
APPROXIMATION OF ELEMENTS IN HENSELIZATIONS

FRANZ-VIKTOR KUHLMANN

Abstract. For valued fields K of rank higher than 1, we describe how elements
in the henselization Kh of K can be approximated from within K; our result is a
handy generalization of the well-known fact that in rank 1, all of these elements lie
in the completion of K. We apply the result to show that if an element z algebraic
over K can be approximated from within K in the same way as an element in Kh,
then K(z) is not linearly disjoint from Kh over K.

1. Introduction

Complete valued fields of rank 1 are henselian, but for valuations v of arbitrary
rank, this does not hold in general. However, there is a connection between Hensel’s
Lemma and completions, but these completions have to be taken for residue fields
of suitable coarsenings of v. This connection was worked out by Ribenboim [R] who
used distinguished pseudo Cauchy sequences to characterize the so called step-
wise complete fields; it had been shown by Krull that these fields are henselian.
We want to give a more precise description of this connection.

Take any extension (L|K, v) of valued fields, that is, an extension L|K of fields
and a valuation v on L. By vL and vK we denote the value groups of v on L and on
K, and by Lv and Kv the residue fields of v on L and on K, respectively. Similarly,
vz and zv denote the value and the residue of an element z under v. For z ∈ L, we
define

v(z −K) := {v(z − c) | c ∈ K} ⊆ vL ∪ {∞} .

We call z weakly distinguished over K if there is a non-trivial convex subgroup
∆ of vK and some α ∈ vK such that the coset α + ∆ is cofinal in v(z−K), that is,
α + ∆ ⊆ v(z −K) and for all β ∈ v(z −K) there is γ ∈ α + ∆ such that β ≤ γ. If
this holds with α = 0, that is, if some non-trivial convex subgroup of vK is cofinal
in v(z − K), then we call z distinguished over K. This name is chosen since
distinguished elements induce distinguished pseudo Cauchy sequences in the sense
of Ribenboim [R], p. 105.

The extension (L|K, v) is immediate if the canonical embeddings of vK in vL
and of Kv in Lv are onto.
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Now take an arbitrary valued field (K, v) and extend its valuation v to its alge-
braic closure K̃. Then K̃ contains a unique henselization Kh with respect to this
extension. We will prove:

Theorem 1.1. Every element a ∈ Kh \ K is weakly distinguished over K. In
particular, the henselization is an immediate extension of (K, v).

Note that if (K, v) is of rank 1, that is, has archimedean ordered value group, then
its henselization lies in its completion and every element a /∈ K of the henselization
Kh is distinguished over K (with ∆ = vK).

We will give two proofs for Theorem 1.1. The first one is an adaptation of the proof
found in [Z–S] for the fact that the henselization of a valued field is an immediate
extension. The second proof uses the fact that the henselization can be constructed
as a union of finite extensions generated by roots of polynomials that satisfy the
conditions of Hensel’s Lemma.

By “α > v(a−K)” we mean α > v(a− c) for all c ∈ K. We use Theorem 1.1 to
prove the following result:

Theorem 1.2. Take z ∈ K̃ \K such that

v(a− z) > v(a−K)

for some a ∈ Kh. Then Kh and K(z) are not linearly disjoint over K, that is,

[Kh(z) : Kh] < [K(z) : K]

and in particular, K(z)|K is not purely inseparable.

Theorem 1.1 answers a question from Bernard Teissier. Theorem 1.2 has a crucial
application in [Ku3] to the classification of Artin-Schreier extensions with non-trivial
defect. This classification was originally obtained in [Ku1] under the additional
assumption that the fields in question are henselian. With the help of Theorem 1.2
this assumption can be dropped, and so the classification becomes available for
valued function fields.

Theorems 1.1 and 1.2 were also proved in [Ku1], but the proofs given in Sec-
tions 5 and 6 are improved versions of the original proofs, using much less technical
machinery, and the proof of Theorem 1.1 given in Section 4 is new.

2. Some preliminaries

We will assume the reader to be familiar with the basic facts of valuation theory,
and we will often use them without further references. We recommend [End], [Eng–
P], [R], [W], [Z–S] and [Ku2] for the general valuation theoretical background.

If v and w are two valuations on a field K and Ov and Ow are their valuation
rings, then w is called a coarsening of v if Ov ⊆ Ow . If this holds, then vc ≥ vd
implies wc ≥ wd and in particular, vc ≥ 0 implies wc ≥ 0 and wd > 0 implies
vd > 0.
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As we are working with valued fields (K, v) of higher rank (that is, with non-
archimedean ordered value groups vK), we will use convex subgroups ∆ of vK and
the corresponding coarsenings of v. The ordering of vK induces an ordering on
vK/∆: the set of positive elements in the latter group is just the image under the
canonical epimorphism of the set vK+ of positive elements in vK. Hence, α ≥ β
implies α + ∆ ≥ β + ∆. More precisely, α + ∆ ≥ β + ∆ holds if and only if there
is some γ ∈ ∆ such that α + γ ≥ β. The coarsening v∆ of v is the valuation whose
valuation ring is {c ∈ K | vc ∈ vK+ ∪∆}; this contains the valuation ring Ov of v.
The value group of v∆ on K is canonically isomorphic to vK/∆. Note that

(2.1) v∆c > 0 ⇐⇒ vc > ∆ .

The valuation v also induces a valuation v∆ on the residue field Kv∆ such that v
is (equivalent to) the composition v∆ ◦ v∆ (in this paper, we will identify equivalent
valuations). If Ov∆

and Mv∆
denote the valuation ring and valuation ideal of v∆,

then the valuation ring of v∆ is the image of Ov under the canonical epimorphism
Ov∆

→ Ov∆
/Mv∆

= Kv∆. The value group of v∆ on Kv∆ is canonically isomorphic
to ∆ via

(2.2) v∆(a +Mv∆
) 7→ va for a /∈Mv∆

.

If (L|K, v) is an arbitrary extension of valued fields, then the convex hull Γ of ∆ in
vL is a convex subgroup of vL, and vΓ is an extension of v∆ from K to L. If vL/vK
is a torsion group (which is the case if L|K is algebraic), then taking convex hulls
induces a bijective inclusion preserving mapping from the chain of convex subgroups
of vK to the chain of convex subgroups of vL, and vΓ is the unique coarsening of v
on L which extends v∆.

We will need some facts from ramification theory.

Lemma 2.1. Let (N |K, v) be an arbitrary normal algebraic extension and w a
coarsening of v on N . Then

(2.3) (N |K)d(w) ⊆ (N |K)d(v) ⊆ (N |K)i(v) ⊆ (N |K)i(w) ,

where (N |K)d(v) and (N |K)d(w) denote the decomposition fields of (N |K, v) with
respect to v and w, respectively, and (N |K)i(v) and (N |K)i(w) denote the inertia
fields of (N |K, v) with respect to v and w, respectively.

Proof. For σ ∈ Gal (N |K), v ◦ σ = v implies w ◦ σ = w. Hence the decomposition
group with respect to v is contained in the decomposition group with respect to w.
This proves the first inclusion. The second inclusion is well known from ramification
theory (cf. [Eng-P], p. 124). For σ ∈ Gal (N |K), if w(x−σx) > 0 for all x such that
wx ≥ 0, then v(x − σx) > 0 for all x such that vx ≥ 0. Hence the inertia group
with respect to w is contained in the inertia group with respect to v. This proves
the third inclusion. ¤
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Lemma 2.2. Let (N |K, w) be a finite normal extension of valued fields with decom-
position field Z and inertia field T . If z ∈ T then there is c ∈ Z such that

w(z − c) = max w(z − Z) ∈ wZ .

Proof. From ramification theory we know that n := [T : Z] = [Tw : Zw]. We
choose b1 = 1, . . . , bn ∈ T such that wb1 = . . . = wbn = 0 and b1w, . . . , bnw is a
basis of Tw|Zw. Then b1, . . . , bn are Z-linearly independent and thus form a basis
of T |Z. Since b1w, . . . , bnw are Zw-linearly independent, we have that w(c1b1 +
. . . + cnbn) = min1≤i≤n w(cibi) ≤ min2≤i≤n w(cibi) = min2≤i≤n w(ci) ∈ wZ. Hence if
z = c1b1+. . .+cnbn and we set c = c1b1 = c1 ∈ Z, then w(z−c) = min2≤i≤n w(cibi) =
max w(z − Z). ¤

3. Properties of weakly distinguished elements

Throughout this section, let (L|K, v) be an extension of valued fields. General
valuation theory tells us that the extension is immediate if and only if for every
z ∈ L\K and every c ∈ K there is c′ ∈ K such that v(z− c′) > v(z− c). This holds
if z is weakly distinguished over K since then, v(z − K) has no maximal element
(as a non-trivial convex subgroup of vK has no maximal element). This proves:

Lemma 3.1. If every z ∈ L\K is distinguished over K, then (L|K, v) is immediate.

A subset S of an ordered set T is a final segment of T if S 3 β < γ ∈ T implies
γ ∈ S, and an initial segment of T if S 3 β > γ ∈ T implies γ ∈ S.

Lemma 3.2. Take z ∈ L. If v(z−K) has no maximal element, then it is an initial
segment of vK.

Proof. By our assumption, for every c ∈ K there is c′ ∈ K such that v(z − c) <
v(z − c′), whence v(z − c) = min{v(z − c), v(z − c′)} = v(c′ − c) ∈ vK. This proves
that v(z −K) ⊆ vK. If v(z − c) > γ ∈ vK, then take d ∈ K such that vd = γ to
obtain that γ = vd = min{v(z − c), vd} = v(z − (c + d)) ∈ v(z −K). This proves
that v(z −K) is an initial segment of vK. ¤

If z ∈ L is distinguished over K with the convex subgroup ∆ of vK cofinal in
v(z −K), and if Γ is the convex hull of ∆ in vL, then for all c ∈ K, v(z − c) ≥ 0
implies vΓ(z−c) ≥ 0 (but the converse is not true). On the other hand, vΓ(z−c) > 0
is impossible since by (2.1) this would imply that v(z−c) > Γ, whence v(z−c) > ∆,
a contradiction. Therefore,

(3.1) v(z − c) ≥ 0 =⇒ vΓ(z − c) = 0 .

We will denote by (Kv∆)c(v∆) the completion of Kv∆ with respect to v∆.

Lemma 3.3. Take z ∈ L and suppose that ∆ is a non-trivial convex subgroup of vK
and α ∈ vK such that α+∆ is cofinal in v(z−K) (so that z is weakly distinguished
over K). Then z /∈ K, v(z −K) ⊆ vK, and α + ∆ is a final segment of v(z −K).



APPROXIMATION OF ELEMENTS IN HENSELIZATIONS 5

If in addition α = 0 (so that z is distinguished over K), Γ is the convex hull of ∆
in vL, and vΓz = 0, then

(3.2) zvΓ ∈ (Kv∆)c(v∆) \Kv∆ .

Conversely, if there exists a decomposition v = vΓ ◦ vΓ on L such that (3.2) holds,
then z is distinguished over K with ∆ = Γ ∩ vK cofinal in v(z −K).

Proof. Suppose that ∆ is a non-trivial convex subgroup of vK and α ∈ vK such
that α + ∆ is cofinal in v(z − K). Then v(z − K) has no maximal element, and
Lemma 3.2 shows that v(z −K) ⊆ vK. In particular, ∞ /∈ v(z −K), which shows
that z /∈ K. Since ∆ and hence also α + ∆ is convex in vK, the assumption that
α + ∆ is cofinal in v(z −K) ⊆ vK implies that it is a final segment of v(z −K).

Now suppose that ∆ is cofinal in (and hence a final segment of) v(z−K), Γ is the
convex hull of ∆ in vL, and vΓz = 0. Then 0,∞ 6= zvΓ ∈ KvΓ . Via the isomorphism
(2.2), let us identify the value group of v∆ on Kv∆ with ∆ and the value group of vΓ

on KvΓ with Γ. Take any δ ∈ ∆. Then we can choose d ∈ K such that v(z−d) > δ.
This implies that v(z− d) ∈ ∆, whence vΓ(z− d) = 0 so that (z− d)vΓ ∈ LvΓ. Now
vΓ((z − d)vΓ) = v(z − d) > δ. This yields that vΓ(zvΓ − dv∆) > δ. Since δ ∈ ∆ was
arbitrary, we see that zvΓ ∈ (Kv∆)c(v∆). On the other hand, if zvΓ would lie in Kv∆

and thus would equal dv∆ for some d ∈ K, then we would have that vΓ(z − d) > 0
and hence v(z − d) > ∆, a contradiction.

For the converse, let ∆ be any convex subgroup of vK and Γ its convex hull in
vL, and assume that (3.2) holds. Then for every δ ∈ ∆ there is d ∈ K such that
vΓ(zvΓ − dvΓ) = δ, that is, v(z − d) = δ. This shows that ∆ ⊆ v(z −K). But there
is no d ∈ K such that v(z − d) > ∆ since otherwise, zvΓ − dvΓ = (z − d)vΓ = 0,
which would mean that zvΓ ∈ Kv∆. ¤

Lemma 3.4. Take any coarsening w of v on L. If z ∈ L is weakly distinguished
over K with respect to w, then also with respect to v.

Proof. We denote by Γw the convex subgroup of vL associated with the coarsening w.
Via the canonical isomorphism, we identify wL with vL/Γw. Further, ∆w = Γw∩vK
is the convex subgroup of vK associated with the restriction of w to K, and wK is
canonically isomorphic to vK/∆w. We denote by ∆ the convex subgroup and by α
the element of wK such that α + ∆ is cofinal in w(z−K). We choose α ∈ vK such
that α + ∆w = α. We set ∆ = {δ ∈ vK | δ + ∆w ∈ ∆; this is a convex subgroup of
vK.

We show that α + ∆ is cofinal in v(z − K). Take any c ∈ K. By assumption
there is δ ∈ ∆ such that α + δ > w(z − c) = v(z − c) + Γw. Take δ ∈ ∆ such that
δ + ∆ = δ; then α + δ > v(z − c). On the other hand, for every δ ∈ ∆ we can take
β ∈ ∆ and some c′ ∈ K such that α + δ < α + β ≤ w(z − c′). This implies that
α + δ < v(z − c′). This completes our proof. ¤

We leave the easy proof of the following lemma to the reader.
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Lemma 3.5. Take z ∈ L and b, c ∈ K, b 6= 0. Then

v(bz + c−K) = vb + v(z −K) .

Consequently,

1) bz + c is weakly distinguished over K if and only if z is,

2) if z is distinguished over K, then bz + c is weakly distinguished over K,

3) if z is weakly distinguished over K, then there is some d ∈ K such that dz is
distinguished over K.

Lemma 3.6. Let (L|K, v) and (L(z)|L, v) be arbitrary extensions of valued fields.
Assume that every element x ∈ L \K is weakly distinguished over K. If z is weakly
distinguished over L, then also over K.

Proof. From Lemma 3.1 we know that vL = vK. We have that

v(z −K) ⊆ v(z − L) .

If “ =” holds, we are done. So we assume that “ 6= ” holds. Then there exists an
element x ∈ L such that v(z − c) < v(z − x) for every c ∈ K, whence v(z − c) =
v(x− c). This shows that

v(z −K) = v(x−K) .

Since x is weakly distinguished over K by hypothesis, this shows that also z is
weakly distinguished over K. ¤

4. Distinguished elements in henselizations

Our goal in this section is to show that every element in the henselization Kh is
weakly distinguished over K. For valuations of rank 1, this is a direct consequence
of the well known fact that the completion of a valued field of rank 1 contains its
henselization. Indeed, all elements in this completion and hence also all elements in
the henselization that do not lie in K are distinguished over K.

If (K, v) is of rank > 1, then the distinct extensions of v to a given algebraic
extension field L may not be independent. In this case, the Strong Approxima-
tion Theorem may fail. As a substitute, for the proof that the henselization is an
immediate extension, Ribenboim [R] gives a generalized version of the Strong Ap-
proximation Theorem where the independence condition is replaced by conditions
on the given data that have to be satisfied by the requested element. But in our
context, the method of Zariski and Samuel [ZA–SA2] is more natural: it proceeds
by induction on the number of extensions of the valuation v and treats dependent
extensions by an investigation of suitable coarsenings of v. We adapt this method
to prove the more informative Theorem 1.1.

Lemma 4.1. Take a normal separable-algebraic extension (N |K, v) of valued fields
and assume that the distinct extensions of v from K to N are independent. Further,
assume that a ∈ N has the property that v 6= v ◦ σ on N for every σ ∈ Gal (N |K)
such that σa 6= a. Then a lies in the completion of (K, v).
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Proof. Given any α ∈ vK, we have to show that there exists c ∈ K such that
v(a − c) ≥ α. All extensions of v from K to N are conjugate, that is, of the form
v ◦ σ with σ ∈ Gal (N |K) (cf. [Eng–P], Theorem 3.2.15). As we assume that all of
them are independent, the same will be true for the finitely many extensions of v
from K to the normal hull Na ⊆ N of K(a)|K.

We show that σa 6= a implies that v 6= v ◦ σ already holds on Na . Indeed, if the
latter is false, then v and v ◦σ are both extensions of v = v ◦σ from Na to N . Hence
there is τ ∈ Gal (N |Na) such that v = v ◦σ ◦ τ on N . The assumption of our lemma
then yields that στa = a. As στa = σa, we obtain that σa = a.

We use the Strong Approximation Theorem (cf. [Eng–P], Theorem 2.4.1) to find
b ∈ Na such that v(a− b) ≥ α and v(σb) = (v ◦ σ) b ≥ α whenever σa 6= a. Writing
c =

∑
σ σb for the trace TrNa|K(b), we find that

v(a− c) ≥ min{v(a− b), vσb | σ|Na 6= id} ≥ α .

¤
Lemma 4.2. The assumption on the element a in Lemma 4.1 is satisfied when a
lies in the decomposition field Z of (N |K, v).

Proof. If σa 6= a then σ /∈ Gal (N |Z). As the latter is the decomposition group of
(N |K, v), this shows that v 6= v ◦ σ on N . ¤

Take a valued field (K, v) and extend v to the separable-algebraic closure Ksep

of K. The henselization Kh of (K, v) is the decomposition field of (Ksep|K, v) (cf.
[Eng–P], Theorem 5.2.2). From the two preceding lemmata, we obtain:

Corollary 4.3. If (N |K, v) is a normal separable-algebraic extension of valued fields
and all extensions of v from K to N are independent, then the decomposition field
of (N |K, v) is contained in the completion of (K, v). If all extensions of v from K
to Ksep are independent (which in particular is the case if the rank of (K, v) is 1),
then Kh is contained in the completion of (K, v).

Now we are ready for the

Proof of Theorem 1.1:
Since Kh is the decomposition field of (Ksep|K, v), it follows that for every nor-
mal separable-algebraic extension (N |K, v), the decomposition field is Kh ∩ N (cf.
[End], (15.6) c) ). Hence Kh is the union over the decomposition fields of all fi-
nite normal separable-algebraic extensions of (K, v). Thus we may assume that a
lies in the decomposition field (Z, v) of some finite Galois extension (N |K, v). Let
v1 = v, v2, . . . , vn be all extensions of v from K to N . (Note that n ≥ 2 because the
assumption a /∈ K implies that Z 6= K.)

If n ≥ 3, then suppose that the lemma is already proved for the case where the
number of extensions of the valuation v from K to N is smaller than n. In view
of Corollary 4.3, we only have to treat the case where the extensions v1, . . . , vn are
not independent on N . Hence, there are i, j such that vi and vj admit a non-trivial
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common coarsening. The restriction of this coarsening to K is also a non-trivial
coarsening of the valuation v on K. (Indeed, as N |K is algebraic, restriction induces
an inclusion preserving bijection between the coarsenings of vi and the coarsenings
of v on K which preserves inclusion between the corresponding valuation rings.)
Among all the coarsenings of v on K that we find in this way, running through all
common coarsenings of all possible pairs vi and vj, let w be the finest one. (Its
valuation ring is the intersection of the valuation rings of all of these coarsenings.)
We write v = w ◦ w. Now w admits an extension (again called w) to N which is a
coarsening of at least two of the vi’s.

W.l.o.g., we may assume that w is a coarsening of v1 = v. Indeed, since all
extensions of v from K to N are conjugate, we may choose σ ∈ Gal (N |K) such
that vi ◦ σ = v1, and we obtain that w ◦ σ is an extension of w from K to N and a
coarsening of vi ◦ σ = v1 and of vj ◦ σ 6= v1.

For the coarsening w of v, we may infer from Lemma 2.1, using the notation of
that lemma:

(N |K)d(w) ⊂ (N |K)d(v) ⊂ (N |K)i(v) ⊂ (N |K)i(w) .

We set L = (N |K)d(w); note that Z = (N |K)d(v).
Every extension of w from K to N may be refined to an extension of v from K

to N (just by composing it with any extension of w from Kw to Nw). Since the
extension w gives already rise to at least two extensions of v from K to N , we see
that there cannot be more than n−1 extensions of w from K to N . By our induction
hypothesis, we find that every element a ∈ L \ K is weakly distinguished over K
with respect to w, and by Lemma 3.4, also with respect to v. Note that if there
is only one extension of w from K to N , then L = K and the assertion is trivially
true. In view of Lemma 3.6, it now suffices to show that every element z ∈ Z \ L is
weakly distinguished over L.

Since Z is contained in (N |K)i(w), we may infer from Lemma 2.2 the existence of
an element c ∈ L such that w(z − c) = max w(z − L) ∈ wL. We choose b ∈ L such
that wb(z − c) = 0. By Lemma 3.5, z is weakly distinguished over L if and only if
b(z − c) is. Consequently, we may assume c = 0, b = 1 and

0 = wz = max w(z − L)

from the start.
After a suitable renumbering, we may assume that precisely the extensions v1 =

v, v2, . . . , vm of v are composite with w, and we write vj = w◦wj for 1 ≤ j ≤ m. Now
(Z, v) is also the decomposition field of (N |L, v) (cf. [End], (15.6) b) ). Since L was
chosen to be the decomposition field of (N |K, w), the extension of w from L to N
is unique. Every τ ∈ Gal (Nw|Lw) is induced by some σ ∈ Gal (N |L) (this follows
from [Eng-P], Lemma 5.2.6 (1) ). If τ(zw) 6= zw, then σz 6= z, and by Lemma 4.2,
v ◦ σ 6= v while w ◦ σ = w on N . This implies that w1 ◦ τ 6= w1 on Nw.

Furthermore, by our choice of w, it is the finest coarsening of v on K which is
induced by a common coarsening of at least two vi’s. Consequently, the wi’s must



APPROXIMATION OF ELEMENTS IN HENSELIZATIONS 9

be independent since otherwise, a common non-trivial coarsening of them could be
composed with w to obtain a finer valuation, a contradiction. We have thus shown
that the extension (Zw|Lw, w1) satisfies the hypotheses of Lemma 4.1. We conclude
that zw lies in the completion of (Lw, w1). On the other hand, max w(z − L) = 0
shows that there is no element c ∈ L such that w(z− c) > 0. This proves zw /∈ Lw.
Hence by Lemma 3.3, z is distinguished over L.

Now the second assertion of Theorem 1.1 follows from Lemma 3.1. ¤

5. Building up the henselization

We will give a different approach to the proof of Theorem 1.1. It starts with the
following observation:

Lemma 5.1. Let (K, v) be an arbitrary valued field and f ∈ Ov[X] be non-linear,
monic and irreducible over K. Assume that a ∈ K̃ is a root of f such av ∈ Kv and
vf ′(a) = 0. Then a is distinguished over K.

Proof. From the Taylor expansion we infer the existence of some h̃(X, Z) ∈ Ov[X, Z]
such that

f(Z)− f(X) = f ′(X)(Z −X) + (Z −X)2h̃(X,Z) .

Since av ∈ Kv, there is c ∈ Ov such that v(c − a) > 0. Given any such c, we note
that vf ′(c) = vf ′(a) = 0, which follows from the corresponding Taylor expansion
since f ′ ∈ Ov[X]. We set

(5.1) c′ := c− f(c)

f ′(c)
∈ Ov .

Then

f(c′)− f(c) = f ′(c)(c′ − c) + (c′ − c)2h̃(c′, c) = −f(c) +

(
f(c)

f ′(c)

)2

h̃(c′, c)

with h̃(c′, c) ∈ Ov, so that

(5.2) vf(c′) = 2vf(c) + vh̃(c′, c) ≥ 2vf(c) .

On the other hand,

f(c) = f(c)− f(a) = f ′(a)(c− a) + (c− a)2h̃(c, a) .

Since vf ′(a) = 0, v(c− a)2 > v(c− a) and vh̃(c, a) ≥ 0, it follows that

(5.3) vf(c) = v(c− a) > 0 .

Now (5.1) implies that v(c′ − c) > 0, whence v(c′ − a) > 0. Replacing c by c′ in the
above argument, we obtain that v(c′ − a) = vf(c′). Then using (5.2) and (5.3), we
deduce that
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(5.4) v(c′ − a) = vf(c′) ≥ 2vf(c) = 2v(c− a) .

First of all, this yields that v(a−K) has no maximal element (note that∞ /∈ v(a−K)
as a /∈ K by our assumption on f). Hence by Lemma 3.2, we know that the non-
empty set of positive elements in v(a−K) is convex in vK. Therefore, (5.4) yields
that it is closed under addition and thus the set of positive elements of a convex
subgroup. This proves that a is distinguished over K. ¤

We will consider a very special type of immediate extensions (K(z), v)|(K, v), and
build up the henselization by a transfinite repetition of such extensions. We call an
element z strictly distinguished over K if there exists a coarsening w of v such
that the following three conditions hold:

(SD1) wz = 0 ,
(SD2) zw ∈ (Kw)c(w) \Kw ,
(SD3) for all n ∈ N , if 1, z, . . . , zn are linearly independent over K, then

1, zw, . . . , (zw)n are linearly independent over Kw .

Here, (Kw)c(w) denotes the completion of Kw with respect to w. The third condition
implies that [K(z) : K] = [Kw(zw) : Kw]; in particular, if z is transcendental over
K, then zw is transcendental over Kw. Lemma 3.3 shows that if z is strictly
distinguished over K, then z is distinguished over K.

The next lemma shows that strictly distinguished elements generate extensions
with a nice property. For f ∈ OK [X], we denote by fv the polynomial obtained
from f by replacing the coefficients by their v–residues.

Lemma 5.2. Let z be strictly distinguished over K. Then every element y ∈ K(z)\
K is weakly distinguished over K.

Proof. Let the decomposition v = w ◦w be as in the above definition of strictly dis-
tinguished elements. In the first step, we will prove the lemma under the assumption
that y = f(z) with f ∈ K[X] and deg f < [K(z) : K] if the latter is finite. (If z
is algebraic over K, then this assumption is no loss of generality.) By Lemma 3.5,
for every b ∈ K× and c ∈ K we have that y is weakly distinguished over K if and
only if by − c is; after picking suitable elements b, c and replacing f by bf − c we
may thus assume that f has no constant term and that f ∈ O(K,w)[X] \M(K,w)[X].
Consequently, fw 6≡ 0, and since wz = 0, we have f(z)w = (fw)(zw). By our
assumption on the degree of f , the elements 1, z, . . . , zdegf are linearly independent
over K, and by condition (SD3), the same holds for the elements 1, zw, . . . , (zw)degf

over Kw. Hence (fw)(zw) /∈ Kw. But since zw is an element of the completion of
(Kw, w), the element f(z)w = (fw)(zw) also lies in the completion of (Kw, w). In
view of Lemma 3.3, this shows f(z) to be weakly distinguished over K.

In the second step, it remains to prove the lemma for the case where z is trans-
cendental over K and y = f(z)/g(z) with f, g ∈ K[X]. By a similar argument
as above, after multiplication of f and g (and hence of y) with suitable elements
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from K×, we may assume that f, g ∈ O(K,w)[X] \ M(K,w)[X]. To avoid the case
where (f(z)/g(z))w = (f(z)w)/(g(z)w) ∈ Kw, we have to do the following. If
m = deg gw, then the m-th coefficient of g is not zero; hence there exists an element
d ∈ K such that the m-th coefficient of the polynomial f − dg is 0. Again, after
multiplication of f − dg with a suitable element from K×, we may assume that
f − dg ∈ O(K,w)[X] \M(K,w)[X]. Then

(f(z)− dg(z))w

g(z)w
/∈ Kw ,

but this element lies in the completion of (Kw, w) since the same holds for (f(z)−
dg(z))w and g(z)w. Since (f − dg)/g = (f/g) − d, it follows by Lemma 3.3 and
Lemma 3.5 that y = f(z)/g(z) is weakly distinguished over K. ¤

The next lemma shows how strictly distinguished elements appear in henseliza-
tions.

Lemma 5.3. Let (K, v) be an arbitrary valued field and f ∈ Ov[X] be non-linear,
monic and irreducible over K. Assume that a ∈ K̃ is a root of f such that av is
an element of Kv and a simple root of fv. Then a is distinguished over K. If
in addition, for every coarsening w of v either fw remains irreducible over Kw or
admits a root in Kw with w–residue av, then a is strictly distinguished over K.

Proof. The first part of the lemma follows directly from Lemma 5.1 via a reformu-
lation of the condition on a. Now let f satisfy the hypothesis of the second part.
By the first part of the lemma, a is distinguished over K. By our assumption on
f , we have that va ≥ 0. An application of Lemma 3.3 thus yields vΓa = 0 and
avΓ ∈ (Kv∆)c(v∆) \Kv∆, with Γ and ∆ as in that lemma. It remains to show that a
also satisfies condition (SD3) for w = vΓ. Since av is a simple root of fv, we know
that avΓ is the only root of fvΓ with vΓ–residue av. On the other hand, avΓ /∈ Kv∆,
and our hypothesis now yields that fvΓ is irreducible over Kv∆. Since f is monic,
we now have [Kv∆(avΓ) : Kv∆] = degfvΓ = degf = [K(a) : K] which yields (SD3)
for w = vΓ. ¤

The additional condition on the polynomial f that we have introduced in the
above lemma is not too restrictive:

Lemma 5.4. The valued field (K, v) is henselian if and only if it satisfies the fol-
lowing “weaker” version of Hensel’s Lemma:
Let f ∈ Ov[X] be monic and a ∈ K such that fv admits av as a simple zero. Assume
in addition that fw admits a root with w–residue av for every proper coarsening w
of v for which fw is reducible. Then f admits a root in K with residue av.

Proof. We have to show the above version implies the original version of Hensel’s
Lemma (the one without the additional assumption). Assume that (K, v) is not
henselian. Then there is some polynomial g ∈ Ov[X] having no root in K, and
a ∈ K such that gv admits av as a simple zero. Consider all coarsenings w of v, such
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that gw admits a factor gw, irreducible over Kw and of degree > 1, and such that
the w–reduction gww admits av as a zero. Among these, we choose a coarsening
w0 for which gw0 has least degree. Furthermore, we choose any f ∈ Ov[X] with
fw0 = gw0 and degf = deggw0 . Then f satisfies the above condition: fv admits
av as a simple zero, and for every coarsening w of v, the polynomial fw is either
irreducible or admits a zero whose w–residue is equal to av. But f does not admit
any root in K since its w0–reduction gw0 is irreducible over Kw0 and of degree > 1.
This shows that (K, v) does not satisfy the above version of Hensel’s Lemma. ¤

The henselization Kh can be generated over K by a transfinitely repeated adjunc-
tion of roots x of polynomials which satisfy the hypothesis of Hensel’s Lemma. The
foregoing lemma shows that this is also true if we replace Hensel’s Lemma by the
above version. In this case, in every step an element is adjoined which is strictly
distinguished over the previous field, according to Lemma 5.3. The next lemma
shows why we are choosing this procedure.

Lemma 5.5. Let (M |K, v) be an extension of valued fields generated by a set of
elements {zν | ν < τ} ⊂ M , where τ is an ordinal number, such that for every
ν < τ , the element zν is strictly distinguished over Kν := K(zµ|µ < ν) (where
K0 := K). Then every element z ∈ M \K is weakly distinguished over K.

Proof. We prove the lemma by transfinite induction on ρ < τ . The assertion holds
trivially for the field K. Now assume ρ ≥ 1 and that the assertion holds for every Kµ

with µ < ρ. If ρ is a limit ordinal, then Kρ =
⋃

µ<ρ Kµ showing that the assertion

holds for Kρ too. Now let ρ = ν+1 be a successor ordinal. Then Kρ = Kν(zν) where
zν is strictly distinguished over Kν . Let y be an arbitrary element of Kν(zν) \Kν .
By Lemma 5.2, y is weakly distinguished over Kν . By our induction hypothesis,
every element x ∈ Kν \K is weakly distinguished over K. In view of Lemma 3.6,
this yields that also y is weakly distinguished over K. Hence, the lemma holds for
Kρ, and the induction step is established. ¤

This lemma and Lemma 5.3 yield the following corollary, which together with
Lemma 3.1 again proves Theorem 1.1:

Corollary 5.6. Let K be a valued field. The henselization Kh can be generated over
K in the way as described in the hypothesis of the foregoing lemma. Thus, every
element in Kh \K is weakly distinguished over K.

6. Proof of Theorem 1.2

We need the following lemma. We assume that the valuation v of a field K is
extended to its algebraic closure K̃.

Lemma 6.1. Assume that y ∈ K̃ and v = w ◦ w on K̃ with wy = 0 and yw ∈
Khw \Kw. Then Kh and K(y) are not linearly disjoint over K.
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Proof. Since Kh is henselian for the valuation v, it is also henselian for the coarsening
w (because if w would admit two distinct extensions to the algebraic closure of K
then we could use them to construct two distinct extensions of v).

Let f(X) ∈ K[X] be the minimal polynomial of y over K. Our assertion is proved
if we are able to show that f is reducible over Kh. At this point, we may assume that
all conjugates of y over K have the same value vy since otherwise, the inequality
[Kh(y) : Kh] < [K(y) : K] is immediately seen to be true. This assumption together
with wy = 0 yields that f ∈ Ow[X]. Because f is monic, its reduction fw is non-
trivial. The minimal polynomial g ∈ Kw[X] for yw over Kw has degree > 1 since
yw /∈ Kw. Furthermore, it must divide fw because (fw)(yw) = f(y)w = 0. From
Lemma 2.1, we infer that Kh = (Ksep|K)d(v) lies in L := (Ksep|K)i(w). Since Lw|Kw
is separable (cf. [Eng-P], Theorem 5.2.7.(1) ), we find that yw is a simple root of g.

Consequently, g has a second root ξ 6= yw in K̃w = K̃w.
Applying Hensel’s Lemma to the henselian field (Kh, w), we conclude that f

becomes reducible over Kh; indeed, f factors into two non-trivial polynomials where
the roots of the first one all have w–residue yw while there exists at least one root
in K̃ of the second polynomial with ξ as its w–residue. This proves our lemma. ¤

An alternative proof of this lemma reads as follows. We use the fact that Khw is
equal to the henselization of Kw with respect to w. Hence by the hypothesis of the
lemma, (Kw(yw)|Kw, w) is thus a non-trivial subextension of (Kw, w)h|(Kw, w).
By general ramification theory, it admits at least two extensions of the valuation w
from Kw to Kw(yw). Since these give rise to different extensions of the valuation
v from K to K(y), it again follows from general ramification theory that Kh and
K(y) are not linearly disjoint over K.

With the help of this lemma and Theorem 1.1, we are now able to give the

Proof of Theorem 1.2:
Assume that (K, v) is any valued field, v is extended to K̃, z ∈ K̃ \K and a ∈ Kh

such that v(z − a) > v(a − K). Then a /∈ K since otherwise, ∞ ∈ v(a − K) and
v(z − a) > ∞, a contradiction.

Since a ∈ Kh \K, Theorem 1.1 shows that a is weakly distinguished over K. By
Lemma 3.5, there is d ∈ K× and a convex subgroup Γ of vK̃ which is cofinal in
v(da−K) = vd + v(a−K). By Lemma 3.3, (da)vΓ /∈ KvΓ. As v(z− a) > v(a−K)
implies that v(dz − da) > vd + v(a − K), we find that v(dz − da) > Γ. Thus,
(dz)vΓ = (da)vΓ ∈ KhvΓ \KvΓ. Now Lemma 6.1 shows that Kh and K(z) = K(dz)
are not linearly disjoint over K. ¤
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