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Abstract. We extend the characterization of extremal valued fields given in
[1] to the missing case of valued fields of mixed characteristic with perfect

residue field. This leads to a complete characterization of the tame valued

fields that are extremal. The key to the proof is a model theoretic result
about tame valued fields in mixed characteristic. Further, we prove that in an

extremal valued field of finite p-degree, the images of all additive polynomials
have the optimal approximation property. This fact can be used to improve

the axiom system that is suggested in [5] for the elementary theory of Laurent

series fields over finite fields. Finally we give examples that demonstrate the
problems we are facing when we try to characterize the extremal valued fields

with non-perfect residue fields.

1. Introduction

A valued field (K, v) with valuation ring O and value group vK is called ex-
tremal if for every multi-variable polynomial f(X1, . . . , Xn) over K the set

{v(f(a1, . . . , an)) | a1, . . . an ∈ O} ⊆ vK ∪ {∞}
has a maximal element. For the history of this notion, see [1]. In that paper,
extremal fields were characterised in several special cases, but some cases remained
open. In the present paper we answer the question stated after Theorem 1.2 of
[1] to the positive, thereby removing the condition of equal characteristic from the
theorem. Thus, the theorem now reads:

Theorem 1.1. Let (K, v) be a nontrivially valued field. If (K, v) is extremal, then
it is algebraically complete and

(i) vK is a Z-group, or
(ii) vK is divisible and Kv is large.

Conversely, if (K, v) is algebraically complete with divisible value group and large
perfect residue field, then (K, v) is extremal.

Note that a valued field (K, v) is called algebraically complete if every finite
algebraic extension (L, v) satisfies

(1) [L : K] = (vL : vK)[Lv : Kv] ,

where Lv, Kv denote the respective residue fields. Every algebraically complete
valued field (K, v) is henselian, i.e., v admits a unique extension to its algebraic

closure K̃ (which we will again denote by v). Also, every algebraically complete
valued field (K, v) is algebraically maximal, that is, does not admit proper
algebraic immediate extensions (L, v) (immediate means that vL = vK and Lv =
Kv).
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Further, (K, v) is a tame field if it is henselian and K̃ is equal to the ramification

field of the extension (K̃|K, v). All tame fields are algebraically complete (cf. [9,
Lemma 3.1]).

A field K is large if every smooth curve over K which has a K-rational point,
has infinitely many such points. For more information about large fields, see [11],
[7] and [1].

We were not able to cover the mixed characteristic case in the converse because a
corresponding analogue of the Ax–Kochen–Ershov Principle stated in Theorem 4.2
of [1] was not known. In fact, we will show below (Theorem 1.5) that it is false.
However, we can do with lesser tools that are known. After all, at least the corre-
sponding Ax–Kochen–Ershov Principle for elementary extensions has been proved
in [9]:

Theorem 1.2. If (L|K, v) is an extension of tame fields such that vK ≺ vL and
Kv ≺ Lv, then (K, v) ≺ (L, v).

This theorem enables us to prove:

Theorem 1.3. Take a nontrivially valued tame field (K, v) and two ordered abelian
groups Γ and ∆ such that Γ ≺ vK and Γ ≺ ∆. Then there exist two tame fields
(K ′, v) and (L, v) with vK ′ = Γ, vL = ∆, Kv = K ′v = Lv, (K ′, v) ≺ (K, v) and
(K ′, v) ≺ (L, v). In particular, (K, v) ≡ (L, v).

If vK is nontrivial and divisible and ∆ is any nontrivial divisible ordered abelian
group, then we can take Γ = Q to obtain that Γ ≺ vK and Γ ≺ ∆ since the
elementary class of nontrivial divisible ordered abelian groups is model complete.
Thus, Theorem 1.3 yields the following result:

Corollary 1.4. If (K, v) is a nontrivially valued tame field with divisible value
group and ∆ is any nontrivial divisible ordered abelian group, then there is a tame
field (L, v) ≡ (K, v) with vL = ∆ and Lv = Kv.

The Ax–Kochen–Ershov Principle

(2) vK ≡ vL ∧ Kv ≡ Lv =⇒ (K, v) ≡ (L, v)

holds for all tame valued fields of equal characteristic (see [9, Theorem 1.4]). But
it is easy to see that it cannot hold in the mixed characteristic case. One can
construct two algebraic extensions (L, v) and (L′, v′) of (Q, vp), where vp is the
p-adic valuation on Q, both having residue field Fp, such that:

1) L does not contain
√
p and vL is the p-divisible hull of (vpp)Z,

2) L′ contains
√
p and v′L′ is the p-divisible hull of (vp

√
p)Z = 1

2 (vpp)Z.

Then vL ' v′L′ and hence vL ≡ v′L′, but (L, v) 6≡ (L′, v′).
One could hope, however, that this problem vanishes when one strenthens the

conditions by asking that vL and v′L′ are equivalent over vpQ (and Lv and L′v′

are equivalent over Qvp). But the problem remains:

Theorem 1.5. For every odd prime p there exist two tame fields (L, v) and (L′, v′),
both algebraic over Q, with Lv = Fp = L′v′ and vL = v′L′ the p-divisible hull of
1
2 (vpp)Z, but (L, v) 6≡ (L′, v′).

Note that (L, v) ≡ (L′, v′) if and only if they are equivalent over (Q, vp), and
this in turn holds if and only if we have the equivalence

(L, v)δ ≡ (L′, v′)δ over (Q, vp)δ
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of their amc structures of level δ, for all δ ∈ (vpp)Z (see [4, Corollary 2.4]). But this
fact is of little use for the proof of Corollary 1.4 since it is by no means clear how
to construct an extension of (Q, vp) whose amc structures of level δ are equivalent
to those of (K, v).

The improvement in Theorem 1.1 yields a corresponding improvement of Propo-
sition 5.3 from [1]:

Proposition 1.6. Take a valued field (K, v) with perfect residue field. Assume
that v is the composition of two nontrivial valuations: v = w ◦ w. Then (K, v)
is extremal with divisible value group if and only if the same holds for (K,w) and
(Kw,w).

This follows from Theorem 1.1 by means of the following facts:

1) (K, v) is algebraically complete if and only (K,w) and (Kw,w) are.

2) The value group of (K, v) is divisible if and only those of (K,w) and (Kw,w)
are.

3) If (Kw,w) is algebraically complete with divisible value group and perfect
residue field, then it is perfect by Theorem 3.2 and Lemma 3.1 of [9], and large by
[7, Proposition 16].

It should be noted that the condition on the value groups cannot be dropped
without a suitable replacement, even when all residue fields have characteristic 0.
Indeed, if the value group of (K,w) is a Z-group and w is nontrivial, then the value
group of (K, v) is neither divisible nor a Z-group and (K, v) cannot be extremal.

Tame fields of positive residue characteristic p > 0 are algebraically complete,
and by [9, Theorem 3.2], they have p-divisible value groups which consequently are
not Z-groups. On the other hand, by the same theorem all algebraically complete
valued fields with divisible value group and perfect residue field are tame fields.
Therefore, in the case of positive residue characteristic and value groups that are
not Z-groups, the above Theorem 1.1 is in fact talking about tame fields:

Theorem 1.7. A tame field of positive residue characteristic is extremal if and
only if its value group is divisible and its residue field is large.

Again, we see that we know almost everything about tame fields (with the excep-
tion of quantifier elimination in the case of equal characteristic), but almost nothing
about non-perfect valued fields. As shown in [1], there are some algebraically com-
plete valued fields with value group a Z-group and a finite residue field that are
extremal, and others that are not. In particular, the Laurent series field Fq((t))
over a finite field Fq with q elements is extremal.

Since it is a longstanding open question whether Fq((t)) has a decidable ele-
mentary theory, it is important to search for a complete recursive axiomatization.
Such an axiomatization was suggested in [5], using the elementary property that
the images of additive polynomials have the optimal approximation property (see
Section 3 for the definition of this notion). For the case of Fq((t)), this was proved
in [2]. At first sight, extremality seems to imply the optimal approximation prop-
erty for the images of additive polynomials. But the latter uses inputs from the
whole field while the former restricts to inputs from the valuation ring. However,
we will prove in Section 3:
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Theorem 1.8. If (K, v) is an extremal field of characteristic p > 0 with [K : Kp] <
∞, then the images of all additive polynomials have the optimal approximation
property.

Since the elementary property of extremality is more comprehensive and easier
to formulate than the optimal approximation property, it is therefore a good idea
to replace the latter by the former in the proposed axiom system for Fq((t)). We
also note that every extremal field is algebraically complete by Theorem 1.1. So we
ask:

Open problem: Is the following axiom system for the elementary theory of Fq((t))
complete?

1) (K, v) is an extremal valued field of positive characteristic,
2) vK is a Z-group,
3) Kv = Fq .

In order to obtain the assertion of Theorem 1.8 in the case of algebraically
complete perfect fields of positive characteristic (which are exactly the tame fields of
positive characteristic), one does not need the assumption that the field be extremal.
Indeed, S. Durhan recently proved in [3]:

Theorem 1.9. If (K, v) is a tame field of positive characteristic, then the images
of all additive polynomials have the optimal approximation property.

Since there exist tame fields of positive residue characteristic whose residue field
is not large, this together with Theorem 1.7 shows that a valued field of positive
characteristic need not be extremal even when the images of all additive polynomials
have the optimal approximation property.

Finally, let us point out that we still do not have a complete characterization of
extremal fields:

Open problem: Take a valued field (K, v) of positive residue characteristic. As-
sume that vK is a Z-group or that vK is divisible and Kv is a non-perfect large
field. Under which additional assumptions do we obtain that (K, v) is extremal?

Additional assumptions are indeed needed, as we will show in Section 4:

Proposition 1.10. a) There are algebraically complete valued fields (K, v) of
positive characteristic and value group a Z-group that are extremal, and others that
are not.

b) There are algebraically complete valued fields (K, v) of mixed characteristic with
value group a Z-group that are extremal, and others that are not.

c) There are algebraically complete nontrivially valued fields (K, v) of positive char-
acteristic with divisible value group and non-perfect large residue field that are not
extremal.

d) There are algebraically complete valued fields (K, v) of mixed characteristic with
divisible value group and non-perfect large residue field that are not extremal.

As parts c) and d) indicate, we do not know the answer to the following question:

Open problem: Is there any extremal field with divisible value group and non-
perfect large residue field?
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2. Proof of Theorems 1.1, 1.3 and 1.5

As a preparation, we need a few basic facts about tame fields. For the following
lemma, see [9, Lemma 3.7]:

Lemma 2.1. Take a tame field (L, v). If K is a relatively algebraically closed
subfield of L such that Lv|Kv is algebraic, then (K, v) is a tame field, vL/vK is
torsion free, and Lv = Kv.

We derive:

Lemma 2.2. Take a tame field (K, v) and an ordered abelian group Γ ⊂ vK such
that vK/Γ is torsion free. Then there exists a tame subfield (K ′, v) of (K, v) with
vK ′ = Γ and K ′v = Kv.

Proof. Denote the prime field of K by K0 and note that k0 := K0v is the prime field
of Kv. Take a maximal system γi, i ∈ I, of elements in Γ rationally independent
over vK0 . Choose elements xi ∈ K such that vxi = γi , i ∈ I. Further, take a
transcendence basis tj , j ∈ J , of Kv over its prime field, and elements yj ∈ K such
that yjv = tj for all j ∈ J . For K1 := K0(xi, yj | i ∈ I , j ∈ J) we obtain from [9,
Lemma 2.2] that vK1 = vK ⊕

⊕
i∈I γiZ K1v = k0(tj | j ∈ J), so that Γ/vK1 is a

torsion group and Kv|K1v is algebraic.
Now we take K ′ to be the relative algebraic closure of K1 in K. Then by

Lemma 2.1, (K ′, v) is a tame field with vK/vK ′ torsion free and K ′v = Kv. Since
Γ ⊆ vK and Γ/vK2 is a torsion group, we have that Γ ⊆ vK ′. Since vK/Γ is
torsion free, we also have that vK ′ ⊆ Γ, so that vK ′ = Γ. �

Lemma 2.3. Take a tame field (K, v) and an ordered abelian group ∆ containing
vK such that ∆ is p-divisible, where p is the characteristic exponent of Kv. Then
there exists a tame extension field (L, v) of (K, v) with vL = ∆ and Lv = Kv.

Proof. By Theorem 2.14 of [6] there is an extension (K1, v) of (K, v) such that
vK1 = ∆ and K1v = Kv. We take (L, v) to be a maximal immediate algebraic
extension of (K1, v); then (L, v) is algebraically maximal. Since vL = vK1 = ∆ is
p-divisible, and Lv = K1v = Kv is perfect by [9, Theorem 3.2] applied to (K, v), it
follows from the same theorem that (L, v) is a tame field. �

Now we can give the
Proof of Theorem 1.3: By Lemma 2.2 we find a tame subfield (K ′, v) of (K, v)
with vK ′ = Γ and K ′v = Kv. Since Γ ≺ vK by assumption, it follows from
Theorem 1.2 that (K ′, v) ≺ (K, v).

By Lemma 2.3 we find a tame extension field (L, v) of (K ′, v) with vL = ∆
and Lv = K ′v. Since vK ′ = Γ ≺ ∆ = vL by assumption, it follows again from
Theorem 1.2 that (K ′, v) ≺ (L, v). �
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Theorem 1.3 is the key to the
Proof of Theorem 1.1: In view of Theorem 1.2 of [1], we only have to show

that if (K, v) is a tame field with divisible value group and large residue field, then
(K, v) is extremal. Every trivially valued field is extremal, so we may assume that
(K, v) is nontrivially valued. We apply Corollary 1.4 with ∆ = R to obtain a tame
field (L, v) ≡ (K, v) with value group vL = R. By the proof of Theorem 1.2 in [1],
this field is extremal. Since extremality is an elementary property, also (K, v) is
extremal. �

We turn to the
Proof of Theorem 1.5: We extend the p-adic valuation vp of Q to some

valuation v on the algebraic closure of Q. We take ϑ to be a root of the polynomial
p · (Xp − X)2 − 1 and η to be a root of p · (Xp − X − 1)2 − 1 over Q. Then
v(ηp−η) = v(ϑp−ϑ) = − vp2 . This yields that vη = vϑ = − vp2p . By the fundamental

inequality “n ≥ e · f”, we have that

2p ≥ [Q(η) : Q] ≥ (vQ(η) : vQ) · [Q(η)v : Qv] ≥ 2p · [Q(η)v : Qv] ≥ 2p ,

so equality holds everywhere with [Q(η)v : Qv] = 1 and we find that vQ(η) =
(vη)Z = vp

2pZ and Q(η)v = Qv. Similarly, one shows that vQ(ϑ) = (vϑ)Z = vp
2pZ

and Q(ϑ)v = Qv.
Now we choose algebraic extensions (L1, v) of (Q(η), v) and (L′1, v

′) of (Q(ϑ), v)
such that vL1 = v′L′1 is the p-divisible hull of vQ(η) = vQ(ϑ) and hence of 1

2 (vpp)Z,
and L1v = Q(η)v = Qvp = Q(ϑ)v = L′1v

′; this is possible by [6, Theorem 2.14].
Now we take (L, v) to be a maximal immediate algebraic extension of (L1, v)

and (L′, v′) to be a maximal immediate algebraic extension of (L′1, v
′). Then by [9,

Theorem 3.2], (L, v) and (L′, v′) are tame fields. Their value groups and residue
fields are as in the assertion of Theorem 1.5.

It remains to show that (L, v) and (L′, v′) are not elementarily equivalent. As-
sume they were; then the two sentences

∃X p · (Xp −X)2 = 1 and ∃X p · (Xp −X − 1)2 = 1

would both hold in (L, v). So there would be a, b ∈ L such that

(ap − a)2 =
1

p
and (bp − b− 1)2 =

1

p
.

Therefore, bp − b = ε√
p + 1 with ε = 1 or −1. Since p is odd, replacing a by −a if

necessary, we can assume that ap − a = ε√
p . But then,

(b− a)p − (b− a) = bp − b − (ap − a) +

p−1∑
i=1

(
p

i

)
bi(−a)p−i

=
ε
√
p

+ 1− ε
√
p

+

p−1∑
i=1

(
p

i

)
bi(−a)p−i

= 1 +

p−1∑
i=1

(
p

i

)
bi(−a)p−i(3)

Similarly as for η and ϑ, we have that va = vb = −vp2p . For 1 ≤ i ≤ p − 1,

vbi(−a)p−i = −vp2 , and the binomial coefficient is divisible by p, so the sum lies
in the valuation ideal and the residue of (3) is 1. It follows that v(b − a) = 0 and
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(b − a)v is a root of the irreducible polynomial Xp − X − 1 over Fp . But this
contradicts the fact that by construction, Lv = Fp . �

3. Additive polynomials over extremal fields

We start by introducing a more precise notion of extremality. Take a valued field
(K, v), a subset S of K, and a polynomial f in n variables over K. Then we say
that (K, v) is S-extremal with respect to f if the set vf(Sn) ⊆ vK ∪ {∞} has
a maximum. We say that (K, v) is S-extremal if it is S-extremal with respect
to every polynomial in any finite number of variables. With this notation, (K, v)
being extremal means that it is O-extremal, where O denotes the valuation ring of
(K, v).

A subset S of a valued field (K, v) has the optimal approximation property
if for every z ∈ K there is some y ∈ S such that v(z − y) = max{v(z − x) | x ∈ S}.
A polynomial h ∈ K[X1, . . . , Xn] is called a p-polynomial if it is of the form f+c,
where f ∈ K[X1, . . . , Xn] is an additive polynomial and c ∈ K. The proof of the
following observation is straightforward:

Lemma 3.1. The images of all additive polynomials over (K, v) have the opti-
mal approximation property if and only if K is K-extremal with respect to all p-
polynomials over K.

We will work with ultrametric balls

Bα(a) := {b ∈ K | v(a− b) ≥ α} ,
where α ∈ vK and a ∈ K. Observe that O = B0(0). We note:

Proposition 3.2. Take α, β ∈ vK and a, b ∈ K. Then (K, v) is Bα(a)-extremal
if and only if it is Bβ(b)-extremal. In particular, (K, v) is Bα(a)-extremal if and
only if it is extremal.

Proof. It suffices to prove that “Bα(a)-extremal” implies “Bβ(b)-extremal”. Take a
polynomial f in n variables. If c ∈ K is such that vc = β−α, then the function y 7→
c(y− a) + b establishes a bijection from Bα(a) onto Bβ(b). We set g(y1, . . . , yn) :=
f(c(y1 − a) + b, . . . , c(yn − a) + b). It follows that f(Bβ(b)n) = g(Bα(a)n), whence
vf(Bβ(b)n) = vg(Bα(a))n. Hence if (K, v) is Bα(a)-extremal with respect to g, then
it is Bβ(b)-extremal with respect to f . This yields the assertions of the proposition.

�

A valued field (K, v) of characteristic p > 0 is called inseparably defectless if
every finite purely inseparable extension (L|K, v) satisfies equation (1) (note that
the extension of v from Kp to L is unique). This holds if and only if every finite
subextension of (K|Kp, v) satisfies equation (1).

If (K, v) is inseparably defectless with [K : Kp] < ∞, then for every ν ≥ 1, the
extension (K|Kpν , v) has a valuation basis, that is, a basis of elements b1, . . . , bm
that are valuation independent over Kpν , i.e.,

v(c1b1 + . . .+ cmbm) = min
1≤i≤m

vcibi

for all c1, . . . , cm ∈ Kpν .
Note that every algebraically complete valued field is in particular inseparably

defectless. By Theorem 1.1, every extremal field is algebraically complete and hence
inseparably defectless.
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Proposition 3.3. Take an inseparably defectless valued field (K, v) with [K : Kp] <
∞ and an additive polynomial f in n variables over K. Then for some integer ν ≥ 0
there are additive polynomials g1, . . . , gm ∈ K[X] in one variable such that

a) f(Kn) = g1(K) + . . .+ gm(K),
b) all polynomials gi have the same degree pν ,
c) the leading coefficients b1, . . . , bm of g1, . . . , gm are valuation independent over
Kpν .

Proof. The proof can be taken over almost literally from Lemma 4 of [2]. One only
has to replace the elements 1, t, . . . , tδi−1 from that proof by an arbitrary basis of
K|Kδi . �

The following theorem is a reformulation of Theorem 1.8 of the Introduction.

Theorem 3.4. Assume that (K, v) is an extremal field of characteristic p > 0 with
[K : Kp] < ∞. Then it is K-extremal w.r.t. all p-polynomials and therefore, the
images of all additive polynomials have the optimal approximation property.

Proof. Take a p-polynomial h in n variables over K, and write it as h = f + c with
f an additive polynomial in n variables over K and c ∈ K. We choose additive
polynomials g1, . . . , gm ∈ K[X] in one variable satisfying assertions a), b), c) of
Proposition 3.3. Then h(Kn) = g1(K) + . . .+ gm(K) + c.

We write gi = biX
pν + ci,ν−1X

pν−1

+ . . .+ ci,0X for 1 ≤ i ≤ m. Then we choose
α ∈ vK such that

α < min{0, vc− vbi , vci,k − vbi | 1 ≤ i ≤ m, 0 ≤ k < ν} .

Because α < 0, it then follows that for each a with va ≤ α,

vbi + pνva ≤ vbi + pνα ≤ vbi + α < vc

and for 0 ≤ k < ν,

vbi + pνva ≤ vbi + pνα ≤ vbi + α+ pkα < vci,k + pkva .

It then follows that

(4) vgi(a) = vbi + pνva ≤ vbi + pνα < vc .

On the other hand, if va′ ≥ α, then vbi + pνva′ ≥ vbi + pνα and vci,k + pkva′ ≥
vci,k + pkα > vbi + pνα for 0 ≤ k < ν. This yields that

(5) vgi(a
′) ≥ vbi + pνα .

Now take any (a′1, . . . , a
′
m) ∈ Bα(0)n and (a1, . . . , am) ∈ Kn \ Bα(0)n. So we

have:

min{va1, . . . , vam} < α ≤ min{va′1, . . . , va′m} .
Since b1, . . . , bm are valuation independent over Kpν , we then obtain from (4) and
(5) that

vh(a1, . . . , am) = min
1≤i≤m

vbi + pνvai

< min
1≤i≤m

vbi + pνα ≤ vh(a′1, . . . , a
′
m) .

This proves that

vh(Bα(0)n) > vh(Kn \Bα(0)n) .
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Since (K, v) is extremal by assumption, Proposition 3.2 shows that vh(Bα(0)n) has
a maximal element, and the same is consequently true for vh(Kn). This shows that
(K, v) is K-extremal w.r.t. h, from which the first assertion follows. The second
assertion follows by Lemma 3.1. �

4. More about extremal fields

It follows from [1, Theorem 5.1] that the Laurent series fields (Fp((t)), vt) and
the p-adic fields (Qp, vp) are extremal. The former have equal characteristic, the
latter mixed characteristic. All of them have Z as their value group, which is a
Z-group.

In [5] a valued field extension (L, v) of (Fp((t)), vt) is presented in which not all
images of additive polynomials have the optimal approximation property. In [1] it
is shown that (L, v) is not extremal, although it is algebraically complete and its
value group vL is a Z-group (of rank 2). It is also shown that for the nontrivial
coarsening w of v corresponding to the convex subgroup (vtt)Z of vL, also (L,w)
is not extremal. Its value group wL = vL/(vtt)Z is divisible and its residue field
Lw = Fp((t)) is large, but not perfect. Note that (L, v) and (L,w) are of equal
characteristic.

In order to prove the remaining existence statements of Proposition 1.10, we
consider compositions of valuations. Unfortunately, contrary to our assertion that
the proof of Lemma 5.2 of [1] is easy (and thus left to the reader), we are unable
to prove it in the cases that are not covered by Proposition 1.6. (However, we also
do not know of any counterexample.) In fact, a slightly different version can easily
be proved: If (K, v) is Ov-extremal, then also (K,w) is Ov-extremal. We do not
know whether the latter impies that (K,w) is Ow-extremal. Proposition 3.2 is of
no help here because Ov is in general not a ball of the form Bα(a) in (K,w).

It appears, though, that we actually had in mind the following result, which is
indeed easy to prove:

Lemma 4.1. If (K, v) is extremal and v = w ◦ w, then (Kw,w) is extremal.

Proof. Assume that (K, v) is extremal with v = w ◦w; note that for any a, b ∈ Ow ,
w(aw) > w(aw) implies va > vb.

Assume further that g ∈ Kw[X1, . . . , Xn]. Then choose f ∈ Ow such that
fw = g. By assumption, there are b1, . . . , bn ∈ Ov such that

vf(b1, . . . , bn) = max{vf(a1, . . . , an) | a1, . . . , an ∈ Ov} .
Since b1, . . . , bn ∈ Ov ⊆ Ow we have that

f(b1, . . . , bn)w = fw(b1w, . . . , bnw) = g(b1w, . . . , bnw) .

We claim that

wg(b1w, . . . , bnw) = max{wg(a1, . . . , an) | a1, . . . , an ∈ Ow} .
Indeed, if there were a1, . . . , an ∈ Ow with wg(a1, . . . , an) > wg(b1w, . . . , bnw),
then for any choice of a1, . . . , an ∈ Ow with aiw = ai for 1 ≤ i ≤ n we would obtain
that vf(a1, . . . , an) > vf(b1, . . . , bn), a contradiction. �

It remains to prove the existence of the non-extremal fields in mixed character-
istic as claimed in Proposition 1.10. We consider again the two non-extremal fields
(L, v) and (L,w) mentioned above. By Theorem 2.14 of [6] there is an extension
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(K0, v0) of (Q, vp) with divisible value group and L as its residue field. We replace
(K0, v0) by a maximal immediate extension (M,v0). Then (M, v0) is algebraically
complete, and so are (M, v0 ◦ v) (M,v0 ◦ w). The value group of (M,v0 ◦ v) is
a Z-group, and (M, v0 ◦ w) has divisible value group and nonperfect large residue
field. But by Lemma 4.1, both fields are non-extremal. This completes the proof
of Proposition 1.10.

For the conclusion of this paper, let us discuss how the property of extremality
behaves in a valued field extension (L|K, v) where (K, v) is existentially closed in
(L, v). In this case, it is known that L|K and Lv|Kv are regular extensions and
that vL/vK is torsion free. (An extension L|K of fields is called regular if it is
separable and K is relatively algebraically closed in L.)

Proposition 4.2. Take a valued field extension (L|K, v) such that (K, v) is exis-
tentially closed in (L, v), a subset SK of K that is definable with parameters in K,
and a polynomial f in n variables over K. Denote by SL the subset of L defined
by the sentence that defines SK in K. Then the following assertions hold.
a) If (K, v) is SK-extremal w.r.t. f , then (L, v) is SL-extremal w.r.t. f and
max vf(SnL) = max vf(SnK). In particular, if (K, v) is extremal, then (L, v) is
extremal w.r.t. all polynomials with coefficients in K.
b) Assume in addition that vL = vK. If (L, v) is SL-extremal w.r.t. f , then (K, v)
is SK-extremal w.r.t. f and max vf(SnL) = max vf(SnK). In particular, if (L, v) is
extremal, then so is (K, v).

Proof. a): Assume that a ∈ SnK such that vf(a) = max vf(SnK). Then the assertion
that there exists an element b in SnL such that vf(b) > vf(a) is an elementary
existential sentence with parameters in K. Hence if it held in L, then there would
be an element b′ in SnK such that vf(b′) > vf(a), which is a contradiction to the
choice of a. It follows that max vf(SnL) ≤ max vf(SnK). Since SK ⊆ SL , we obtain
that max vf(SnL) = max vf(SnK).

b): Take b ∈ SnL such that vf(b) = max vf(SnL). Since vL = vK by assumption,
there is c ∈ K such that vc = vf(b). Now the assertion that there exists an
element b in SnL such that vf(b) = vc is an elementary existential sentence with
parameters in K. Hence there is a ∈ SnK such that vf(a) = vc = max vf(SnL).
Since vf(a) ∈ vf(SnK) ⊆ vf(SnL), we obtain that vf(a) = max vf(SnK). �
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