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Background: spaces of orderings

For any field K, the set of all orderings on K,

given by their
positive cones P, is denoted by X (K). This set is nonempty if
and only if K is formally real (i.e., −1 is not a sum of squares).
The Harrison topology on X (K) is defined by taking as a
subbasis the Harrison sets

H(a) := {P ∈ X (K) | a ∈ P} , a ∈ K \ {0} .

With this topology, X (K) is a boolean space.

Theorem (T. Craven, 1975)

Every Boolean space is realized as a space of orderings of some
formally real field K.
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Background: nonarchimedean ordered fields

For example, the rational function field R(x)

has infinitely
many orderings. All of them are nonarchimedean, i.e., they
have infinitesimals.
Associated with orderings on fields are their natural valuations
which measure the magnitude of elements.
Associated with every natural valuation is an R-place, i.e., a
place with residue field inside the reals. It can be thought of as
collapsing all infinitesimals to 0.
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Background: spaces of R-places

We denote the set of all R-places of a field K by M(K).

The map

X (K) −→ M(K)

which sends every ordering to its associated R-place is
surjective. Via this map, the Harrison topology of X (K)
induces a topology on M(K) by which M(K) becomes a
quotient space of X (K).

Theorem (D.W. Dubois, 1970)

M(K) is a compact Hausdorff space.
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Background: a longstanding open question

Which compact Hausdorff spaces can be realized as spaces of
R-places?

Katarzyna Kuhlmann, partially in co-operation with Ido Efrat
([3]), has given several constructions of topological spaces that
can be realized. But it is for instance not known whether the
torus can be realized.
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Strong self-similarities

Katarzyna has investigated some of the most simple formally
real function fields.

She studied the rational function field R(x),
where R is a nonarchimedean ordered real closed field (see [4]);
for example, think of R as a nonstandard model of R. She
found that M(R(x)) has fascinating self-similarities.
We call it the densely fractal pearl neckless. Every pearl in this
neckless is itself a densely fractal pearl neckless. But in contrast
to the commonly known fractals, when passing from one level
to another one, one already passes through a dense sequence of
levels.
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Fractal? Really?

In choosing that name, we may have been a bit too daring.

We
naively thought that something with rich self-similarities must
be fractal. But we found no definition of “fractal” that would fit
our space M(R(x)).
During our search for a suitable definition, we were introduced
by some people present in the audience (or not) to the notion of
topological IFS attractor. However, this has not yet led to
further insight into the structure of M(R(x)).
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A spin-off

A simple-minded idea of ours was

that in order to show some
fractality of M(R(x)) it would be good to have some sort of
fixed point theorems at hand. We had shown that M(R(x)) is in
general not metrizable. So the question arose how we can
introduce a structure on M(R(x)) that is in some form
“complete” and allows us to define some form of
“contractivity” of functions. This has inspired our theory of
ball spaces which has led to many results — but has not yet led
to further insight into the structure of M(R(x)).
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Fractality in valuation theory?

The question arose whether fractality and valuation theory are
at all “compatible”.

The answer is: yes but so far, only the
simplest objects in valuation theory fit with our present
repertoire of definitions of “fractals” or even “IFS contractors”
(see [2]).
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Iterated function systems

Given functions f1, . . . , fn on a set X,

we will associate to them
an iterated function system (IFS), denoted by

F = [f1, . . . , fn] ,

where we view F as a function on the power set P(X) defined
by

P(X) 3 S 7→ F(S) :=
n⋃

i=1

fi(S) .
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Fractal metric space

A compact metric space (X, d) is called fractal

if there is an
iterated function system F = [f1, . . . , fn] with F(X) = X where
the functions fi are weakly contracting, that is,
d(fix, fiy) < d(x, y) for any distinct x, y ∈ X.

Alternatively, one may ask that the functions fi are contracting,
that is, there is some positive real number C < 1 such that
d(fix, fiy) ≤ Cd(x, y) for all x, y ∈ X.

Iterated function systems consisting of weakly contracting
functions are studied in e.g. [4, 1, 5].
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Ultrametrics

The problem with valuations is that they do not always induce
metrics.

In basic cases they do; think of the p-adic metric

dp(a, b) = p−vp(a−b)

where vp is the p-adic valuation on Q. Such a definition works
as long as the valuation takes values in R, which is not always
the case. For instance, if an ordered field is very large, then also
the value group of its natural valuation is very large and may
be too large to be contained in R. But a valuation always
induces a topology.
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Fractal topological space

Taras Banakh and Magdalena Nowak ([1]) gave a topological
analogue of the previous definition:

A compact topological space X is called fractal if there is an
iterated function system F = [f1, . . . , fn] consisting of
continuous functions fi : X→ X such that F(X) = X and the
following “shrinking condition” is satisfied:
(SC) for every open covering C of X, there is some k ∈N such
that for every sequence (i1, . . . , ik) ∈ {1, . . . , n}k there is U ∈ C
with

fi1 ◦ . . . ◦ fik(X) ⊂ U .

For a detailed continuation of this approach, see [2, 3].
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Discrete valuation rings

A commutative ring R with 1 is a discrete valuation ring

if it
has a unique maximal ideal M for which t ∈ R exists such that
M = tR. The quotient R/M is the residue field of R.
The valuation ring of the p-adic numbers is a discrete valuation
ring with t = p and R/M = Fp , the field with p elements.
Likewise, the ring of formal Laurent series over Fp

Fp[[t]] =

{
∞

∑
j=0

cj tj | cj ∈ Fp

}

is a discrete valuation ring with Fp[[t]]/tFp[[t]] = Fp .
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Discrete valuation rings

Take a discrete valuation ring R with M and t as above.

Choose
a system of representatives S ⊂ R for the residue field R/M.
Then for every s ∈ S define a function fs by:

fs(a) := s + ta

for a ∈ R. Then
fs(R) = s + tR

and therefore, ⋃
s∈S

fs(R) =
⋃
s∈S

s + tR = R .

It is easy to show that each fs is contracting and that condition
(SC) is satisfied.
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Discrete valuation rings

If R/M is finite, then we have finitely many functions,

R is
compact, and we obtain:

Proposition

Every discrete valuation ring with finite residue field and equipped
with the canonical ultrametric is fractal (under both definitions given
above).

Kuhlmann and Dobrowolski Valuation theory, generalized IFS attractors and fractals



Discrete valuation rings

If R/M is finite, then we have finitely many functions, R is
compact,

and we obtain:

Proposition

Every discrete valuation ring with finite residue field and equipped
with the canonical ultrametric is fractal (under both definitions given
above).

Kuhlmann and Dobrowolski Valuation theory, generalized IFS attractors and fractals



Discrete valuation rings

If R/M is finite, then we have finitely many functions, R is
compact, and we obtain:

Proposition

Every discrete valuation ring with finite residue field and equipped
with the canonical ultrametric is fractal (under both definitions given
above).

Kuhlmann and Dobrowolski Valuation theory, generalized IFS attractors and fractals



Discrete valuation rings

If R/M is finite, then we have finitely many functions, R is
compact, and we obtain:

Proposition

Every discrete valuation ring with finite residue field and equipped
with the canonical ultrametric

is fractal (under both definitions given
above).

Kuhlmann and Dobrowolski Valuation theory, generalized IFS attractors and fractals



Discrete valuation rings

If R/M is finite, then we have finitely many functions, R is
compact, and we obtain:

Proposition

Every discrete valuation ring with finite residue field and equipped
with the canonical ultrametric is fractal (under both definitions given
above).

Kuhlmann and Dobrowolski Valuation theory, generalized IFS attractors and fractals



Infinitely many functions

The following definition seems to be the weakest reasonable
generalization

to possibly infinite function systems.
Let X be a topological space, and {fi : i ∈ I} any set of
continuous functions X→ X satisfying (SC), i.e., for any finite
open covering U of X there is a natural number l such that for
any g1, . . . , gl ∈ {fi : i ∈ I}, the image g1 ◦ · · · ◦ gl[X] is
contained in some U ∈ U .
We say that X is a topological attractor for {fi : i ∈ I} if X is the
closure of

⋃
i∈I fi[X]. For any cardinal number κ, we say that X

is a topological κ-IFS-attractor if X is a topological attractor for
some set of continuous functions satisfying (SC) of cardinality
at most κ.
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Limitations

Proposition

Suppose X is a normal space which is a κ-IFS-attractor.

Then its
weight is bounded by 2κ + ℵ0.

This applies in particular to compact spaces (which are known
to be normal). In particular, we obtain that every topological
IFS-attractor has a countable basis. Thus, by the Urysohn
metrization theorem, we get:

Corollary

Every topological IFS-attractor is metrizable.

So we wish to replace condition (SC) by a condition that can
cover more spaces.
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(SC∗)

We consider another topological shrinking condition,

in which
we are allowed to choose a basis from which the covering sets
are taken. However, to make it possible to cover in this way the
whole space (which is not assumed to be compact), we allow
one of the covering sets to be not in the fixed basis. This leads
to the following definition:
A family of functions (fi)i∈I on a topological space X satisfies
(SC∗) if there is a basis B of X such that for every finite open
covering C of X containing at most one set which is not in B,
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∗-IFS attractors

Every topological space is a topological attractor for the set of
all constant functions from X to X (i.e., is covered by their
images).

So we say that X is a weak ∗-IFS attractor if it is a
topological attractor for a set of functions satisfying (SC∗) of a
cardinality smaller than |X|. (Remark: it was pointed out to us
after our talk that in order to avoid trivial cases, one should
replace |X| by the weight of X in this definition.)
We say that X is a ∗-IFS attractor if it is a topological attractor
for a finite set of functions satisfying (SC∗).
In our paper, we give several examples of ∗-IFS attractors and
weak ∗-IFS attractors. For instance, we show:
R is a weak ∗-IFS attractor.
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Discrete valued fields

What about the quotient fields of discrete valuation rings?

Examples are the field Qp of p-adic numbers and the field of
formal Laurent series over Fp:

Fp((t)) =

{
∞

∑
j=`

cj tj | ` ∈ Z , cj ∈ Fp

}
.

They are not compact, but they are locally compact. If we have
a space that is only locally compact, we can ask whether it is
“locally fractal”, that is, whether every element is contained in
a fractal subspace. This is indeed true for Qp and Fp((t)).
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Local fractality

We also want that there is one single IFS

that works globally,
not separate IFSs for each fractal subspace. Here are two
corresponding definitions, one metric and one topological.
A locally compact metric space (X, d) is locally fractal if it is the
union over a collection of mutually homeomorphic subspaces
Xj , j ∈ J, and there is a system F = [f1, . . . , fn] of functions
fi : X→ X such that for every j ∈ J, Xj is fractal w.r.t. the
restrictions of the functions fi to Xj .
A locally compact topological space X is locally fractal if it is
the union over a collection of mutually homeomorphic
subspaces Xj , j ∈ J, and there is a system F = [f1, . . . , fn] of
functions fi : X→ X such that for every j ∈ J, Xj is
(topologically) fractal w.r.t. the restrictions of the functions fi
to Xj .
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union over a collection of mutually homeomorphic subspaces
Xj , j ∈ J, and there is a system F = [f1, . . . , fn] of functions
fi : X→ X such that for every j ∈ J, Xj is fractal w.r.t. the
restrictions of the functions fi to Xj .

A locally compact topological space X is locally fractal if it is
the union over a collection of mutually homeomorphic
subspaces Xj , j ∈ J, and there is a system F = [f1, . . . , fn] of
functions fi : X→ X such that for every j ∈ J, Xj is
(topologically) fractal w.r.t. the restrictions of the functions fi
to Xj .
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Important discrete valued fields are locally fractal

Proposition

Every discretely valued field with finite residue field is locally fractal
under both definitions.

Kuhlmann and Dobrowolski Valuation theory, generalized IFS attractors and fractals



References

Banakh, Taras; Nowak, Magdalena: A 1-dimensional Peano
continuum which is not an IFS attractor, Proc. Amer. Math.
Soc. 141 (2013), 931–935
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The Valuation Theory Home Page
http://math.usask.ca/fvk/Valth.html
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