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1 Introduction

In this paper, we consider cuts in ordered abelian groups and in ordered fields. We
associate to every cut an (additive) invariance group. This is the maximal convex subgroup
of the ordered group (respectively, of the additive group of the ordered field) which can
be added to the cut sets without changing them. This notion is a useful tool for the
classification of cuts. For example, it helps to determine whether a cut is induced by
the upper or lower edge of a convex subgroup, or even of a convex valuation ring. We
determine the invariance group of shifted cuts (Lemma 3.10, Lemma 5.1), of the sum of
two cuts (Corollary 12), and of the product of two cuts (Corollary 26).

Invariance groups or related notions have been introduced by several authors in various
ways (for example, see [M], [W], [T]), and we do not claim that all of our results about cuts
in ordered abelian groups (Section 3) are new. We have developed some of these results
in [Ku1] and applied them to derive new theorems in the valuation theory of fields, in
particular in positive characteristic. These theorems can be found in [Ku2]. The reason
for presenting the results in this paper is their application to the classification of cuts
in ordered fields (Section 5). Our attention was drawn to this application by a question
of J. Madden. During the Special Semester in Real Algebraic Geometry and Ordered
Structures, Baton Rouge 1996, he showed us the definition of what we call the invariance
valuation ring and asked for the meaning of it. Among other things, this paper presents
our answer to his question. It is based on the manuscript [Ku3].

Looking at a cut in an ordered field (K,<), one may ask whether it originates in some
way from a cut in the residue field of K with respect to some real place. That is, one
would like to know whether the cut can be translated into some “normal position” such
that for some convex valuation ring O of (K,<) with maximal ideal M, it induces a cut
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in the residue field O/M via the residue map. If so, one would like to determine how
this translation can be done. The invariance valuation ring is a key tool to answer these
questions.

A remark by M. Marshall made it clear to us that some of our results of Section 5
are actually a special case of a more general setting. If v is the natural valuation of
an ordered field (K,<) and Ov is its valuation ring, then every convex subgroup of the
ordered additive group of (K,<) is an Ov-module. The map

M 7→ (vK \ vM, vM) ,

where vK is the value group of (K, v) and vM := {va | 0 6= a ∈ M}, is a bijection
between the convex subgroups M of (K,<) and the cuts in the value group vK. This
holds more generally for any valuation v of an arbitrary field K and the set of all Ov-
modules M ⊆ K. We will investigate in Section 4 which information about M can
be read off from the invariance group of the cut (vK \ vM, vM). We also define the
invariance valuation ring of an Ov-module. The invariance valuation ring of a cut is then
the invariance valuation ring of the invariance group of the cut.

The invariance valuation ring of a cut has been independently introduced and studied
by M. Tressl in [T]. He also showed us the definition and main properties (Theorem 5.24)
of the multiplicative invariance group of a cut, which we study in detail in Section 5.5.
In Theorem 5.24, we relate the multiplicative invariance group to the additive invariance
group and the invariance valuation ring. Tressl proved parts of this theorem in a special
case; we choose here a different approach.

2 Preliminaries

2.1 Cuts in ordered sets

Take any ordered set (S,<) (by “ordered”, we will always mean “totally ordered”). If
S1, S2 are nonempty subsets of S and a ∈ S, we will write a < S2 if a < b for all b ∈ S2,
and further, we will write S1 < S2 if a < S2 for all a ∈ S1. Similarly, we use the relations
>, ≤ and ≥ in place of <.

A subset S ′ of S is called convex in (S,<) if for every two elements a, b ∈ S ′ and
every c ∈ S such that a ≤ c ≤ b, it follows that c ∈ S ′. A subset S1 of S is an initial
segment of S if for every a ∈ S1 and every c ∈ S with c ≤ a, it follows that c ∈ S1 .
Symmetrically, S2 is a final segment of S if for every a ∈ S2 and every c ∈ S with c ≥ a,
it follows that c ∈ S2 . Note that S1 is an initial segment of S if and only if S1 is convex
and S1 < S \ S1 . Note also that ∅ < S and S < ∅ by definition; so ∅ is an initial segment
as well as a final segment of S.

If S1 ⊆ S and S2 ⊆ S are such that S1 ≤ S2 and S = S1∪S2, then we will call (S1, S2)
a quasi-cut in S. Then S1 is an initial segment of S, S2 is a final segment of S, and the
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intersection of S1 and S2 consists of at most one element. If this intersection is empty,
then (S1, S2) will be called a cut in S. In this case, we will write ΛL = S1 , ΛR = S2 and

Λ = (ΛL,ΛR) .

A cut (ΛL,ΛR) with ΛL 6= ∅ and ΛR 6= ∅ is called a Dedekind cut. If (T,<) is an
extension of (S,<) and a ∈ T is such that ΛL ≤ a ≤ ΛR, then we will say that a realizes
(ΛL,ΛR) (in (T,<)).

For any subset M ⊆ S, we let M+ denote the cut

M+ = ({s ∈ S | ∃m ∈M : s ≤ m} , {s ∈ S | s > M}) .

That is, if M+ = (ΛL,ΛR) then ΛL is the least initial segment of S which contains M ,
and ΛR is the largest final segment having empty intersection with M . If M = ∅ then
ΛL = ∅ and ΛR = M , and if M = S, then ΛL = M and ΛR = ∅. Symmetrically, we set

M− = ({s ∈ S | s < M} , {s ∈ S | ∃m ∈M : s ≥ m}) .

That is, if M− = (ΛL,ΛR) then ΛL is the largest initial segment having empty intersection
with M , and ΛR is the least final segment of S which contains M . If M = ∅ then ΛL = M
and ΛR = ∅, and if M = S, then ΛL = ∅ and ΛR = M .

If M = {a}, we will write a+ instead of {a}+ and a− instead of {a}−. These two cuts
are called principal. Hence if M has a largest element a, then M+ = a+ is principal,
and if M has a smallest element a, then M− = a− is principal. The cut (ΛL,ΛR) is
non-principal if and only if ΛL has no largest element and ΛR has no smallest element.

If a, b, c ∈ S such that a < c < b, then we will say that c is strictly between a and
b. We will say that (S,<) is dense if for every two distinct elements of S there is a third
element of S strictly between them. This holds if and only if there are no cuts (ΛL,ΛR)
in S for which ΛL has a last element and ΛR has a first element. If a < b and there is no
element strictly between a and b, then b is called the immediate successor of a, and a is
called the immediate predeccessor of b. Further, (S,<) is called discretely ordered
if for every a ∈ S there is an immediate successor if a is not the last element in S, and
an immediate predecessor if a is not the first element in S. The properties “dense” and
“discretely ordered” are mutually exclusive (if S 6= ∅).

2.2 Convex and symmetric sets in ordered abelian groups

Throughout, let (G,+, <) be an ordered abelian group. For all subsets S ⊆ G and S ′ ⊆ G
and all elements g ∈ G, we define

−S := {−a | a ∈ S} ,
S + g := g + S := {a+ g | a ∈ S} ,
S + S ′ := {a+ a′ | a ∈ S , a′ ∈ S ′} ,
S − S ′ := {a− a′ | a ∈ S , a′ ∈ S ′} ,
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and similarly S − g = S + (−g).
A subset S of G is called symmetric if −S = S.
The map a 7→ a+ g is an order preserving bijection from G onto G. From this fact, it

is easy to deduce the following assertions; the easy proofs are left to the reader.

Lemma 2.1 Pick any subsets S ⊆ G and S ′ ⊆ G, and an element g ∈ G.
1) If S is convex, or an initial segment of G, or a final segment of G, then S + g has the
same property.

2) If both S and S ′ are convex, or symmetric, or initial segments of G, or final segments
of G, then the same holds for S + S ′.

Lemma 2.2 The following assertions are equivalent for every convex symmetric subset
S of G:

a) S is not a convex subgroup of G,

b) there is some element g ∈ S and some n ∈ N such that ng > S if g > 0 and ng < S if
g < 0,

c) there is a positive element g ∈ S such that 2g > S.

Proof: The implications c)⇒b) and b)⇒a) are clear. We show “¬c)⇒ ¬a)”. Since S
is convex and symmetric, and since −|a| − |b| ≤ a+ b ≤ |a|+ |b|, it suffices to show that
a+ b ∈ S for all positive a, b ∈ S. We may assume that a ≤ b. Then a ≤ a+ b ≤ 2b. Since
2b > S is not true, there is c ∈ S such that 2b ≤ c. Hence a ≤ a + b ≤ c and therefore
a+ b ∈ S by convexity. 2

For every S ⊆ G, we define

G(S) := {g ∈ G | S + g = S} .

Lemma 2.3 Take any non-empty subset S ⊆ G. Then we have:

1) G(S) is a subgroup of G, and

G(S) = {g ∈ G | S + |g| = S} = {g ∈ G | S − |g| = S} . (1)

2) Further,
G(S) = {g ∈ G | S + g ⊆ S and S − g ⊆ S} . (2)

3) If 0 ∈ S, then G(S) ⊆ S.

4) If S is convex, then G(S) is a convex subgroup of G.

5) If S is symmetric, then

G(S) = {g ∈ G | S + g ⊆ S} . (3)

6) If S is convex symmetric, then

G(S) = {g ∈ G | S + g ⊆ S} ⊆ S . (4)
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Proof: 1): Take a, b ∈ G(S). Then S + a + b = S + b = S, whence a + b ∈ G(S).
Further, S − a = S + a − a = S, whence −a ∈ G(S). This proves that G(S) is a group.
It follows that g ∈ G(S) is equivalent to |g| ∈ G(S) and to −|g| ∈ G(S); this proves (1).

2): The inclusion “⊆” in (2) follows from (1). If S + g ⊆ S and S − g ⊆ S, then
S = S + g − g ⊆ S − g ⊆ S, whence S + g = S. This proves the inclusion “⊇” in (2).

3): If 0 ∈ S, then G(S) = 0 + G(S) ⊆ S + G(S) = S.

4): By part 1), it suffices to show that G(S) is convex. Take a, b ∈ G(S) and g ∈ G with
a ≤ g ≤ b. Then for all s ∈ S, s+ a ≤ s+ g ≤ s+ b and s+ a, s+ b ∈ S. Hence s+ g ∈ S
by convexity of S. This proves that S + g ⊆ S. In the same way, we also obtain that
S − g ⊆ S because −a,−b ∈ G(S) (since G(S) is a group) and −b ≤ −g ≤ −a. By part
2) it follows that g ∈ G(S).

5): From (2) we see that G(S) ⊆ {g ∈ G | S+g ⊆ S}. If S+g ⊆ S, then S−g = −S−g =
−(S = g) = −S = S by the symmetry of S. This shows that {g ∈ G | S+g ⊆ S} ⊆ G(S)
and thus proves (3).

6): Since S is non-empty, convex and symmetric, we have 0 ∈ S. Hence by part 3),
G(S) ⊆ S. The equality in (4) follows from part 5). 2

For any subset S ⊆ G, we call G(S) the invariance group of S.

Lemma 2.4 1) If S1, S2 are arbitrary subsets of G, then G(S1) ∪ G(S2) ⊆ G(S1 + S2).

2) If both S1, S2 are initial segments or final segments of G, then

G(S1 + S2) = G(S1) ∪ G(S2) .

Proof: 1): Take g1 ∈ G(S1) and g2 ∈ G(S2). Then for all a1 ∈ S1 and a2 ∈ S2 ,
(a1 + a2) + g1 = (a1 + g1) + a2 ∈ S1 + S2 and (a1 + a2) + g2 = a1 + (a2 + g2) ∈ S1 + S2.
Hence, g1, g2 ∈ G(S1 + S2).

2): In view of part 1), it suffices to show that G(S1 + S2) ⊆ G(S1) ∪ G(S2). Let S1 and
S2 be initial segments of G; the proof for final segments is similar. Take a positive g ∈ G
such that g /∈ G(S1) ∪ G(S2). Then there are a1 ∈ S1 and a2 ∈ S2 such that a1 + g /∈ S1

and a2 + g /∈ S2 . Since S1 and S2 are initial segments of G, this means that a1 + g > S1

and a2 + g > S2 . Thus a1 + a2 + 2g > S1 + S2 , which means that 2g /∈ G(S1 + S2) and
hence g /∈ G(S1 + S2). 2

Note that in the ordering given by inclusion on the set of all convex subgroups,

H1 ∪H2 = H1 +H2 = max{H1, H2}

for every two convex subgroups H1 and H2 .
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3 Cuts in ordered abelian groups

Throughout this section, we let Λ = (ΛL,ΛR) be a cut in an ordered abelian group (G,<).
It will be called a positive cut if 0 ∈ ΛL; otherwise, it is a negative cut.

3.1 Convex symmetric subset and maximal convex subgroup
generated by a cut

We define
CS (Λ) := {±g ∈ G | 0 ≤ g ∈ ΛL or 0 ≥ g ∈ ΛR} .

This set is a convex symmetric subset of G, and we call it the center set of Λ. Note that

Λ is a positive cut ⇔ CS (Λ) = ΛL ∩ −ΛL ⇔ Λ = CS (Λ)+,
Λ is a negative cut ⇔ CS (Λ) = ΛR ∩ −ΛR ⇔ Λ = CS (Λ)−.

Observe that 0 ∈ CS (Λ). Since the union over any chain of convex subgroups is again a
convex subgroup, there is a maximal convex subgroup contained in CS (Λ); we will denote
it by CG (Λ) and call it the center group of Λ. Since the convex hull of a subgroup is
again a subgroup, CG (Λ) is at the same time the maximal subgroup contained in CS (Λ).
By Lemma 2.2 it follows that:

Lemma 3.1 1) For every element g ∈ CS (Λ) \ CG (Λ) there is some n ∈ N such that
ng > CS (Λ) if g > 0 and ng < CS (Λ) if g < 0.

2) If CS (Λ) 6= CG (Λ) then there is a positive element g ∈ CS (Λ) such that 2g > CS (Λ).

3.2 The invariance group of a cut

Since the map a 7→ a+ g is an order preserving bijection, the shifted cut

Λ + g := (ΛL + g , ΛR + g)

is again a cut in (G,<). Λ + g = Λ if and only if ΛL + g = ΛL, if and only if ΛR + g = ΛR.

Theorem 3.2 The set

G(Λ) := {g ∈ G | Λ + g = Λ} = G(ΛL) = G(ΛR) (5)

is a convex subgroup of (G,<), and

{0} ⊆ G(Λ) = G(CS (Λ)) ⊆ CG (Λ) ⊆ CS (Λ) . (6)
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Proof: The equalities in (5) follow from the fact that for every g ∈ G,

Λ + g = Λ ⇐⇒ ΛL + g = ΛL ⇐⇒ ΛR + g = ΛR .

Since ΛL is an initial segment and hence convex, part 4) of Lemma 2.3 shows that G(Λ)
is a convex subgroup of G.

The inclusions {0} ⊆ G(Λ) and CG (Λ) ⊆ CS (Λ) in (6) follow directly from the
definitions. From parts 3) and 4) of Lemma 2.3 it follows that G(CS (Λ)) is a convex
subgroup contained in CS (Λ). This implies that G(CS (Λ)) ⊆ CG (Λ).

Finally, we show that G(Λ) = G(CS (Λ)). Assume that Λ is a positive cut; the case of
a negative cut is similar. By this assumption, CS (Λ) is a final segment of ΛL. Thus for
every non-negative element g ∈ G, we have ΛL+g = ΛL if and only if CS (Λ)+g ⊆ CS (Λ).
The former is equivalent to g ∈ G(Λ), and by part 5) of Lemma 2.3, the latter is equivalent
to g ∈ G(CS (Λ)). Since both sets are groups, it follows from what we have just proved
that they are equal. 2

We call G(Λ) the (additive) invariance group of the cut Λ. We have G(S) = G(S+)
if S is an initial segment, and G(S) = G(S−) if S is a final segment. Recall that by our
notation introduced in Section 2.2,

ΛR − ΛL = {g2 − g1 | g1 ∈ ΛL and g2 ∈ ΛR} .

Lemma 3.3 The group G(Λ) is the largest of all convex subgroups H of G satisfying that
(ΛL +H) ∩ ΛR = ∅. The latter holds if and only if ΛL ∩ (ΛR +H) = ∅, and this holds if
and only if H ∩ (ΛR − ΛL) = ∅. Further,

ΛR − ΛL = G>0 \ G(Λ) . (7)

Proof: Since every convex subgroup H of G contains 0, it satisfies ΛL ⊆ ΛL +H. The
latter is an initial segment of G since it is the union of initial segments of the form ΛL+g,
with g ∈ H. Therefore, as G is the disjoint union of ΛL and ΛR, we have that ΛL = ΛL+H
if and only if (ΛL + H) ∩ ΛR = ∅. This yields the first assertion. For the second and
third assertion, just observe that (ΛL + g) ∩ ΛR 6= ∅ if and only if ΛL ∩ (ΛR − g) 6= ∅, if
and only if g ∈ ΛR − ΛL. In particular, G(Λ) ∩ (ΛR − ΛL) = ∅. Since a < b whenever
a ∈ ΛL and b ∈ ΛR, it follows that ΛR − ΛL ⊆ G>0 \ G(Λ). For the converse, assume
that g ∈ G>0 \ G(Λ). Then there is some a ∈ ΛL such that a + g ∈ ΛR and therefore,
g ∈ ΛR − ΛL. This proves (7). 2

Note that if Λ is realized in G, i.e., ΛL admits a last or ΛR admits a first element,
then G(Λ) is trivial (i.e., G(Λ) = {0}). The converse is not true. Indeed, every Dedekind
cut in Q has trivial invariance group.
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Remark 3.4 Recall that an ordered abelian group is discretely ordered if and only if it
has a smallest positive element. This already holds if there is at least one element in the
group which has an immediate successor. Observe that if Λ is a cut in a discretely ordered
abelian group (G,<) with invariance group G(Λ) = {0}, then ΛL has a last and ΛR has a
first element. Indeed, if G(Λ) = {0} and if g0 is the smallest positive element of G, then
there is some element g ∈ ΛL such that g + g0 ∈ ΛR. But as g + g0 is the immediate
successor of g, we find that g is the last element of ΛL and g + g0 is the first element of
ΛR.

Remark 3.5 If 0 ∈ ΛL, then G(Λ) ⊆ ΛL part 3) of Lemma 2.3. Symmetrically, if 0 ∈ ΛR,
then G(Λ) ⊆ ΛR. We have that G(Λ) = G if and only if ΛL or ΛR is empty.

3.3 Cuts modulo convex subgroups

In what follows, the letter H will always denote an arbitrary convex subgroup
of G. Then G/H is again an ordered abelian group, with the ordering induced through
the canonical epimorphism G → G/H. That is, this epimorphism preserves the relation
≤. It follows that ΛL/H ≤ ΛR/H (where for every subset S ⊆ G we denote its image
under the canonical epimorphism by S/H). Therefore,

Λ/H := (ΛL/H , ΛR/H) (8)

is a quasicut in G/H.
For the image of an element g ∈ G under the canonical epimorphism, i.e., the coset

g + H, we prefer to write g/H since we will also have to deal with subsets of the form
g + H in G. With this notation, S/H = {g/H | g ∈ S}. Recall that by our notation
introduced in Section 2.2, g+H = {g+h | h ∈ H} and S+H = {g+h | g ∈ S , h ∈ H}.

Theorem 3.6 The induced quasi-cut (8) in G/H is a cut if and only if H ⊆ G(Λ). If
H ⊆ G(Λ) 6= G, then Λ/H is a Dedekind cut in G/H.

Proof: The quasi-cut Λ/H is a cut in G/H if and only if ΛL/H ∩ ΛR/H = ∅. This
holds if and only if ΛL +H ⊆ ΛL. By definition of G(Λ), this in turn holds if and only if
H ⊆ G(Λ).

If G(Λ) 6= G then by Remark 3.5, ΛL and ΛR are non-empty. Hence also ΛL/H and
ΛR/H are non-empty. So Λ/H is a Dedekind cut as soon as it is a cut. 2

Corollary 3.7 If H is a final segment of ΛL, i.e., if ΛL is the smallest initial segment of
G containing H, then H = G(Λ). The same holds if H is an initial segment of ΛR, i.e.,
if ΛR is the smallest final segment of G containing H. In other words,

G(H−) = G(H+) = H .
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Proof: If H is a final segment of ΛL, then 0 ∈ ΛL and by Remark 3.5, G(Λ) ⊆ ΛL,
which implies that G(Λ) ⊆ H. On the other hand, it follows that 0/H is the last element
of ΛL/H, but is not contained in ΛR/H since the coset 0 +H = H has empty intersection
with ΛR. Therefore, Λ/H is a cut in G/H. Hence by the foregoing theorem, H ⊆ G(Λ).

The proof for the case of an initial segment of ΛR is similar. 2

Lemma 3.8 The invariance group of the cut Λ/G(Λ) in G/G(Λ) is trivial. More gener-
ally, if H ⊆ G(Λ), then the invariance group of Λ/H is G(Λ)/H.

Proof: Take H ⊆ G(Λ). Then ΛL + H = ΛL. It follows that for every g ∈ G, we have
ΛL/H + g/H = ΛL/H if and only if ΛL + g = ΛL . Hence, G(Λ/H) = G(Λ)/H. 2

In view of Remark 3.4, we obtain from this lemma:

Corollary 3.9 Assume that the group G/G(Λ) is not trivial and that it is discretely
ordered. Then ΛL/G(Λ) has a last and ΛR/G(Λ) has a first element in G/G(Λ).

3.4 Shifting and additive inversion of cuts

We will now consider shifted cuts Λ+a = (ΛL+a , ΛR+a) obtained from Λ, for arbitrary
a ∈ G. Note that Λ is principal if and only if Λ + a is.

Since ΛL + a+ g = ΛL + g + a = ΛL + a holds if and only if ΛL + g = ΛL, we have:

Lemma 3.10 For every cut Λ and every a ∈ G,

G(Λ + a) = G(Λ) .

We will say that the cut Λ can be shifted into H if there is some a ∈ G such that

(ΛL + a) ∩H 6= ∅ and (ΛR + a) ∩H 6= ∅ ,

or in other words, ((ΛL + a) ∩ H , (ΛR + a) ∩ H) is a Dedekind cut in H. If this is the
case, then the cut ((ΛL + a) ∩H , (ΛR + a) ∩H) in H is realized in H if and only if Λ is
realized in G. Note that if Λ is realized in G, then it can be shifted into every non-trivial
convex subgroup of G, and its invariance group is trivial. This is a special case of the
next lemma.

Theorem 3.11 The cut Λ can be shifted into H if and only if G(Λ) ⊂6= H.
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Proof: First, we show that Λ cannot be shifted into G(Λ) (and hence into no subgroup
contained in G(Λ)). Take any a ∈ G and assume that (ΛL + a)∩G(Λ) 6= ∅. Since G(Λ) is
also the invariance group of Λ + a, it follows that (ΛL + a)∩ G(Λ) = ((ΛL + a)∩ G(Λ)) +
G(Λ) = G(Λ). This implies that (ΛR + a) ∩ G(Λ) = ∅, showing that Λ cannot be shifted
into G(Λ).

Now assume that G(Λ) ⊂6= H. By Theorem 3.6, the quasi-cut (ΛL/H , ΛR/H) induced

by Λ in G/H is not a cut. Hence, we can choose some b ∈ ΛL such that b/H ∈ (ΛL/H)∩
(ΛR/H). This implies that b ∈ ΛL + H and b ∈ ΛR + H. This in turn yields that
(ΛL − b) ∩H 6= ∅ and (ΛR − b) ∩H 6= ∅, i.e., Λ can be shifted into H. 2

Since the map x 7→ −x is order reversing,

−Λ := (−ΛR,−ΛL)

is again a cut. We have −(−Λ) = Λ, and −Λ is a negative cut if and only if Λ is a positive
cut. Note that Λ is principal if and only if −Λ is.

Proposition 3.12 For every cut Λ,

G(−Λ) = G(Λ) , (9)

and −Λ can be shifted into H if and only if Λ can.

Proof: We have g ∈ G(Λ) ⇔ ΛR + g = ΛR ⇔ −ΛR − g = −ΛR ⇔ −g ∈ G(−Λ) ⇔
g ∈ G(−Λ), which proves (9). The second assertion now follows from Theorem 3.11. 2

3.5 Cuts induced by edges of convex subgroups

We will say that the cut Λ is a group +-cut if it is induced by the upper edge of a convex
subgroup H of G, i.e., if Λ = H+. We will say that Λ is a group −-cut if it is induced
by the lower edge of a convex subgroup H of G, i.e., if Λ = H−. In both cases, we will
call Λ a group-cut. Note that 0+ and 0− are the only principal group-cuts.

Lemma 3.13 A cut Λ is a group-cut if and only if CS (Λ) is a subgroup of G. If this
holds, then

G(Λ) = CG (Λ) = CS (Λ) . (10)

Proof: If Λ is a group-cut, then Λ = H+ or Λ = H− for a convex subgroup H, whence
CS (Λ) = H. Conversely, since Λ = CS (Λ)+ or Λ = CS (Λ)−, Λ is a group-cut if the
convex set CS (Λ) is a subgroup.

Assume that CS (Λ) is a convex subgroup. Then CS (Λ) + CS (Λ) = CS (Λ), whence
CS (Λ) ⊆ G(Λ). In view of assertion (6) of Theorem 3.2, this implies (10). 2
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Remark 3.14 Paulo Ribenboim ([R], p. 105) defines distinguished pseudo Cauchy
sequences to be those pseudo Cauchy sequences (aρ)ρ<λ (where λ is a limit ordinal) in
a valued field (K, v) for which the set

{v(aρ+1 − aρ) | ρ < λ} = {v(aσ − aρ) | ρ < σ < λ} (11)

is cofinal in a convex subgroup H of the value group vK of K. But this just means that
the smallest initial segment ΛL containing the set (11) is at the same time the smallest
initial segment containing H. Moreover, H must be non-trivial since the set (11) has no
last element. Hence, the cut {v(aρ+1− aρ) | ρ < λ}+ determined by the set (11) is a non-
principal group +-cut if and only if the pseudo Cauchy sequence (aρ)ρ<λ is distinguished.

We call Λ a ball +-cut (or a ball −-cut) if it is of the form H+ + g (or H− + g,
respectively) for some g ∈ G and a convex subgroup H. Ball +-cuts and ball −-cuts are
called ball-cuts. The following is an immediate consequence of the definitions (take
a = −g):

Lemma 3.15 The cut Λ is a ball +-cut if and only if there is some a ∈ G such that Λ +a
is a group +-cut. The same holds for “−” in place of “ +”.

If H is a convex subgroup of G, then S is the smallest final segment of G containing
H if and only if −S is the smallest initial segment of G containing H. Thus,

Λ = H+ ⇐⇒ −Λ = H− .

This proves:

Lemma 3.16 The cut Λ is a group +
0 -cut if and only if −Λ is a group −0 -cut. The cut Λ

is a ball +0 -cut if and only if −Λ is a ball −0 -cut. The same holds for group + and group −.

We infer from Corollary 3.7 and Lemma 3.13:

Lemma 3.17 For each cut Λ, the following assertions hold:

1) The following are equivalent:
a) Λ is a group +-cut,
b) Λ = G(Λ)+,
c) Λ is a positive cut and CS (Λ) = G(Λ).

2) The following are equivalent:
a) Λ is a group −-cut,
b) Λ = G(Λ)−,
c) Λ is a negative cut and CS (Λ) = G(Λ).

3) Λ is a ball +-cut if and only if Λ + g = G(Λ)+ for some g.

4) Λ is a ball −-cut if and only if Λ + g = G(Λ)− for some g.

11



Here is another characterization of group +- and group −-cuts:

Lemma 3.18 The cut Λ is a group +-cut if and only if 0/G(Λ) is the last element of
ΛL/G(Λ). Symmetrically, Λ is a group −-cut if and only if 0/G(Λ) is the first element of
ΛR/G(Λ).

Proof: If Λ is a group +-cut, then by Lemma 3.17, Λ = G(Λ)+. Then 0 ∈ ΛL and
g > G(Λ)⇒ g /∈ ΛL. This implies that 0/G(Λ) is the last element of ΛL/G(Λ). Conversely,
if 0/G(Λ) is the last element of ΛL/G(Λ), then there is some g ∈ ΛL ∩ G(Λ). But then,
G(Λ) = g + G(Λ) ⊆ ΛL. If a ∈ G with a > G(Λ), then a/G(Λ) > 0/G(Λ), hence a/G(Λ)
cannot be in ΛL/G(Λ), and a cannot be in ΛL. This proves that ΛL is the least initial
segment of G containing G(Λ), that is, Λ = G(Λ)+. The proof for the second assertion is
similar. 2

If ΛL/G(Λ) has last element a/G(Λ), then (ΛL + g)/G(Λ) has last element (a+ g)/G(Λ).
Thus, we obtain:

Corollary 3.19 The cut Λ is a ball +-cut if and only if ΛL/G(Λ) admits a largest element.
Symmetrically, Λ is a ball −-cut if and only if ΛR/G(Λ) admits a smallest element.

By means of Lemma 3.18 and Theorem 3.6, the following holds:

Corollary 3.20 No cut is a group +-cut and a group −-cut at the same time.

But we have:

Proposition 3.21 Assume that Λ is a Dedekind cut in G. Then the following are equiv-
alent:
1) Λ is a ball +-cut and a ball −-cut,
2) G/G(Λ) is discretely ordered.

Proof: If Λ is a ball +-cut and a ball −-cut, then by Corollary 3.19, ΛL/G(Λ) admits
a largest element a/G(Λ), and ΛR/G(Λ) admits a smallest element a′/G(Λ). By Theo-
rem 3.6, (ΛL/G(Λ),ΛR/G(Λ)) is a cut, so a/G(Λ) < a′/G(Λ). But then a′/G(Λ) is the
immediate successor of a/G(Λ) in G/G(Λ). Hence G/G(Λ) is discretely ordered.

For the converse, assume that G/G(Λ) is discretely ordered. Since Λ is a Dedekind cut
in G, we know from Remark 3.5 that G(Λ) 6= G. Hence by Corollary 3.9, ΛL/G(Λ) has a
last element and ΛR/G(Λ) has a first element in G/G(Λ). Now Corollary 3.19 shows that
Λ is a ball +-cut and a ball −-cut. 2
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Example 3.22 Take Z× Q with the lexicographic ordering, and set

ΛL := {(m, q) | m ≤ 0 , q ∈ Q} and ΛR := {(m, q) | m ≥ 1 , q ∈ Q} .

Then Λ is a cut with invariance group G(Λ) = {0}×Q. We have the canonical isomorphism
(Z× Q)/G(Λ) ' Z, which sends the cut induced by Λ to the cut

({m ∈ Z | m ≤ 0} , {m ∈ Z | m ≥ 1}) = 0+

in Z. Hence, Λ is a group +-cut and a ball −-cut. Indeed, {0} × Q = (0, 0) + {0} × Q is a
final segment of ΛL, and {1}×Q = (1, 0) + {0}×Q is an initial segment of ΛR. Further,
Λ− (1, 0) is a ball +-cut and a group −-cut. ♦

3.6 Adding cuts

It is not immediately clear how two cuts Λ1 = (ΛL
1 ,Λ

R
1 ) and Λ2 = (ΛL

2 ,Λ
R
2 ) should be

added. While it is always true that ΛL
1 + ΛL

2 is again an initial segment and ΛR
1 + ΛR

2 is
again a final segment with (ΛL

1 + ΛL
2 )∩ (ΛR

1 + ΛR
2 ) = ∅, in a general ordered abelian group

G it may not be true that (ΛL
1 + ΛL

2 ) ∪ (ΛR
1 + ΛR

2 ) = G. For instance, consider the cut
Λ1 = Λ2 = 1+ in Z. Then ΛL

1 + ΛL
2 = {g ∈ Z | g ≤ 2} and ΛR

1 + ΛR
2 = {g ∈ Z | g ≥ 4}.

In view of this obstruction, we have two different ways to define Λ1 + Λ2 : either we
set Λ1 + Λ2 := (ΛL

1 + ΛL
2 )+, or we set Λ1 + Λ2 := (ΛR

1 + ΛR
2 )−. Both definitions render a

monoid structure on the set of all cuts, with neutral element 0+ in the first case, and 0−

in the second case. In the first case, all group +
0 -cuts turn out to be idempotents, and in

the second case, all group −0 -cuts are idempotents.
In both cases, we can compute G(Λ1 + Λ2) if we are able to compute G(ΛL

1 + ΛL
2 ) and

G(ΛR
1 + ΛR

2 ) from G(Λ1) = G(ΛL
1 ) = G(ΛR

1 ) and G(Λ2) = G(ΛL
2 ) = G(ΛR

2 ). This has been
done in Lemma 2.4; it yields:

Proposition 3.23 For any two cuts Λ1 and Λ2 ,

G(Λ1 + Λ2) = G(Λ1) ∪ G(Λ2) = max{G(Λ1),G(Λ2)} . (12)

3.7 A valuation theoretic characterization of the invariance group

Two elements a, b in an ordered abelian group (G,<) are called archimedean equivalent
if there is some n ∈ N such that n|a| ≥ |b| and n|b| ≥ |a|. Denote the equivalence class of
a by va, write vG := {vg | 0 6= g ∈ G} and ∞ := v0. Order the set vG ∪ {∞} as follows:
set va < vb if a and b are not archimedean equivalent and |b| < |a|. The map

v : G 3 a 7→ va ∈ vG ∪ {∞}

is then a group valuation, that is, it satisfies the following two axioms:
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(V∞) vx =∞ if and only if x = 0,

(VU) v(x− y) ≥ max{vx, vy} (ultrametric triangle law).

Note that these axioms imply:

(V−) v(−x) = vx,

(Vmin) v(x+ y) = max{vx, vy} if vx 6= vy.

The totally ordered set vG is called the value set of the valued abelian group (G, v).
The above described valuation induced by an ordering < of an abelian group G is called
the natural valuation of (G,<). It satisfies:

|a| ≤ |b| =⇒ va ≥ vb , (13)

that is, v restricted to G<0 preserves ≤ . It also satisfies

0 6= n ∈ Z =⇒ va = v(na) . (14)

From now on, for the remainder of this section, v will always denote the natural
valuation.

For any subset S ⊆ G we write v(S) := {vg | g ∈ M}. This is in contrast to our
notation vH = {vg | 0 6= g ∈ H} which excludes the value ∞ when we are dealing with
convex subgroups H or with value groups of fields. From (13), we obtain:

Lemma 3.24 If S is an initial segment of G>0 or a final segment of G<0, then v(S) is
a final segment of vG. If S is a convex subset of G containing 0, then v(S) is a final
segment of vG ∪ {∞}.

Proof: Take a ∈ S and β ∈ vG such that va < β. Choose any b ∈ G such that vb = β.
Then b 6= 0, and |b| < |a| by definition of v. Because of (V−), we may choose b positive
if and only if a is positive. Then by our assumption on S, it follows that b ∈ S and
therefore, β ∈ v(S).

The proof of the last assertion is left to the reader. 2

Lemma 3.25 The map v : H 7→ vH establishes an inclusion preserving bijection between
the convex subgroups H of G and the final segments S of vG; its inverse map is S 7→
v−1(S ∪ {∞}). The map H 7→ (vH)− is a bijection between the convex subgroups H of
G and the cuts in the value set vG.

Proof: Take any convex subgroup H of G. By Lemma 3.24, vH = v(H>0) is a final
segment of vG. Suppose thatH ′ is a convex subgroup ofG containingH. Then vH ⊆ vH ′.
Suppose that vH = vH ′. Then every element a ∈ H ′ is archimedean equivalent to an
element b ∈ H, whence |nb| = n|b| ≥ |a| for some n ∈ N. Since H is a convex subgroup,
it follows that a ∈ H. This proves that H = H ′. Hence, v : H 7→ vH is injective.
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For every final segment S of vG, we show that v−1(S ∪ {∞}) is a convex subgroup of
G; this implies that v : H 7→ vH is also surjective, with S 7→ v−1(S ∪{∞}) as its inverse.
First, v−1(S∪{∞}) contains 0. Second, if a, b ∈ v−1(S∪{∞}), then a−b ∈ v−1(S∪{∞})
since v(a− b) ≥ min{va, vb} and S is a final segment. Hence, v−1(S∪{∞}) is a subgroup
of G. Finally, if |a| ≤ |b| with b ∈ v−1(S ∪ {∞}), then va ≥ vb by (13), and since S is a
final segment of vG we find that va ∈ S ∪ {∞} and thus, a ∈ v−1(S ∪ {∞}). This proves
that v−1(S ∪ {∞}) is convex.

The second assertion follows from the first since S 7→ S− is a bijection between the
final segments of vG and the cuts of vG. 2

We will now give a characterization of the invariance group in terms of the natural
valuation.

Lemma 3.26 For every cut Λ in G,

vG(Λ) = vG \ v(ΛR − ΛL) .

Proof: It follows from (7) that G≥0 is the disjoint union of G(Λ)≥0 and ΛR−ΛL. Hence
vG = vG(Λ) ∪ v(ΛR − ΛL). Since G(Λ) is a convex subgroup of G, it follows from the
previous lemma that vG(Λ) and v(ΛR − ΛL) are disjoint. Since vG(Λ) = vG(Λ)≥0 and
vG = vG≥0, this implies our assertion. 2

It follows from (13) that v(ΛL>0
)∩v(ΛR) contains at most one element if Λ is a positive

cut, and that v(ΛR<0
) ∩ v(ΛL) contains at most one element if Λ is a negative cut.

Proposition 3.27 A positive cut Λ is a group +
0 -cut if and only if v(ΛL>0

) ∩ v(ΛR) = ∅.
Similarly, a negative cut Λ is a group −0 -cut if and only if v(ΛR<0

) ∩ v(ΛL) = ∅.

Proof: Suppose that Λ is a group +
0 -cut and choose a convex subgroup H such that

Λ = H+. Then ΛL>0
= H>0 = G(Λ)>0. From Lemma 3.25 we know that v(H>0) = vH

and v(G \H) are disjoint. This proves that v(ΛL>0
) ∩ v(ΛR) = ∅.

For the converse, assume that the latter holds. Since Λ is a positive cut, ΛL≥0 6= ∅. If
this set only contains 0, then Λ = 0+. Otherwise, ΛL>0 6= ∅. We set S := v(ΛL>0

); then
S is a final segment of vG by Lemma 3.24, and H := v−1(S ∪ {∞}) is a convex subgroup

by Lemma 3.25. From v(ΛL>0
) ∩ v(ΛR) = ∅ we see that ΛL>0

= H>0, that is, Λ = H+.
The proof for the case of a negative cut is similar. 2

Remark 3.28 Suppose that Λ is a ball +0 -cut, but not a group +
0 -cut. Then there is a

convex subgroup H and an element a /∈ H such that Λ = H+ +a. By Lemma 3.25, a /∈ H
implies that va < vb for all b ∈ H. We observe that a ∈ ΛL. If a > 0, then a > H and
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consequently, 2a = a + a ∈ ΛR. If a < 0, then a < H and consequently, −a > H and
−a = a + 2(−a) ∈ ΛR. Thus, va ∈ v(ΛL) and va = v(2a) = v(−a) ∈ v(ΛR). This shows
that

v(ΛL>0
) ∩ v(ΛR) = {va} .

A similar assertion holds for ball −0 -cuts which are not group −0 -cuts.

If (G′, <) is an ordered group extending (G,<), then we will also write v for the
natural valuation of (G′, <). Then (G, v) ⊆ (G′, v) is an extension of valued groups. For
any x ∈ G′ (which we will later assume to realize the cut Λ), we consider the value set

v(x−G) := {v(x− b) | b ∈ G} ⊆ vG′ ∪ {∞} .

Lemma 3.29 a) If v(x−G) contains an element α /∈ vG, then α is the largest element
of v(x−G).
b) The set v(x−G) ∩ vG is an initial segment of vG.

Proof: Take α, β ∈ v(x − G) such that α > β, and a, b ∈ G such that α = v(x − a),
β = v(x − b). Then β = min{v(x − a), v(x − b)} = v(a − b) ∈ vG. This proves a).
Now take α ∈ v(x − G), a ∈ G such that α = v(x − a), and β ∈ vG such that α > β.
Choose c ∈ G such that vc = β. Then with b := a + c, we have that β = min{α, β} =
min{v(x− a), vc} = v(x− a− c) = v(x− b) ∈ v(x−G). This proves b). 2

Lemma 3.30 If the cut Λ in (G,<) is realized by an element x in an extension (G′, <),
then

vG(Λ) = vG \ v(x−G) = {α ∈ vG | α > v(x− b) for all b ∈ G} . (15)

Proof: The second equation is an easy consequence of the foregoing lemma. The first
equation follows from Lemma 5.9 if we show that

v(x−G) ∩ vG = v(ΛR − ΛL) .

Take any a ∈ ΛL , b ∈ ΛR. Since x− a ≤ b− a and b−x ≤ b− a, we have that v(x− a) ≥
v(b−a) and v(b−x) ≥ v(b−a). If v(b−a) = v(x−a) or v(b−a) = v(b−x) = v(x−b), then
v(b−a) ∈ v(x−G). If v(x−a) > v(b−a), then v(b−a) = min{v(b−a), v(x−a)} = v(x−b) ∈
v(x−G). If v(b−x) > v(b−a), then v(b−a) = min{v(b−a), v(b−x)} = v(x−a) ∈ v(x−G).
Hence in all cases, v(b− a) ∈ v(x−G). This proves that v(ΛR − ΛL) ⊆ v(x−G) ∩ vG.

To prove the converse inclusion, take b ∈ G such that v(x − b) ∈ vG. Take c ∈ G
such that c > 0 and vc = v(x − b). Then there is some positive integer n such that
nc > |x − b|. If b ∈ ΛL, then this implies that b + nc > x and thus, b + nc ∈ ΛR. Then
v(x − b) = vc = vnc = v((b + nc) − b) ∈ v(ΛR − ΛL). If b ∈ ΛR, then b − nc < x, hence
b− nc ∈ ΛL and again, v(x− b) = vc = vnc = v(b− (b− nc)) ∈ v(ΛR − ΛL). 2
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Take an extension (G, v) ⊆ (G′, v) of valued abelian groups. If for every a ∈ G′ there
is some b ∈ G such that v(a − b) > va, then the extension is called immediate. In this
case, every element a ∈ G′ \ G is the pseudo limit of a pseudo Cauchy sequence (aν)ν<λ
in (G, v) without a limit in G; this can be shown as in the case of valued fields (cf. [Ka]
or [R]). If a /∈ G, then this pseudo Cauchy sequence can be chosen such that it has no
pseudo limit in G. The breadth of (aν)ν<λ is defined to be the convex subgroup

{b ∈ G | vb > v(aν+1 − aν) for all ν < λ} .

In fact, this is the set of all elements b ∈ G with the property that a is a pseudo limit of
(aν)ν<λ if and only if a+ b is.

Note that if the extension (G, v) ⊆ (G′, v) is immediate, then vG′ = vG.

Theorem 3.31 Suppose that the cut Λ is realized by an element x in an extension (G′, <)
such that (G, v) ⊆ (G′, v) is immediate. If (aν)ν<λ is a pseudo Cauchy sequence in (G, v)
having pseudo limit x but not having a pseudo limit in G, then its breadth is equal to
G(Λ).

Proof: We denote by B the breadth of (aν)ν<λ. Then vB = {α ∈ vG | α > v(aν+1 −
aν) for all ν < λ}. By Lemma 3.25, it suffices to show that vB = G(Λ). By Lemma 3.26,
vG(Λ) = {α ∈ vG | α > v(x − b) for all b ∈ G}. As x is a pseudo limit of (aν)ν<λ, we
have by definition that v(aν+1 − aν) = v(x − aν) ∈ v(x − G) for all ν < λ. This shows
that

vG(Λ) = {α ∈ G | α > v(x− b) for all b ∈ G}
⊆ {α ∈ G | α > v(aν+1 − aν) for all ν < λ} = vB .

To prove the converse inclusion, we take any b ∈ G. Suppose that v(x− b) > v(aν+1−aν)
for all ν < λ. But then, since x is a pseudo limit, we have that v(aν+1−aν) = min{v(aν+1−
aν), v(x − b)} = min{v(x − aν), v(x − b)} = v(b − aν). This shows that b ∈ G is also a
pseudo limit of our pseudo Cauchy sequence, in contradiction to our assumption that
there be no pseudo limit in G. This proves that the sequence v(aν+1 − aν), ν < λ, is
cofinal in v(x−G), which implies that the inclusion “⊇” holds. 2

The completion Gc of (G, v) (with respect to the topology induced by v) admits a
canonical extension of v and of the ordering from G. With this extension of v, (Gc|G, v)
is an immediate extension, and the breadth of every pseudo Cauchy sequence without a
pseudo limit in G but with pseudo limit in Gc is {0}. Thus, we obtain the following

Corollary 3.32 If the cut Λ is realized in the completion of (G, v), then G(Λ) = {0}.
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4 Valuation rings and their modules in a field

Take any valued field (K, v). Denote the valuation ring of v by Ov . Then the set R of
all valuation rings which contain Ov is linearly ordered by inclusion. For every O ∈ R,
we set

H(O) := vO ∩−vO = vO× .

This is a convex subgroup of the value group vK. In fact, v is finer or equal to the valuation
w associated with O, the value group of w is canonically isomorphic to vK/H(O), and
the value group of the valuation induced by v on the residue field Kw is canonically
isomorphic to H(O) (cf. [Z–S]).

Conversely, for every convex subgroup H of vK, we set

O(H) := {b ∈ K | ∃α ∈ H : α ≤ vb} . (16)

That is, vO(H) is the smallest final segment of vK containing H. Note that

O(H)× = v−1(H) . (17)

We recall the following fact from general valuation theory (cf. [Z–S]):

Lemma 4.1 The map H 7→ O(H) is an order preserving bijection from the set of all
convex subgroups of vK onto the set R of all valuation rings which contain Ov . Its
inverse is the order preserving map R 3 O 7→ H(O). Thus,

O(H(O)) = O and H(O(H)) = H . (18)

4.1 Ov-modules in K

Now we consider the Ov-modules M ⊆ K. For every such module M , we have that

vM := {va | 0 6= a ∈M}

is a final segment of vK, and that

M = {a ∈ K | va ∈ vM} . (19)

Hence:

Lemma 4.2 The map v : M 7→ vM establishes an order preserving bijection between the
Ov-modules M ⊆ K and the final segments S of vK; its inverse map is S 7→ v−1(S). The
map M 7→ (vM)− is a bijection between the Ov-modules M ⊆ K and the cuts in the
value group vK.
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Therefore, we can expect to read off information about M from the invariance group
of the associated cut. We start with the case of M = O ∈ R. Note that for every O ∈ R
with maximal ideal M, we have that O and M are Ov-modules.

Lemma 4.3 For every O ∈ R with maximal ideal M,

H(O) = G(vO) = G(vM) and O = O(G(vO)) = O(G(vM)) . (20)

Proof: Since O is the disjoint union of O× and M, (19) shows that vO is the disjoint
union of vO× = H(O) and vM. Since the latter is a final segment of vK, it follows that
H(O) < vM. Thus, H(O) is an initial segment of vO and a final segment of vK \ vM.
Now (20) follows from Corollary 3.7 and Lemma 4.1. 2

The next lemma shows that there is at most oneO ∈ R such that cM = O or cM =M
for some non-zero c ∈ K.

Lemma 4.4 Take any Ov-module M ⊂ K, and O ∈ R with maximal ideal M. If we
have cM = O or cM =M for some c ∈ K, c 6= 0, then O = O(G(vM)).

Proof: By Lemma 4.2, cM = O is equivalent to vcM = vO, and cM =M is equivalent
to vcM = vM. Both cases imply that

G(vM) = G(vc+ vM) = G(vcM) = G(vO) = G(vM) = H(O) ,

where we have used Lemma 3.10 for the first and (20) for the last two equalities. By
Lemma 4.1, it follows that O = O(H(O)) = O(G(vM)). 2

From this lemma together with (20), we deduce:

Corollary 4.5 For i = 1, 2, take Oi ∈ R with maximal ideal Mi . If for some c ∈ K,
c 6= 0, we have that cO1 = O2 or cO1 =M2 or cM1 = O2 or cM1 =M2 , then O1 = O2 .

For the sake of completeness, let us add:

Lemma 4.6 Take O ∈ R with maximal ideal M. Then there is some nonzero c ∈ K
such that cO =M if and only if vK/H(O) is discretely ordered.

Proof: For an arbitrary valuation ring, it holds that its maximal ideal is generated by
one element c if and only if the value of c is the smallest positive element in the associated
value group. As vK/H(O) is the value group associated to O, this yields our assertion.

2

For later use, we prove:
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Lemma 4.7 Take any Ov-module M ⊂ K. Then O(G(vM)) is the largest of all rings
O ∈ R with the property that M is an O-module.

Proof: We have that M is an O-module if and only if OM = M , which by Lemma 4.2 is
equivalent to vO+vM = vOM = vM . As vM is a final segment of vK and H(O) = vO×
is an initial segment of vO, the latter is equivalent to H(O) + vM = vM , which in turn
holds if and only if H(O) ⊆ G(vM). By means of Lemma 4.1, this is equivalent to
O ⊆ O(G(vM)). 2

4.2 The invariance valuation ring of an Ov-module in K

Take an Ov-module M ⊂ K. We set

O(M) := {b ∈ K | bM ⊆M} and M(M) = {b ∈ K | bM ⊂
6= M} ∪ {0} . (21)

Example 4.8 For every O ∈ R with maximal ideal M,

O(O) = O(M) = O and M(O) = M(M) = M .

Further, O(K) = O({0}) = K and M(K) =M({0}) = {0}. ♦

Theorem 4.9 For every Ov-module M ⊂ K, O(M) is a valuation ring of K with max-
imal ideal M(M) and containing Ov . It is the largest of all valuation rings O of K for
which M is an O-module. Further, O(M)× = {b ∈ K | bM = M}.

Proof: It is straightforward to prove that O(M) is a ring. As M is an Ov-module, we
have that OvM = M . Hence, Ov ⊆ O(M). By general valuation theory, it follows that
O(M) is a valuation ring.

The inclusion {b ∈ K | bM = M} ⊆ O(M)× holds since bM = M ⇔ M = b−1M for
b 6= 0. The converse inclusion holds since if b, b−1 ∈ O(M), then M = bb−1M ⊆ bM ⊆M
and thus, bM = M .

In every valuation ring, the unique maximal ideal consists precisely of all non-units.
Hence by what we have already proved, the maximal ideal of O(M) is O(M) \ {b ∈ K |
bM = M} =M(M).

Finally, it follows directly from the definition that if O is a valuation ring of K such
that M is an O-module, then O ⊆ O(M). On the other hand, it is also follows from
the definition that M is an O(M)-module; therefore, O(M) is the largest of all valuation
rings of K with this property. 2

By this theorem and Lemma 4.7 we find that

O(M) = O(G(vM)) ,
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which shows that definition (21) is coherent with definition (16). Keeping in mind that
H(O) = G(vO) by (20), we define

H(M) := G(vM) .

Lemma 4.1 shows:

Lemma 4.10 For every O-module M ⊆ K,

H(M) = H(O(M)) = vO(M)× .

Lemma 4.11 For every O-module M ⊆ K and every nonzero c ∈ K,

O(cM) = O(M) and H(cM) = H(M) .

Proof: Since c is invertible, we have that bcM ⊆ cM ⇔ cbM ⊆ cM ⇔ bM ⊆M . 2

Lemma 4.12 1) For every nonzero c ∈ K,

either cM ⊆M(M) , or O(M) ⊆ cM . (22)

2) Take O ∈ R and denote its maximal ideal by M. If O(M) ⊂6= O, then there is some
c ∈ K, c 6= 0, such that

M ⊂
6= cM ⊂

6= O . (23)

Proof: To start with, we note that for every c ∈ K, c 6= 0, and every convex valuation
ring O of K,

(vK \ vcM) ∩H(O) 6= ∅ ⇔ cM ⊂
6= O and vcM ∩H(O) 6= ∅ ⇔ M ⊂

6= cM . (24)

To see this, recall that H(O) = vO× and observe that cM is an Ov-module in K. Hence,
K \ cM ∩O× 6= ∅ ⇔ cM ⊂

6= O, and cM ∩O× 6= ∅ ⇔M ⊂
6= cM . Now (24) follows by means

of Lemma 4.1 and (17).

1): We take O = O(M). Then H(O) is the invariance group of vcM . Hence by
Theorem 3.11, vcM ∩H(O) 6= ∅ is equivalent to H(O) ⊆ vcM , which in turn is equivalent
to (vK \ vcM) ∩H(O) = ∅. By means of (24), this yields our assertion.

2): From O(M) ⊂6= O it follows from Lemma 4.1 that H(M) = H(O(M)) ⊂6= H(O). This
in turn implies by Lemma 4.10 and Theorem 3.11 that the cut (vM)− can be shifted into
H(O). That is, there is some c ∈ K such that

((vK \ vM) + vc) ∩H(O) 6= ∅ and (vM + vc) ∩H(O) 6= ∅ .

By (24), this implies (23). 2
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Lemma 4.13 Take any Ov-module M ⊂ K. Then cM =M(M) holds for some nonzero
c ∈ K if and only if (vM)− is a ball +0 -cut. Similarly, cM = O(M) holds for some nonzero
c ∈ K if and only if (vM)− is a ball −0 -cut.

Proof: We observe that (H(M), vM(M)) = (vO(M)×, vM(M)) is a cut in the ordered
set vO(M). By Lemma 4.2, cM =M(M) if and only if vcM = vM(M), which in turn
holds if and only if (vK \ vcM) ∩ vO(M) = H(M). But this is true if and only if H(M)
is a final segment of vK \ vcM . Now this holds if and only if (vK \ vcM)/H(M) admits
0/H(M) as its last elements, or in other words, if and only if (vcM)− is a group +

0 -cut (cf.
Lemma 3.18). As (vcM)− = (vM)− + vc, Lemma 3.15 shows that this holds if and only
if (vM)− is a ball +0 -cut. The second half of the proof is similar. 2

5 Cuts in ordered fields

Throughout this section, let K be an ordered field and Λ a cut in K. By (K,+)
we indicate the ordered additive group of K.

5.1 Shifting and scaling of cuts

For every S ⊆ K and every c ∈ K, we set cS := {cb | b ∈ S}. If c > 0, then the
multiplication b 7→ cb is an order preserving bijection. Hence for every c > 0 and every
a ∈ K,

cΛ + a := (cΛL + a , cΛR + a)

is again a cut in K. For c < 0, the multiplication b 7→ cb is an order reversing bijection.
Hence for every c < 0 and every a ∈ K,

cΛ + a := (cΛR + a , cΛL + a)

is again a cut in K. Note that in both cases, cΛ +a is a principal if and only if Λ is; more
precisely, if Λ = b+ (or Λ = b−), then cΛ + a = (cb+ a)+ if c > 0 and cΛ + a = (cb+ a)−

if c < 0 (or respectively, cΛ + a = (cb+ a)− if c > 0 and cΛ + a = (cb+ a)+ if c < 0).

We have:

Lemma 5.1 For every nonzero c ∈ K and all a ∈ K,

G(cΛ + a) = cG(Λ)

CS (cΛ) = cCS (Λ) .
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Proof: We know from Lemma 3.10 that G(cΛ + a) = G(cΛ). Since c is invertible, we
have that ΛL + g = ΛL ⇔ cΛL + cg = cΛL. This proves that G(cΛ) = cG(Λ). The easy
proof of the second assertion is left to the reader. 2

On the basis of this lemma, we can prove:

Lemma 5.2 Take a, c ∈ K. If c > 0, then Λ is a ball +-cut if and only if cΛ + a is, and
it is a ball −-cut if and only if cΛ + a is. If c < 0, then Λ is a ball +0 -cut if and only if
cΛ + a is a ball −-cut, and it is a ball −-cut if and only if cΛ + a is a ball +0 -cut.

Proof: The reader may verify: g/G(Λ) is the last element of ΛL/G(Λ) if and only if
(cg + a)/G(Λ) is the last element of (cΛL + a)/cG(Λ). Since cG(Λ) = G(cΛ + a) by the
foregoing lemma, this gives our assertion. The other parts of the proof are similar. 2

5.2 Multiplying cuts

As for addition, it is also not immediately clear how to multiply two cuts Λ1 and Λ2 . As
one can easily find out by experiment, (ΛL

1 ·ΛL
2 , ΛR

1 ·ΛR
2 ) will in general not be a cut. An

additional problem here is that multiplying by negative elements switches the order. On
the other hand, we have:

Lemma 5.3 If S1 and S2 are symmetric sets, then so is S1 ·S2 . If S1 and S2 are convex
sets, then so is S1 · S2 .

Proof: The proof for the first assertion is straightforward. For the second assertion, we
observe that

S1 · S2 = S≥01 · S≥02 ∪ S≤01 · S≥02 ∪ S≥01 · S≤02 ∪ S≤01 · S≤02 = S≥01 · S≥02 ∪ S≤01 · S≥02 ,

where the second inequality holds since S≥01 · S≥02 = S≤01 · S≤02 and S≤01 · S≥02 = S≥01 · S≤02

by the symmetry of S1 and S2 . For the same reason, S≤01 · S≥02 = −((−S≤01 ) · S≥02 ) =
−(S≥01 · S≥02 ). Since the operation S 7→ −S preserves convexity, this set is convex if and
only S≥01 · S≥02 is. It therefore suffices to prove that S≥01 · S≥02 is convex, because then the
union of the two convex sets S≥01 · S≥02 and S≤01 · S≥02 is convex as they have the element
0 in common.

Assume that s1, s
′
1 ∈ S

≥0
1 and s2, s

′
2 ∈ S

≥0
2 and that there is some a such that s1s2 <

a < s′1s
′
2 . We may assume that s1 ≤ s′1 and s2 ≤ s′2; otherwise, we replace s′1 by s1 or s′2

by s2. We know that s1s2 ≤ s1s
′
2 ≤ s′1s

′
2 . If s1s2 < a ≤ s1s

′
2 , then s2 <

a
s1
≤ s′2, whence

a
s1
∈ S≥02 and a = s1 · as1 ∈ S≥01 · S≥02 . If s1s

′
2 ≤ a < s′1s

′
2 , then s1 ≤ a

s′2
< s′1, whence

a
s′2
∈ S≥01 and a = a

s′2
· s′2 ∈ S

≥0
1 · S≥02 . This proves that S≥01 · S≥02 is convex. 2
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In particular, CS (Λ1) · CS (Λ2) is again a convex symmetric subset of K. So among the
possibilities for defining multiplication of cuts, we may choose the following natural one:

• if Λ1 and Λ2 both are positive cuts or both are negative cuts, then

Λ1 · Λ2 := (CS (Λ1) · CS (Λ2))
+ ,

• if Λ1 is positive and Λ2 is negative or vice versa, then

Λ1 · Λ2 := (CS (Λ1) · CS (Λ2))
− .

We observe that this multiplication is commutative, and that it preserves the order among
cuts in the following sense:

Proposition 5.4 Take two cuts Λ2 ≤ Λ′2 . If Λ1 is a positive cut, then Λ1 ·Λ2 ≤ Λ1 ·Λ′2 ,
and if Λ1 is a negative cut, then Λ1 · Λ2 ≥ Λ1 · Λ′2 .

Proof: Assume that Λ2 ≤ Λ′2 and that Λ1 is a positive cut. If Λ2 is a negative cut
and Λ′2 is a positive cut, then Λ1 · Λ2 is a negative cut and Λ1 · Λ′2 is a positive cut, so
we have that Λ1 · Λ2 < Λ1 · Λ′2. If both Λ2 and Λ′2 are positive, then CS (Λ2) ⊆ CS (Λ′2)
and therefore, CS (Λ1) · CS (Λ2) ⊆ CS (Λ1) · CS (Λ′2), whence Λ1 · Λ2 ≤ Λ1 · Λ′2 , as these
are positive cuts. If both Λ2 and Λ′2 are negative, then CS (Λ2) ⊇ CS (Λ′2) and therefore,
CS (Λ1) ·CS (Λ2) ⊇ CS (Λ1) ·CS (Λ′2), whence Λ1 ·Λ2 ≤ Λ1 ·Λ′2 , as these are negative cuts.

The proof for the case of Λ1 a negative cut is similar. 2

We can compute the invariance groups of these new cuts if we can compute G(CS (Λ1) ·
CS (Λ2)) from G(Λ1) and G(Λ2). This motivates our next proposition. Beforehand, we
note:

Lemma 5.5 Take any convex subgroup H of (K,+). Then for each s ∈ K, sH is again
a convex subgroup of (K,+). For every set S ⊆ K,

S ·H =
⋃
s∈S

sH

is again a convex subgroup of (K,+).

Proof: It is clear that sH is a subgroup of (K,+). To show that it is convex, it suffices
to show that if g ∈ K with 0 < g < a ∈ sH, then g ∈ sH. We may assume that s > 0.
We write a = sb with b ∈ H. Then 0 < g

s
< b ∈ H and hence g

s
∈ H by the convexity of

H. Hence g = sg
s
∈ sH.

The second assertion follows from the first since the union over any set of convex
subgroups is again a convex subgroup. 2
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Proposition 5.6 If S1 and S2 are convex symmetric subsets of K, then

G(S1 · S2) = S2 · G(S1) ∪ S1 · G(S2) (25)

= S≥02 · G(S1) ∪ S≥01 · G(S2) = max{S≥02 · G(S1) , S
≥0
1 · G(S2)} .

Proof: The second equality holds because all three sets in (25) are symmetric. The
third equality holds because the two sets S2 · G(S1) and S1 · G(S2) are convex symmetric
subsets of K and therefore comparable by inclusion. It remains to prove the first equality.

Take any g ∈ S2 and a ∈ G(S1). To show that ga ∈ G(S1 · S2), we may assume that
ga ≥ 0, because We have to show that g1 · g2 + ga ∈ S1 ·S2 whenever g1 ∈ S1 and g2 ∈ S2 .
Since S1 · S2 is again convex symmetric by Lemma 5.3, it suffices to consider the case
of g ≤ g2. We compute: g1 · g2 ≤ g1 · g2 + ga ≤ g1 · g2 + g2a = (g1 + a)g2 ∈ S1 · S2

since g1 + a ∈ S1 . By convexity, we find g1 · g2 + ga ∈ S1 · S2 . So we have that
S2 · G(S1) ⊆ G(S1 · S2). Symmetrically, one shows that S1 · G(S2) ⊆ G(S1 · S2).

Now it remains to show that G(S1 ·S2) ⊆ S2 · G(S1) ∪ S1 · G(S2). We distinguish three
cases.

First, assume that S2 is a convex subgroup. Then by the previous lemma, S1 · S2 is
a convex subgroup and therefore, G(S1 · S2) = S1 · S2. Further, G(S2) = S2 and since
G(S1) ⊆ S1 by part 4) of Lemma 2.3, we obtain that S2·G(S1) ⊆ S2·S1 = S1·S2 = S1·G(S2).
Thus,

S2 · G(S1) ∪ S1 · G(S2) = S1 · S2 = G(S1 · S2) .

By symmetry, the case of S1 a convex subgroup is similar.

Now assume that S1 and S2 are not subgroups. Hence by Lemma 2.2 there are positive
elements s1 ∈ S1 and s2 ∈ S2 such that 2s1 > S1 and 2s2 > S2 . It follows that s2 /∈ G(S2).
Now take any positive a ∈ K such that a /∈ S2 · G(S1) ∪ S1 · G(S2). Set

s′2 := min
{
a

s1
, s2

}
and s′1 :=

a

s2
.

By our assumption on a, a
s1
/∈ G(S2) and s′1 = a

s2
/∈ G(S1). With s2 /∈ G(S2), it also follows

that s′2 /∈ G(S2). So there are positive elements t1 ∈ S1 and t2 ∈ S2 such that t1 + s′1 > S1

and t2 + s′2 > S2 . Therefore, (t1 + s′1)(t2 + s′2) > S1 · S2 . On the other hand, we have:
s′1s
′
2 ≤ s′1s2 = a,

t1s
′
2 < 2s1s

′
2 ≤ 2a since t1 ∈ S1 < 2s1,

s′1t2 < s′12s2 = 2a since t2 ∈ S2 < 2s2,

whence

S1 · S2 < (t1 + s′1)(t2 + s′2) = t1t2 + t1s
′
2 + s′1t2 + s′1s

′
2 ≤ t1t2 + 5a .

This shows that 5a /∈ G(S1 · S2) and hence, a /∈ G(S1 · S2). We have proved that G(S1 ·
S2)

>0 ⊆ S2 · G(S1) ∪ S1 · G(S2). Since these sets are symmetric, it again follows that
G(S1 · S2) ⊆ S2 · G(S1) ∪ S1 · G(S2). 2
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Since G(Λ1 ·Λ2) = G(CS (Λ1 ·Λ2)) by Theorem 3.2 and CS (Λ1 ·Λ2) = CS (Λ1) ·CS (Λ2)
by definition, we obtain:

Corollary 5.7 For any two cuts Λ1 and Λ2 ,

G(Λ1 · Λ2) = CS (Λ2) · G(Λ1) ∪ CS (Λ1) · G(Λ2)

= CS (Λ2)
≥0 · G(Λ1) ∪ CS (Λ1)

≥0 · G(Λ2)

= max{CS (Λ2)
≥0 · G(Λ1) , CS (Λ1)

≥0 · G(Λ2)} .

5.3 The valuation theory of the invariance group in the field
case

For the rest of this paper, we will denote by v the natural valuation of the
ordered field K. This is just the natural valuation of the ordered additive group (K,+).
We introduce an addition on vK by setting va + vb = v(ab). This turns vK into an
ordered abelian group, and v satisfies, in addition to axioms (V∞) and (VU), the following
homomorphism axiom for field valuations:

(VH) v(xy) = vx+ vy .

Among all possible valuations of K, the natural valuation is characterized by the fact
that its residue field Ov/Mv is an archimedean ordered field (hence embeddable in R).

From Lemma 3.25 and Lemma 4.2 we obtain:

Lemma 5.8 The convex subgroups of (K,+) are precisely the Ov-submodules of K. Hence
for every cut Λ, its invariance group G(Λ) is an Ov-submodule of K.

This lemma also shows that every subring of K containing Ov is convex. On the other
hand, a convex valuation ring of (K,<), being an Ov-module and containing 1, must
contain Ov . Therefore, the set of all convex valuation rings of (K,<) is precisely the set
R of all valuation rings which contain Ov.

For further basic properties of the natural valuation, see [KuS] or [Ku2]. For the
convenience of the reader, we will now adapt the results of Section 3.7 to the case of
ordered fields, and we will give examples. The proofs for the results in this section can
be taken over literally from the corresponding results in Section 3.7.

Lemma 5.9 For every cut Λ in (K,<),

vG(Λ) = vK \ v(ΛR − ΛL) . (26)

If (L,<) is an ordered field extending (K,<), then we will also write v for the natural
valuation of (L,<). Then (L|K, v) is an extension of valued fields. For any x ∈ L (which
we will later assume to realize the cut Λ), we consider the value set

v(x−K) := {v(x− b) | b ∈ K} ⊆ vK(x) ∪ {∞} .
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Lemma 5.10 a) If v(x−K) contains an element α /∈ vK, then α is the largest element
of v(x−K).
b) The set v(x−K) ∩ vK is an initial segment of vK.

Lemma 5.11 If the cut Λ in (K,<) is realized by an element x in an extension (L,<),
then

vG(Λ) = vK \ v(x−K) = {α ∈ vK | α > v(x− b) for all b ∈ K} . (27)

We give examples to show how to apply this lemma.

Example 5.12 Assume that t is algebraically independent over Q. Take v to be the
t-adic valuation on Q(t), that is, v is trivial on Q and vt > 0. The associated place, which
sends t to 0, is real since its residue field is Q. Hence there is an ordering < on Q(t) such
that v is the natural valuation of (Q(t), <). The field R(t) carries a canonical extension of
v, the t-adic valuation on R(t), and a corresponding extension of <. Note that vr = 0 for
every nonzero r in the subfield R of R(t).

Now take any r ∈ R \ Q. Viewing r as an element of the extension field (R(t), <)
of (Q(t), <), we take Λ to be the cut induced by r in (Q(t), <). Take any b ∈ Q(t). If
vb < 0 = vr, then v(r− b) = vb < 0. If vb ≥ 0, then the residue bv := b/Mv of b lies in Q.
On the other hand, the residue of r is r itself, not lying in Q. Hence, (r−b)v = rv−bv 6= 0,
which implies that v(r − b) = 0. We have thus shown that 0 is the maximal element of
v(r−Q(t)). Hence by the foregoing lemma, vG(Λ) = {α ∈ vK | α > 0}. But the latter is
the same as vMv . Hence by Lemma 4.2,

G(Λ) = Mv .

In other words: precisely the infinitesimals leave the cut Λ invariant.

We analyze the corresponding cut (vG(Λ))− in vK. We observe that vK \ vG(Λ) =
{α ∈ vK | α ≤ 0} has last element 0. We conclude that the invariance group of (vG(Λ))−

is {0} and that (vG(Λ))− = 0+ is a group +
0 -cut in vK. ♦

Example 5.13 We build on the last example. Now we take K to be the real closure of
Q(t). Then vK = Q. Take any s ∈ R \ Q. We set ΛL := K≤0 ∪ {b ∈ K | vb > s} and
ΛR := {b ∈ K≥0 | vb < s}. Then Λ is a cut in (K,<). The value (with respect to the
natural valuation) of any element realizing the cut in some extension field will realize the
cut ({α ∈ Q | α < s} , {α ∈ Q | α > s}) in the value group of the extension field. We
have v(ΛR − ΛL) = {α ∈ Q | α < s}. Hence by (26),

vG(Λ) = vK \ {α ∈ Q | α < s} = {α ∈ Q | α > s} .

The corresponding cut (vG(Λ))− in vK is just the above cut in Q induced by s; its
invariance group is {0} and it is neither a ball +0 -cut nor a ball −0 -cut. ♦
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An extension (L|K, v) of valued fields is called immediate if the canonical embeddings
of vK in vL and of Kv in Lv are onto. It is easy to show that the extension (L|K, v)
is immediate if and only if it is immediate as an extension of valued abelian groups. In
this case, every element x ∈ L is the pseudo limit of a pseudo Cauchy sequence (aν)ν<λ
in (K, v) indexed by a limit ordinal λ; cf. [Ka] or [R]. If x /∈ K, then this pseudo Cauchy
sequence can be chosen such that it has no pseudo limit in K. The breadth of (aν)ν<λ
is defined as in the case of valued abelian groups (see above).

Theorem 5.14 Suppose that the cut Λ is not realized in (K,<), but is realized by an
element x in an extension (L,<) such that (L|K, v) is immediate. If (aν)ν<λ is a pseudo
Cauchy sequence in (K, v) having pseudo limit x but not having a pseudo limit in K, then
its breadth is equal to G(Λ).

The completion Kc of (K, v) (with respect to the topology induced by v) admits a
canonical extension of v and of the ordering from K. With this extension of v, (Kc|K, v) is
an immediate extension of valued fields, and the breadth of every pseudo Cauchy sequence
without a pseudo limit in K but with pseudo limit in Kc is {0}. Thus, we obtain the
following corollary:

Corollary 5.15 If the cut Λ is realized in the completion of (K, v), then G(Λ) = {0}.

Theorem 5.14 can be used to construct interesting examples. Here is one.

Example 5.16 Assume that the elements ti , i ∈ N, are algebraically independent over
Q. Define a valuation on K := Q(ti | i ∈ N) by setting vt1 � vt2 � . . .� vti � . . .� 0.
That is,

vK = Zvt1 ⊕ Zvt2 ⊕ . . .⊕ Zvti ⊕ . . . ,
lexicographically ordered. Now define a pseudo Cauchy sequence in (K, v) by setting
aν :=

∑ν
i=1 t

−1
i for all ν ∈ N. This is a pseudo Cauchy sequence since v(aν+1 − aν) =

vt−1ν+1 = −vtν+1 is monotonically increasing with ν. Observe that this sequence of values
is cofinal in the negative part of the value group vK. Hence, the breadth of our pseudo
Cauchy sequence is just Ov . The pseudo Cauchy sequence has no pseudo limit in K (it
can actually be shown using Kaplansky’s theory that every such pseudo limit must be
transcendental over K).

The place assiociated with v is real. Indeed, it is easy to show that Ov/Mv = Q.
Therefore, there exists an ordering < on K such that v is the natural valuation of (K,<).
Now we consider the cut Λ induced in (K,<) by any pseudo limit of our pseudo Cauchy
sequence in any extension field. Then by Theorem 5.14,

G(Λ) = Ov .

The reader should note that vK has no smallest nonzero convex subgroup. By Lemma 4.1,
this means that there is no smallest valuation ring properly containing Ov .
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In contrast to Example 5.12, we now have that vG(Λ) = vOv = {α ∈ vK | α ≥ 0}
has first element 0. We conclude that the invariance group of (vG(Λ))− is again {0}
and that this time, (vG(Λ))− is a group −0 -cut. As vK obviously has no smallest positive
element, it is not discretely ordered. Hence by Proposition 3.21, (vG(Λ))− = 0− cannot
be a ball +0 -cut in vK. ♦

5.4 The invariance valuation ring of a cut

We set
O(Λ) := O(G(Λ)) = {b ∈ K | bG(Λ) ⊆ G(Λ)}

and denote the maximal ideal M(G(Λ)) of O(Λ) by M(Λ). From Theorem 4.9 and
Lemma 4.10, we obtain:

Proposition 5.17 The ring O(Λ) is a convex valuation ring of (K,<). The group

H(Λ) := H(O(Λ)) = vO(Λ)×

is the invariance group of (vG(Λ))− in vK.

The convex valuation ring O(Λ) of (K,<) will be called the invariance valuation
ring of the cut Λ in (K,<). From Lemma 5.1 and Lemma 4.11, we obtain:

Proposition 5.18 For all a, c ∈ K, c 6= 0, we have that

O(cΛ + a) = O(Λ) and H(cΛ + a) = H(Λ) .

5.5 The multiplicative invariance group of a cut

For every S ⊆ K, we define

G×(S) := {b ∈ K>0 | bS = S} .

Let Λ be any cut in the ordered field (K,<). We are now interested in the set of all
b ∈ K× such that bΛ = Λ.

Proposition 5.19 The set

G×(Λ) := {b ∈ K× | bΛ = Λ} = G×(ΛL) = G×(ΛR)

is a convex subgroup of the ordered multiplicative group (K>0, · , > ) of positive elements
of K. It is equal to G×(CS (Λ)).
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Proof: Note that if b ∈ K× is negative, then we will always have bΛ 6= Λ. Hence,
G×(Λ) ⊆ K>0. It is straightforward to show that G×(Λ) is a multiplicative subgroup of
(K>0, ·). Take a, b ∈ G×(Λ) and c ∈ K such that a < c < b. If ΛL contains positive
elements, then ΛL = aΛL ⊆ cΛL ⊆ bΛL = ΛL; otherwise, ΛL = bΛL ⊆ cΛL ⊆ aΛL = ΛL.
In both cases, we find that cΛ = Λ, that is, c ∈ G×(Λ). This proves that G×(Λ) is convex.

The last assertion follows from the fact that CS (bΛ) = bCS (Λ) (cf. Lemma 5.1). 2

We will call G×(Λ) the multiplicative invariance group of the cut Λ.

Lemma 5.20 If c ∈ K>0, then G×(cΛ) = G×(Λ).

Proof: Since c is invertible, we have bcΛL = cΛL ⇔ cbΛL = cΛL ⇔ bΛL = ΛL. 2

Lemma 5.21 For every cut Λ,(
G×(Λ)− 1

)
· CS (Λ) ⊆ G(Λ) . (28)

Proof: Take c ∈ G×(Λ) − 1. Then c + 1 ∈ G×(Λ) and therefore, (c + 1)Λ = Λ. This

implies that (c+ 1)ΛL≥0 = ΛL≥0 and (c+ 1)ΛR≤0 = ΛR≤0.

Assume first that ΛL≥0 6= ∅, and take an element g in this set. We wish to show
that cg ∈ G(Λ). By the symmetry of CS (Λ) it will then follow that cCS (Λ) ⊆ G(Λ).

Suppose that c ≥ 0. Then it suffices to show that cg+ΛL≥0 ⊆ ΛL≥0. Take any g′ ∈ ΛL≥0;
we have to show that cg + g′ ∈ ΛL, so we may actually assume that g′ ≥ g. Then
cg + g′ ≤ cg′ + g′ = (c + 1)g′ ∈ ΛL, so we obtain that cg + g′ ∈ ΛL. Now suppose that
c ≤ 0. Then it suffices to show that cg + ΛR ⊆ ΛR. Take any g′ ∈ ΛR; we have to show
that cg+g′ ∈ ΛR. Since g < g′ and c ≤ 0, we have that cg+g′ ≥ cg′+g′ = (c+1)g′ ∈ ΛR,
so we obtain that cg + g′ ∈ ΛR.

Now assume that ΛR≤0 6= ∅, and take an element g in this set. Again, we wish to show
that cg ∈ G(Λ). Suppose that c ≥ 0. Then it suffices to show that cg+ΛR≤0 ⊆ ΛR≤0. Take

any g′ ∈ ΛR≤0; we have to show that cg+g′ ∈ ΛR, so we may actually assume that g′ ≤ g.
Then cg+g′ ≥ cg′+g′ = (c+1)g′ ∈ ΛR, so we obtain that cg+g′ ∈ ΛR. Now suppose that
c ≤ 0. Then it suffices to show that cg + ΛL ⊆ ΛL. Take any g′ ∈ ΛL; we have to show
that cg+g′ ∈ ΛL. Since g > g′ and c ≤ 0, we have that cg+g′ ≤ cg′+g′ = (c+1)g′ ∈ ΛL,
so we obtain that cg + g′ ∈ ΛL. 2

Proposition 5.22 The following are equivalent:

a) Λ is not a group 0-cut,
b) 2 /∈ G×(Λ),
c) G×(Λ)− 1 ⊆Mv ,
d) G×(Λ)− 1 is a convex subgroup of the ordered additive group of K.
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Proof: a)⇔b): By Proposition 5.19, G×(Λ) = G×(CS (Λ)). By Lemma 3.13, Λ is a
group 0-cut if and only if CS (Λ) is a group. Hence if Λ is a group 0-cut, then 2CS (Λ) =
CS (Λ) and therefore, 2 ∈ G×(CS (Λ)) = G×(Λ). Conversely, if Λ is not a group 0-cut and
hence CS (Λ) is not a group, then by Lemma 2.2, there is a positive element g ∈ CS (Λ)
such that 2g > CS (Λ), showing that 2 /∈ G×(CS (Λ)) = G×(Λ).

b)⇒c): Assume that G×(Λ)− 1 contains an element d /∈Mv . There is some n ∈ N such
that n|d| > 1. If d is positive, we get that (1 + d)n ≥ 1 + nd > 2, and if d is negative,
we get that (1 + d)−n ≥ 1 + n|d| > 2. But 1, (1 + d)n and (1 + d)−n are elements of the
convex group G×(Λ). Hence it follows that 2 ∈ G×(Λ).

c)⇒d): Assume that G×(Λ) − 1 ⊆ Mv . Since G×(Λ) is convex, the same holds for
G×(Λ)− 1. Take any a, b ∈ G×(Λ)− 1; we have to show that a− b ∈ G×(Λ)− 1. Setting
c := max{|a|, |b|}, we have that −2c ≤ a − b ≤ 2c. Because of convexity, we only have
to show that −2c, 2c ∈ G×(Λ) − 1. But c ∈ G×(Λ) − 1 or −c ∈ G×(Λ) − 1 by our
choice of c. That is, we have to show: if c ∈ G×(Λ) − 1, then −2c, 2c ∈ G×(Λ) − 1. As
(1 + c) ∈ G×(Λ), we have that (1 + c)n ∈ G×(Λ) for all n ∈ Z. Note that by our general
assumption, c ∈Mv . Thus, |1± 3c− (1 + c)±3| � |c| and therefore,

1 ≤ 1 + 2c ≤ (1 + c)3 and (1 + c)−3 ≤ 1− 2c ≤ 1 if c ≥ 0
(1 + c)3 ≤ 1 + 2c ≤ 1 and 1 ≤ 1− 2c ≤ (1 + c)−3 if c ≤ 0

By convexity, this implies that −2c, 2c ∈ G×(Λ)− 1. Now we have proved that G×(Λ)− 1
is a convex subgroup of (K,+, <).

d)⇒b): Since G×(Λ) ⊆ K>0, −1 /∈ G×(Λ) − 1. Hence if G×(Λ) − 1 is a convex additive
subgroup of K, then 1 /∈ G×(Λ)− 1, that is, 2 /∈ G×(Λ). 2

Remark 5.23 In this proposition, the element 2 can be replaced by any other rational
number > 1, or more generally, any element 1+d where d ∈ K is positive and archimedean
comparable to 1.

Theorem 5.24 1) If Λ is a group 0-cut, then

G×(Λ) = (O(Λ)×)>0 . (29)

2) Assume that Λ is not a group 0-cut. Then

G×(Λ) = 1 +
1

g
G(Λ) , (30)

for every g ∈ CS (Λ) \ CG (Λ) (such an element exists by Lemma 3.13). Furthermore,

O(G×(Λ)− 1) = O(Λ) . (31)

3) For every cut Λ,

G(Λ) =
(
G×(Λ)− 1

)
· CS (Λ) . (32)

31



Proof: 1): If Λ is a group 0-cut, then G(Λ) = CS (Λ) by Lemma 3.13. On the other hand,
using Proposition 5.19, G×(Λ) = G×(CS (Λ)) = (O(CS (Λ))\M(CS (Λ)))>0 = (O(Λ)×)>0.
This proves (29).

2): First, let us assume that g > 0. Since g /∈ CG (Λ), there is some n ∈ N such that
ng > CS (Λ). Take any a ∈ G(Λ)≥0. Set c = 1 + a

g
. Then c ≥ 1. To show that c ∈ G×(Λ),

it suffices to show that cg′ ∈ CS (Λ) whenever g ≤ g′ ∈ CS (Λ). We know that g′ < ng
and compute: cg′ = g′ + g′ a

g
= g′ + g′

g
a < g′ + na ∈ ΛL since na ∈ G(Λ)≥0. By convexity,

cg′ ∈ ΛL. So we have shown that c ∈ G×(Λ), whence a = g(c − 1) ∈ g(G×(Λ) − 1)≥0.
Hence, G(Λ)≥0 ⊆ g(G×(Λ) − 1)≥0. Since G(Λ) is symmetric, and the same holds for
G×(Λ)− 1 by Proposition 5.22, we have proved that G(Λ) ⊆ g(G×(Λ)− 1), and together
with the assertion of Lemma 5.21, this gives

G(Λ) = g(G×(Λ)− 1) , (33)

which is equivalent to (30).
Now suppose that g < 0. Then by symmetry, −g is a positive element of CS (Λ) \

CG (Λ), so we obtain G(Λ)≥0 = −g(G×(Λ)− 1)≥0. By symmetry, this again yields (33).
From (33), we obtain

O(Λ) = O(G(Λ)) = O(g(G×(Λ)− 1)) = O(G×(Λ)− 1)

by Proposition 5.18.

3): In view of Lemma 5.21, it suffices to show that G(Λ) ⊆ (G×(Λ) − 1) · CS (Λ). If
Λ is a group 0-cut, then by Proposition 5.22, 1 ∈ G×(Λ)− 1, which implies our assertion.
If Λ is not a group 0-cut, then by (33),

G(Λ) = g(G×(Λ)− 1) ⊆ (G×(Λ)− 1) · CS (Λ) .

2

5.6 Projecting cuts into residue fields

Take a convex valuation ring O of (K,<) with maximal ideal M. Its residue field O/M
is again an ordered field, with the ordering induced through the residue map. We will say
that the cut Λ can be projected into the residue field O/M if there are elements
a, c ∈ K such that c > 0 and that cΛ + a induces a Dedekind cut in O/M via the residue
map. This means that(

((cΛL + a) ∩ O)/M , ((cΛR + a) ∩ O)/M
)

(34)

is a cut in O/M, with both sets nonempty.
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Lemma 5.25 The cut Λ can be projected into the residue field O/M if and only if there
is some c ∈ K such that

M ⊆ cG(Λ) ⊂6= O . (35)

Proof: Take 0 6= c ∈ K. By Theorem 3.11, the cut cΛ can be shifted into O if and
only if cG(Λ) = G(cΛ) ⊂6= O. From Theorem 3.6 we know that (34) is a cut (and hence a
Dedekind cut) in O/M if and only if M⊆ G(cΛ) = cG(Λ). 2

From this lemma together with part 2) of Lemma 4.12, we obtain that Λ can be
projected into O/M if O(Λ) ⊂6= O. On the other hand, we have:

Lemma 5.26 If O ⊂6= O(Λ), then Λ cannot be projected into O/M.

Proof: Assume that O ⊂6= O(Λ). Since the maximal ideal of a valuation ring consists

exactly of its non-units and a unit in O is also a unit in O(Λ), we find that M(Λ) ⊂6= M.

If cG(Λ) ⊂6= O for some c ∈ K, then cG(Λ) ⊂6= O(Λ). Since O(Λ) = O(G(Λ)) and M(Λ) =

M(G(Λ)), this implies by (22) that cG(Λ) ⊆ M(Λ) ⊂6= M. Hence by Lemma 5.25, Λ
cannot be projected into O/M. 2

Now it remains to determine under which conditions Λ can be projected into the
residue field O(Λ)/M(Λ). By Lemma 5.25, this is the case if and only if there is c ∈ K
such that M(Λ) ⊆ cG(Λ) ⊂6= O(Λ). Again, (22) shows that this holds if and only if

M(Λ) = cG(Λ). By Lemma 4.13, this in turn holds if and only if (vG(Λ))− is a ball +0 -cut.
We summarize what we have proved:

Theorem 5.27 1) Take any convex valuation ring O of (K,<). If O(Λ) ⊂6= O, then

the cut Λ can be projected into the residue field O/M. If O ⊂6= O(Λ), then it cannot be
projected into O/M.
2) The cut Λ can be projected into O(Λ)/M(Λ) if and only if (vG(Λ))− is a ball +0 -cut.

Example 5.28 Consider our Example 5.12. We have that G(Λ) = Mv and therefore,
O(Λ) = O(Mv) = Ov . We have already seen that (vG(Λ))− is a ball +0 -cut. Hence by our
theorem, the cut Λ can be projected into Ov/Mv = Q. This is what we expected since
by construction, the cut comes from the subfield Q. In fact, for the projection we can set
c = 1 and a = 0.

Now consider our Example 5.13. We have noted that the invariance group of (vG(Λ))−

is {0}. Hence by Proposition 5.17, H(Λ) = {0} and consequently, O(Λ) = O(H(Λ)) =
O({0}) = Ov , as before. But now, (vG(Λ))− is neither a ball +0 -cut nor a ball −0 -cut. Hence
by our theorem, the cut Λ cannot be projected into Ov/Mv (which in this case is the real
closure of Q). This is because the cut comes from a cut in the value group.
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Finally, consider our Example 5.16. We have that G(Λ) = Ov and therefore again,
O(Λ) = O(Ov) = Ov . We noted already that (vG(Λ))− is a group −0 -cut but not a ball +0 -
cut. Hence by our theorem, the cut Λ cannot be projected into Ov/Mv = Q. Even worse:
by our construction, there is no smallest convex valuation ring O of (K,<) such that Λ
can be projected into O/M.

The convex valuation rings of (K,<) correspond bijectively to the convex subgroups
of vK = Zvt1⊕ Zvt2⊕ . . .⊕ Zvti⊕ . . .. These convex subgroups are precisely {0} and the
subgroups of the form Hk := Zvtk ⊕ Zvtk+1 ⊕ . . ., for all k ∈ N. We set Ok := O(Hk) and
denote its maximal ideal by Mk . Then the residue field Ok/Mk can be identified with
the field Q(ti | i ≥ k). Looking at the pseudo Cauchy sequence defined in Example 5.16,
we see that precisely the summands t−11 , . . . , t−1k−1 of our aν ’s do not lie in Ok . So if we
define a new pseudo Cauchy sequence by setting a′ν := aν+k−1 − ak−1, then we obtain
a sequence consisting of elements in Ok , which consequently also defines a cut in Ok .
In fact, this new cut is Λ − ak−1. The projection of the new pseudo Cauchy sequence
(a′ν)ν∈N via the residue map into the residue field Ok/Mk = Q(ti | i ≥ k) renders a pseudo
Cauchy sequence without a limit in that field. Actually, since we regard the residue field
Q(ti | i ≥ k) as a subfield of K, the projection is the identity on the elements of the
pseudo Cauchy sequence, and the cut in the residue field is contained by cutting down
Λ− ak−1 . This cut is again a Dedekind cut, not realized in Ok/Mk . Observe that there
is no a ∈ K such that for every k ∈ N, Λ−a would induce a Dedekind cut via the residue
map in Ok/Mk . ♦

Finally, we determine the cuts which originate from the upper or lower edge of convex
valuation rings or of their maximal ideals:

Theorem 5.29 1) cΛ + a = O+ for some a, c ∈ K, c > 0, if and only if O = O(Λ), the
cut (vG(Λ))− is a ball −0 -cut, and Λ is a ball +-cut.
2) cΛ + a = O− for some a, c ∈ K, c > 0, if and only if O = O(Λ), the cut (vG(Λ)) is a
ball −0 -cut, and Λ is a ball −-cut.
3) cΛ + a =M+ for some a, c ∈ K, c > 0, if and only if O = O(Λ), the cut (vG(Λ))− is
a ball +0 -cut, and Λ is a ball +-cut.
4) cΛ + a =M− for some a, c ∈ K, c > 0, if and only if O = O(Λ), the cut (vG(Λ))− is
a ball +0 -cut, and Λ is a ball −-cut.

In case 1) and 2), Λ cannot be projected into O(Λ)/M(Λ). In case 3), we obtain as
possible projections all cuts whose initial segment has a last element. In case 4), we
obtain as possible projections all cuts whose final segment has a first element.

Proof: We prove part 1). Assume first that cΛ + a = O+ for some a, c ∈ K, c > 0.
Then by Corollary 3.7, O = G(cΛ + a). Thus by Proposition 5.18, O(Λ) = O(cΛ + a) =
O(G(cΛ + a)) = O(O) = O. As O = G(cΛ + a) is a final segment of cΛL + a, we know
from Lemma 3.18 that cΛ + a is a group +-cut. Hence by Lemma 5.2, the cut Λ is a
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ball +-cut. Using Lemma 5.1, we compute: cG(Λ) = G(cΛ + a) = O = O(Λ) = O(G(Λ)).
By Lemma 4.13 it follows that (vG(Λ))− is a ball −0 -cut.

To prove the converse, assume that O = O(Λ), that (vG(Λ))− is a ball −0 -cut, and that
Λ is a ball +-cut. Then by Lemma 4.13, there is some nonzero c ∈ K such that cG(Λ) =
O(G(Λ)) = O(Λ). Since G(Λ) = −G(Λ), we can choose c positive. Since Λ is a ball +-cut,
the same holds for cΛ by Lemma 5.2. Now Corollary 3.19 shows that there is some a ∈ K
such that G(cΛ) is a final segment of cΛL + a. But by Lemma 5.1, by what we have
already proved, and by our assumption on O, we have that G(cΛ) = cG(Λ) = O(Λ) = O.
This proves that cΛ + a = O+ for some a, c ∈ K, c > 0.

The proofs of parts 2), 3) and 4) are similar. The further assertions follow from part
2) of Theorem 5.27, and from Corollary 3.19 together with the remark preceding that
corollary. 2

Remark 5.30 Let us consider the four cases of the foregoing theorem, for a fixedO. Then
we find that the four cuts cannot be transformed into each other through transformations
of the form (ΛL,ΛR) 7→ (cΛL + a , cΛR + a), with c > 0. Nevertheless, each of the four
cuts can be transformed into the other. We show this for two pairs, the others are similar
or combinations of these transformations.
1)7→2): If Λ is a cut satisfying 1), then −Λ := (−ΛR,−ΛL) is a cut satisfying 2). Indeed,
if O is a final segment of cΛL+a, then it is an initial segment of −(cΛL+a) = c(−ΛL)−a.
1)7→3): Assume that Λ is a cut satisfying 1). Then ΛL contains positive elements. For
this case, we define a cut Λ−1 = (ΛL

1 ,Λ
R
1 ) as follows. We set ΛL

1 := {d ∈ K | d ≤ 0}∪{b−1 |
b ∈ ΛR} and ΛR

1 := {b−1 | 0 < b ∈ ΛL}. Since b−1 ∈ M if and only if b /∈ O, it follows
that {b−1 | b ∈ ΛR} = {d ∈M | d > 0}. Therefore, M is a final segment of ΛL

1 .
The connection between the four cuts can also be understood as follows. Suppose

that an element x in some extension field realizes the cut of 1). Then −x realizes the
cut of 2), x−1 realizes the cut of 3), and −x−1 realizes the cut of 4). If we extend the
natural valuation to that extension field, we will find that the value γ of x and −x is
not archimedean comparable to any value in vK. It realizes the cut H(O)−; so γ itself is
negative. Further, −γ is the value of x−1 and of −x−1. It realizes the cut H(O)+ and is
positive.

Exercise. Take any cut Λ such that ΛL contains positive elements. Compute the
invariance group and the invariance valuation ring of Λ−1.
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