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Valuation theory of exponential Hardy fields II: Principal
parts of germs in the Hardy field of o-minimal exponential

expansions of the reals

Dedicated to the memory of Murray Marshall

Franz-Viktor Kuhlmann and Salma Kuhlmann

Abstract. We present a general structure theorem for the Hardy field of an

o-minimal expansion of the reals by restricted analytic functions and an un-
restricted exponential. We proceed to analyze its residue fields with respect

to arbitrary convex valuations, and deduce a power series expansion of expo-
nential germs. We apply these results to cast “Hardy’s conjecture” in a more

general framework.

1. Introduction

This paper is a follow up to [6] and is partially based on unpublished results
of [4]. A previous version [5] (which was dedicated to Murray A. Marshall on his
60th birthday) remained unpublished. In [9] our structure theorem for the residue
fields was rediscovered and applied to the diophantine context. Due to this revived
interest, we decided to rework the arXiv preprint [5] and to dedicate the paper to
the memory of Murray Marshall.

Let us give a quick overview of the contents of this paper. We analyze the
structure of the Hardy fields associated with o-minimal expansions of the reals
with exponential function. More precisely, we take T to be the theory of a poly-
nomially bounded o-minimal expansion P of the ordered field of real numbers by
a set FT of real-valued functions. We assume that the language of T contains a
symbol for every 0-definable function, and that T defines the restricted exponen-
tial and logarithmic functions. Now let T (exp) denote the theory of the expansion
(P, exp) where exp is the un-restricted real exponential function. Then also T (exp)
is o-minimal, and admits quantifier elimination and a universal axiomatization in
the language augmented by log [2]. We consider the Hardy field H(P, exp) (see
Section 2.2 for the definition). Our general assumptions (see Section 2.3) imply
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that H(P, exp) is a model of T (exp) and is equal to the closure LEFT
(x) of its

subfield R(x) under real closure, FT , exp and its inverse log; here, x denotes the
germ of the identity function [1].

We study convex valuations on H(P, exp). To this end, for F ⊆ FT , we introduce
an intrinsic form of power series expansions for the elements of LEF (x). We use
monomials, which are the elements in the image of a suitable cross-section, together
with coefficients from residue fields LEF (x)w with respect to significant convex
valuations w. We apply our results in particular to F = Fan (the family of restricted
analytic functions), T = Tan (the polynomially bounded o-minimal theory of the
expansion Ran of the reals by restricted analytic functions), see [1] for more details
about this theory.

The paper is organised as follows. In Section 2 we gather in a concise manner the
necessary background. In Section 3 we prove our structure theorem for LEF (x) and
its residue fields, see Theorem 3.2. The main result leading to the definition of prin-
cipal parts (see the definition in Section 4) is Theorem 4.1. Section 4 is dedicated to
its proof. The final Section 5 considers applications to the Hardy field H(Ran,exp).
The principal part of a function h ∈ H(Ran,exp) carries information about the as-
ymptotic behavior of the function exph(x) (Theorem 5.1). Corollary 5.2 gives a
powerful criterion - using principal parts - for an exponential germ to be asymptotic
to a composition of semialgebraic functions, exp, log and restricted analytic func-
tions. This puts the particular solution of the Hardy problem (see [7, p.111]) in a
more general framework; see the computations following Corollary 5.2. Finally, we
provide a further application to embeddings of Hardy fields into fields of generalized
power series, see Corollary 5.3.

2. Some preliminaries

2.1. Valuations. If (K,w) is a valued field, then we write wa for the value of
a ∈ K and wK for its value group {wa | 0 6= a ∈ K}. Further, we write aw for the
residue of a, and Kw for the residue field. The valuation ring is denoted by Ow .
For generalities on valuation theory, see [8], and for convex valuations in particular
see [7] or [3].

A valuation w on an ordered field K is called convex if Ow is convex. The
set of convex valuation rings of an ordered field is linearly ordered by inclusion. If
Ow ⊂

6= Ow′ then w is said to be finer than w′, and w′ is a coarsening of w. If w

and w′ are two convex valuations on the same ordered field, we will write w < w′

if w is a proper coarsening of w′, that is, if Ow′ ⊂
6= Ow .

There is always a finest convex valuation, called the natural valuation. It is
characterized by the fact that its residue field is archimedean. A valuation w on an
ordered field is convex if and only if the natural valuation is finer than or equal to
w. Throughout this paper, v will always denote the natural valuation, unless stated
otherwise.

If a, b are elements of an ordered group or an ordered field, then we write
a � b < 0 if a < b < 0 and ∀n ∈ N : a < nb. Similarly, a � b > 0 if a > b > 0
and ∀n ∈ N : a > nb. We set |a| := max{a,−a}. Then the natural valuation is
characterized by:

(2.1) va < vb ⇔ |a| � |b| .
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Note that if R ⊂ K and a ∈ K with va = 0, then there is some r ∈ R such that
v(a− r) > 0. Further, wr = 0 for every non-zero r ∈ R and every convex valuation
w.

Lemma 2.1. Let v, w be arbitrary valuations on some field K. Suppose that v
is finer than w. Then for all a, b ∈ K,

(2.2) va ≤ vb ⇒ wa ≤ wb .

In particular, wa > 0⇒ va > 0. Further, Hw := {vz | z ∈ K ∧wz = 0} is a convex
subgroup of the value group vK of v. We have that vz ∈ Hw ⇔ z ∈ O×w . There
is a canonical isomorphism wK ' vK/Hw . Conversely, every convex subgroup of
vK is of the form Hw for some valuation w such that v is finer or equal to w.

The valuation v of K induces a valuation v/w on Kw. There are canonical
isomorphisms v/w(Kw) ' Hw and (Kw)v/w ' Kv. If Kw is embedded in Ow such
that the restriction of the residue map is the identity on Kw, then v/w = v|Kw (up
to equivalence). Writing v instead of v|Kw , we then have that v(Kw) = Hw and
(Kw)v = Kv.

We will call Hw the convex subgroup associated with w and w the val-
uation associated with Hw . Since the isomorphism is canonical, we will write
wK = vK/Hw .

The order type of the chain of nontrivial convex subgroups of an ordered abelian
group G is called the rank of G. If finite, then the rank is not bigger than the
maximal number of rationally independent elements in G (which is the dimension
of its divisible hull as a Q-vector space). In particular, G has finite rank if it is
finitely generated.

From (2.1) and (2.2) it follows that for every convex valuation w,

(2.3) |a| ≤ |b| ⇒ wa ≥ wb .

Take any valued field (K, v). A field of representatives for the residue
field of (K, v) is a subfield k of K such that v is trivial on k (or equivalently, k
is contained in the valuation ring O), and for every a ∈ O there is b ∈ k such
that v(a − b) > 0. It then follows that the residue map O 3 a 7→ av induces an
isomorphism from k to the residue field. A cross-section of (K, v) is an embedding
ι of the value group vK in the multiplicative group K× such that vι(α) = α for all
α ∈ vK.

2.2. Hardy fields. Let us recall some basic facts about Hardy fields (see
Chapter 6, Section 2 in [7]). Assume that T is the theory of any o-minimal expan-
sion R of the ordered field of real numbers by real-valued functions. The Hardy
field of R, denoted by H(R), is the set of germs at ∞ of unary R-definable func-
tions f : R→ R. Then H(R) is an ordered differential field which contains R as a
substructure. Let x ∈ H(R) be the germ of the identity function. Then H(R) is
the closure of R(x) under all 0-definable functions of R, [1].

If f, g are non-zero unary R-definable functions on R, then we will denote their
germs in H(R) by the same letters. The following holds for non-zero germs:

(2.4) vf = vg ⇐⇒ lim
x→∞

f(x)

g(x)
is a non-zero constant in R .
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The non-zero germs f and g are asymptotic if and only if this constant is 1, and
we have:

(2.5) f and g are asymptotic ⇐⇒ v(f − g) > v(g) .

see [7, Lemma 6.22]

2.3. General assumptions on T . Throughout this paper, we will assume
that T is the theory of a polynomially bounded o-minimal expansion P of the
ordered field of real numbers by real-valued functions. Further, we assume that T
defines the restricted exp and log. Then also T (exp) is o-minimal (cf. [2]). Here,
T (exp) denotes the theory of the expansion (P, exp) where exp is the un-restricted
real exponential function.

We let FT denote the set of function symbols in the language of T and assume
that there is a function symbol in FT for each 0-definable function of P. This
implies that T admits quantifier elimination and a universal axiomatization. We
let F denote any subset of FT .

We denote by M a model of T . Often, we will assume further that M is a
model of T (exp) (but will not distinguish notationally between M and its reduct to
the language of T .) Suppose that the field K is a submodel (and hence elementary
submodel) of M . Take xi ∈ M , i ∈ I. By K〈xi | i ∈ I〉 we denote the 0-definable
closure of K ∪ {xi | i ∈ I} in M . By our assumption on the language of T , it is the
closure of K ∪{xi | i ∈ I} under FT , that is, the smallest subfield of M containing
K∪{xi | i ∈ I} and closed under all functions which interpret the function symbols
of FT in M . Since T admits a universal axiomatization and K〈xi | i ∈ I〉 is
a substructure of M , it is a model of T . Since T admits quantifier elimination,
K〈xi | i ∈ I〉 is an elementary substructure of M .

For an arbitrary subfield F ⊆ M , the real closure F r of F can be taken to
lie in M since M is real closed. We denote by F h the henselization of (F, v). It
can be taken to lie in M since the natural valuation v of the real closed field M is
henselian.

We let FF denote the smallest subfield of M which contains F and is F-
closed, that is, closed under all functions on M which are interpretations of function
symbols in F . Analogously, we define F hF to be the smallest subfield of M which
contains F and is F-closed and henselian w.r.t. v, and F rF to be the smallest such
subfield which is in addition real closed. Note that FF ⊆ F hF ⊆ F rF .

3. A general structure theorem for LEF (x)

In what follows, we work under the assumptions of [7, Lemma 6.40; pp. 104-
105]. More precisely, we let M be a model of T = Tan (or of Tan(exp)), and
F ⊂ Fan be an arbitrary set of convergent power series representing restricted
analytic functions, closed under partial derivatives, and containing the restricted
exp and log.

For the proof Theorem 3.2 below, we need the following lemma.

Lemma 3.1. Let M be a model of Tan, xi ∈M be such that the values vxi , i ∈ I
are rationally independent. Further, let w be any convex valuation. Let Iw ⊂ I be
a subset of I such that wxi = 0 for all i ∈ Iw and the values wxi , i ∈ I \ Iw are
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rationally independent. Then

wR(xi | i ∈ I)rF =
⊕
i∈I\Iw

Qwxi and wR(xi | i ∈ I)hF =
⊕
i∈I\Iw

Zwxi .

Further,
R(xi | i ∈ Iw)rF

is a field of representatives for the residue field R(xi | i ∈ I)rFw, and

R(xi | i ∈ Iw)hF

is a field of representatives for the residue field R(xi | i ∈ I)hFw.

Assume in addition that all xi with i ∈ I \ Iw are positive. Then the multi-
plicative group of R(xi | i ∈ I \ Iw)rF contains the divisible hull X of the group
generated by all of these xi, X is the image of a suitably chosen cross-section, and
the following holds:

(3.1) R(xi | i ∈ Iw)rF (X )r = R(xi | i ∈ Iw)rF (X )h .

Proof. The first part of this lemma is [7, Lemma 6.40].
Now assume that all xi > 0 for all i ∈ I \ Iw. Since R(xi | i ∈ I \ Iw)rF

is real closed, it contains x
1/k
i for all i ∈ I \ Iw and k ∈ N. This yields that its

multiplicative group contains the divisible hull X of the group generated by all of
these xi .

The restriction of w to X is a group homomorphism onto the value group
wR(xi | i ∈ I)rF ; it is injective since the values wxi , i ∈ I \ Iw are rationally
independent. The inverse of this isomorphism is a cross-section with image X .

From what we have proved, we obtain that wR(xi | i ∈ Iw)rF (X )h = wR(xi |
i ∈ Iw)rF (X ) = wR(xi | i ∈ I)rF , which is divisible. Further, the residue field of
R(xi | i ∈ Iw)rF (X )h is R(xi | i ∈ Iw)rF , which is real closed. Thus by [3, Theorem
4.3.7], R(xi | i ∈ Iw)rF (X )h is real closed, which gives equation (3.1). �

We now fix any non-archimedean model M of T (exp) which contains the struc-
ture (R,+, ·, <,F , exp) as a substructure. We recall from the introduction that
LEF (x) denotes the closure of the subfield R(x) under real closure, F , exp and its
inverse log; here, x denotes any infinitely large and positive element (i.e. x > 0 and
vx < 0). The following is the structure theorem which we will put to work.

Theorem 3.2. LEF (x) is of the form

(3.2) R(X )rF = R(X )hF ,

where X is a subgroup of the multiplicative group of positive elements of LEF (x)
which is the image of a cross-section, with the following properties:

a) X contains x and logm x for all m ∈ N,

b) for every convex valuation w on LEF (x), if

Xw := {x′ ∈ X | wx′ = 0} ,
then

(3.3) R(Xw)rF = R(Xw)hF ⊆ LEF (x)

is a field of representatives for the residue field LEF (x)w. Identifying LEF (x)w
with this field of representatives, we obtain that

(3.4) LEF (x)w ⊆ LEF (x)w′ ⊆ LEF (x)
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for all coarsenings w of v and w′ of w.

Note that the set X is not uniquely determined. However, we will fix it through-
out this paper and call the elements of X the monomials of LEF (x). Correspond-
ingly, we fix the residue fields LEF (x)w = R(Xw)hF for all convex valuations w on
LEF (x)w.

Proof. According to [7, Theorem 6.30], LEF (x) is of the form

(3.5) R(xi | i ∈ I)rF with xi > 0 and vxi rationally independent,

and x and logm x, m ∈ N, among the xi . Applying Lemma 3.1 with w = v, we
find that the multiplicative group of LEF (x) contains the divisible hull X of the
subgroup generated by the xi , and that X is the image of a cross-section. With
Iv = ∅, we further obtain that R(X )rF = R(X )hF , which implies equation (3.2).

It remains to prove part b). Take a convex valuation w on LEF (x). The group
X is isomorphic to the divisible value group vLEF (x), so it is a Q-vector space.
For Xw = {x′ ∈ X | wx′ = 0}, the values vXw form a convex subgroup of this value
group, which consequently is also divisible and a Q-vector space. Hence also Xw is
a Q-vector space. We choose a basis Bw of Xw and a basis B′w of a complement of
Xw in X . We write Bw = {xi | i ∈ Iw}, B′w = {xi | i ∈ I ′w} and set I = Iw ∪ I ′w .
As {xi | i ∈ I} is a basis of X which is isormorphic to the value group through the
valuation, the values vxi, i ∈ I, are rationally independent. Further, the elements
xi, i ∈ I \ Iw = I ′w are Q-linearly independent over the Q-vector space Xw , which
means that no nontrivial linear combination of these elements has value 0 under w.
In other words, the values wxi, i ∈ I \ Iw , are rationally independent.

Now we apply Lemma 3.1 to obtain that R(xi | i ∈ Iw)rF is a field of represen-
tatives for the residue field R(xi | i ∈ I)rFw. We apply Lemma 3.1 again, this time
to the field R(xi | i ∈ Iw)rF with its natural valuation v, to find that

R(xi | i ∈ Iw)rF = R(Xw)rF = R(Xw)hF .

For coarsenings w of v and w′ of w we have that wa = 0 implies w′a = 0, whence
Xw ⊆ Xw′ . This yields equation (3.4) and concludes the proof. �

4. An intrinsic version of “truncation at 0”

Theorem 4.1. Take h ∈ LEF (x) such that vh < 0. Then there are convex
valuations w1 < w2 < . . . < wk = v on LEF (x), mi ∈ N, monomials di,j ∈ X and

elements ci,j ∈ LEF (x)wi, 1 ≤ i ≤ k, 1 ≤ j ≤ mi, some rh ∈ R, and h
+ ∈ LEF (x)

of value vh
+

> 0, such that

(4.1) h = c1,1d1,1 + . . .+ c1,m1
d1,m1

+ . . .+ ck,1dk,1 + . . .+ ck,mk
dk,mk

+ rh + h
+

with:

1) the values of the summands under the valuation v are strictly increasing,

2) for each i, 1 ≤ i ≤ k,

wici,1di,1 < . . . < wici,mi
di,mi

,

and the values vdi,j, 1 ≤ j ≤ mi generate an archimedean ordered subgroup of
vLEF (x),

3) for each i, 1 ≤ i ≤ k − 1,

ci+1,1di+1,1 + . . .+ ci+1,mi+1
di+1,mi+1

+ . . .+ ck,1dk,1 + . . .+ ck,mk
dk,mk
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lies in LEF (x)wi .

With these properties, the summands ci,j, di,j and the elements rh and h
+

are
uniquely determined.

Given the representation (4.1) of an element h according to this theorem, the
finite sum

pp(h) := c1,1d1,1 + . . .+ c1,m1
d1,m1

+ . . .+ ck,1dk,1 + . . .+ ck,mk
dk,mk

will be called the principal part of h; we set pp(h) := 0 if vh ≥ 0. The principal
part is uniquely determined once the set of monomials in LEF (x) is fixed. Note
that v(h− pp(h)− rh) > 0 with rh ∈ R.

The following lemma is the core of our proof:

Lemma 4.2. Let (K,w) be a valued field with archimedean value group. Assume
that K = K0(zj | j ∈ J), where the values wzj , j ∈ J , are rationally independent
and w is trivial on K0 . Denote by Z the multiplicative group 〈zj | j ∈ J〉 generated
by the elements zj . Then the group ring

R := K0[Z]

lies dense in K (with respect to the topology induced by w). Moreover, for each
a ∈ K \ Ow there are uniquely determined elements ci ∈ K0 and di ∈ Z with
wcidi < 0, 1 ≤ i ≤ m, such that

(4.2) a −
m∑
i=1

cidi ∈ Ow .

The same holds if we replace K by its henselization or its completion.

Proof. In order to prove that R lies dense in its quotient field K it suffices to
show that for every a ∈ R and every α ∈ wK there is a′ ∈ R such that w(a−1−a′) ≥
α. We write

a = b1d1 + . . .+ bkdk

where d1, . . . , dk ∈ Z are distinct and b1, . . . , bk ∈ K0 are nonzero. From the
rational independence of the values wzj it follows that every two distinct elements
in Z and hence all bidi have distinct values. Therefore, we may assume that b1d1

is the unique summand of least value in a. Now we write

1

a
= b−1

1 d−1
1

1

1− d
with d := −b2d2

b1d1
− . . .− bkdk

b1d1

and b−1
1 ∈ K0 , d−1

1 ∈ Z. Note that d2
d1
, . . . , d`d1 are elements of Z of positive value.

Hence, also wd > 0. It follows that

w

(
1

1− d
−
∑̀
i=0

di

)
= w

(
1− (1− d)

∑̀
i=0

di

)
= w(−d`+1) = (`+ 1)wd

for every integer ` ≥ 1. Take α ∈ wK. Since wK is archimedean, we can choose `
as big as to obtain that (`+ 1)wd ≥ α+ wd1 . For

a′ := b−1
1 d−1

1

∑̀
i=0

di ∈ R ,
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this yields that

w

(
1

a
− a′

)
= w(b1d1)−1

(
1

1− d
−
∑̀
i=0

di

)
= −wd1 + (`+ 1)wd ≥ α .

This completes the proof that R lies dense in K.

The density yields that for each a ∈ K \ Ow there are elements ci ∈ K0 and
di ∈ Z such that (4.2) holds. It remains true if summands of nonnegative value are
deleted, so we may assume that wcidi < 0 for 1 ≤ i ≤ m. We have to prove the
uniqueness of the elements ci , di under this condition.

Take two elements r, r′ ∈ R in which all summands have value smaller than
α, and such that w(a − r) ≥ α and w(a − r′) ≥ α. It follows that w(r − r′) ≥ α.
Allowing the coefficients bi, ci to be zero, we can write r = c1d1 + . . .+ cmdm and
r′ = b1d1 + . . .+ bmdm where d1, . . . , dm ∈ Z are distinct and bi, ci ∈ K0 . Then

r′ − r = (b1 − c1)d1 + . . .+ (bm − cm)dm .

As the value of this sum is equal to the minimum of its summands (bi−ci)di, we see
that w(bi − ci)di ≥ w(r′ − r) ≥ α for all i. But if there is some i such that bi 6= ci ,
then this yields wdi ≥ α. As bi 6= 0 or ci 6= 0 it then follows that wbidi = wdi ≥ α
or wcidi = wdi ≥ α, a contradiction to our initial assumption. Consequently, the
representation r = c1d1+. . .+cmdm is uniquely determined when all ci are nonzero.

Every valued field is dense in its completion (by definition). Since wK is
archimedean, the henselization of (K,w) lies in the completion and thus, (K,w) is
also dense in its henselization. Since density is transitive, we find that R is also
dense in the henselization and in the completion of (K,w). It follows that the
assertions we have proved for a ∈ K also hold when a lies in the henselization or
completion. �

The following is [7, Lemma 6.41]:

Lemma 4.3. Let xi ∈ M such that xi > 0 and the values vxi , i ∈ I are
rationally independent. Then

(4.3) R(xi | i ∈ I)rF =
⋃

I0⊂I finite

⋃
k∈N

R(x
1/k
i | i ∈ I0)hF .

In order to prove Theorem 4.1, take any h ∈ LEF (x). We will work with the
representation of LEF (x) as given in Theorem 3.2. Lemma 4.3 shows that there is
a finitely generated subgroup Xh of X such that h ∈ R(Xh)hF ⊂ R(Xh)rF . Denote
by X ′ the divisible hull of Xh inside the divisible group X . Since vX ′ is isomorphic
to X ′ which is the divisible hull of a finitely generated abelian group, it must have
finite rational rank dimQ Q ⊗ vX ′. Therefore, vX ′ has only finitely many convex
subgroups, say,

vX ′ = Γ1 ⊃ Γ2 ⊃ . . . ⊃ Γk+1 = {0}
such that Γi/Γi+1 is archimedean ordered, for 1 ≤ i ≤ k. Further, we choose
convex valuations w1 < . . . < wk on LEF (x) such that the restriction of wi to K
is a convex valuation corresponding to Γi+1, having value group vX ′/Γi+1 . Since
Γk+1 = {0}, we can choose wk = v. Each

X ′i := {x′ ∈ X ′ | vx′ ∈ Γi} , 1 ≤ i ≤ k
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is a Q-sub vector space of the Q-vector space X ′. We choose a Q-basis Bk of X ′k,
and if k > 1, Q-bases Bi of complements of X ′i+1 in X ′i for 1 ≤ i ≤ k−1. We obtain

that B :=
⋃
i Bi is a Q-basis of X ′ and that h ∈ R(B)rF .

From Lemma 4.3 we infer that h ∈ R(b1/` | b ∈ B)hF =: K for some ` ∈ N.
Since we may replace each basis element b by b1/`, we can assume that ` = 1.

Now we proceed by induction on k. We assume that k = 1 or that the theorem
has been proven for all elements in R(B)hF , where B ⊂ B corresponds to a value
group that has less convex subgroups than vX ′.

The value group of the convex valuation w1 on K is the archimedean ordered
group vX ′/Γk−1 . We set B = ∅ if k = 1, and B =

⋃
2≤i≤k Bi if k > 1. From

Lemma 3.1 we infer that R(B)hF is a field of representatives for the residue field
Kw1 .

We apply Lemma 4.2 with Z equal to the group generated by B1 and K0 =
R(B)hF to deduce the existence of uniquely determined elements

c1,j ∈ R(B)hF ⊂ R(Xw1)hF = LEF (x)w1

and

d1,j ∈ Z ⊂ X , 1 ≤ j ≤ m1 ,

with

w1c1,1d1,1 < . . . < wic1,m1d1,m1 < 0

and such that w1(h −
∑m1

j=1 c1,jd1,j) ≥ 0. Thus, there is a unique element h̄ ∈
R(B)hF such that

w1(h−
m∑
i=1

cidi − h̄) > 0 .

By definition of B1 we have that vZ ⊆ Γ1 and vZ ∩Γ2 = {0}, which shows that vZ
is archimedean. The same consequently holds for its subgroup that is generated by
the values vd1,j , 1 ≤ j ≤ m1 .

If k = 1, then R(B)hF = R and we can set rh = h̄ ∈ R to obtain that
v(h−

∑m
i=1 cidi − rh) > 0.

If k > 1, then by induction hypothesis we know that our theorem holds for the
element h̄. We can thus write

h̄ = c2,1d2,1 + . . .+ c2,m2
d2,m2

+ . . .+ ck,1dk,1 + . . .+ ck,mk
dk,mk

+ rh̄ + h̄
+

such that the conditions of Theorem 4.1 are satisfied for h̄ in place of h (and with

w1 omitted). Now we set rh := rh̄ and h
+

:= h̄
+

to obtain a representation of the
form (4.1) for h. It is straightforward to see that properties 2) and 3) are satisfied.
Also 1) holds since w1z 6= 0 for all z ∈ Z, which implies that vc1,jd1,j < Γ2 for

1 ≤ j ≤ m1 , whereas w1y = 0 for all y ∈ R(B)hF , which implies that vci,jdi,j ∈ Γ2

for 2 ≤ i ≤ k and 1 ≤ j ≤ mi . This completes the proof of Theorem 4.1.

5. Applications

Theorem 5.1. Let f, g : R → R be ultimately positive R-definable functions.
Then f is asymptotic to rg on R for some positive r ∈ R if and only if the germs
log f and log g in H(R) have the same principal part.
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Proof. We know from (2.5) that f is asymptotic to rg on R if and only if
v(log f − log rg) > 0. This in turn is equivalent to v(log f − log g) ≥ 0, since if the
latter holds, then there is some r0 ∈ R such that v(log f − log g − r0) > 0, and we
set r = exp r0 . By the uniqueness of the principal part, v(log f − log g) ≥ 0 if and
only if pp(log f) = pp(log g). �

To apply this theorem in the spirit of the Hardy problem, we take F to be
any set of restricted analytic functions, closed under partial derivations. Then
by applying [7, Theorem 6.30] simultaneously for F and Fan , we find index sets
IF ⊂ I and elements xi such that LEF (x) = R(xi | i ∈ IF )rF and LEFan

(x) =
R(xi | i ∈ I)rFan . So the monomials of LEF (x) will also be monomials of LEFan

(x).
Moreover, we can take

LEF (x)w ⊆ LEFan(x)w

for each convex valuation w and suitable m0 , according to Theorem 3.2. Using
principal parts determined by this choice of the xi and the residue fields, we get:

Corollary 5.2. Assume that h : R → R is definable in Ran,exp. Then exph
is asymptotic to a composition of semialgebraic functions, exp, log and restricted
analytic functions in F , if and only if pp(h) ∈ LEF (x).

As an example, let us reconsider the Hardy problem. Here we assume in addi-
tion that the xi include x (cf. Theorem 3.2).

Take two functions f, g : R→ R, definable in Ran,exp. Assume that exp f(x) is

asymptotic to g(x), that is, limx→∞
exp f(x)
g(x) = 1. This is equivalent to

lim
x→∞

f(x)− h(x) = 0 ,

where h : (r,∞) → R for suitable r ∈ R is the function log g(x), which again is
definable in Ran,exp. This means that the function f(x)−h(x) is ultimately smaller
than every nonzero constant function. Equivalently, its germ f − h in H(Ran,exp)
is infinitesimal, or in other words, v(f − h) > 0.

As in [1], let the function i(x) denote the compositional inverse of the function
x log x. Identifying i(x) with its germ, we have that i(x) ∈ H(Ran,exp). But by
an argument about Liouville extensions of the Hardy field R(x), [1, Corollary 4.6]
shows that i(x) /∈ LE := LEFan

(x). Assume that exp i(x) were asymptotic to
a function g(x) which is a composition of semialgebraic functions, exp and log.
Through identification with its germ, the latter means that g(x) ∈ LE. Then also
h(x) := log g(x) ∈ LE, and v(i(x) − h(x)) > 0. Further, one shows as in [1] that
there is a convergent power series f(X,Y ) such that

i(x) =
x

log x

(
1 + f

(
log log x

log x
,

1

log x

))
.

Now let w be the convex valuation corresponding to the largest convex subgroup not
containing vx. This contains v log x. Therefore, w log x = 0 and w log x

x = −wx > 0.
With

(5.1) f̃ := f

(
log log x

log x
,

1

log x

)
∈ R(log x, log log x)rFan ⊆ LEFan

(log x)w ,

the representation of i(x) is just i(x) = cx, where c = 1
log x (1 + f̃) ∈ H(Ran,exp)w.

Thus, pp(i(x)) = i(x) /∈ LE. Hence by our Corollary 5.2, exp i(x) is not asymptotic
to any element of LE.
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Let us give a further application of Theorem 4.1. Denote by LF the language
of ordered rings, enriched by symbols for the functions from F . Recall that every
generalized power series field R((G)) has a canonical cross-section, sending α ∈ G
to the element 1α ∈ R((G)) which has a 1 at α and zeros everywhere else. (1α is
the characteristic function of the singleton {α}.)

Corollary 5.3. Take any LF -embedding of LEF (x) in some generalized power
series field R((G)), and denote by L its image in R((G)). Assume that the restric-
tion of the canonical cross-section of R((G)) to vL is a cross-section π of (L, v),
and that L = R(πvL)rF . Then the nonzero elements of the support of each element
in L are bounded away from 0.

Proof. For every convex valuation w with associated convex subgroup Hw ⊂
G, we have that R((G))w = R((Hw)).

Let I ⊂ vL be a maximal set of rationally independent values. Set xi := 1α
for i = α ∈ I. Then R(xi | i ∈ I)r = R(πvL)r and hence, R(xi | i ∈ I)rF =
R(πvL)rF = L by hypothesis. The monomials obtained from the xi are precisely
the elements of the form r · 1α with r ∈ R and α ∈ vL. Note that if α < Hw ,
then for every c ∈ R((Hw)), the support of c r1α is bounded away from 0 by every
element β which satisfies α+Hw < β < 0. For example, β = α/2 is a good choice.

Take h ∈ L and consider the representation (4.1) with respect to the monomials
xi and the residue fields R((Hw)). Now support(h)\{0} is the union of the support

of c1d1 + . . . + cmdm and the support of h
+

. The latter is bounded away from

0 by vh
+

. The support of c1d1 + . . . + cmdm is the union of the supports of
c1d1, . . . , cmdm . This union is bounded away from 0 by 1

2vdm . �

Note that the embeddings of H(Ran,exp) and of LE in the logarithmic power series
field R((t))LE given in [1] satisfy the conditions of the corollary. (Recall that
R((t))LE can be viewed as a subfield of a suitable power series field.)
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