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FIXED POINT THEOREMS

Given a function f : X→ X, we call x ∈ X a fixed point of f if

fx = x

where fx stands for f (x).

metric spaces: Banach FPT,
ultrametric spaces: FPT of Prieß-Crampe [and Ribenboim],
topological spaces: Brouwer FPT, Schauder FPT,
partially ordered sets: Bourbaki-Witt FPT,
lattices: Knaster-Tarski FPT

For most FPTs some sort of “completeness” property of X is
needed.
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Banach’s Fixed Point Theorem

Let (X, d) be a metric space. A function f : X→ X is said to be
contracting

if there is a positive real number C < 1 such that
d(fx, fy) ≤ Cd(x, y) for all x, y ∈ X.

Theorem (Banach’s Fixed Point Theorem)

Every contracting function on a complete metric space (X, d) has a
unique fixed point.

Note: In metric spaces, the existence of fixed points is usually
proved by means of Cauchy sequences, not by means of metric
balls.
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Ultrametric spaces

An ultrametric space (X, u) is a set X together with a function
u : X×X→ Γ,

where Γ is a totally [or partially] ordered set
with minimal element 0, satisfying the following conditions for
all γ ∈ Γ and x, y, z ∈ X:
(1) u(x, y) = 0⇔ x = y
(2) u(x, y) = u(y, x)
(3) u(x, y) ≤ max{u(x, z), u(z, y)}
[(3) if u(x, y) ≤ γ and u(y, z) ≤ γ, then u(x, z) ≤ γ]

Example: Q together with the p-adic metric is an ultrametric
space. More generally, every (Krull) valuation induces an
ultrametric.
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Ultrametric spaces

A (“closed”) ball in an ultrametric space (X, u) is a set

Bγ(x) := {y ∈ X | u(x, y) ≤ γ} .

The beauty of ultrametric spaces: if γ ≤ δ and
Bγ(x) ∩ Bδ(x) 6= ∅, then Bγ(x) ⊆ Bδ(x).
In an ultrametric ball, each element is its center,
and in every triangle, at least two sides are equal.

A nest of balls is a nonempty collection of balls which is totally
ordered by inclusion.
An ultrametric space (X, u) is called spherically complete if the
intersection of every nest of balls is nonempty.
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An ultrametric fixed point theorem

Theorem (S. Prieß-Crampe, P. Ribenboim)

Take a function f on a spherically complete ultrametric space (X, u)
such that for all x, y ∈ X:

1) u(fx, fy) ≤ u(x, y) (f is non-expanding),
2) u(fx, f 2x) < u(x, fx) if x 6= f (x) (f is contracting on orbits).
Then f has a fixed point.
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Ball spaces

A ball space is a pair (X,B), where X is a nonempty set and B
is a nonempty collection of nonempty subsets of X (balls).

A nest of balls is a nonempty collection of balls which is totally
ordered by inclusion.

A ball space (X,B) is called spherically complete if the
intersection of every nest of balls is nonempty.
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A basic FPT for ball spaces, I

Take a function f : X→ X.

A subset B ⊆ X is called
f -contracting if it is a singleton containing a fixed point or
satisfies f (B) ( B.

Theorem
Take a spherically complete ball space (X,B) and a function
f : X→ X.

If for every ball B ∈ B, f (B) contains an f -contracting ball, then
f has a fixed point in every ball.
If X ∈ B and for every ball B ∈ B, f (B) is an f -contracting ball,
then f has a unique fixed point.
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Idea of proof

The main ingredient in the proofs of our FPTs for ball spaces is
Zorn’s Lemma.

Most of the time it is not applied to the ball
space itself, but to the set of all nests in the ball space.
Every chain of nests (ordered by inclusion) has an upper
bound, namely, the union of the nests. Hence by Zorn’s
Lemma, there are maximal nests.
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A basic FPT for ball spaces, II

A function f on a ball space (X,B) will be called contracting on
orbits

if there is a function

X 3 x 7→ Bx ∈ B

such that for all x ∈ X, the following conditions hold:
(SC1) x ∈ Bx ,
(SC2) Bfx ⊆ Bx , and if x 6= fx, then Bfx ( Bx.
The function f will be called self-contractive if in addition it
satisfies:
(SC3) if N is a nest which for every Bx ∈ N also contains Bfx ,
and if z ∈ ⋂N , then Bz ⊆

⋂N .

Theorem (Bx-Theorem)

Every self-contractive function on a spherically complete ball space
has a fixed point.
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Proof of the ultrametric FPT

Theorem (S.Prieß-Crampe, P. Ribenboim)

Take a function f on a spherically complete ultrametric space (X, u)
such that for all x, y ∈ X:
1) u(fx, fy) ≤ u(x, y),
2) u(fx, f 2x) < u(x, fx) if x 6= f (x).
Then f has a fixed point.

Set Bx := {y ∈ X | u(x, y) ≤ u(x, fx)}.
Then x ∈ Bx , so (SC1) holds,
2) implies (SC2), and
1) implies (SC3),
so the above theorem follows from the Bx-Theorem.
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Back to metric spaces

R together with the collection of all metric balls is a spherically
complete ball space.

But his is not in general true for complete
metric spaces.

Theorem

Take a metric space (X, d). For any S ⊂ R>0, let B be the collection
of all closed metric balls with radii in S. The following are equivalent:
a) (X, d) is complete,
b) the ball space (X,BS) is spherically complete for some S ⊂ R>0

which admits 0 as its only accumulation point,
c) the ball space (X,BS) is spherically complete for every S ⊂ R>0

which admits 0 as its only accumulation point.

F.-V. Kuhlmann & K. Kuhlmann Ball Spaces



Back to metric spaces

R together with the collection of all metric balls is a spherically
complete ball space. But his is not in general true for complete
metric spaces.

Theorem

Take a metric space (X, d). For any S ⊂ R>0, let B be the collection
of all closed metric balls with radii in S. The following are equivalent:
a) (X, d) is complete,
b) the ball space (X,BS) is spherically complete for some S ⊂ R>0

which admits 0 as its only accumulation point,
c) the ball space (X,BS) is spherically complete for every S ⊂ R>0

which admits 0 as its only accumulation point.

F.-V. Kuhlmann & K. Kuhlmann Ball Spaces



Back to metric spaces

R together with the collection of all metric balls is a spherically
complete ball space. But his is not in general true for complete
metric spaces.

Theorem

Take a metric space (X, d). For any S ⊂ R>0,

let B be the collection
of all closed metric balls with radii in S. The following are equivalent:
a) (X, d) is complete,
b) the ball space (X,BS) is spherically complete for some S ⊂ R>0

which admits 0 as its only accumulation point,
c) the ball space (X,BS) is spherically complete for every S ⊂ R>0

which admits 0 as its only accumulation point.

F.-V. Kuhlmann & K. Kuhlmann Ball Spaces



Back to metric spaces

R together with the collection of all metric balls is a spherically
complete ball space. But his is not in general true for complete
metric spaces.

Theorem

Take a metric space (X, d). For any S ⊂ R>0, let B be the collection
of all closed metric balls with radii in S. The following are equivalent:

a) (X, d) is complete,
b) the ball space (X,BS) is spherically complete for some S ⊂ R>0

which admits 0 as its only accumulation point,
c) the ball space (X,BS) is spherically complete for every S ⊂ R>0

which admits 0 as its only accumulation point.

F.-V. Kuhlmann & K. Kuhlmann Ball Spaces



Back to metric spaces

R together with the collection of all metric balls is a spherically
complete ball space. But his is not in general true for complete
metric spaces.

Theorem

Take a metric space (X, d). For any S ⊂ R>0, let B be the collection
of all closed metric balls with radii in S. The following are equivalent:
a) (X, d) is complete,

b) the ball space (X,BS) is spherically complete for some S ⊂ R>0

which admits 0 as its only accumulation point,
c) the ball space (X,BS) is spherically complete for every S ⊂ R>0

which admits 0 as its only accumulation point.

F.-V. Kuhlmann & K. Kuhlmann Ball Spaces



Back to metric spaces

R together with the collection of all metric balls is a spherically
complete ball space. But his is not in general true for complete
metric spaces.

Theorem

Take a metric space (X, d). For any S ⊂ R>0, let B be the collection
of all closed metric balls with radii in S. The following are equivalent:
a) (X, d) is complete,
b) the ball space (X,BS) is spherically complete for some S ⊂ R>0

which admits 0 as its only accumulation point,

c) the ball space (X,BS) is spherically complete for every S ⊂ R>0

which admits 0 as its only accumulation point.

F.-V. Kuhlmann & K. Kuhlmann Ball Spaces



Back to metric spaces

R together with the collection of all metric balls is a spherically
complete ball space. But his is not in general true for complete
metric spaces.

Theorem

Take a metric space (X, d). For any S ⊂ R>0, let B be the collection
of all closed metric balls with radii in S. The following are equivalent:
a) (X, d) is complete,
b) the ball space (X,BS) is spherically complete for some S ⊂ R>0

which admits 0 as its only accumulation point,
c) the ball space (X,BS) is spherically complete for every S ⊂ R>0

which admits 0 as its only accumulation point.

F.-V. Kuhlmann & K. Kuhlmann Ball Spaces



The Caristi-Kirk FPT

A function ϕ from a metric space (X, d) to R is called lower
semicontinuous

if for every y ∈ X,

lim inf
x→y

ϕ(x) ≥ ϕ(y) .

Theorem (Caristi-Kirk)

Take a complete metric space (X, d) and a lower semicontinuous
function ϕ : X→ R which is bounded from below. If a function
f : X→ X satisfies the Caristi condition
(CC) d(x, fx) ≤ ϕ(x)− ϕ(fx),
then f has a fixed point on X.
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Caristi-Kirk balls

We set
Bx := {y ∈ X | d(x, y) ≤ ϕ(x)− ϕ(y)}

for each x ∈ X.

Note that despite the notation, these sets will in
general not be metric balls. We call these sets Caristi-Kirk balls.
Further, we define

Bϕ := {Bx | x ∈ X} .

Lemma
Take any function ϕ : X→ R and a function f : X→ X that satisfies
condition (CC). Then f is self-contractive in the ball space (X,Bϕ).
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Caristi-Kirk balls

If ϕ is lower semicontinuous and bounded from below,

then we
will call (X,Bϕ) a Caristi-Kirk ball space.

Theorem
Let (X, d) be a metric space. Then the following statements are
equivalent:

(i) The metric space (X, d) is complete.

(ii) Every Caristi-Kirk ball space (X,Bϕ) is spherically complete.

(iii) For every continuous function ϕ : X→ R bounded from below,
the Caristi-Kirk ball space (X,Bϕ) is spherically complete.

Together with the previous lemma and the Bx-Theorem, this
proves the Caristi-Kirk FPT.
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Ordered sets, abelian groups and fields

Let (X,≤) be any nonempty ordered set.

Set

B := {[a, b] | a, b ∈ X, a ≤ b} .

Under which conditions is (X,B) spherically complete?

A Dedekind cut in X is a pair (D, E) of nonempty subsets of X
such that D∪ E = X and d < e for all d ∈ D, e ∈ E.
(X,<) is cut complete if every Dedekind cut is filled, i.e., D has
a maximal element or E has a minimal element.

Does the spherical completeness of (X,B) imply cut
completeness? Then it would not be interesting for ordered
abelian groups and fields since all cut complete ordered abelian
groups and fields are isomorphic to R.
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Ordered sets, abelian groups and fields

Take a nest N of closed intervals [aν, bν] indexed by
ordinals ν < λ such that if µ > ν, then aν 6 aµ 6 bµ 6 bν.

Then
⋂N 6= ∅ if and only if there is x ∈ X such that

aν ≤ x ≤ bν for every ν.
If

⋂N = ∅, then N determines a Dedekind cut which is
not filled in X.
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Asymmetric cuts

If (D, E) is a cut where the cofinality of D is smaller than the
coinitiality of E (= the cofinality of E under the reverse
ordering),

then a nest {[aν, bν] | ν < λ} will never be able to
“zoom in” on the cut because if it is a sequence whose length is
the coinitiality of E, then the aν will eventually become
stationary, and their eventual value will be an element in the
intersection of the nest.

A symmetric argument works when the cofinality of D is larger
than the coinitiality of E.

The cut (D, E) is called asymmetric if the cofinality of D is not
equal to the coinitiality of E. By what we have seen, nests of
intervals [aν, bν] over asymmetric cuts will always have
nonempty intersection.
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Ordered sets, abelian groups and fields

An ordered set in which every cut is asymmetric is called
symmetrically complete.

Theorem
(X,B) is spherically complete if and only if X is symmetrically
complete.
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Ordered sets, abelian groups and fields

Do symmetrically complete ordered abelian groups and fields
(other than R) exist?

(1908) F. Hausdorff constructed ordered sets in which
every cut is asymmetric.
(2004) S. Shelah introduced the notion of “symmetrically
complete ordered fields” and proved that every ordered
field can be extended to a symmetrically complete ordered
field.
(2013) In joint work with S. Shelah we extended his result
to ordered sets and abelian groups, characterized all
symmetrically complete ordered abelian groups and fields,
and proved an analogue of the Banach FPT. (Israel J. Math.
208 (2015))
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What are the balls in topological spaces?

The nonempty open sets?

Not a good idea!
A topological space is compact if and only if every chain of
closed sets has a nonempty intersection.

If X is a topological space, then we will consider the ball space
(X,B) where B consists of all nonempty closed sets. Hence we
have:

Theorem
The ball space (X,B) is spherically complete if and only if X is
compact.
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Partially ordered sets

Take a nonempty partially ordered set (poset) (T,<).

We define
[a, ∞) := {b ∈ T | a ≤ b} and B := {[a, ∞) | a ∈ T}.
A poset is inductively ordered if every chain in (T,<) has an
upper bound. (Then by Zorn’s Lemma, (T,<) has maximal
elements.)
A poset is chain complete if every chain in (T,<) has a least
upper bound.
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Partially ordered sets

Theorem
Take a nonempty partially ordered set (T,<). Then the following
assertions hold.

1) The ball space (T,B) is spherically complete if and only if (T,<) is
inductively ordered. If this is the case, then the intersection of every
nest in (T,B) contains a ball.
2) (T,<) is chain complete if and only if it has a smallest element and
the intersection of every nest of balls in B is again a ball.

Observe that in both 1) and 2) the ball spaces have a stronger
property than just spherical completeness: intersections of
nests contain balls or are themselves balls. We will now
introduce a classification of ball spaces according to these
stronger properties. But first we will give an overview of the
various instances of spherical completeness that we have
talked about so far.
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introduce a classification of ball spaces according to these
stronger properties.

But first we will give an overview of the
various instances of spherical completeness that we have
talked about so far.

F.-V. Kuhlmann & K. Kuhlmann Ball Spaces



Partially ordered sets

Theorem
Take a nonempty partially ordered set (T,<). Then the following
assertions hold.
1) The ball space (T,B) is spherically complete if and only if (T,<) is
inductively ordered. If this is the case, then the intersection of every
nest in (T,B) contains a ball.
2) (T,<) is chain complete if and only if it has a smallest element and
the intersection of every nest of balls in B is again a ball.

Observe that in both 1) and 2) the ball spaces have a stronger
property than just spherical completeness: intersections of
nests contain balls or are themselves balls. We will now
introduce a classification of ball spaces according to these
stronger properties. But first we will give an overview of the
various instances of spherical completeness that we have
talked about so far.

F.-V. Kuhlmann & K. Kuhlmann Ball Spaces



What we got so far

spaces balls completeness
property

ultrametric spaces all closed spherically
ultrametric balls complete

metric spaces metric balls with radii complete
in suitable sets of
positive real numbers

Caristi-Kirk balls
linearly ordered sets, all intervals symmetrically
ordered abelian [a, b] with a ≤ b complete
groups and fields
topological spaces all nonempty closed sets compact
posets all intervals [a, ∞) inductively

ordered
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Centered and directed systems of balls

In ball spaces we are concerned with intersections of balls, so
we introduce the following definitions.

A nonempty collection of balls is a centered system if the
intersection of any finite subcollection is nonempty.
A nonempty collection of balls is a directed system if for every
two balls in this collection there is a ball in the collection that is
contained in their intersection.

What about ball spaces in which all intersections of directed
systems, or of centered systems, are nonempty?

Moreover, observe that in a topological space arbitrary
intersections of closed sets are again closed. What about ball
spaces in which all (nonempty) intersections of nests, directed
systems, or centered systems, are again balls?
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Hierarchy of spherical completeness

S1: The intersection of each nest in (X,B) is nonempty.

S2: The intersection of each nest in (X,B) contains a ball.
S3: The intersection of each nest in (X,B) contains a largest ball.
S4: The intersection of each nest in (X,B) is a ball.

(S1 is our original notion of “spherically complete”.)

Sd
i : The same as Si, but with “directed system” in place of

“nest”.

Sc
i : The same as Si, but with “centered system” in place of

“nest”.

We will also write S∗ for Sc
4 because this turns out to be the

“star” (the strongest) among the ball spaces:
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Hierarchy of spherical completeness

S1 ⇐ Sd
1 ⇐ Sc

1
⇑ ⇑ ⇑
S2 ⇐ Sd

2 ⇐ Sc
2

⇑ ⇑ ⇑
S3 ⇐ Sd

3 ⇐ Sc
3

⇑ ⇑ ⇑
S4 ⇐ Sd

4 ⇐ Sc
4 =: S∗
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Intersection closed ball spaces

A ball space (X,B) will be called finitely intersection closed if B
is closed under nonempty intersections of any finite collection
of balls,

and it will be called intersection closed if B is closed
under nonempty intersections of arbitrary collections of balls.

Theorem

1) If the ball space (X,B) is finitely intersection closed, then Sd
i is

equivalent to Sc
i , for i = 1, 2, 3, 4.

2) If the ball space (X,B) is intersection closed, then all properties in
the hierarchy are equivalent.
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Intersection closed ball spaces

The ball space consisting of all nonempty closed sets in a
topological space is intersection closed.

For an ultrametric space with totally ordered value set, the
full ultrametric ball space, which we obtain from the
already defined ball space by closing under unions and
nonempty intersections of nests, is intersection closed.
The ball space of a lattice with top and bottom, consisting
of all intervals of the form [a, b], is finitely intersection
closed, and it is intersection closed if and only if the lattice
is complete.
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Summary of S∗ ball spaces

An ultrametric space with totally ordered value set is S1
(spherically complete) if and only if the full ultrametric
ball space is S∗ .

A topological space is compact if and only if the ball space
consisting of its nonempty closed subsets is S∗ .
A poset is directed complete and bounded complete if and
only if the ball space defined by the final segments [a, ∞)
is S∗ .
A poset is a complete lattice if and only if it has a bottom
and a top element and the ball space defined by its
nonempty closed intervals [a, b] is S∗ .
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Spherical closure in S∗ ball spaces

Suppose that (X,B) is an S∗ ball space

and that S ⊆ B for some
B ∈ B.

The spherical closure of S is

sclB(S) :=
⋂
{B ∈ B | S ⊆ B}

sclB(S) ∈ B is the smallest ball containing S.
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Ball spaces that are not S∗

The ball space of a totally ordered set, ordered abelian group or
field, consisting of all intervals of the form [a, b], is finitely
intersection closed. But:

Lemma
Assume that (I,<) is a totally ordered set whose associated ball space
is Sd

1 . Then (I,<) is cut complete.

The only cut complete densely ordered abelian groups or fields
are the reals. So we have:

Proposition

The associated ball space of R is S∗ . For all other densely ordered
abelian groups or fields the associated ball space can at best be S1 or
S2 .
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Ball spaces that are not S∗

For a spherically complete ultrametric space, the ball space of
all closed ultrametric balls is S2 ,

but in general not S3 or S4 .
However, if the value set is totally ordered, then the full ball
space of all ultrametric balls is S∗.

Theorem (W. Kubis, K)

There are spherically complete ultrametric spaces with partially
ordered value set for which the associated full ultrametric ball space is
not spherically complete and hence not S∗ .
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The Knaster-Tarski FPT

Theorem
Let X be a complete lattice and f : X→ X an order-preserving
function. Then the set of fixed points of f in X is nonempty and also a
complete lattice.

Is there an analogue for ball spaces?
Can it be used to transfer the Knaster-Tarski FPT to other
applications?
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The structure of fixed point sets in S∗ ball spaces

Theorem
Take a function f : X→ X. Assume that there is a ball space structure
(X,Bf ) on X for which the following conditions are satisfied:

(1) every B ∈ Bf is f -closed (i.e., f (B) ⊆ B),
(2) every B ∈ Bf contains a fixed point or some smaller ball B′ ∈ Bf ,
(3) (X,Bf ) is an S∗ ball space.
Let Fix(f ) be the set of fixed points of f , and set

Bf
Fix := {B∩ Fix(f ) | B ∈ Bf } .

Then (Fix(f ),Bf
Fix) is an S∗ ball space.
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The Knaster-Tarski FPT for ultrametric spaces

In the case of ultrametric spaces (X, u) with totally ordered
value sets, where we take B to be the full ultrametric ball space

and Bf to consist of all f -closed balls in B,
(Fix(f ), {B∩ Fix(f ) | B ∈ Bf }) is equal to the full ultrametric
ball space of (Fix(f ), u).
So we obtain:

Theorem
Take a spherically complete ultrametric space (X, u) and a
nonexpanding function f : X→ X which is contracting on orbits.
Then every f -closed ultrametric ball contains a fixed point, and
(Fix(f ), u) is again a spherically complete ultrametric space.

F.-V. Kuhlmann & K. Kuhlmann Ball Spaces



The Knaster-Tarski FPT for ultrametric spaces

In the case of ultrametric spaces (X, u) with totally ordered
value sets, where we take B to be the full ultrametric ball space
and Bf to consist of all f -closed balls in B,

(Fix(f ), {B∩ Fix(f ) | B ∈ Bf }) is equal to the full ultrametric
ball space of (Fix(f ), u).
So we obtain:

Theorem
Take a spherically complete ultrametric space (X, u) and a
nonexpanding function f : X→ X which is contracting on orbits.
Then every f -closed ultrametric ball contains a fixed point, and
(Fix(f ), u) is again a spherically complete ultrametric space.

F.-V. Kuhlmann & K. Kuhlmann Ball Spaces



The Knaster-Tarski FPT for ultrametric spaces

In the case of ultrametric spaces (X, u) with totally ordered
value sets, where we take B to be the full ultrametric ball space
and Bf to consist of all f -closed balls in B,
(Fix(f ), {B∩ Fix(f ) | B ∈ Bf }) is equal to the full ultrametric
ball space of (Fix(f ), u).

So we obtain:

Theorem
Take a spherically complete ultrametric space (X, u) and a
nonexpanding function f : X→ X which is contracting on orbits.
Then every f -closed ultrametric ball contains a fixed point, and
(Fix(f ), u) is again a spherically complete ultrametric space.

F.-V. Kuhlmann & K. Kuhlmann Ball Spaces



The Knaster-Tarski FPT for ultrametric spaces

In the case of ultrametric spaces (X, u) with totally ordered
value sets, where we take B to be the full ultrametric ball space
and Bf to consist of all f -closed balls in B,
(Fix(f ), {B∩ Fix(f ) | B ∈ Bf }) is equal to the full ultrametric
ball space of (Fix(f ), u).
So we obtain:

Theorem
Take a spherically complete ultrametric space (X, u) and a
nonexpanding function f : X→ X which is contracting on orbits.

Then every f -closed ultrametric ball contains a fixed point, and
(Fix(f ), u) is again a spherically complete ultrametric space.

F.-V. Kuhlmann & K. Kuhlmann Ball Spaces



The Knaster-Tarski FPT for ultrametric spaces

In the case of ultrametric spaces (X, u) with totally ordered
value sets, where we take B to be the full ultrametric ball space
and Bf to consist of all f -closed balls in B,
(Fix(f ), {B∩ Fix(f ) | B ∈ Bf }) is equal to the full ultrametric
ball space of (Fix(f ), u).
So we obtain:

Theorem
Take a spherically complete ultrametric space (X, u) and a
nonexpanding function f : X→ X which is contracting on orbits.
Then every f -closed ultrametric ball contains a fixed point, and
(Fix(f ), u) is again a spherically complete ultrametric space.

F.-V. Kuhlmann & K. Kuhlmann Ball Spaces



The Knaster-Tarski FPT for topological spaces

Take a compact topological space X and the associated ball
space (X,B) where B consists of all nonempty closed sets of X.

If f : X→ X is any function, then the set Bf of all closed and
f -closed sets forms the collection of all closed sets of a (possibly
coarser) topology, as arbitrary unions and intersections of
f -closed sets are again f -closed.
We obtain:

Theorem
Take a compact topological space X and a function f : X→ X.
Assume that every closed, f -closed set contains a fixed point or a
smaller closed, f -closed set. Then the topology on the nonempty set
Fix(f ) of fixed points of f having {B∩ Fix(f ) | B ∈ Bf } as its
collection of closed sets is itself compact.
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An open question for topologists

As we are rather interested in the topology on Fix(f ) induced
by the original topology of X, we ask:

Open question: Give a natural criterion on f which guarantees
that

{B∩ Fix(f ) | B ∈ Bf } = {B∩ Fix(f ) | B ∈ B} .
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The Tychonoff theorem for ball spaces

Given a collection of ball spaces (Xj,Bj)j∈J,

we define their box
ball space on the product ∏j∈J Xj by setting

B :=

{
∏
j∈J

Bj | ∀j ∈ J : Bj ∈ Bj

}
.

Theorem
Take S to be any of the properties in the hierarchy of spherical
completeness. The product (∏j∈J Xj,B) has property S if and only if
all ball spaces (Xj,Bj), j ∈ J, have property S.
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Smaller products

It is possible to pass to smaller products by imposing
restrictions on the tuples of balls.

As in topology when the open sets of the products are defined,
one can ask that Bj = Xj for all but finitely many j ∈ J. This
leads to a smaller set B′ of balls.
If (∏j∈J Xj,B) is spherically complete, then so is (∏j∈J Xj,B′).
However, the stronger properties of the hierarchy may get lost
under this restriction.
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The Tychonoff theorem for topological spaces

In which way does Tychonoff’s theorem follow from its
analogue for ball spaces?

The problem in the case of topological
spaces is that the product ball space we have defined, while
containing only closed sets of the product, does not contain all
of them, as it is not necessarily closed under finite unions and
arbitrary intersections. If we close it under these operations, are
its spherical completeness properties maintained?
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Closure under finite unions

Theorem
If (X,B) is an Sc

1 ball space and B′ is the closure of B under finite
unions,

then also (X,B′) is Sc
1 .

In order to prove this theorem, we need a lemma that is
inspired by Alexander’s Subbase Theorem:

Lemma
If S is a maximal centered system of balls in B′ (that is, no subset of
B′ properly containg S is a centered system), then there is a subset S0
of S which is a centered system in B and has the same intersection
as S .
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Closure under nonempty intersections

Theorem
If (X,B) is an Sc

1 ball space and B′ is the closure of B under arbitrary
nonempty intersections,

then also (X,B′) is Sc
1 .
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Closure under nonempty intersections

Theorem
If (X,B) is an Sc

1 ball space and B′ is the closure of B under arbitrary
nonempty intersections, then also (X,B′) is Sc

1 .
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Closure under unions and intersections

From the previous two theorems we obtain:

Theorem
Take an Sc

1 ball space (X,B). If B′ is obtained from B by first closing
under finite unions and then under arbitrary nonempty intersections,
then:

a) B′ is closed under finite unions,
b) B′ is intersection closed,
c) (X,B′) is an S∗ ball space.
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The topology associated to a ball space

If we also add X and ∅ to B′, then the complements of the sets
in B′ form a topology.

Theorem
This topology associated to B is compact if and only if (X,B) is an Sc

1
ball space.

Which are the topologies we obtain in this way?
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Example: the p-adics

The field Qp of p-adic numbers together with the p-adic
valuation vp is spherically complete.

(This fact can be used to
prove the original Hensel’s Lemma via the ultrametric fixed
point theorem.) Therefore, the topology derived from its ball
space is compact.
However, Qp is known to be locally compact, but not compact.
But this refers to the topology which has the balls

Bγ(x) := {y ∈ X | |x− y|p < γ}

as basic open sets. It turns out that this topology is finer than
the one we derived from the ball space.
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A notion of continuity for functions on ball spaces?

In joint work with R. Bartsch we are considering the question:

what are possible notions of continuity for functions on ball
spaces?
We are particularly interested in characterizing those functions
that shift spherical completeness from the range to the image,
or vice versa.
Take two ball spaces (X,B) and (X′,B′) and a function
f : X→ X′.
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A notion of continuity for functions on ball spaces?

Theorem
a) If

{f−1(B′) | B′ ∈ B′} ⊆ B

and (X,B) is spherically complete, then so is (X′,B′).
b) If

B ⊆ {f−1(B′) | B′ ∈ B′}

and (X′,B′) is spherically complete, then so is (X,B).
c) If

B = {f−1(B′) | B′ ∈ B′} , (1)

then (X,B) is spherically complete if and only if (X′,B′) is.
d) If (1) holds and f is surjective, then the posets B and B′ are
isomorphic.
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A notion of continuity for functions on ball spaces?

Theorem
If

{f (B) | B ∈ B} ⊆ B′

and f is finite-to-one, and if (X′,B′) is spherically complete, then so is
(X,B).
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Further research

• How to construct new spherically complete ball spaces from
given ones?

• Fixed point theorems, coincidence point theorems, theorems
for set valued functions — in various settings.
• Interaction with notions from category theory.
• Applications to domain theory. (Dream.)
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The end

Thank you for your attention — and

stay tuned for further developments!
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