 the
extension is purely wild, that is, it is linearly disjoint from the tame
extensions Z|K ′ and Z0|K ′. It follows that on the one hand, f remains
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the minimal polynomial of a over Z0 , and on the other hand, Z0(a)|Z0

is linearly disjoint from Z|Z0 . By Lemma 2.3, Z is also the abso-
lute ramification field of Z0 , so this shows that (Z0(a)|Z0, v) is purely
wild. It can be extended to a maximal purely wild extension of (Z0, v).
Since by Proposition 3.2, Z0 satisfies (K3), all maximal purely wild ex-
tensions of (Z0, v) are isomorphic over Z0 by [10, Proposition 3.2 and
Theorem 4.3]. As (L, v) is a maximal purely wild extension of (Z0, v)
by Proposition 3.2, it follows that Z0(a) admits an embedding in L
over Z0 . Hence there is some a′ ∈ L such that Z0(a) and Z0(a

′) are
isomorphic over Z0 , which means that a′ is also a root of f . There-
fore, the isomorphism induces an isomorphism K ′(a) ' K ′(a′) over K ′.
Since (K ′, v) is henselian, this isomorphism preserves the valuation, so
(K ′(a′)|K ′, v) is a nontrivial immediate algebraic extension contained
in L. As this contradicts the maximality of (K ′, v), we find that (K ′, v)
must be algebraically maximal. This proves part a) of our proposition.

In order to prove part b), take (K ′, v) to be a purely wild extension
of K, maximal with respect to being contained in L. Again, (K ′, v)
is henselian. By the same proof as before, just replacing “immediate”
by “purely wild”, one shows that (K ′, v) is a maximal purely wild
extension of (K, v). Note that in this case, the extension K ′(a′)|K ′
obtained in the proof is linearly disjoint from Z|K ′, and hence purely
wild, because a′ and a have the same minimal polynomial over K ′. �

Proof of Theorem 1.1. In order to prove the first part of the theorem,
we use Proposition 1.2 to replace L by the relative algebraic closure of
K in L. Then the assertions follow from Proposition 3.3.

For the proof of the second part of the theorem, assume that (L, v) is
maximal, and take an immediate extension (K ′, v) of (K, v), maximal
with respect to being contained in L. By the first part of our theorem,
the relative algebraic closure of K ′ in L contains a maximal immediate
algebraic extension of (K ′, v); by the maximality of K ′, it must be
equal to K ′. Hence (K ′, v) does not admit any nontrivial immediate
algebraic extensions.

Suppose that (K ′, v) is not maximal. Then by [4, Theorem 4], (K ′, v)
admits a pseudo Cauchy sequence without a limit in K ′. This must
be of transcendental type, because if it were of algebraic type, then
by [4, Theorem 3], there would exist a nontrivial immediate algebraic
extension of (K ′, v), contrary to what we have shown. Since the pseudo
Cauchy sequence we took in K ′ is also a pseudo Cauchy sequence in
(L, v) and (L, v) is maximal, [4, Theorem 4] shows the existence of
a limit a in L. It follows from [4, Theorem 2] that (K ′(a)|K ′, v) is
an immediate transcendental extension. As it is contained in L, this
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contradicts the maximality of (K ′, v). We have now proved that (K ′, v)
is a maximal immediate extension of (K, v). �
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