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IMMEDIATE AND PURELY WILD EXTENSIONS OF VALUED FIELDS

Franz-Viktor Kuhlmann, Matthias Pank, Peter Roquette

Kaplansky's hypothesis A concerning valued fields is put into a Galois
theoretic setting. Accordingly, Kaplansky's theorem on maximal imme-
diate extensions can be deduced from the Schur-Zassenhaus theorem about
conjugacy of complements in profinite groups. Some generalization of
Kaplansky's theory is given, concerning maximal purely wild extensions.

1._Introduction.

Let K be a valued field, with value group vK and residue
field K. Kaplansky [7] has given conditions for vK and X
(known as hypothesis A), which ensure that all maximal imme-
diate extensions of K are K-isomorphic as valued fields. A
valued field extension L of K is called immediate if L has
the same value group and the same residue field as K. It is
known from the work of Krull that every immediate extension
of K is contained in a maximal one. In a sense, such maxi-
mal immediate extension behaves somewhat like a completion,
provided it is uniquely determined up to K-isomorphisms. In
general, uniqueness does not hold if the residue characteri-
stic is p > O; this gives Kaplansky's theorem its funda-

mental importance.

In this note we are going to exhibit a Galois theoretic inter-
pretation of Kaplansky's hypothesis (B), in tenms of the structure of
the Galois group over K and its subgroups degined by Hilbert's
namiglcation theory: decomposition ghoup, Lnertia group, ramigication
group. In this way it will be seen that Kaplansky's theorem becomes
almost obvious forn group theoretical reasons, Ln view of the theorem
04 Schur-Zassenhaus about confugacy o4 complements Lin proginite groups.

More precisely, while using Galois theory we have to

restrict our consideration to algebraic extensions of K.
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From group theoretical arguments we do not obtain the full
uniqueness theorem of Kaplansky but only its algebraic part,
which asserts uniqueness of the maximal algebraic immediate
extension of K, in the presence of hypothesis (A). This
algebraic part appears to be the main ingredient of
Kaplansky's theorem, for in many respects it seems more
appropriate to consider not the full maximal immediate
extension in the sense of Krull, but only its algebraic
part.

Nevertheless in some instances transcendental extensions
seem to be necessary. Therefore we shall complement our
Galois theoretic discussion by some further remarks con-
cerning transcendental extensions, thereby leading to a
proof of the full theorem of Kaplansky. The crucial em-
bedding property for simple transcendental immediate
extensions (section 7) is of the same kind as used for
proving model completeness theorems [13], [15]. We do not
use the theory of pseudo-Cauchy sequences in the sense of
Ostrowski-Kaplansky. Although this notion has played an
important role in the past development it now seems to be
time to look for more natural, intrinsic concepts and

arguments.

In recent years we have observed rising interest in the
study of maximal immediate extensions of valued fields, in
particular from the model theoretic point of view. This has
motivated the publication of the present note. Nearly all
its contents are from the unpublished thesis of Matthias
Pank [11]. Further investigations into the same direction
would be desirable. For instance, one would like to know
to which extent hypothesis (A) is necessary for the unique-
ness of the maximal immediate extension. A preliminary
result is given in the appendix, due to F.-V. Kuhlmann.

The problem might perhaps be settled by studying the struc-
ture of the Galois group in more detail. Also, one might
hope to classify at least in special instances, the various
maximal immediate extensions, when uniqueness fails. In
view of this general program we shall carry our discussion
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as far as possible without using hypothesis (A). Our main

results are theorem 2.1, theorem 4.3 and theorem 5.3.

In the whole paper the valued field K is always supposed

to be Henselian; this is no essential restriction. The

Henselian property implies that tbe valuation of K extends
uniquely to the algebraic closure K® of K. Hence K? will be
regarded as a valued field. Then every subfield L < K? is

also a valued field, in a canonical way.

We always suppose that the residue characteristic is a

prime number p > 1. In case of residue characteristic zero
it is well known that the uniqueness theorem for maximal
algebraic immediate extensions holds trivially because
there are no proper algebraic immediate extensions. However
it should be understood that all our results and proofs
remain trivially valid (for p = 1) in case of residue

characteristic zero.

Notational conventions:

K is a nontrivially valued field, assumed to be Henselian

\ the valuation of K, written additively

vK the value group of K

X the residue field

P the characteristic of K, assumed to be > 1

K2 the algebraic closure of K, regarded as a valued field
extension of K

G the Galois group over K, defined as the group of all
K-automorphisms of K2

K" the ramification field over K

Gy the ramification group over K, consisting of all auto-

morphisms in G which leave the elements of K" fixed.

We assume the reader to be familiar with the fundamen-
tals from ramification theory of general valuations. As a
reference we mention Endler's book [4], in particular
§ 19-22. See also [17], Chap. 3.

If L is a valued extension field of K, its valuation is

denoted by the same letter v as the valuation of K. vL is a
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group extension of vK, and L is a field extension of K.

Theorem 2.1. (i) The algebraic closure K% of K splits

over the ramification field KY. That is, there exists a
subfield L < Ka such that

Lnk =x , L-Kf =gk%.

Any such field L is called an algebraic K-complement of K",

(ii) Every algebraic extension K' of K which is

K-linearly disjoint to Kr, is contained in some algebraic
K-complement L of K"

We will prove theorem 2.1 via Galois theory by verifying

the corresponding theorem for the Galois group G over K:

Theorem 2.2. (i) The Galois group G splits over its

ramification subgroup Gr' That is, there exists a closed

subgroup H © G such that

H'Gr =G , HN Gr =1.

Any such group H is called a group complement of Gr

within G.

(ii) Every closed subgroup G' < G which satisfies

G'-G, = G, contains some group complement H of G. in G.

If K is perfect then Galois theory yields a 1-1 corre-
spondence between algebraic extensions L of K and closed
subgroups H of G. In this correspondence, the properties
of L to be an algebraic K-complement of K'Y are translated
into the properties of H to be a group complement of Gr
in G. Hence indeed, theorems 2.2 and 2.1 are equivalent.
If K is not perfect then we have to take into account that
Galois groups do not distinguish between fields which
differ by pure inseparabilities only. The fixed field of
any closed subgroup of G is a perfect field. Galois theory
yields a 1-1 correspondence between perfect algebraic
extensions of K and closed subgroups of G. On the other
hand, from KrIK being separable we infer
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1) if L-KY = Ka, then L is perfect
2) if K' is K-linearly disjoint to K® then the perfect
hull of K' too is K-linearly disjoint to K'.

Hence, to prove theorem 2.1 it suffices to consider per-
fect algebraic extensions of K. For those, Galois correspon-
dence can be applied, showing that again theorems 2.1 and
2.2 are equivalent. At the same time our discussion yields
the following, regardless of whether K is perfect or not:

Lemma 2.3. The algebraic K-complements L of k' are
precisely the fixed fields of the group complements H of

Gr in G. In particular, every such field L is perfect.

To prove theorem 2.2 we consider the inertia field over

K. This can be characterized as the maximal unramified
subextension of K* and hence will be denoted by K'. Let

Gu be the Galois group over K".

Proposition 2.4. (i) Gu is normal in G and G > Gu = Gr'

(ii) The factor group G/Gu is canonically isomorphic

to the Galois group G over the residue field K of K. In

particular it follows

[ : G 1=]|G =I[K° : K]
u
where KS denotes the separable algebraic closure of K.

(iii) The factor group Gu/Gr is abelian and its order

[Gu : Gr] is relatively prime to p.

(iv) Gr is a p-group.
For the proof we refer to [4], in particular to the table
on page 171. Note that we are dealing with profinite groups;
the group indices appearing in this proposition may not be
finite. As usual, these group indices and the degrees of
infinite algebraic field extensions are to be regarded as
supernatural numbers. We refer to Serre's lecture notes

[16], in particular page I-3.
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Corollary 2.5. The p-Sylow subgroups of G/Gr are free

as pro-p-groups.

Proof. By prop. 2.4 (iii), the p-Sylow subgroups of
G/Gr are isomorphic to those of G/Gu' Those in turn are
isomorphic to the p-Sylow subgroups of G, in view of
prop. 2.4 (ii). Now over any field K of characteristic p
its Galois group G has pro-p-free p-Sylow groups: this is
a well known consequence of Artin-Schreier theory. See [16],

page II-5, cor. 1.

Proof of theorem 2.2.

(i) Since the p-Sylow subgroups of G/Gr are pro-p-free
it follows that G/Gr is of cohomological p-dimension < 1;
see [16], page I-25, cor. Hence every profinite extension
of G/Gr with pro-p-kernel splits; [16], page I-24, prop. 16
(iii bis). We conclude that, indeed, G splits as an ex-

tension of G/Gr with kernel Gr'

(ii) Let G' = G be a closed subgroup and suppose
G'-Gr = G. Then G'/G'nGr ~ G/Gr . Hence the p-Sylow sub-
groups of G'/G'nGr are pro-p-free. As in (i) it follows
that G' splits over G' N Gr' Let H ¢ G' be a complement of
G'n Gr within G'. Then
H-(G' N Gr) =G' , HN (G'"n Gr) =1 .
It follows

. = L = =
H Gr G Gr G, HN Gr 1

Hence H is also a complement of Gr within G.

Let L be an algebraic K-complement of Kr, according to
theorem 2.1. In general there will be many other algebraic
K-complements of K*. Under which condition are any two
algebraic K-complements L, L' of K® isomorphic over K?

Note that since K is Henselian, every field theoretic K-

isomorphism ¢ : L » L' is compatible with the valuations on

L and L', i.e. 0 is an isomorphism of valued fields.
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We know from lemma 2.3 that L, L' are the fixed fields
of group complements H, H' of Gr in G. By Galois theory, L
and L' are K-isomorphic if and only if H and H' are con-
jugate within G. Hence our above question can be reformu-
lated in group theoretical terms as follows: Under which

conditions are any two group complements H, H' of Gr con-
jugate within G? At this point we invoke:

Theorem 3.1. (Schur-Zassenhaus) Let G be a profinite

group and N a closed normal subgroup. Suppose that the

index [G : N] is relatively prime to the order |N|. Then

G splits over N. Moreover, all group complements of N are

conjugate within G.

Usually this theorem is formulated in the context of
finite groups; see [6], page 128, Satz 18.3. Its genera-
lization to profinite groups is straightforward, using
standard compactness arguments for profinite groups. One
could also use nonstandard arguments in the sense of
A. Robinson who pointed out that every profinite group G
can be represented as a homomorphic image of a suitable
starfinite group of an enlargement *G of G. See [14],
section 3. We leave the details to the reader.

We shall use theorem 3.1 for the profinite Galois group
G over K and its normal ramification subgroup Gr' Prop. 2.4
(iv) shows that [G_| is a power of p. Therefore we can
apply theorem 3.1 under the condition that [G : Gr] is
relatively prime to p. By prop. 2.4 again, this is equi-
valent to [G : G ] = [K° : K] being relatively prime to p.

We obtain:

Proposition 3.2. Suppose that [K° : K] is relatively

prime to p. Then [Kr : K] is relatively prime to p, and all

algebraic K-complements of k' are mutually K-isomorphic.
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Definition. A finite algebraic field extension E|K is
called tame if the following three conditions are satisfied:

(a) The ramification index [VE : vK] is relatively prime

to p.

(b) The residue field extension E|K is separable.

(c) The degree formula holds:

[E : K] = [VE : VvK]-[E : K] .

An infinite algebraic extension of K is called tame if

every finite subextension is tame.

This notion of tame extension is different from the
notion of "tamely ramified" extension as defined in [4],
page 180. The latter definition requires (a) and (b) but
not necessarily (c). Condition (c) implies, in the termino-
logy of [4], that the extension is "defectless". Thus the
tame extensions in our sense coincide with the "tamely
ramified and defectless" extensions in the terminology
of [4]. Note that in our terminology, proper immediate
extensions are not tame - which seems reasonable in view

of the rather exotic behavior of immediate extensions.

It follows from the definition that every subextension
of a tame extension is tame. The compositum of finitely or
infinitely many tame extensions is tame again. Hence there
exists a unique maximal tame extension of K. It is well
known that this coincides with the ramification field:

Proposition 4.1. The ramification field K* can be

characterized as the unique maximal tame extension of K.

See [4], page 182, theorem (22.7).

A valued field extension L|K is called wild if it is

not tame.

Definition. L|K is called purely wild if the
following two conditions are satisfied:
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(a') The value group index [vL : vK] is a p-power.
(b') The residue field extension L|K is purely in-
separable.

(If LIK is transcendental, conditions (a') and (b') should
be read such as to imply that vL|vK is a torsion group and
that L|K is algebraic.)

In case of purely wild extensions, the behavior of value
group and residue field belongs to the other extreme as in
the case of tame extensions. We shall use this definition
to characterize the algebraic K-complements of the maximal

tame extension KY¥ of K.

Every subextension of a purely wild extension is purely
wild. Immediate extensions are purely wild. Every purely
inseparable extension is purely wild. The only extension
L|K which is purely wild and tame is the trivial one: L = K.

Lemma 4.2. An algebraic extension L|K is purely wild

if and only if L is K-linearly disjoint to KTt.

Proof. If L is purely wild over K then so is its sub-
extension L N K¥. On the other hand L n K¥ < KT and hence
L N K¥ is tame over K, by prop. 4.1. It follows L n K¥ = K.

Thus L is K-linearly disjoint to KY.

Conversely suppose L N K¥ = K. We have to show that
conditions (a'), (b') are satisfied. Let us start with (b').
Let o € L be separable over K; we claim that a € K. Let
T(X) € RKI[X] be the monic irreducible polynomial for a over K,
and let f(X) € K[X] be a monic foreimage of f(X). Since o is
a simple root of f(X) we conclude from Hensel's lemma that
there is a unique a € L such that f(a) = O and a = o. Note
that L is Henselian because L is an algebraic extension of
the Henselian field K. Consider E = K(a) < L. If n denotes
the degree of f(X) and f(X) then clearly

[E: K]l <n=[K() : K] < [E: K] g [E: KI-[VE : vK].
From general valuation theory we know that

[VE : vK]-[E : K] < [E : K] ,
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see [4] , page 99, cor. (13.10). We conclude

[E : Kl =n=1[E :K], E=%RK(), [VE: vkK] =1 .

These relations show that E|K is tame. By prop. 4.1,
E c K°. Hence E ¢ L N K* = K. In particular a € K and there-

fore a = o € K as contended.

We are now going to prove condition (a'). Let o € vL be
such that its order modulo vK, say n, is relatively prime
to p; we claim that a € vK. It suffices to show that
pha € vK for some suitable integer h > O. Let us choose a,
b, ¢ such that

a€EL , v =a
b €K , v(b) = no
n
c=%€rL.
Then O # ¢ € L. We ﬁnow already that L|K is purely in-

P

separable, hence c* € K for some p-power ph. As said

above, we mayhreplﬁce o by pha and, accordingly, we replace
a, b, ¢ by aP , bP , cph. Thus we may assume from now on
that ¢ € K. Let d € K be such that ¢ = d. Then v(d) = 0. We
replace b by bd € K; this will not affect the value

v(b) = na. After changing notation we now have ¢ = 1 . This
implies that c¢ is an n-th power in L. For let

£(X) = X" - ¢ € L[X]; then £(X) = X" - 1. Since n is
relatively prime to p it follows that f(X) admits 1 as a
simple root. We conclude from Hensel's lemma that there

exists a unique w € L such that f(w) = O and w = 1. Thus

=]

& =c=w
b .

1 € L; this will not affect the value

v(a) = o. After changing notation again we obtain c = 1,

We replace a by aw

a = b.

Note that b € K by construction. Hence a is an n-th root of
b € K. Let E = K(a) ¢ L. Then o € VE and

[E : K] : vK] < [VE : vKI-[E : K] ¢ [E : K] .

A
=]
A
<
]
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We conclude
[E: K] =n = [VE : vK], [E : K] = 1.

These relations show that E|K is tame. Therefore from
prop. 4.1: Ec L n kY = K. In particular a € K and
v(a) = a € vK as contended.

Lemma 4.2 is proved. Comparing it with theorem 2.1 we

obtain:

Theorem 4.3. The algebraic K-complements of k* can be

characterized as the maximal algebraic purely wild

extensions of K.

To prove the next proposition we will need:

Lemma 4.4. Every valued field L with nontrivial

valuation v and char{L) = p > O, which is closed under

purely wild extensions by roots of polynomials of the form

xP - x - ¢, ¢ € L, v(c) < O has p-divisible value group

and perfect residue field.

Proof. Any root a of the polynomial xP - x - c, v(c)<O,
will have value v(a) = v(c)/p. Now if v(c)/p ¢ vL, by the
same arguments as in the proof of lemma 4.2 we may conclude
that [L(a) : L) = p = [v(L(a)) : vL] , [L(a) : T1 =1 .
Hence L(a)IL would be a proper purely wild extension, con-
trary to the hypotheses. Thus vL is p-divisible.

Now let ¢ € L have value v(c) = O. We choose d € L with
v(d) < O. Any root a of xP - x - dpc1yill have value
v(a) = v(d) and will satisfy a/d = ¢ '*. 1£ c1/P ¢ T, it

follows as above that L(a)|L would be a proper purely wild
extension, contrary to the hypothesis. Hence L is perfect.

Lemma 4.4 implies that every Artin-Schreier-closed
valued field of characteristic p has p-divisible value group
and perfect residue field. Note that this is also true for
every perfect valued field of characteristic p, since it is

closed under p-th roots.
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Proposition 4.5. (i) Let L be an algebraic K-complement

of Kr or, what is the same by theorem 4.3, L should be a

maximal algebraic purely wild extension of K. Then VL is
the p-divisible hull of vK, and L is the perfect hull of K.

(ii) More generally, the same holds for any subextension

L' of L which is closed under purely wild extensions by

roots of polynomials of the form xP - x - c, c € L', v(c) <O0.

Consequently L is an immediate extension of L'.

(iii) In particular, L is an immediate extension of Ls’

the maximal subfield of L which is separable over K. Lg is

closed under separable algebraic purely wild extensions.

Proof: Lg has no proper separable algebraic purely wild
extension L1 because otherwise the perfect hull of L1 would

be a proper algebraic purely wild extension of L.

Now it suffices to prove (ii). Since L'|K is purely wild,
[vL' : vK] is a p-power and L' is purely inseparable over
K. On the other hand, lemma 4.4 shows that vL' is p-divi-

sible and L' is perfect.

Proposition 4.5 may be compared with the following well
known proposition giving an explicit description of value
group and residue field of the ramification field. Let us
define the p'~divisible hull of vK to be the smallest
totally ordered group extension of vK which is divisible

by all prime numbers # p.

Proposition 4.6. The value group vK® is the
p'-divisible hull of vK. The residue field k' is the

separable algebraic closure of K.

For a proof see [4] , pages 151, 166. There one can also
find a proof of the following proposition which we shall

have to use in section 6.

Proposition 4.7. Let F|K be a subextension of K",

Suppose that F has the same value group and the same

residue field as K':

vF = vk* , F = K¥ .
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Then F = Kr. In other words: The ramification field KF is

minimal with the properties as stated in prop. 4.6.

Kaplansky's hypothesis (A) consists of two parts, the
first giving a condition for the value group:

(A1) The value group vK is p-divisible.

As for the second part concerning the residue field, we
split it into two parts again, one for purely inseparable
extensions and the other for separable extensions:

(A2) The residue field K is perfect, i.e. K does not admit

any proper purely inseparable extension.

(a3) [K® : K] is relatively prime to p, i.e. K does not

admit any finite separable algebraic extension whose

degree is divisible by p. *)

The conjunction (A2) & (A3) means that K does not admit any
algebraic extension, separable or inseparable, whose degree
is divisible by p. Or, equivalently:

(a2/3) [K? : K] is relatively prime to p.

Actually, in Kaplansky's original paper [7] condition
(A2/3) appears in a somewhat disguised form which Kaplansky
himself calls "rather unusual". Namely, he requires that
for every additive polynomial f(X) € K[X] and every a € K
the equation F(Xx) = a € K admits a solution X € K. It has
been shown by Whaples [19] that this condition is indeed
equivalent to (A2/3); Whaples' result has recently been
rediscovered by Delon [3] with a simple proof.

Condition (A3) appears in proposition 3.2 already. It
implies that all algebraic K-complements of K° are mutually

K-isomorphic. Combining this with theorem 4.3 we obtain:

*) Recall that degrees of infinite algebraic extensions
are to be understood as supernatural numbers
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Theorem 5.1. Suppose that K satisfies condition (A3).

Then all maximal algebraic purely wild extensions of K are

mutually K-isomorphic, as valued fields.

Lemma 5.2. If K satisfies conditions (A1) and (A2),

then every purely wild extension of K is immediate, and
conversely.
This follows directly from the definition of purely wild

extension in section 4. For the converse see prop. 4.5.
Combining theorem 5.1 with lemma 5.2 we obtain:
Theorem 5.3. Suppose that K satisfies Kaplansky's

condition (A) = (A1) & (A2) & (A3). Then all maximal
algebraic immediate extensions of K are mutually K-iso-

morphic, as valued fields.

6. Transcendental extensions.

We are now going to study transcendental immediate
extensions with the aim of proving Kaplansky's theorem:

Theorem 6.1. Suppose that K satisfies Kaplansky's

condition (A). Then all maximal immediate extensions of K

are K-isomorphic, as valued fields.

We shall prove the following version for purely wild

extensions which implies theorem 6.1 by means of lemma 5.2.

Theorem 6.2. Suppose that K satisfies condition (A3).

Then all maximal purely wild extensions of K are K-iso-

morphic, as valued fields.

In order to make this statement meaningful one has to
verify that maximal purely wild extensions exist, and that
every purely wild extension L of K is contained in a
maximal one. In fact, as in the case of immediate
extensions, it can be shown that the cardinality |L| of
every purely wild extension is bounded, the bound depending
on the cardinalities |vK| and |K| only. To see this, one

has to verify that the algebraic closure 12 as a valued
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extension of K% is immediate. Consequently, by the known
result (due to Krull [8]) for immediate extensions, we con-
clude that |L?| is bounded, with a bound depending on |vK?|
and |K?| only. The same bound then applies to |L|.

Our proof of theorem 6.2 will be based on theorem 5.1
and some additional information concerning transcendental

purely wild extensions.

Lemma 6.3. Let L be a valued extension of K and suppose

that L|K is purely wild. Then L is linearly disjoint to K.

If L is Henselian then the ramification field LY is the

disjoint compositum of L with K- :

¥ = .-x* .

Recall that the base field K is always assumed to be
Henselian. But this does not imply that L is Henselian,
because L may be transcendental over K. Hence in lemma 6.3

the Henselian condition for L is not superfluous.

Proof of Lemma 6.3. The linear disjointness is proved

precisely as in the proof of lemma 4.2.
In order to prove that ¥ = L'k® we shall show firstly:
(1) L-K' is tame over L.
Hence L-K® < LY by prop. 4.1. Secondly we shall show:
(2) v(L-KY) = v(LY), L-kT = IT .
This yields L-kF = 1% by prop. 4.7.

Proof of (1). K' is the union of tame extensions E|K

of finite degree. Therefore it suffices to show for each E:
L-E is tame over L

Vv(LE) contains vL + vE. We know that [vL : vK] is a p-power
(because L|K is purely wild) and that [VE : vK] is relative-

ly prime to p (because E|K is tame). Hence
[VE : vK]1 = [vL + VE : vL] < [v(LE) : vL] .

Similarly for the residue fields: LE contains the compo-
situm L-E. We know that L|K is purely inseparable while
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E|K is separable. Hence
[E : K] = [L-E : L] < [IE : L] .

Using general valuation theory and the degree formula

(section 4 (c)) for the tame extension E|K we obtain:

[E : K] = [LE : L] > [v(LE) : vL]-[LE : L] >
> [VE : vK]*[E : K] = [E : K] .
Thus equality signs hold. This yields v(LE) = vL + vE and

IE = LE . We conclude

(a) [v(LE) : vL] = [VE : vK], relatively prime to p ,

(b) LE = L-E, separable over L

(¢) [v(LE) : vL]-[LE : L] = [LE : L]

These properties show that LE is tame over L, as contended.
Proof of (2). 1In the foregoing proof we have shown that

v(L*E) = vL + VE for any tame extension E|K of finite de-

gree. Taking the union over all E we obtain:
v(L-K") = vL + vk'.

Here vK' is the p'-divisible hull of vK, by prop. 4.6.
Since vL/vK is a torsion group we deduce that vL + vkF is
the p'~-divisible hull of vL. Hence, using prop. 4.6 for Lt
we obtain:

Vv(L-KY) = vLF

Similarly for the residue field: for any finite tame

extension E|K we have shown that L-E = L-E . Hence

L.KY = L-KF .
Here Ef is the separable algebraic closure of XK, by
prop. 4.6. Since L|K is algebraic we deduce that L-KTY is
the separable algebraic closure of L. Hence, using

prop. 4.6 for LY we obtain:

L-kKf = LT ,

as contended. Lemma 6.3 is proved.
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Proposition 6.4. Let L be a purely wild extension of K.

suppose that L does not permit any proper algebraic purely

wild extension. Then L N K® has the same property. Hence

L n kK? is a maximal algebraic purely wild extension of K.

. . . a
Moreover L is immediate over L N K.

Proof. After replacing K by L n k2 we may assume that
K is algebraically closed within L. Our contention is that
K does not admit any proper algebraic purely wild extension.
By theorem 4.3 this means that K itself is an algebraic
K-complement of KE. Equivalently: k* = k2. By assumption
this is true for L instead of K: L' = L?. In particular
12 is separable over L, hence L is perfect. Consequently
K=1Ln K is perfect too. Therefore the relation
K =1Ln k? implies the linear disjointness of L and k2 over

K. We conclude: in order to prove k' = k? it suffices to
prove that L-KY = L-K%. Using lemma 6.3 we compute:
L-x" = 1Y = 1% 5 1-k® > L-k", hence L-K' = L-k?, as
contended.

By prop. 4.5, v(L N k%) is p-divisible and L n K2 is
perfect. Hence L N K? satisfies conditions (A1) and (A2).
Consequently every purely wild extension of L N k2 is

immediate. Proposition 6.4 is proved.
This being said let us now start with the

Proof of theorem 6.2.

Let L, L' be two maximal purely wild extensions of K. It
suffices to show that L can be K-isomorphically embedded
into L', as a valued field.

We consider fields F between K and L and K-isomorphic

embeddings
g : F-> L',

as valued fields. Using Zorn's lemma we assume that
o : F» L' is a maximal such embedding, not extendable to
a proper overfield of F in L. We have to show that F = L.
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The fields L, L' are both Henselian. Hence L contains

the Henselization Fh of F, and the embedding ¢ : F » L'

extends uniquely to an embedding oh 3 Fh - L'. By the

maximality property of o , we conclude F = Fh. Thus F is

Henselian.

Since F|K is purely wild, the residue field extension
F|X is purely inseparable, hence linearly disjoint to K°.
This implies F° = F+K° and[F° : F] = [K° : K], relatively
prime to p.

Hence F inherits from K the Henselian property and
property (A3). We identify F with its isomorphic image
oF < L' and, changing notation, write again K instead of F.
We now have the same situation as before with the additional
information that no proper extension of K within L is
K-isomorphically embeddable into L'. We have to show that
K = L.

By prop. 6.4 L N K? and L' n K% are maximal algebraic
purely wild extensions of K. Applying theorem 5.1 we obtain
a K-isomorphism L N K* » L' n K?. Hence L n K = K , i.e.

K does not admit any proper algebraic purely wild extension.

Also, L and L' are immediate over K.

If K # L let x € L ~ K; then K(x) is a simple transcen-
dental immediate extension of K. We prove in the next
section that K(x) can be embedded into every maximal
immediate extension L' of K. Contradiction. Hence K = L,

as contended.

In the foregoing proof we have used the following
embedding theorem.

Theorem 7.1. Suppose that K does not admit any proper

algebraic purely wild extension. Let K(x) be a simple

transcendental extension of K, valued such that K(x) is

immediate over K. Then K(x) can be K-isomorphically

embedded into every maximal immediate extension L of K.
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Here and in the following, all fields considered are
valued fields, and isomorphic embeddings are to be under-
stood in the sense of valued fields.

Proof. Suppose K(x) cannot be embedded into L. Then we
shall show that K(x) can be embedded into some simple trans-
cendental immediate extension of L; this yields a contra-

diction since L is supposed to be maximal.

It is well known that the theory of valued fields has

the amalgamation property: Any two valued extension fields

of K can be K~isomorphically embedded into a common valued
overfield. See [2], page 171, ex. § 2 (2). Hence there
exists a valued field extension Q of K which contains
K-isomorphic copies of K(x) and of L. Identifying K(x) and

L with their images in @, we may assume:
K(x) e , LcQ

After enlarging 2 we may assume that Q@ is algebraically
closed, hence Q contains Ka and La. The valuation of Q is

denoted by v again. In this setting we prove:

(1) Suppose that K(x) cannot be K-isomorphically embedded

into L. Then x is transcendental over L and L(X) is

immediate over L.

Let t € L. Then there exists a polynomial f(x) € K[x] such
that vf(x) # vE(t). For otherwise the substitution x » t
would yield a K-isomorphism K(x) =~ K(t) < L. Decomposing
f(x) into linear factors over k? we conclude: there

exists c € k2 such that
(2) v (x-c) # v(t-c)

We claim that such ¢ can be found in K already; this is
seen as follows.

Since K does not admit any proper algebraic purely wild

r, by theorem 4.3. Hence K2 is

extension we have K% = K
the union of finite tame extensions E|K. We choose E such
as to contain the given element c € k2 sétisfying (2) . Now

we choose a special basis of E|K. Let Ugreeerlg € E be
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elements whose residues Ei form a K-basis of E, with
f =[E : K]. We may suppose that u, = 1. Similarly let
z1,...,ze € E be elements whose values v(zj) form a system

of representatives of VvE modulo vK, with e = [VE : vK]. We

may suppose that z, = 1. Then the e‘f elements uizj are
linearly independent over K, hence form a basis of EJ|K in
view of the degree formula [E : K] = e-f. Moreover, if

c € E is represented in the form
c =] c..u.z.
ijTi®j
i,]
with coefficients cij € K then

).

v(c) = min v(cijuizj

Such basis uizj is called a valuation basis of E over K.
See e.g. [4], page 99, (13.9) for a proof of the above
statements. Now since K(x) is immediate over K, the uizj
remain to be a valuation basis for E(x) over K(x), and

similarly for E(t) over K(t). Accordingly let us write
)
117 L C13%7
i,]
where the Ci4 € K are as above, and where the prime at the
summation sign indicates that (i,j) # (1,1). We obtain

v(x-c) = min[v(x—c11), ?i?' V(cijuizj)]'

Similarly we obtain:

_ i _ -
v(t-c) min[v(t c11), Tl? v(cijuizj)].
’

Consequently if c € E satisfies (2) then we deduce
v(x-c11) # v(t-c11)
Let us write c instead of €11 We have proved:

(3) Let t € L. Then there exists c € K such that
v(x-c) # v(t-c).

With the same meaning of c we now claim:

58



KUHLMANN et al.

(4) If a € K satisfies v(x-a) > v(x-c) then

v(x=-a) > v(t-a).

For we have v(c-a) = min[v(x-c),v(x-a)] = v(x-c). There-
fore, if we write t-a = (t-c) + (c-a) we infer from (3)
that both summands have different values, hence

v(t-a) = min[v(t-c),v(c-a)] < v(c-a) = v(x-c) < v(x-a).

At this point it is appropriate to recall that there
exist elements a € K which satisfy the hypothesis of (4):

(5) For every c € K there exists a € K such that

v(x-a) > v(x-c).

This is a well known consequence of the fact that K(x) is
immediate over K, and it is proved as follows: Firstly
there is b € K such that v(x-c) = v(b). Secondly there is
b' € K such that the residue class of 5%9 is b'; this
implies V(E%E - b') > O. Hence if we put a = ¢ + bb' then

v(x-a) = v(x-c-bb') > v(b) = v(x=-c).
In view of (5) we may now reformulate (4) as follows:

(6) Let t € L. If a € K is sufficiently close to x, we

have v(x-a) > v(t=-a).

Next we claim that (6) holds not only for t € L but also
for each t € LZ. Applying theorem 4.3 to L we see that

L™ =L = L-K

in view of lemma 6.3. Hence every given t € L? is contained
in L-E for some finite tame extension E|K. We use a
valuation basis uizj for E|K as explained above; this

remains being a valuation basis for L-E over L. We write

with t,. € L. Then
1]

-a) + Z' t..u

t-a = (tg, g4y 1%y,
- = i - TR | 0.z, ,
v(t-a) mln[v(t11 a), min v(tijulzj)]
i,]
v(t-a) < v(t11—a)
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Since t11 € L we infer from (6) that if a € K is

sufficiently close to x then

v(x-a) > v(t11—a) > v(t-a) .

Thus, indeed, (6) holds also for t € 1?. In particular it
follows that x ¢ La, i.e. X is transcendental over L.

Note that if v(x-a) > v(t-a) then

(7) vES -1 =vER) s 0.

This means that 25% € L(x) is a unit with residue 1,

briefly: it is a 1-unit.

Now let f(x) € L(x) be an arbitrary nonzero rational

function. We decompose f(x) into linear factors over 2
£(x) =t T (x-t,)%1 ,
i i

where t € L, ti € La, e; € Z . We obtain for a € K:

£(x) _ x—ti ej
f(a) ~ E (a-ti) :

If a € K is sufficiently close %o x then we know from (6),
%=t
(7) that each of the factors a—t% is a 1-unit. Since the
i
T-units form a multiplicative group it follows that Egzg

is a 1-unit, hence

(8) v@%}- 1) >o.

In view of (4) this holds for all a € K which satisfy a
condition v(x-a) > v(x-c) with c¢ € K depending on f(x).
From (5) we know that there exist such a € K.

Relation (8) implies vf(x) = vf(a) € vL for each
f(x) € L(x). This shows

vL(x) = vL .

If vEf(x) = O then (8) implies f(x) = f(a) € L, hence

Thus L(x) is immediate over L, and statement (1) is proved.
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We refer to the situation of theorem 5.1, using the
same notations. If (A3) does not hold, is it possible that
the conclusion of theorem 5.1 remains valid? What are the
precise conditions for K to possess a unique maximal
algebraic purely wild extension (up to K-isomorphisms)?
First we observe, rather trivially:

Lemma 8.1. Suppose that K does not admit any proper

separable algebraic purely wild extension. Then the perfect

hull K* is the unique algebraic purely wild extension of K

and K*|K is immediate.

For since K*|K is purely inseparable, it is purely wild.
From proposition 4.5 (iii) it follows that K*|K is

immediate.

Is this the only situation where uniqueness holds
in absence of condition (A3)? A preliminary answer to this

question is the following.

Proposition 8.2. Assume that (A3) does not hold, i.e.

[K® : K] is divisible by p. Also, we suppose that there

is a proper separable-algebraic extension L|K which is

purely wild. Then there exists a finite tame extension E|K

cf degree relatively prime to p such that E admits at least

twc maximal algebraic purely wild extensions which are not
E-isomorphic.
Proof. Let Gp denote a p-Sylow subgroup of G, the

Galois group over K. Then Gp o) Gr by proposition 2.4 (iii).

Let X(G_) be the group of continuous homomorphisms
X Gp + Z/p. We refer to the elements x € X(Gp) as

characters of Gp. A character is called tame if X(Gr) = 0.

(I) There exists a non-trivial tame character of Gp'

To see this, we remark that the group of tame characters
X € X(Gp) coincides, by definition, with the character
group X(Gp/Gr). Hence we have to verify that X(Gp/Gr) # 0.
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Since G /Gr is a pro-p-group it is sufficient to see that
Gp # G,. Suppose Gp = G_. Then [G : Gr] would be relatively
prime to p. Hence by proposition 2.4, [R° : K] would be
relatively prime to p, contrary to the hypothesis of the

proposition. Hence indeed, Gp # Gr‘

A character y € X(Gp) is called wild if it is not tame.

(II) There exists a non-trivial wild character of Gp'

For let L|K be as in the proposition, and let H be the
Galois group over L. Then H $ Gr since L & k. It follows
H ? Gp’ hence H N Gp is a proper subgroup of Gp’ Let W be
a maximal proper closed subgroup of Gp containing H N Gp'
Since Gp is a pro-p-group, W is normal of index p in G
Therefore there exists a character y of Gp with kernel W.
We have ¢y (H N Gp) = 0, and we claim that y is not tame.
Note that H-Gr = G since L is K-linearly disjoint to K'. It
follows: Gr-(H n Gp) = (Gr-H) n Gp =GN Gp = Gp . Hence
if w(Gr) = O then w(Gp) = 0, contradicting the fact that
Y # O on Gp. Thus W(Gr) # O and y is not tame.

Let U be an open subgroup of G containinng. We say
that a character x € X(Gp) can be lifted to U if there

exists a character U + Z/p which extends ¥.

(III) Every character x € X(Gp) can be lifted to some

open subgroup U o GP.
For let GX c Gp be the kernel of x. We may assume X # O,

[Gp : GX] = p. GX is closed in G and hence GX is the inter-

section of open subgroups of G. Therefore there exists an

open subgroup V of G such that GX < V and Gp ¢ V, hence

GX =VvVoan Gp' Let N be a normal

open subgroup of G contained in

V. Then we have N N Gp c GX.

From the diagram we infer: N

i

/G‘f
p”/’/’/,,,a 1
X ’,”””,,,—

. ‘N .
Gp/Gy =~ G,°N/G,

o] —O'—-O
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By means of this isomorphism the character yx of Gp can be
extended to a character of GP-N which vanishes on GX-N.

Thus we may put U = Gp-N in order to satisfy (III).

(IV) If Xqr++-rX, 8re finitely many characters of G

then there exists an open U o Gp such that all Xy

can simultaneously be lifted to U.

Indeed, if Xi is lifted to Ui then we may take

u=0,Nn...0N70U_.
1 n

We now choose a nontrivial tame character x € X(Gp) and
1 € X(Gp). Let U be an open
subgroup of G containing Gp such that both x and w1 can be

a nontrivial wild character Y

lifted to U. Thus ¥, w1 now appear as characters in X(U).
Let us put

by = X + ¥y

Since X(Gr) = 0, ¢1(Gr) # 0, we see that wz(Gr) # O.
Hence both characters w1, by € X(U) are wild, but their
difference y, -9y, = x is tame, and X # O.

Let U1
have [U : U1] = p. Since U, does not contain G. it follows

< U be the kernel of w1 on U. Since w1 # 0 we

U1-Gr = U. Hence we may apply theorem 2.2 (ii) to U and its

1
some group complement H1 of Gr within U. That is, we have:

subgroup U1 (instead of G and G'). We conclude: U, contains

Hi -G, =U , H nG, =1 ,w1(H1)=o
Similarly we obtain H2 such that
Hy'G. =U , Hy nG. =1 , yy(Hy) =0 .

We claim that H1 and H, are not conjugate in U. For if
H2 = 0H10-1 with ¢ € U, then
U)1(H2) =l’)1(0H10—1) =\l)1(H1) =0 .
Hence both by and v, vanish on Hy, and so does y =Yy " Ygq-
Since X(Gr) = 0 it follows

X (U) = x(Hy-G,) = x(Hy) + x(G) =0,
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contradicting the fact that X # O on U, by construction.

Hence indeed, H, and H, are not conjugate in U.

1
Let us now interpret this result in terms of field ex-

tensions. Let E be the separable fixed field of U. Since U

is open, [E : K] is finite. Since U o G the index

i 17 L2 be

in K. Applying lemma 2.3 to E

pl'
[G : U] = [E : K] is not divisible by p. Let L
the fixed fields of H1, H2

instead of K, we see that L1 and L, are algebraic E-comple-
ments of E' = k'. Hence by theorem 4.3, L1 and L2 are
maximal algebraic purely wild extensions of E. Since H1 and
H2 are not conjugate in U it follows from Galois theory
that L

and L, are not E-isomorphic. Proposition 8.2 is

1
proved.

2

If conditions (A1) and (A2) hold then proposition 8.2
deals with immediate extensions (lemma 5.2). But even in
the absence of (A1) or (A2) we can modify the above proof
such as to remain valid for immediate extensions. We need

an auxiliary lemma.

Lemma 8.3. Let L|K be an algebraic extension, K-linear-
ly disjoint to K'. If L|K is immediate then LY k" is

immediate and conversely.

Note that LY = L-KF by lemma 6.3.
Proof. Consider first the value group. We have:
[vi¥ : vKF1[vK® : vK] = [vL' : vL][VL : vK]

Here [vK® : vK] and [vL® : vL] are not divisible by p, see
proposition 4.6. On the other hand, lemma 4.2 shows that
[vL : vK] and [er : vKr] are both p-powers. We conclude

[VvL ¢ vK] = [VvL™ : vK7]
Hence if one of these indices is 1 then the other is 1 too.

A similar argument applies to the residue field. We have

[L* : x°1(k" : K] = [L¥ : LI[T : K] .
This time the extensions K'|K and L'|L are separable while
L|K and LY |KF are purely inseparable. Hence we obtain
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[T : K] = (LY : R¥] .
Again, if one of these degrees is 1 then the other is 1 too.
Corollary 8.4. Let M be any intermediate field between

K and L. If L
intersection M n K'.

K is immediate then M is immediate over its

Proof. LriKr is immediate by lemma 8.3. Hence its sub-
extension M® = M-kK® is immediate over K*. Applying the
lemma to M|M n K instead of L|K we obtain that M|M n K' is

immediate.

Now we can show:

Proposition 8.5. 1In the same situation as in propo-

sition 8.2 assume in addition that L|K is immediate. Then

the field E in proposition 8.2 can be chosen such that, in

addition, E admits two maximal algebraic immediate exten-

sions which are not E-isomorphic.

We show that the proof of proposition 8.2, if suitably
adapted, leads to proposition 8.5.

A character ¥ is called admissible if ¥ (H n Gr) = 0.
Every tame character is admissible. The wild character ¥ of
Gp constructed in the proof of (II) satisfies ¥ (H N Gp) = 0;
hence it is admissible since Gp =) Gr' Consequently we may

start with admissible characters X andlb1 of G one being

pl
tame and the other being wild. Lifting x and w1 to some open
subgroup U < G preserves admissibility. Hence X, ¢, now

appear as admissible characters of U. Their sum
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¥, =¥, + x is also admissible.

Let U1, U2 be the kernels of w1, wz in U, and let M1,
M2 be their separable fixed fields. Each Mi is a normal
extension of degree p over E. Since wi is wild, Ui P Gr
and hence Mi & K'. It follows Mi n kKX = E. Now Ui D HAN Gr
since wi is admissible. Hence Mi c L-KS =1F. Corollary 8.4

shows that Mi|E is immediate (i = 1,2).

Let L. Lé be maximal algebraic immediate extensions of

17
E which contain M1, M2 respectively. Let H!, Hébe'theGalois

groups over L., Lé. Then Ui ) Hi and therefore wi(Hi) =0
(i =1,2). With the same arguments as in the proof of
proposition 8.2 it follows that H{ and Hé cannot be conju-
gate in U. Hence L{ and Lé are not E-isomorphic, as
contended.

The question remains open under which conditions 8.5
holds for E = K. The authors have constructed a valued
field K which possesses a unique maximal and even normal
algebraic purely wild extension, while K satisfies neither
(A3) nor the hypothesis of lemma 8.1. The valuation of this
field is composite with a valuation whose residue field has
characteristic O, and this fact is essentially used in the

proof of the uniqueness.
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