Hyperstructures in topological categories René Bartsch

14th Colloquiumfest, Saskatoon 28.02. - 01.03.2014

Hyperspaces

Motivation: a simple fractal

Let
$$X := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 37\},$$

consider
$$K_0 \coloneqq [-\frac{3}{2}, \frac{3}{2}] \times \{0\}$$

$$f_1: X \to X: f_1(x) := \frac{1}{3}x + \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$f_1:X\to X:f_1(x):=\frac{1}{3}x$$

$$f_1:X\to X:f_1(x):=\frac{1}{3}x$$

$$f_1:X\to X:f_1(X):=\frac{1}{3}X$$

$$f_1:X\to X:f_1(X):=\frac{1}{3}X$$

$$1 \cdot \lambda \rightarrow \lambda \cdot l_1(\lambda) - \frac{1}{3}\lambda$$

$$1 \cdot \lambda \rightarrow \lambda \cdot h(\lambda) = \frac{1}{3}\lambda$$

$$A \rightarrow A \cdot I_1(X) := \frac{1}{3}X$$

 $f_4: X \to X: f_4(x) := \frac{1}{3}x + \binom{1}{0}$

 $F: K(X) \to K(X) : F(S) := \bigcup_{i=1}^{4} f_i(S)$

 $f_2: X \to X: f_2(x) := \frac{1}{3} \begin{pmatrix} \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix} x \end{pmatrix} + \frac{1}{4} \begin{pmatrix} -1 \\ \sqrt{3} \end{pmatrix}$

 $f_3: X \to X: f_3(x) := \frac{1}{3} \begin{pmatrix} \frac{1}{2} \begin{pmatrix} 1 & \sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix} x \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix}$

Does a limit object exist?

Yes, if:

- 1. We have a metric on K(X), and
- 2. F is contractive on K(X) w.r.t. that metric, and
- 3. K(X) is complete w.r.t. that metric.

How can we get this?

ad 1. **Hausdorff metric** $d_{\mathcal{H}}$ ad 2. easy calculation because f_1 , f_2 , f_3 , f_4 are contractive

ad 3.

Completeness is not just a metric notion, but a uniform.

We generalize the Hausdorff metric to the Bourbaki-Uniformity.

In uniform spaces we have **compact = precompact + complete**

m amom opacio no navo compact – procempact i compicto

So, if we prove compactness, we get completeness as a gift.

We generalize the Bourbaki-Uniformity to the Vietoris-Topology.

Let (X, τ) be a topological space, $\mathcal{H} \subseteq \mathfrak{P}(X)$ and $M \subseteq X$. We define

$$M^{+_{\mathcal{H}}} := \{ H \in \mathcal{H} | H \cap M = \emptyset \}$$

and

$$M^{-_{\mathcal{H}}} := \{ H \in \mathcal{H} | H \cap M \neq \emptyset \}$$
.

(If there is no doubt about \mathcal{H} , we omit it in the superscript and write M^+ resp. M^- .)

On $\mathcal{H} \subseteq \mathfrak{P}(X)$ now a topology τ_u is defines by the subbase

$$\{A^+ | A \text{ closed in } X\}$$

called **upper Vietoris** topology.

Furthermore, by the subbase

$$\{O^- | O \in \tau\}$$

a topology τ_l is defined, called **lower Vietoris** topology.

$$\tau_V := \tau_I \vee \tau_u$$
 is called **Vietoris topology**.

Let (X, d) be a metric space. On K(X) holds:

The Bourbaki-Uniformity of \mathcal{U}_d coincides with \mathcal{U}_{du} .

Let (X, \mathcal{U}) be an uniform space. On K(X) holds:

The Vietoris topology of $\tau_{\mathcal{U}}$ coincides with the topology generated from the Bourbaki-Uniformity.

 \implies If we build the Vietoris topology from τ_d we get the same topology as is induced by the Hausdorff metric on K(X).

Theorem

Let (X, τ) be a topological space, $Cl_0(X)$ the family of all nonempty closed subsets of X and τ_V the Vietoris topology for τ on $Cl_0(X)$. Then holds

 $(Cl_0(X), \tau_V)$ is compact $\Leftrightarrow (X, \tau)$ is compact.

This applies to our problem with the limit object, yielding completeness, as needed.

Topological Categories

A concrete category C over **Set** is called *topological*, iff

1. For all $X \in |\mathbf{Set}|$ and all families $(f_i, (X_i, \xi_i))_{i \in I}$, indexed by a class I, of \mathcal{C} -objects (X_i, ξ_i) and functions $f_i : X \to X_i$ there exists a unique initial \mathcal{C} -Object (X, ξ) on the set X, i.e.

$$\forall (Y,\eta) \in |\mathcal{C}|, g: Y \to X:$$

$$g \in [(Y,\eta), (X,\xi)]_{\mathcal{C}} \Leftrightarrow \forall i \in I: f_i \circ g \in [(Y,\eta), (X_i,\xi_i)]_{\mathcal{C}}$$

- 2. (Fibre-smallness) For all $X \in |\mathbf{Set}|$, the class of \mathcal{C} -objects on X is a set.
- 3. On sets with at most one element exists exactly one C-structure.

A category C is called **cartesian closed**, iff

- 4. 4.1 For every pair (A, B) of C-objects exists a product $A \times B$ in C and
 - 4.2 For every pair (A, B) of C-objects exists a C-object B^A and a C-morphism $e: A \times B^A \to B$, s.t. for every C-Object C and every C-morphism $f: A \times C \to B$ there exists a unique C-morphism $\overline{f}: C \to B^A$ with $f = e \circ (\mathbf{1}_A \times \overline{f})$.

A topological category $\mathcal C$ is said to be **extensional**, iff for every $\mathbf Y \in |\mathcal C|$ with underlying set Y, there exists a $\mathcal C$ -object $\mathbf Y^*$ with underlying set $Y^* := Y \cup \{\infty_Y\}$, $\infty_Y \notin Y$, s.t. for every $\mathbf X \in \mathcal C$ with underlying set X, every $Z \subseteq X$ and every $f: Z \to Y$, where f is a $\mathcal C$ -morphism w.r.t. the subobject $\mathbf Z$ of $\mathbf X$ on Z, the map $f^*: X \to Y^*$, defined by

$$f^*(x) := \begin{cases} f(x) & ; & x \in Z \\ \infty_Y & ; & x \notin Z \end{cases}$$

is a C-morphism.

A topological category $\mathcal C$ is called a **topological universe**, iff it is cartesian closed and extensional.

Selections

If X is a set and $\mathfrak{P}_0(X)$ the set of all nonempty subsets of X, let

$$\mathcal{A}(X) := \{ f \in X^{\mathfrak{P}_0(X)} \mid \forall A \in \mathfrak{P}_0(X) : f(A) \in A \}$$

the family of all selections on $\mathfrak{P}_0(X)$.

One can show, for instance:

Proposition

Let (X, τ) be a locally compact topological space, $P := \{ p \in X | \exists f \in \mathcal{A}(X) : f(\widehat{\varphi}) \overset{\tau}{\to} p \}$ and let $\widehat{\varphi}$ be an ultrafilter on $\mathfrak{P}_0(X)$ with $\widehat{\varphi} \overset{\tau}{\to} A \in \mathfrak{P}(X)$. Then $A \subseteq \overline{P}$ holds.

By $\mathfrak{F}(M)$ we denote the set of all filters on a set M and by $\mathfrak{F}_0(M)$ the set of all ultrafilters on M.

Proposition

Let (X, τ) be a nested neighbourhood space, let $\widehat{\varphi}$ be an ultrafilter on $\mathfrak{P}_0(X)$ with

 $\widehat{\varphi} \stackrel{\tau_1}{\to} A \in \mathfrak{P}(X)$ and let

 $P := \{ p \in X | \exists \mathcal{F} \in \mathfrak{F}(\mathcal{A}(X)) : \mathcal{F}(\widehat{\varphi}) \xrightarrow{\tau} p \}.$ Then $A \subseteq P$ holds.

For uniform spaces we get even a quite nice characterization:

Theorem

Let (X,\mathcal{U}) be a uniform space, $\tau_{\mathcal{U}}$ the induced topology on X, and \mathfrak{X} of compact subsets of X and $\hat{\mathcal{U}}$ the induced Bourbaki uniformity on \mathfrak{X} . For $\underline{\varphi} \in \mathfrak{F}(\mathfrak{X})$ are equivalent

- 1. $\varphi \xrightarrow{\tau_{\hat{\mathcal{U}}}} A \in \mathfrak{X}$,
- 2. 2.1 $\forall f \in \mathcal{A}(X), \psi \in \mathfrak{F}_0(\varphi) : \exists a \in A : f(\psi) \xrightarrow{\tau_U} a$ and
 - 2.2 $\forall a \in A : \exists f \in A(X) : f(\varphi) \xrightarrow{\tau_U} a$.

Nevertheless definitions by selections needs precise analyse of the concrete structure (topology, uniformity \dots).

Moreover, it can lead rapidly to some hard set theoretical difficulties.

For a filter φ on a set X and a function $f: X \to Y$ we mean by the *image* of φ under f the filter $f(\varphi) := \{B \subseteq Y | \exists P \in \varphi : f[P] \subseteq B\}.$

We say, a filter Φ has Property (A) w.r.t. X iff Φ is a filter on $\mathfrak{P}_0(X)$ and fullfills

$$\forall f \in \mathcal{A}(X) : \exists x_f \in X : f(\Phi) = x_f^{\bullet}$$
 (A)

(Here x_f^{\bullet} is the singleton filter generated by x_f .)

Question: If Φ has property (A) w.r.t. X, must Φ itself be a singleton filter on $\mathfrak{P}_0(X)$?

Proposition

If a filter Φ has property (A) w.r.t. a set X, then it is an ultrafilter on $\mathfrak{P}_0(X)$.

Lemma

If Φ has property (A) w.r.t. a set X, then it is countably complete.

Corollary

If Φ has property (A) w.r.t. a **countable** set X, then it is a singleton filter on $\mathfrak{P}_0(X)$.

- 1. Countably complete **free** ultrafilter exist, iff ω -measurable cardinals exist.
- 2. ω -measurable cardinals exist, iff measurable cardinals exist.
- 3. Every measurable cardinal is inaccessible.

Now the problem:

- 4. In ZFC+,,there exists an inaccessible cardinal" the consistency of ZFC can be proved.
- 5. If ZFC is consistent, then ZFC+, there exists *no* inaccessible cardinal" is consistent, too.

Question: If Φ is a filter on $\mathfrak{P}_0(X)$ such that for every $f \in \mathcal{A}(X)$ the image $f(\Phi)$ is an ultrafilter on X. Must Φ itself be an ultrafilter on $\mathfrak{P}_0(X)$?

Hyperspaces and function spaces I

In function spaces one is mainly concerned with continuous functions. What to do, if a context leads to other functions like

$$f: \mathbf{R} \to \mathbf{R}: \ f(x) := \left\{ \begin{array}{ccc} \sin\left(\frac{1}{x}\right) & : & x \neq 0; \\ 0 & : & x = 0 \end{array} \right. ?$$

[Naimpally, 1966] introduced a topology for such "almost continuous" functions: Definition

Let (X, τ) , (Y, σ) be topological spaces, let $X \times Y$ be equipped with product topology. For any open set $O \subseteq X \times Y$ define

$$\hat{O} := \{ f \in Y^X | f \subseteq O \}$$

The topology Γ generated from the base consisting of all \hat{O} , O open in $X \times Y$, is the **graph topology** w.r.t. τ , σ .

Remark: The set of "almost continuous" functions is just the closure of C(X, Y) in Y^X w.r.t. Γ .

Theorem [Naimpally, 1966]

- 1. If X is T_1 , then the graph topology on Y^X contains the pointwise topology.
- 2. If X is T_2 , then the graph topology on Y^X contains the compact-open topology.
- 3. If X is T_2 , Y not trivial, and the graph topology on Y^X coincides with the compact-open, then X is compact.

[Poppe, 1967] remarked, that the graph topology is just the restriction of the (upper) *Vietoris topology* from $\mathfrak{P}_0(X \times Y)$ to Y^X and generalized the approach using other suitable seeming hypertopologies for $X \times Y$.

Theorem [Poppe, 1967]

- 1. If X is compact and T_2 , then the graph topology on C(X, Y) coincides with the compact-open topology.
- 2. If X is completely regular and the graph topology on C(X, R) coincides with the compact-open, then X is compact.

Theorem [Naimpally, 1966]

Let X, Y be uniform spaces and UC(X, Y) the set of uniformly continuous functions.

- 1. The graph topology on UC(X, Y) contains the uniform topology.
- 2. If X is compact T_2 , then the graph topology on C(X, Y) coincides with the uniform topology.

Theorem [Poppe, 1967]

Let X be a topological and Y an uniform space.

- 1. The graph topology on C(X, Y) contains the uniform topology.
- 2. If the graph topology on C(X) coincides with the uniform topology, then X is countably compact.

For sets X we define a relation \leq between elements of $\mathfrak{P}_0(\mathfrak{P}_0(X))$:

$$\alpha_1 \preceq \alpha_2 :\Leftrightarrow \forall A_1 \in \alpha_1 : \exists A_2 \in \alpha_2 : A_1 \subseteq A_2$$
.

For subsets $\Sigma_1, \Sigma_2 \subseteq \mathfrak{P}_0(\mathfrak{P}_0(X))$: $\Sigma_1 \prec \Sigma_2 :\Leftrightarrow \forall \alpha_2 \in \Sigma_2 : \exists \alpha_1 \in \Sigma_1 : \alpha_1 \prec \alpha_2 .$

$$\preceq$$
 is reflexive and transitive, but not symmetric, not antisymmetric and not asymmetric in general.

Let X be a set. A family $\Sigma \subseteq \mathfrak{P}_0(\mathfrak{P}_0(X))$ is called a **multifilter** on X, iff

Definition multifilter

1.
$$\sigma_1 \in \Sigma \land \sigma_1 \prec \sigma_2 \implies \sigma_2 \in \Sigma$$
 and

2. $\sigma_1, \sigma_2 \in \Sigma \implies \exists \sigma_3 \in \Sigma : \sigma_3 \preceq \sigma_1 \text{ and } \sigma_3 \preceq \sigma_2$ hold. The set of all multifilters on a set X we denote by $\widehat{\mathfrak{F}}(X)$.

Examples: Every uniformity in the covering sense (Tukey) is a multifilter. For $x \in X$ the family $\hat{x} := \{ \sigma \subset \mathfrak{P}_0(X) | \{ \{ x \} \} \prec \sigma \}$ is a multifilter.

Let $x \in X$ and $\alpha \subseteq \mathfrak{P}_0(X)$. Then the *star of* α *at* x is defined as

$$st(x,\alpha) := \bigcup_{\alpha \in A} A$$
,

and the *weak star set* of α at x is defined as

$$\Diamond(x,\alpha):=\{\bigcup_{i=1}^nA_i|\ n\in\mathbb{N},\forall i=1,...,n:x\in A_i\in\alpha\}\ .$$

For a partial cover $\boldsymbol{\sigma}$ of a set \boldsymbol{X} let

$$\sigma^{\diamondsuit} := \bigcup_{x \in X, \diamondsuit(x,\sigma) \neq \emptyset} \diamondsuit(x,\sigma),$$

$$\sigma^* := \{st(x,\sigma) | x \in X, st(x,\sigma) \neq \emptyset\}, \text{ and for a multifilter } \Sigma \text{ on } X \text{ let}$$

$$\Sigma^{\diamondsuit} := \{\xi \in \mathfrak{P}_0(\mathfrak{P}_0(X)) | \exists \sigma \in \Sigma : \sigma^{\diamondsuit} \leq \xi\},$$

$$\Sigma^* := \{ \xi \in \mathfrak{P}_0(\mathfrak{P}_0(X)) | \exists \sigma \in \Sigma : \sigma^* \leq \xi \}.$$

Definition multifilter-space

For a set X and a set \mathcal{M} of multifilters on X we call the pair (X, \mathcal{M}) a **multifilter-space**, iff

- 1. $\forall x \in X : \widehat{x} \in \mathcal{M}$ and
 - 2. $\Sigma_1 \in \mathcal{M} \land \Sigma_2 \preceq \Sigma_1 \Rightarrow \Sigma_2 \in \mathcal{M}$
 - ald Adia called the multifilter structure
- hold. \mathcal{M} is called the **multifilter-structure** of this space. If $(X_1, \mathcal{M}_1), (X_2, \mathcal{M}_2)$ are multifilter-spaces and $f: X_1 \to X_2$ is a map, then f is
- called **fine** (w.r.t. $\mathcal{M}_1, \mathcal{M}_2$), iff

3. $f(\mathcal{M}_1) \subseteq \mathcal{M}_2$.

- A multifilter-space (X, \mathcal{M}) is called
- 1. *limited* iff $\forall \Sigma_1, \Sigma_2 \in \mathcal{M} : \Sigma_1 \cap \Sigma_2 \in \mathcal{M}$,
 - 2. principal iff $\exists \Sigma_0 \in \mathcal{M} : \forall \Sigma \in \mathcal{M} : \Sigma \leq \Sigma_0$.
 - 3. weakly uniform iff $\forall \Sigma \in \mathcal{M} : \Sigma^{\Diamond} \in \mathcal{M}$,
 - 4. *uniform* iff $\forall \Sigma \in \mathcal{M} : \Sigma^* \in \mathcal{M}$.

Lemma

The multifilter-spaces as objects and the fine mappings between them as morphisms form a strong topological universe, denoted by **MFS**. The natural function-space between the multifilter-spaces $\mathbf{X} := (X, \mathcal{M})$ and $\mathbf{Y} := (Y, \mathcal{N})$ is $(\mathbf{Y}^{\mathbf{X}}, \mathcal{M}_{\mathbf{X},\mathbf{Y}})$ with $\mathcal{M}_{\mathbf{X},\mathbf{Y}} := \{\Gamma \in \widehat{\mathfrak{F}}(\mathbf{Y}^{\mathbf{X}}) | \forall \Sigma \in \mathcal{M} : \Gamma(\Sigma) \in \mathcal{N}\}.$

The subcategories of limited, principal, weak uniform limited, weak uniform principal, uniform limited and uniform principal multifilter-spaces are denoted by **LimMFS**, **PrMFS**, **WULimMFS**, **PrWULimMFS**, **ULimMFS** and **PrULimMFS**, respectively.

Lemma

- 1. LimMFS is bireflective in MFS.
- 2. PrMFS, ULimMFS, WULimMFS, PrULimMFS, PrWULimMFS are bireflective in LimMFS.

The category **UMer** of uniform covering spaces (in the sense of Tukey) and uniformly continuous maps is concretely isomorphic to **PrULimMFS**.

(X, \mathcal{M}) a multifilter-space:

- ▶ a filter φ on X is called Cauchy-filter, iff $\exists \Sigma \in \mathcal{M} : \forall \alpha \in \Sigma : \varphi \cap \alpha \neq \emptyset$. The family of all Cauchy-filters is denoted by $\gamma_{\mathcal{M}}$.
- ▶ $P \subseteq X$ is called precompact, iff all ultrafilters containing P are Cauchy. The family of all precompact subsets of a given multifilters-space X is denoted by $\mathcal{PC}(X)$.
- \triangleright a generalized convergence structure q_{γ_M} is defined on X by

$$q_{\gamma_{\mathcal{M}}} := \{ (\varphi, x) \in \mathfrak{F}(X) \times X | \varphi \cap \overset{\bullet}{x} \in \gamma_{\mathcal{M}}(X) \}.$$

- ► This convergence on **PrULimMFS** coincides with the usual convergence in uniform spaces.
- (X, q_{γ_M}) is always a symmetric Kent-convergence space.

$$A_1, ..., A_n \subseteq X, \mathfrak{A} \subseteq \mathfrak{P}_0(X)$$
:

$$\langle A_1,...,A_n \rangle_{\mathfrak{A}} := \{ M \in \mathfrak{A} | M \subseteq \bigcup_{i=1}^n A_i \wedge \forall i = 1,...,n : M \cap A_i \neq \emptyset \}$$

For $\alpha\subseteq\mathfrak{P}_0(X)$ we set $\alpha_{V,\mathfrak{A}}:=\{< A_1,...,A_n>\mid n\in N,A_i\in\alpha\}$ and for $\Sigma\in\widehat{\mathfrak{F}}(X)$ we define $\Sigma_{V,\mathfrak{A}}:=[\{\alpha_{V,\mathfrak{A}}\mid \alpha\in\Sigma\}]_{\widehat{\mathfrak{F}}(\mathfrak{A})}.$

Definition finite hyperstructure

Let (X, \mathcal{M}) be a limited multifilter-space. Then we call

$$\mathcal{M}_{V} := \{ \underline{\Sigma} \in \widehat{\mathfrak{F}}(\mathcal{PC}(X)) | \exists \Xi \in \mathcal{M} : \underline{\Sigma} \preceq \Xi_{V,\mathcal{PC}(X)} \}$$

the **finite hyperstructure** on $\mathcal{PC}(X)$ w.r.t. \mathcal{M} .

If (X, \mathcal{M}) is a limited multifilter-space, then $(\mathcal{PC}(X), \mathcal{M}_V)$ is a limited multifilter-space, too.

Theorem

Let (X, \mathcal{M}) be a limited multifilter-space. Then $(\mathcal{PC}(X), \mathcal{M}_V)$ is precompact, if and only if (X, \mathcal{M}) is precompact.

Lemma

If (X, \mathcal{M}) is a limited multifilter-space and $\mathfrak{A} \subseteq \mathcal{PC}(X)$, then \mathfrak{A} is precompact w.r.t. \mathcal{M}_V if and only if $\bigcup_{A \in \mathfrak{A}} A$ is precompact w.r.t. \mathcal{M} .

We adopt the concept of Naimpally-Poppe for limited multifilter-spaces:

- ▶ for $\mathbf{X} = (X, \mathcal{M}), \mathbf{Y} = (Y, \mathcal{N}) \in \mathbf{LimMFS}$ build the product $\mathbf{X} \times \mathbf{Y}$
- endow $\mathfrak{P}_0(X \times Y)$ with the finite hyperstructure $(\mathcal{M} \times \mathcal{N})_V$
- restrict $(\mathcal{M} \times \mathcal{N})_V$ to a subset $\mathcal{H} \subseteq Y^X$ and use it as function space structure

Theorem

Let (X, \mathcal{M}) , (Y, \mathcal{N}) be limited multifilter-spaces with (X, \mathcal{M}) locally precompact and (Y, \mathcal{N}) being weakly uniform and principal. Let $\mathcal{H} \subseteq Y^X$ be the family of fine maps. Let Γ be the Naimpally-Poppe-Structure on \mathcal{H} .

- 1. Γ is finer than $\mathcal{M}_{X,Y}$
- 2. If (X, \mathcal{M}) is precompact, then $\Gamma = \mathcal{M}_{X,Y}$.

Hyperspaces and function spaces II

Let X be a set and (Y, σ) a topological space. For $\mathfrak{A} \subseteq \mathfrak{P}_0(X)$ we call the topology on Y^X generated by the subbase of all sets

$$(A, O) := \{ f \in Y^X \mid f(A) \subseteq O \}$$

with $A \in \mathfrak{A}$ and $O \in \sigma$ the \mathfrak{A} -open topology on Y^X (or on C(X, Y), if X has a topology, too, or other subsets of Y^X).

We define a mapping μ_X from Y^X to $\mathfrak{P}_0(Y)^{\mathfrak{A}}$ by

$$\forall M \in \mathfrak{A} : \mu_X(f)(M) := f[M].$$

Lemma

Let (X, τ) , (Y, σ) be topological spaces, let $\mathfrak{A} \subseteq \mathfrak{P}_0(X)$ contain the singletons and $\mathcal{H} \subseteq Y^X$. Then the map

$$\mu_X: \mathcal{H} \to \mu_X(\mathcal{H}) := \{\mu_X(f) | f \in \mathcal{H}\} \subseteq \mathfrak{P}_0(Y)^{\mathfrak{A}}$$

is open, continuous and bijective, where $\mathcal H$ is equipped with the $\mathfrak A$ -open topology and $\mathfrak P_0(Y)^{\mathfrak A}$ with the pointwise from the Vietoris topology on $\mathfrak P_0(Y)$.

Note:

- 1. For $\mathfrak{A} = K(X)$ (the family of nonempty compact subsets of X) we get the compact-open topology on $\mathcal{H} := C(X, Y)$.
- 2. For locally compact (X, τ) the compact-open topology induces the convergence structure of continuous convergence on C(X, Y).
- 3. The continuous convergence is the "natural" function space structure in the *topological universe* **PsTop**.

Theorem (F. Schwarz 1989)

For every topological category $\mathcal C$ exists a (minimal) topological universe $\mathcal D$ s.t. $\mathcal C$ is a full subcategory of $\mathcal D$.

We have:

$$C(X, Y) \xrightarrow{\mu_X} K(Y)^{K(X)} \cong \prod_{A \in K(X)} K(Y)_A$$

$$\downarrow^{\pi_A}$$

$$K(Y)$$

Now, we can endow $C(X_i, Y)$ with the natural function space structure (as far as available) for every (suitable) (X_i, τ_i) , chose $\mathfrak{A}_i := K(X_i)$, for instance, and then define a hyperspace over Y as

the **final topology** on K(Y) (more generally on any subset \mathfrak{B} of $\mathfrak{P}_0(Y)$) w.r.t. all $((X_i, \tau_i), \pi_A \circ \mu_{X_i}, A \in K(X_i))_{i \in I}$.

Generally we denote the final structure on $\mathfrak{B}\subseteq\mathfrak{P}_0(Y)$ for certain $\mathfrak{A}_i\subseteq\mathfrak{P}_0(X_i)$ w.r.t. all $((X_i,\tau_i),\pi_A\circ\mu_{X_i},A\in\mathfrak{A}_i)_{i\in I}$ by

$$\mathcal{V}\left(\mathfrak{B},\left(\left(X_{i}, au_{i}\right),\mathfrak{A}_{i}\right)_{i\in I}\right)$$
.

Lemma

If (Y, σ) is a locally compact topological space, then

$$\mathcal{V}\left(K(Y),((X,\tau),K(X))_{(X,\tau)\in\,|\,\mathbf{lcTop}\,|}\right) = (K(Y),\sigma_V).$$

Somashekhar Amrith Naimpally.

Graph topology for function spaces, *Transactions of the American Mathematical Society 123 (1966)*, 267-272.

Harry Poppe.

Über Graphentopologien für Abbildungsräume I, Bull. Acad. Polon. Sci. XV (1967), no. 2, 71-80

Harry Poppe.

Über Graphentopologien für Abbildungsräume II, *Math. Nachr. 38 (1968), no.1*, 89-96

Gerhard Preuß.

Foundations of topology, *Kluwer. 2002*

