APPROXIMATION OF ELEMENTS IN HENSELIZATIONS

FRANZ-VIKTOR KUHLMANN

Abstract

For valued fields K of rank higher than 1, we describe how elements in the henselization K^{h} of K can be approximated from within K; our result is a handy generalization of the well-known fact that in rank 1 , all of these elements lie in the completion of K. We apply the result to show that if an element z algebraic over K can be approximated from within K in the same way as an element in K^{h}, then $K(z)$ is not linearly disjoint from K^{h} over K.

1. Introduction

Complete valued fields of rank 1 are henselian, but for valuations v of arbitrary rank, this does not hold in general. However, there is a connection between Hensel's Lemma and completions, but these completions have to be taken for residue fields of suitable coarsenings of v. This connection was worked out by Ribenboim $[\mathrm{R}]$ who used distinguished pseudo Cauchy sequences to characterize the so called stepwise complete fields; it had been shown by Krull that these fields are henselian. We want to give a more precise description of this connection.

Take any extension $(L \mid K, v)$ of valued fields, that is, an extension $L \mid K$ of fields and a valuation v on L. By $v L$ and $v K$ we denote the value groups of v on L and on K, and by $L v$ and $K v$ the residue fields of v on L and on K, respectively. Similarly, $v z$ and $z v$ denote the value and the residue of an element z under v. For $z \in L$, we define

$$
v(z-K):=\{v(z-c) \mid c \in K\} \subseteq v L \cup\{\infty\}
$$

We call z weakly distinguished over K if there is a non-trivial convex subgroup Δ of $v K$ and some $\alpha \in v K$ such that the coset $\alpha+\Delta$ is cofinal in $v(z-K)$, that is, $\alpha+\Delta \subseteq v(z-K)$ and for all $\beta \in v(z-K)$ there is $\gamma \in \alpha+\Delta$ such that $\beta \leq \gamma$. If this holds with $\alpha=0$, that is, if some non-trivial convex subgroup of $v K$ is cofinal in $v(z-K)$, then we call z distinguished over K. This name is chosen since distinguished elements induce distinguished pseudo Cauchy sequences in the sense of Ribenboim [R], p. 105.

The extension $(L \mid K, v)$ is immediate if the canonical embeddings of $v K$ in $v L$ and of $K v$ in $L v$ are onto.

[^0]Now take an arbitrary valued field (K, v) and extend its valuation v to its algebraic closure \tilde{K}. Then \tilde{K} contains a unique henselization K^{h} with respect to this extension. We will prove:

Theorem 1.1. Every element $a \in K^{h} \backslash K$ is weakly distinguished over K. In particular, the henselization is an immediate extension of (K, v).

Note that if (K, v) is of rank 1 , that is, has archimedean ordered value group, then its henselization lies in its completion and every element $a \notin K$ of the henselization K^{h} is distinguished over K (with $\Delta=v K$).

We will give two proofs for Theorem 1.1. The first one is an adaptation of the proof found in $[\mathrm{Z}-\mathrm{S}]$ for the fact that the henselization of a valued field is an immediate extension. The second proof uses the fact that the henselization can be constructed as a union of finite extensions generated by roots of polynomials that satisfy the conditions of Hensel's Lemma.

By " $\alpha>v(a-K)$ " we mean $\alpha>v(a-c)$ for all $c \in K$. We use Theorem 1.1 to prove the following result:
Theorem 1.2. Take $z \in \tilde{K} \backslash K$ such that

$$
v(a-z)>v(a-K)
$$

for some $a \in K^{h}$. Then K^{h} and $K(z)$ are not linearly disjoint over K, that is,

$$
\left[K^{h}(z): K^{h}\right]<[K(z): K]
$$

and in particular, $K(z) \mid K$ is not purely inseparable.
Theorem 1.1 answers a question from Bernard Teissier. Theorem 1.2 has a crucial application in [Ku3] to the classification of Artin-Schreier extensions with non-trivial defect. This classification was originally obtained in [Ku1] under the additional assumption that the fields in question are henselian. With the help of Theorem 1.2 this assumption can be dropped, and so the classification becomes available for valued function fields.

Theorems 1.1 and 1.2 were also proved in [Ku1], but the proofs given in Sections 5 and 6 are improved versions of the original proofs, using much less technical machinery, and the proof of Theorem 1.1 given in Section 4 is new.

2. Some preliminaries

We will assume the reader to be familiar with the basic facts of valuation theory, and we will often use them without further references. We recommend [End], [Eng-$\mathrm{P}],[\mathrm{R}],[\mathrm{W}],[\mathrm{Z}-\mathrm{S}]$ and $[\mathrm{Ku} 2]$ for the general valuation theoretical background.

If v and w are two valuations on a field K and \mathcal{O}_{v} and \mathcal{O}_{w} are their valuation rings, then w is called a coarsening of v if $\mathcal{O}_{v} \subseteq \mathcal{O}_{w}$. If this holds, then $v c \geq v d$ implies $w c \geq w d$ and in particular, $v c \geq 0$ implies $w c \geq 0$ and $w d>0$ implies $v d>0$.

As we are working with valued fields (K, v) of higher rank (that is, with nonarchimedean ordered value groups $v K$), we will use convex subgroups Δ of $v K$ and the corresponding coarsenings of v. The ordering of $v K$ induces an ordering on $v K / \Delta$: the set of positive elements in the latter group is just the image under the canonical epimorphism of the set $v K^{+}$of positive elements in $v K$. Hence, $\alpha \geq \beta$ implies $\alpha+\Delta \geq \beta+\Delta$. More precisely, $\alpha+\Delta \geq \beta+\Delta$ holds if and only if there is some $\gamma \in \Delta$ such that $\alpha+\gamma \geq \beta$. The coarsening v_{Δ} of v is the valuation whose valuation ring is $\left\{c \in K \mid v c \in v K^{+} \cup \Delta\right\}$; this contains the valuation ring \mathcal{O}_{v} of v. The value group of v_{Δ} on K is canonically isomorphic to $v K / \Delta$. Note that

$$
\begin{equation*}
v_{\Delta} c>0 \Longleftrightarrow v c>\Delta \tag{2.1}
\end{equation*}
$$

The valuation v also induces a valuation \bar{v}_{Δ} on the residue field $K v_{\Delta}$ such that v is (equivalent to) the composition $v_{\Delta} \circ \bar{v}_{\Delta}$ (in this paper, we will identify equivalent valuations). If $\mathcal{O}_{v_{\Delta}}$ and $\mathcal{M}_{v_{\Delta}}$ denote the valuation ring and valuation ideal of v_{Δ}, then the valuation ring of \bar{v}_{Δ} is the image of \mathcal{O}_{v} under the canonical epimorphism $\mathcal{O}_{v_{\Delta}} \rightarrow \mathcal{O}_{v_{\Delta}} / \mathcal{M}_{v_{\Delta}}=K v_{\Delta}$. The value group of \bar{v}_{Δ} on $K v_{\Delta}$ is canonically isomorphic to Δ via

$$
\begin{equation*}
\bar{v}_{\Delta}\left(a+\mathcal{M}_{v_{\Delta}}\right) \mapsto v a \quad \text { for } a \notin \mathcal{M}_{v_{\Delta}} . \tag{2.2}
\end{equation*}
$$

If $(L \mid K, v)$ is an arbitrary extension of valued fields, then the convex hull Γ of Δ in $v L$ is a convex subgroup of $v L$, and v_{Γ} is an extension of v_{Δ} from K to L. If $v L / v K$ is a torsion group (which is the case if $L \mid K$ is algebraic), then taking convex hulls induces a bijective inclusion preserving mapping from the chain of convex subgroups of $v K$ to the chain of convex subgroups of $v L$, and v_{Γ} is the unique coarsening of v on L which extends v_{Δ}.

We will need some facts from ramification theory.
Lemma 2.1. Let $(N \mid K, v)$ be an arbitrary normal algebraic extension and w a coarsening of v on N. Then

$$
\begin{equation*}
(N \mid K)^{d(w)} \subseteq(N \mid K)^{d(v)} \subseteq(N \mid K)^{i(v)} \subseteq(N \mid K)^{i(w)} \tag{2.3}
\end{equation*}
$$

where $(N \mid K)^{d(v)}$ and $(N \mid K)^{d(w)}$ denote the decomposition fields of $(N \mid K, v)$ with respect to v and w, respectively, and $(N \mid K)^{i(v)}$ and $(N \mid K)^{i(w)}$ denote the inertia fields of $(N \mid K, v)$ with respect to v and w, respectively.

Proof. For $\sigma \in \operatorname{Gal}(N \mid K), v \circ \sigma=v$ implies $w \circ \sigma=w$. Hence the decomposition group with respect to v is contained in the decomposition group with respect to w. This proves the first inclusion. The second inclusion is well known from ramification theory (cf. [Eng-P], p. 124). For $\sigma \in \operatorname{Gal}(N \mid K)$, if $w(x-\sigma x)>0$ for all x such that $w x \geq 0$, then $v(x-\sigma x)>0$ for all x such that $v x \geq 0$. Hence the inertia group with respect to w is contained in the inertia group with respect to v. This proves the third inclusion.

Lemma 2.2. Let $(N \mid K, w)$ be a finite normal extension of valued fields with decomposition field Z and inertia field T. If $z \in T$ then there is $c \in Z$ such that

$$
w(z-c)=\max w(z-Z) \in w Z
$$

Proof. From ramification theory we know that $n:=[T: Z]=[T w: Z w]$. We choose $b_{1}=1, \ldots, b_{n} \in T$ such that $w b_{1}=\ldots=w b_{n}=0$ and $b_{1} w, \ldots, b_{n} w$ is a basis of $T w \mid Z w$. Then b_{1}, \ldots, b_{n} are Z-linearly independent and thus form a basis of $T \mid Z$. Since $b_{1} w, \ldots, b_{n} w$ are $Z w$-linearly independent, we have that $w\left(c_{1} b_{1}+\right.$ $\left.\ldots+c_{n} b_{n}\right)=\min _{1 \leq i \leq n} w\left(c_{i} b_{i}\right) \leq \min _{2 \leq i \leq n} w\left(c_{i} b_{i}\right)=\min _{2 \leq i \leq n} w\left(c_{i}\right) \in w Z$. Hence if $z=c_{1} b_{1}+\ldots+c_{n} b_{n}$ and we set $c=c_{1} b_{1}=c_{1} \in Z$, then $w(z-c)=\min _{2 \leq i \leq n} w\left(c_{i} b_{i}\right)=$ $\max w(z-Z)$.

3. Properties of weakly distinguished elements

Throughout this section, let $(L \mid K, v)$ be an extension of valued fields. General valuation theory tells us that the extension is immediate if and only if for every $z \in L \backslash K$ and every $c \in K$ there is $c^{\prime} \in K$ such that $v\left(z-c^{\prime}\right)>v(z-c)$. This holds if z is weakly distinguished over K since then, $v(z-K)$ has no maximal element (as a non-trivial convex subgroup of $v K$ has no maximal element). This proves:

Lemma 3.1. If every $z \in L \backslash K$ is distinguished over K, then $(L \mid K, v)$ is immediate.
A subset S of an ordered set T is a final segment of T if $S \ni \beta<\gamma \in T$ implies $\gamma \in S$, and an initial segment of T if $S \ni \beta>\gamma \in T$ implies $\gamma \in S$.

Lemma 3.2. Take $z \in L$. If $v(z-K)$ has no maximal element, then it is an initial segment of $v K$.

Proof. By our assumption, for every $c \in K$ there is $c^{\prime} \in K$ such that $v(z-c)<$ $v\left(z-c^{\prime}\right)$, whence $v(z-c)=\min \left\{v(z-c), v\left(z-c^{\prime}\right)\right\}=v\left(c^{\prime}-c\right) \in v K$. This proves that $v(z-K) \subseteq v K$. If $v(z-c)>\gamma \in v K$, then take $d \in K$ such that $v d=\gamma$ to obtain that $\gamma=v d=\min \{v(z-c), v d\}=v(z-(c+d)) \in v(z-K)$. This proves that $v(z-K)$ is an initial segment of $v K$.

If $z \in L$ is distinguished over K with the convex subgroup Δ of $v K$ cofinal in $v(z-K)$, and if Γ is the convex hull of Δ in $v L$, then for all $c \in K, v(z-c) \geq 0$ implies $v_{\Gamma}(z-c) \geq 0$ (but the converse is not true). On the other hand, $v_{\Gamma}(z-c)>0$ is impossible since by (2.1) this would imply that $v(z-c)>\Gamma$, whence $v(z-c)>\Delta$, a contradiction. Therefore,

$$
\begin{equation*}
v(z-c) \geq 0 \Longrightarrow v_{\Gamma}(z-c)=0 \tag{3.1}
\end{equation*}
$$

We will denote by $\left(K v_{\Delta}\right)^{c\left(\bar{v}_{\Delta}\right)}$ the completion of $K v_{\Delta}$ with respect to \bar{v}_{Δ}.
Lemma 3.3. Take $z \in L$ and suppose that Δ is a non-trivial convex subgroup of $v K$ and $\alpha \in v K$ such that $\alpha+\Delta$ is cofinal in $v(z-K)$ (so that z is weakly distinguished over $K)$. Then $z \notin K, v(z-K) \subseteq v K$, and $\alpha+\Delta$ is a final segment of $v(z-K)$.

If in addition $\alpha=0$ (so that z is distinguished over K), Γ is the convex hull of Δ in $v L$, and $v_{\Gamma} z=0$, then

$$
\begin{equation*}
z v_{\Gamma} \in\left(K v_{\Delta}\right)^{c\left(\bar{v}_{\Delta}\right)} \backslash K v_{\Delta} \tag{3.2}
\end{equation*}
$$

Conversely, if there exists a decomposition $v=v_{\Gamma} \circ \bar{v}_{\Gamma}$ on L such that (3.2) holds, then z is distinguished over K with $\Delta=\Gamma \cap v K$ cofinal in $v(z-K)$.
Proof. Suppose that Δ is a non-trivial convex subgroup of $v K$ and $\alpha \in v K$ such that $\alpha+\Delta$ is cofinal in $v(z-K)$. Then $v(z-K)$ has no maximal element, and Lemma 3.2 shows that $v(z-K) \subseteq v K$. In particular, $\infty \notin v(z-K)$, which shows that $z \notin K$. Since Δ and hence also $\alpha+\Delta$ is convex in $v K$, the assumption that $\alpha+\Delta$ is cofinal in $v(z-K) \subseteq v K$ implies that it is a final segment of $v(z-K)$.

Now suppose that Δ is cofinal in (and hence a final segment of) $v(z-K), \Gamma$ is the convex hull of Δ in $v L$, and $v_{\Gamma} z=0$. Then $0, \infty \neq z v_{\Gamma} \in K v_{\Gamma}$. Via the isomorphism (2.2), let us identify the value group of \bar{v}_{Δ} on $K v_{\Delta}$ with Δ and the value group of \bar{v}_{Γ} on $K v_{\Gamma}$ with Γ. Take any $\delta \in \Delta$. Then we can choose $d \in K$ such that $v(z-d)>\delta$. This implies that $v(z-d) \in \Delta$, whence $v_{\Gamma}(z-d)=0$ so that $(z-d) v_{\Gamma} \in L v_{\Gamma}$. Now $\bar{v}_{\Gamma}\left((z-d) v_{\Gamma}\right)=v(z-d)>\delta$. This yields that $\bar{v}_{\Gamma}\left(z v_{\Gamma}-d v_{\Delta}\right)>\delta$. Since $\delta \in \Delta$ was arbitrary, we see that $z v_{\Gamma} \in\left(K v_{\Delta}\right)^{c\left(\bar{v}_{\Delta}\right)}$. On the other hand, if $z v_{\Gamma}$ would lie in $K v_{\Delta}$ and thus would equal $d v_{\Delta}$ for some $d \in K$, then we would have that $v_{\Gamma}(z-d)>0$ and hence $v(z-d)>\Delta$, a contradiction.

For the converse, let Δ be any convex subgroup of $v K$ and Γ its convex hull in $v L$, and assume that (3.2) holds. Then for every $\delta \in \Delta$ there is $d \in K$ such that $\bar{v}_{\Gamma}\left(z v_{\Gamma}-d v_{\Gamma}\right)=\delta$, that is, $v(z-d)=\delta$. This shows that $\Delta \subseteq v(z-K)$. But there is no $d \in K$ such that $v(z-d)>\Delta$ since otherwise, $z v_{\Gamma}-d v_{\Gamma}=(z-d) v_{\Gamma}=0$, which would mean that $z v_{\Gamma} \in K v_{\Delta}$.

Lemma 3.4. Take any coarsening w of v on L. If $z \in L$ is weakly distinguished over K with respect to w, then also with respect to v.

Proof. We denote by Γ_{w} the convex subgroup of $v L$ associated with the coarsening w. Via the canonical isomorphism, we identify $w L$ with $v L / \Gamma_{w}$. Further, $\Delta_{w}=\Gamma_{w} \cap v K$ is the convex subgroup of $v K$ associated with the restriction of w to K, and $w K$ is canonically isomorphic to $v K / \Delta_{w}$. We denote by $\bar{\Delta}$ the convex subgroup and by $\bar{\alpha}$ the element of $w K$ such that $\bar{\alpha}+\bar{\Delta}$ is cofinal in $w(z-K)$. We choose $\alpha \in v K$ such that $\alpha+\Delta_{w}=\bar{\alpha}$. We set $\Delta=\left\{\delta \in v K \mid \delta+\Delta_{w} \in \bar{\Delta}\right.$; this is a convex subgroup of $v K$.

We show that $\alpha+\Delta$ is cofinal in $v(z-K)$. Take any $c \in K$. By assumption there is $\bar{\delta} \in \bar{\Delta}$ such that $\bar{\alpha}+\bar{\delta}>w(z-c)=v(z-c)+\Gamma_{w}$. Take $\delta \in \Delta$ such that $\delta+\Delta=\bar{\delta}$; then $\alpha+\delta>v(z-c)$. On the other hand, for every $\delta \in \Delta$ we can take $\beta \in \Delta$ and some $c^{\prime} \in K$ such that $\bar{\alpha}+\bar{\delta}<\bar{\alpha}+\bar{\beta} \leq w\left(z-c^{\prime}\right)$. This implies that $\alpha+\delta<v\left(z-c^{\prime}\right)$. This completes our proof.

We leave the easy proof of the following lemma to the reader.

Lemma 3.5. Take $z \in L$ and $b, c \in K, b \neq 0$. Then

$$
v(b z+c-K)=v b+v(z-K)
$$

Consequently,

1) $b z+c$ is weakly distinguished over K if and only if z is,
2) if z is distinguished over K, then $b z+c$ is weakly distinguished over K,
3) if z is weakly distinguished over K, then there is some $d \in K$ such that $d z$ is distinguished over K.

Lemma 3.6. Let $(L \mid K, v)$ and $(L(z) \mid L, v)$ be arbitrary extensions of valued fields. Assume that every element $x \in L \backslash K$ is weakly distinguished over K. If z is weakly distinguished over L, then also over K.
Proof. From Lemma 3.1 we know that $v L=v K$. We have that

$$
v(z-K) \subseteq v(z-L)
$$

If " $=$ " holds, we are done. So we assume that " \neq " holds. Then there exists an element $x \in L$ such that $v(z-c)<v(z-x)$ for every $c \in K$, whence $v(z-c)=$ $v(x-c)$. This shows that

$$
v(z-K)=v(x-K)
$$

Since x is weakly distinguished over K by hypothesis, this shows that also z is weakly distinguished over K.

4. Distinguished Elements in henselizations

Our goal in this section is to show that every element in the henselization K^{h} is weakly distinguished over K. For valuations of rank 1 , this is a direct consequence of the well known fact that the completion of a valued field of rank 1 contains its henselization. Indeed, all elements in this completion and hence also all elements in the henselization that do not lie in K are distinguished over K.

If (K, v) is of rank >1, then the distinct extensions of v to a given algebraic extension field L may not be independent. In this case, the Strong Approximation Theorem may fail. As a substitute, for the proof that the henselization is an immediate extension, Ribenboim $[\mathrm{R}]$ gives a generalized version of the Strong Approximation Theorem where the independence condition is replaced by conditions on the given data that have to be satisfied by the requested element. But in our context, the method of Zariski and Samuel [ZA-SA2] is more natural: it proceeds by induction on the number of extensions of the valuation v and treats dependent extensions by an investigation of suitable coarsenings of v. We adapt this method to prove the more informative Theorem 1.1.
Lemma 4.1. Take a normal separable-algebraic extension $(N \mid K, v)$ of valued fields and assume that the distinct extensions of v from K to N are independent. Further, assume that $a \in N$ has the property that $v \neq v \circ \sigma$ on N for every $\sigma \in \operatorname{Gal}(N \mid K)$ such that $\sigma a \neq a$. Then a lies in the completion of (K, v).

Proof. Given any $\alpha \in v K$, we have to show that there exists $c \in K$ such that $v(a-c) \geq \alpha$. All extensions of v from K to N are conjugate, that is, of the form $v \circ \sigma$ with $\sigma \in \operatorname{Gal}(N \mid K)$ (cf. [Eng-P], Theorem 3.2.15). As we assume that all of them are independent, the same will be true for the finitely many extensions of v from K to the normal hull $N_{a} \subseteq N$ of $K(a) \mid K$.

We show that $\sigma a \neq a$ implies that $v \neq v \circ \sigma$ already holds on N_{a}. Indeed, if the latter is false, then v and $v \circ \sigma$ are both extensions of $v=v \circ \sigma$ from N_{a} to N. Hence there is $\tau \in \operatorname{Gal}\left(N \mid N_{a}\right)$ such that $v=v \circ \sigma \circ \tau$ on N. The assumption of our lemma then yields that $\sigma \tau a=a$. As $\sigma \tau a=\sigma a$, we obtain that $\sigma a=a$.

We use the Strong Approximation Theorem (cf. [Eng-P], Theorem 2.4.1) to find $b \in N_{a}$ such that $v(a-b) \geq \alpha$ and $v(\sigma b)=(v \circ \sigma) b \geq \alpha$ whenever $\sigma a \neq a$. Writing $c=\sum_{\sigma} \sigma b$ for the trace $\operatorname{Tr}_{N_{a} \mid K}(b)$, we find that

$$
v(a-c) \geq \min \left\{v(a-b), v \sigma b|\sigma|_{N_{a}} \neq \mathrm{id}\right\} \geq \alpha
$$

Lemma 4.2. The assumption on the element a in Lemma 4.1 is satisfied when a lies in the decomposition field Z of $(N \mid K, v)$.

Proof. If $\sigma a \neq a$ then $\sigma \notin \operatorname{Gal}(N \mid Z)$. As the latter is the decomposition group of $(N \mid K, v)$, this shows that $v \neq v \circ \sigma$ on N.

Take a valued field (K, v) and extend v to the separable-algebraic closure $K^{\text {sep }}$ of K. The henselization K^{h} of (K, v) is the decomposition field of ($K^{\text {sep }} \mid K, v$) (cf. [Eng-P], Theorem 5.2.2). From the two preceding lemmata, we obtain:

Corollary 4.3. If $(N \mid K, v)$ is a normal separable-algebraic extension of valued fields and all extensions of v from K to N are independent, then the decomposition field of $(N \mid K, v)$ is contained in the completion of (K, v). If all extensions of v from K to $K^{\text {sep }}$ are independent (which in particular is the case if the rank of (K, v) is 1), then K^{h} is contained in the completion of (K, v).

Now we are ready for the

Proof of Theorem 1.1:

Since K^{h} is the decomposition field of $\left(K^{\text {sep }} \mid K, v\right)$, it follows that for every normal separable-algebraic extension $(N \mid K, v)$, the decomposition field is $K^{h} \cap N$ (cf. [End], (15.6) c)). Hence K^{h} is the union over the decomposition fields of all finite normal separable-algebraic extensions of (K, v). Thus we may assume that a lies in the decomposition field (Z, v) of some finite Galois extension $(N \mid K, v)$. Let $v_{1}=v, v_{2}, \ldots, v_{n}$ be all extensions of v from K to N. (Note that $n \geq 2$ because the assumption $a \notin K$ implies that $Z \neq K$.)

If $n \geq 3$, then suppose that the lemma is already proved for the case where the number of extensions of the valuation v from K to N is smaller than n. In view of Corollary 4.3 , we only have to treat the case where the extensions v_{1}, \ldots, v_{n} are not independent on N. Hence, there are i, j such that v_{i} and v_{j} admit a non-trivial
common coarsening. The restriction of this coarsening to K is also a non-trivial coarsening of the valuation v on K. (Indeed, as $N \mid K$ is algebraic, restriction induces an inclusion preserving bijection between the coarsenings of v_{i} and the coarsenings of v on K which preserves inclusion between the corresponding valuation rings.) Among all the coarsenings of v on K that we find in this way, running through all common coarsenings of all possible pairs v_{i} and v_{j}, let w be the finest one. (Its valuation ring is the intersection of the valuation rings of all of these coarsenings.) We write $v=w \circ \bar{w}$. Now w admits an extension (again called w) to N which is a coarsening of at least two of the v_{i} 's.
W.l.o.g., we may assume that w is a coarsening of $v_{1}=v$. Indeed, since all extensions of v from K to N are conjugate, we may choose $\sigma \in \operatorname{Gal}(N \mid K)$ such that $v_{i} \circ \sigma=v_{1}$, and we obtain that $w \circ \sigma$ is an extension of w from K to N and a coarsening of $v_{i} \circ \sigma=v_{1}$ and of $v_{j} \circ \sigma \neq v_{1}$.

For the coarsening w of v, we may infer from Lemma 2.1, using the notation of that lemma:

$$
(N \mid K)^{d(w)} \subset(N \mid K)^{d(v)} \subset(N \mid K)^{i(v)} \subset(N \mid K)^{i(w)}
$$

We set $L=(N \mid K)^{d(w)}$; note that $Z=(N \mid K)^{d(v)}$.
Every extension of w from K to N may be refined to an extension of v from K to N (just by composing it with any extension of \bar{w} from $K w$ to $N w$). Since the extension w gives already rise to at least two extensions of v from K to N, we see that there cannot be more than $n-1$ extensions of w from K to N. By our induction hypothesis, we find that every element $a \in L \backslash K$ is weakly distinguished over K with respect to w, and by Lemma 3.4, also with respect to v. Note that if there is only one extension of w from K to N, then $L=K$ and the assertion is trivially true. In view of Lemma 3.6, it now suffices to show that every element $z \in Z \backslash L$ is weakly distinguished over L.

Since Z is contained in $(N \mid K)^{i(w)}$, we may infer from Lemma 2.2 the existence of an element $c \in L$ such that $w(z-c)=\max w(z-L) \in w L$. We choose $b \in L$ such that $w b(z-c)=0$. By Lemma 3.5, z is weakly distinguished over L if and only if $b(z-c)$ is. Consequently, we may assume $c=0, b=1$ and

$$
0=w z=\max w(z-L)
$$

from the start.
After a suitable renumbering, we may assume that precisely the extensions $v_{1}=$ v, v_{2}, \ldots, v_{m} of v are composite with w, and we write $v_{j}=w \circ \bar{w}_{j}$ for $1 \leq j \leq m$. Now (Z, v) is also the decomposition field of $(N \mid L, v)$ (cf. [End], (15.6) b)). Since L was chosen to be the decomposition field of $(N \mid K, w)$, the extension of w from L to N is unique. Every $\tau \in \operatorname{Gal}(N w \mid L w)$ is induced by some $\sigma \in \operatorname{Gal}(N \mid L)$ (this follows from [Eng-P], Lemma 5.2.6 (1)). If $\tau(z w) \neq z w$, then $\sigma z \neq z$, and by Lemma 4.2, $v \circ \sigma \neq v$ while $w \circ \sigma=w$ on N. This implies that $\bar{w}_{1} \circ \tau \neq \bar{w}_{1}$ on $N w$.

Furthermore, by our choice of w, it is the finest coarsening of v on K which is induced by a common coarsening of at least two v_{i} 's. Consequently, the \bar{w}_{i} 's must
be independent since otherwise, a common non-trivial coarsening of them could be composed with w to obtain a finer valuation, a contradiction. We have thus shown that the extension $\left(Z w \mid L w, \overline{w_{1}}\right)$ satisfies the hypotheses of Lemma 4.1. We conclude that $z w$ lies in the completion of $\left(L w, \bar{w}_{1}\right)$. On the other hand, $\max w(z-L)=0$ shows that there is no element $c \in L$ such that $w(z-c)>0$. This proves $z w \notin L w$. Hence by Lemma 3.3, z is distinguished over L.

Now the second assertion of Theorem 1.1 follows from Lemma 3.1.

5. Building up the henselization

We will give a different approach to the proof of Theorem 1.1. It starts with the following observation:

Lemma 5.1. Let (K, v) be an arbitrary valued field and $f \in \mathcal{O}_{v}[X]$ be non-linear, monic and irreducible over K. Assume that $a \in \tilde{K}$ is a root of f such $a v \in K v$ and $v f^{\prime}(a)=0$. Then a is distinguished over K.
Proof. From the Taylor expansion we infer the existence of some $\tilde{h}(X, Z) \in \mathcal{O}_{v}[X, Z]$ such that

$$
f(Z)-f(X)=f^{\prime}(X)(Z-X)+(Z-X)^{2} \tilde{h}(X, Z) .
$$

Since $a v \in K v$, there is $c \in \mathcal{O}_{v}$ such that $v(c-a)>0$. Given any such c, we note that $v f^{\prime}(c)=v f^{\prime}(a)=0$, which follows from the corresponding Taylor expansion since $f^{\prime} \in \mathcal{O}_{v}[X]$. We set

$$
\begin{equation*}
c^{\prime}:=c-\frac{f(c)}{f^{\prime}(c)} \in \mathcal{O}_{v} \tag{5.1}
\end{equation*}
$$

Then

$$
f\left(c^{\prime}\right)-f(c)=f^{\prime}(c)\left(c^{\prime}-c\right)+\left(c^{\prime}-c\right)^{2} \tilde{h}\left(c^{\prime}, c\right)=-f(c)+\left(\frac{f(c)}{f^{\prime}(c)}\right)^{2} \tilde{h}\left(c^{\prime}, c\right)
$$

with $\tilde{h}\left(c^{\prime}, c\right) \in \mathcal{O}_{v}$, so that

$$
\begin{equation*}
v f\left(c^{\prime}\right)=2 v f(c)+v \tilde{h}\left(c^{\prime}, c\right) \geq 2 v f(c) \tag{5.2}
\end{equation*}
$$

On the other hand,

$$
f(c)=f(c)-f(a)=f^{\prime}(a)(c-a)+(c-a)^{2} \tilde{h}(c, a) .
$$

Since $v f^{\prime}(a)=0, v(c-a)^{2}>v(c-a)$ and $v \tilde{h}(c, a) \geq 0$, it follows that

$$
\begin{equation*}
v f(c)=v(c-a)>0 \tag{5.3}
\end{equation*}
$$

Now (5.1) implies that $v\left(c^{\prime}-c\right)>0$, whence $v\left(c^{\prime}-a\right)>0$. Replacing c by c^{\prime} in the above argument, we obtain that $v\left(c^{\prime}-a\right)=v f\left(c^{\prime}\right)$. Then using (5.2) and (5.3), we deduce that

$$
\begin{equation*}
v\left(c^{\prime}-a\right)=v f\left(c^{\prime}\right) \geq 2 v f(c)=2 v(c-a) \tag{5.4}
\end{equation*}
$$

First of all, this yields that $v(a-K)$ has no maximal element (note that $\infty \notin v(a-K)$ as $a \notin K$ by our assumption on f). Hence by Lemma 3.2, we know that the nonempty set of positive elements in $v(a-K)$ is convex in $v K$. Therefore, (5.4) yields that it is closed under addition and thus the set of positive elements of a convex subgroup. This proves that a is distinguished over K.

We will consider a very special type of immediate extensions $(K(z), v) \mid(K, v)$, and build up the henselization by a transfinite repetition of such extensions. We call an element z strictly distinguished over K if there exists a coarsening w of v such that the following three conditions hold:
(SD1) $\quad w z=0$,
(SD2) $\quad z w \in(K w)^{c(\bar{w})} \backslash K w$,
(SD3) for all $n \in \mathbb{N}$, if $1, z, \ldots, z^{n}$ are linearly independent over K, then $1, z w, \ldots,(z w)^{n}$ are linearly independent over $K w$.
Here, $(K w)^{c(\bar{w})}$ denotes the completion of $K w$ with respect to \bar{w}. The third condition implies that $[K(z): K]=[K w(z w): K w]$; in particular, if z is transcendental over K, then $z w$ is transcendental over $K w$. Lemma 3.3 shows that if z is strictly distinguished over K, then z is distinguished over K.

The next lemma shows that strictly distinguished elements generate extensions with a nice property. For $f \in \mathcal{O}_{K}[X]$, we denote by $f v$ the polynomial obtained from f by replacing the coefficients by their v-residues.

Lemma 5.2. Let z be strictly distinguished over K. Then every element $y \in K(z) \backslash$ K is weakly distinguished over K.

Proof. Let the decomposition $v=w \circ \bar{w}$ be as in the above definition of strictly distinguished elements. In the first step, we will prove the lemma under the assumption that $y=f(z)$ with $f \in K[X]$ and $\operatorname{deg} f<[K(z): K]$ if the latter is finite. (If z is algebraic over K, then this assumption is no loss of generality.) By Lemma 3.5, for every $b \in K^{\times}$and $c \in K$ we have that y is weakly distinguished over K if and only if $b y-c$ is; after picking suitable elements b, c and replacing f by $b f-c$ we may thus assume that f has no constant term and that $f \in \mathcal{O}_{(K, w)}[X] \backslash \mathcal{M}_{(K, w)}[X]$. Consequently, $f w \not \equiv 0$, and since $w z=0$, we have $f(z) w=(f w)(z w)$. By our assumption on the degree of f, the elements $1, z, \ldots, z^{\operatorname{deg} f}$ are linearly independent over K, and by condition (SD3), the same holds for the elements $1, z w, \ldots,(z w)^{\operatorname{deg} f}$ over $K w$. Hence $(f w)(z w) \notin K w$. But since $z w$ is an element of the completion of $(K w, \bar{w})$, the element $f(z) w=(f w)(z w)$ also lies in the completion of $(K w, \bar{w})$. In view of Lemma 3.3, this shows $f(z)$ to be weakly distinguished over K.

In the second step, it remains to prove the lemma for the case where z is transcendental over K and $y=f(z) / g(z)$ with $f, g \in K[X]$. By a similar argument as above, after multiplication of f and g (and hence of y) with suitable elements
from K^{\times}, we may assume that $f, g \in \mathcal{O}_{(K, w)}[X] \backslash \mathcal{M}_{(K, w)}[X]$. To avoid the case where $(f(z) / g(z)) w=(f(z) w) /(g(z) w) \in K w$, we have to do the following. If $m=\operatorname{deg} g w$, then the m-th coefficient of g is not zero; hence there exists an element $d \in K$ such that the m-th coefficient of the polynomial $f-d g$ is 0 . Again, after multiplication of $f-d g$ with a suitable element from K^{\times}, we may assume that $f-d g \in \mathcal{O}_{(K, w)}[X] \backslash \mathcal{M}_{(K, w)}[X]$. Then

$$
\frac{(f(z)-d g(z)) w}{g(z) w} \notin K w
$$

but this element lies in the completion of $(K w, \bar{w})$ since the same holds for $(f(z)-$ $d g(z)) w$ and $g(z) w$. Since $(f-d g) / g=(f / g)-d$, it follows by Lemma 3.3 and Lemma 3.5 that $y=f(z) / g(z)$ is weakly distinguished over K.

The next lemma shows how strictly distinguished elements appear in henselizations.

Lemma 5.3. Let (K, v) be an arbitrary valued field and $f \in \mathcal{O}_{v}[X]$ be non-linear, monic and irreducible over K. Assume that $a \in \tilde{K}$ is a root of f such that av is an element of $K v$ and a simple root of $f v$. Then a is distinguished over K. If in addition, for every coarsening w of v either $f w$ remains irreducible over $K w$ or admits a root in $K w$ with \bar{w}-residue av, then a is strictly distinguished over K.

Proof. The first part of the lemma follows directly from Lemma 5.1 via a reformulation of the condition on a. Now let f satisfy the hypothesis of the second part. By the first part of the lemma, a is distinguished over K. By our assumption on f, we have that $v a \geq 0$. An application of Lemma 3.3 thus yields $v_{\Gamma} a=0$ and $a v_{\Gamma} \in\left(K v_{\Delta}\right)^{c\left(\bar{v}_{\Delta}\right)} \backslash K v_{\Delta}$, with Γ and Δ as in that lemma. It remains to show that a also satisfies condition (SD3) for $w=v_{\Gamma}$. Since $a v$ is a simple root of $f v$, we know that $a v_{\Gamma}$ is the only root of $f v_{\Gamma}$ with $\bar{v}_{\Gamma}-$ residue $a v$. On the other hand, $a v_{\Gamma} \notin K v_{\Delta}$, and our hypothesis now yields that $f v_{\Gamma}$ is irreducible over $K v_{\Delta}$. Since f is monic, we now have $\left[K v_{\Delta}\left(a v_{\Gamma}\right): K v_{\Delta}\right]=\operatorname{deg} f v_{\Gamma}=\operatorname{deg} f=[K(a): K]$ which yields (SD3) for $w=v_{\Gamma}$.

The additional condition on the polynomial f that we have introduced in the above lemma is not too restrictive:

Lemma 5.4. The valued field (K, v) is henselian if and only if it satisfies the following "weaker" version of Hensel's Lemma:
Let $f \in \mathcal{O}_{v}[X]$ be monic and $a \in K$ such that $f v$ admits av as a simple zero. Assume in addition that fw admits a root with \bar{w}-residue av for every proper coarsening w of v for which $f w$ is reducible. Then f admits a root in K with residue av.
Proof. We have to show the above version implies the original version of Hensel's Lemma (the one without the additional assumption). Assume that (K, v) is not henselian. Then there is some polynomial $g \in \mathcal{O}_{v}[X]$ having no root in K, and $a \in K$ such that $g v$ admits $a v$ as a simple zero. Consider all coarsenings w of v, such
that $g w$ admits a factor g_{w}, irreducible over $K w$ and of degree >1, and such that the \bar{w}-reduction $g_{w} \bar{w}$ admits $a v$ as a zero. Among these, we choose a coarsening w_{0} for which $g_{w_{0}}$ has least degree. Furthermore, we choose any $f \in \mathcal{O}_{v}[X]$ with $f w_{0}=g_{w_{0}}$ and $\operatorname{deg} f=\operatorname{deg} g_{w_{0}}$. Then f satisfies the above condition: $f v$ admits $a v$ as a simple zero, and for every coarsening w of v, the polynomial $f w$ is either irreducible or admits a zero whose \bar{w}-residue is equal to $a v$. But f does not admit any root in K since its w_{0}-reduction $g_{w_{0}}$ is irreducible over $K w_{0}$ and of degree >1. This shows that (K, v) does not satisfy the above version of Hensel's Lemma.

The henselization K^{h} can be generated over K by a transfinitely repeated adjunction of roots x of polynomials which satisfy the hypothesis of Hensel's Lemma. The foregoing lemma shows that this is also true if we replace Hensel's Lemma by the above version. In this case, in every step an element is adjoined which is strictly distinguished over the previous field, according to Lemma 5.3. The next lemma shows why we are choosing this procedure.

Lemma 5.5. Let $(M \mid K, v)$ be an extension of valued fields generated by a set of elements $\left\{z_{\nu} \mid \nu<\tau\right\} \subset M$, where τ is an ordinal number, such that for every $\nu<\tau$, the element z_{ν} is strictly distinguished over $K_{\nu}:=K\left(z_{\mu} \mid \mu<\nu\right)$ (where $\left.K_{0}:=K\right)$. Then every element $z \in M \backslash K$ is weakly distinguished over K.

Proof. We prove the lemma by transfinite induction on $\rho<\tau$. The assertion holds trivially for the field K. Now assume $\rho \geq 1$ and that the assertion holds for every K_{μ} with $\mu<\rho$. If ρ is a limit ordinal, then $K_{\rho}=\bigcup_{\mu<\rho} K_{\mu}$ showing that the assertion holds for K_{ρ} too. Now let $\rho=\nu+1$ be a successor ordinal. Then $K_{\rho}=K_{\nu}\left(z_{\nu}\right)$ where z_{ν} is strictly distinguished over K_{ν}. Let y be an arbitrary element of $K_{\nu}\left(z_{\nu}\right) \backslash K_{\nu}$. By Lemma $5.2, y$ is weakly distinguished over K_{ν}. By our induction hypothesis, every element $x \in K_{\nu} \backslash K$ is weakly distinguished over K. In view of Lemma 3.6, this yields that also y is weakly distinguished over K. Hence, the lemma holds for K_{ρ}, and the induction step is established.

This lemma and Lemma 5.3 yield the following corollary, which together with Lemma 3.1 again proves Theorem 1.1:

Corollary 5.6. Let K be a valued field. The henselization K^{h} can be generated over K in the way as described in the hypothesis of the foregoing lemma. Thus, every element in $K^{h} \backslash K$ is weakly distinguished over K.

6. Proof of Theorem 1.2

We need the following lemma. We assume that the valuation v of a field K is extended to its algebraic closure \tilde{K}.

Lemma 6.1. Assume that $y \in \tilde{K}$ and $v=w \circ \bar{w}$ on \tilde{K} with $w y=0$ and $y w \in$ $K^{h} w \backslash K w$. Then K^{h} and $K(y)$ are not linearly disjoint over K.

Proof. Since K^{h} is henselian for the valuation v, it is also henselian for the coarsening w (because if w would admit two distinct extensions to the algebraic closure of K then we could use them to construct two distinct extensions of v).

Let $f(X) \in K[X]$ be the minimal polynomial of y over K. Our assertion is proved if we are able to show that f is reducible over K^{h}. At this point, we may assume that all conjugates of y over K have the same value $v y$ since otherwise, the inequality $\left[K^{h}(y): K^{h}\right]<[K(y): K]$ is immediately seen to be true. This assumption together with $w y=0$ yields that $f \in \mathcal{O}_{w}[X]$. Because f is monic, its reduction $f w$ is nontrivial. The minimal polynomial $g \in K w[X]$ for $y w$ over $K w$ has degree >1 since $y w \notin K w$. Furthermore, it must divide $f w$ because $(f w)(y w)=f(y) w=0$. From Lemma 2.1, we infer that $K^{h}=\left(K^{\text {sep }} \mid K\right)^{d(v)}$ lies in $L:=\left(K^{\text {sep }} \mid K\right)^{i(w)}$. Since $L w \mid K w$ is separable (cf. [Eng-P], Theorem 5.2.7.(1)), we find that $y w$ is a simple root of g. Consequently, g has a second root $\xi \neq y w$ in $\widetilde{K w}=\tilde{K} w$.

Applying Hensel's Lemma to the henselian field (K^{h}, w), we conclude that f becomes reducible over K^{h}; indeed, f factors into two non-trivial polynomials where the roots of the first one all have w-residue $y w$ while there exists at least one root in \tilde{K} of the second polynomial with ξ as its w-residue. This proves our lemma.

An alternative proof of this lemma reads as follows. We use the fact that $K^{h} w$ is equal to the henselization of $K w$ with respect to \bar{w}. Hence by the hypothesis of the lemma, $(K w(y w) \mid K w, \bar{w})$ is thus a non-trivial subextension of $(K w, \bar{w})^{h} \mid(K w, \bar{w})$. By general ramification theory, it admits at least two extensions of the valuation \bar{w} from $K w$ to $K w(y w)$. Since these give rise to different extensions of the valuation v from K to $K(y)$, it again follows from general ramification theory that K^{h} and $K(y)$ are not linearly disjoint over K.

With the help of this lemma and Theorem 1.1, we are now able to give the

Proof of Theorem 1.2:

Assume that (K, v) is any valued field, v is extended to $\tilde{K}, z \in \tilde{K} \backslash K$ and $a \in K^{h}$ such that $v(z-a)>v(a-K)$. Then $a \notin K$ since otherwise, $\infty \in v(a-K)$ and $v(z-a)>\infty$, a contradiction.

Since $a \in K^{h} \backslash K$, Theorem 1.1 shows that a is weakly distinguished over K. By Lemma 3.5, there is $d \in K^{\times}$and a convex subgroup Γ of $v \tilde{K}$ which is cofinal in $v(d a-K)=v d+v(a-K)$. By Lemma 3.3, $(d a) v_{\Gamma} \notin K v_{\Gamma}$. As $v(z-a)>v(a-K)$ implies that $v(d z-d a)>v d+v(a-K)$, we find that $v(d z-d a)>\Gamma$. Thus, $(d z) v_{\Gamma}=(d a) v_{\Gamma} \in K^{h} v_{\Gamma} \backslash K v_{\Gamma}$. Now Lemma 6.1 shows that K^{h} and $K(z)=K(d z)$ are not linearly disjoint over K.

References

[End] Endler, O.: Valuation theory, Berlin (1972)
[Eng-P] Engler, A.J. - Prestel, A.: Valued fields, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005
[Kr] Krull, W.: Allgemeine Bewertungstheorie, J. reine angew. Math. 167 (1931), 160196
[Ku1] Kuhlmann, F.-V.: Henselian function fields and tame fields, extended version of Ph.D. thesis, Heidelberg (1990)
[Ku2] Kuhlmann, F.-V.: Valuation theory, book in preparation. Preliminary versions of several chapters are available on the web site http://math.usask.ca/~fvk/Fvkbook.htm.
[Ku3] Kuhlmann, F.-V.: A classification of Artin-Schreier defect extensions and a characterization of defectless fields, to appear in Illinois J. Math.
[R] Ribenboim, P.: Théorie des valuations, Les Presses de l'Université de Montréal, Montréal, 2nd ed. (1968)
[W] Warner, S.: Topological fields, Mathematics studies 157, North Holland, Amsterdam (1989)
[Z-S] Zariski, O. - Samuel, P.: Commutative Algebra, Vol. II, New York-HeidelbergBerlin (1960)

Department of Mathematics and Statistics, University of Saskatchewan, 106 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E6

E-mail address: fvk@math.usask.ca

[^0]: Date: 17. 3. 2011.
 2000 Mathematics Subject Classification. Primary 12J20; Secondary 12J10.
 This work was partially supported by a Canadian NSERC grant and was completed while I was a guest professor at the Silesian University at Katowice, Poland. I wish to thank the faculty of mathematics of that university for their hospitality.

