Product of Complete Ideals

Jugal Verma

Joint work with Parangama Sarkar Indian Institute of Technology Bombay Colloquiumfest in honour of Dale Cutcosky

Outline

- Integral closure of ideals and Zariski's Product Theorem
- Results of Lipman and Cutcosky about complete ideals in a rational singularity
- Reid-Roberts-Vitulli Theorem about complete monomial ideals
- Rees' theorem about joint reductions and normal Hilbert polynomials
- **9** Rees's Theorem \Rightarrow Lipman's generalisation of ZPT to 2-dimensional rational singularities and Huneke's result on vanishing of $\overline{e}_2(I)$
- Joint reduction vectors of multi-graded filtrations of ideals
- Effect of filter-regular sequences on vanishing of graded components of the local cohomology modules of multi-graded modules over standard multi-graded rings
- Local cohomological interpretation of joint reduction vectors of multi-graded filtrations of ideals
- $\begin{tabular}{ll} \bf Q & A generalisation of the Reid-Roberts-Vitulli Theorem for completeness of power products of <math>{\mathfrak m}$ -primary ideals in analytically unramified local rings
- Futoshi Hayasaka's theorem about the product of complete monomial ideals

Integral Closure of Ideals

- Let R be a commutative ring, I an ideal of R.
- ② An element $a \in R$ is called **integral over** I, if there exist $a_i \in I^i$ for i = 1, 2, ..., n so that

$$x^n + a_1x^{n-1} + \cdots + a_n = 0.$$

- **1** The **integral closure** of $I = \overline{I} = \{a \in R \mid a \text{ is integral over } I\}$.
- An ideal I is called **complete** or **integrally closed** if $\overline{I} = I$.
- **O. Zariski**, Polynomial ideals defined by infinitely near base points, American Journal of Mathematics (1938), 151-204.
- **Theorem:** Let R = k[X, Y] be the polynomial ring k is an algebraically closed field of characteristic zero. Then product of complete ideals in R is complete. Moreover any complete ideal is uniquely written as a product of simple complete ideals upto their reordering.
- This was generalised to two-dimensional regular local rings in Appendix 5 of the Volume II of Commutative Algebra by Oscar Zariski and Pierre Samuel.

Lipman's Results about complete ideals (1969,1978)

- **Definition:** A two-dimensional normal local ring (R, \mathbf{m}) is said to have a **rational singularity** if there exists a desingularisation X of Spec R for which $H^1(X, \mathcal{O}_X) = 0$.
- **Examples of rational singularities:** (1) Any 2-dimensional complete local UFD with algebraically closed residue field.
 - (2) A 2-dimensional normal local domain birationally dominating a 2-dimensional regular local ring.
- **Theorem:** (Lipman, 1969) Let R be a 2-dimensional local ring with a rational singularity. Then
 - (1) Product of complete ideals is complete.
 - (2) If the completion of R is a UFD then every complete ideal factors as a product of simple complete ideals uniquely.
- **Definition:** (Lipman, 1978) A two-dimensional Noetherian local ring (R, \mathbf{m}) is called **pseudo-rational** if it is normal, analytically unramified and for every birational proper map $W \to \operatorname{Spec} R$ where W is normal, we have $H^1(W, \mathcal{O}_W) = 0$.

Normal Hilbert Polynomials: Rees' Approach

Definition: For any \mathfrak{m} -primary ideal I in an analytically unramified local ring (R,\mathfrak{m}) of dimension d, the **normal Hilbert function** $\overline{H}(I,n)=\lambda(R/\overline{I^n})$ for large n, is given by the **normal Hilbert polynomial**

$$\overline{P}(I,x) = \overline{e}_0(I) \binom{x+d-1}{d} - \overline{e}_1(I) \binom{x+d-2}{d-1} + \cdots + (-1)^d \overline{e}_d(I),$$

for some integers $\overline{e}_0(I)$, $\overline{e}_1(I)$, ..., $\overline{e}_d(I)$.

- 2 These integers are called the **normal Hilbert coefficients** of *I*.
- **Definition:** (Rees) A 2-dimensional local normal analytically unramified ring (R, \mathfrak{m}) is pseudo-rational iff $\overline{e}_2(I) = 0$ for all \mathfrak{m} -primary ideals I.
- Theorem (Lipman, Rees) Product of m-primary complete ideals is complete in two-dimensional pseudo-rational local rings.
- **Definition:** (Rees) Let I_1, I_2, \ldots, I_d be \mathfrak{m} -primary ideals of a d-dimensional local ring (R, \mathbf{m}) . Let $\mathcal{F}(\mathbf{n})$ be a filtration of ideals such that for all $\mathbf{n} = (n_1, n_2, \ldots, n_d) \in \mathbb{N}^d, \ I_1^{n_1} I_2^{n_2} \ldots I_d^{n_d} \subseteq \mathcal{F}(\mathbf{n}).$
- **Definition:** A set of elements $x_i \in I_i$ for i = 1, 2, ..., d is called a joint reduction of $\mathcal{F}(\mathbf{n})$ if for all large $\mathbf{n} \in \mathbb{N}^n$

$$\mathcal{F}(\mathbf{n}) = x_1 \mathcal{F}(\mathbf{n} - e_1) + x_2 \mathcal{F}(\mathbf{n} - e_2) + \cdots + x_d \mathcal{F}(\mathbf{n} - e_d).$$

Rees' Theorem, 1981

Lemma: Let (R, \mathfrak{m}) be Cohen-Macaulay local ring of dimension 2 with infinite residue field and let I, J be \mathfrak{m} -primary ideals. Then there exists a joint reduction (a, b) of $\{\overline{I^r J^s}\}$ satisfying the conditions:

(a)
$$\cap \overline{I^r J^s} = a \overline{I^{r-1} J^s}$$
 for all $r > 0$ and (b) $\cap \overline{I^r J^s} = b \overline{I^r J^{s-1}}$ for all $s > 0$.

- **Quantition:** We say (a,b) is a **good joint reduction** of $\{\overline{I^rJ^s}\}$ if (a,b) satisfies the above equations. Such joint reductions exist if $|R/\mathfrak{m}| = \infty$.
- **Theorem:** (Rees, 1981) Let (R, \mathfrak{m}) be an analytically unramified Cohen-Macaulay local ring of dimension 2. Let I, J be \mathfrak{m} -primary ideals and let (a, b) be a good joint reduction of $\{\overline{I^rJ^s} \mid r, s \geq 0\}$.
- Then $\overline{e}_2(IJ) \leq \overline{e}_2(I) + \overline{e}_2(J)$ and

$$\overline{e}_2(IJ) = \overline{e}_2(I) + \overline{e}_2(J) \iff \overline{I^r J^s} = a\overline{I^{r-1}J^s} + b\overline{I^r J^{s-1}} \text{ for all } r, s > 0, \quad (1)$$

Operation: If the equation (1) is satisfied for all $(r,s) \ge (p,q) \in \mathbb{N}^2$, then we say that (p,q) is a normal joint reduction vector of the filtration $\{\overline{I^rJ^s}\}$.

Consequences of Rees' Theorem

- **1** Theorem: (Rees,1981) Let (R, \mathfrak{m}) be a two-dimensional pseudo-rational local ring and let I, J be complete ideals in R. Then IJ is complete.
- **Proof:** Since $\overline{e}_2(I) = 0$ for all m-primary ideals in a pseudo-rational local ring, Rees' theorem gives that $\overline{IJ} = a\overline{J} + b\overline{I}$ for all m-primary ideals I and J. Therefore $\overline{IJ} \subseteq \overline{I}$ \overline{J} . Since \overline{I} $\overline{J} \subseteq \overline{IJ}$ in any ring, $\overline{IJ} = \overline{I}$ \overline{J} . Hence IJ is complete if I and J are so.
- **Theorem:** (Huneke, 1987) Let (R, \mathfrak{m}) be a two-dimensional analytically unramified Cohen-Macaulay local ring. Let I be an \mathfrak{m} -primary ideal. Then

$$\overline{e}_2(I) = 0 \iff \overline{I^n} = (x, y)\overline{I^{n-1}}$$
 for $n \ge 2$ and for any reduction (x, y) of I .

In particular, if I is complete and $\overline{e}_2(I) = 0$ then I^n is complete for all $n \ge 1$.

Proof: Let $\overline{e}_2(I)=0$. Put I=J and r=1, s=n-1 in Rees' Theorem to get both the conclusions. We can calculate the normal Hilbert polynomial to see that $\overline{e}_2(I)=0$

Theorems of Cutcosky (1990)

- **1 Theorem:** Let (R, \mathbf{m}) be a 2-dimensional excellent normal local domain with algebraically closed residue field $k = R/\mathbf{m}$. Then the following are equivalent:
 - (1) R has a rational singularity.
 - (2) Product of complete ideals in *R* is complete.
 - (3) Product of complete **m**-primary ideals is complete.
 - (4) If I is a complete **m**-primary ideal then I^2 is complete.
- **Theorem:** Let k be a field of characteristic not equal to 3. Set $R(k) = k[[x, y, z]]/(x^3 + 3y^3 + 9z^3)$. Then
 - (1) R(k) is a normal local domain and it is **not** a rational singularity.
 - (2) Product of complete ideals is complete in $R(\mathbb{Q})$.
 - (3) There exists a complete \mathbf{m} -primary ideal whose square is not complete if k has positive characteristic or if k is algebraically closed.

The RRV Theorem about complete monomial Ideals

Operation: Let $X \subset R = k[x_1, x_2, \dots, x_n]$, a polynomial ring over a field k.

$$\exp(X) = \{\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{N}^n \mid x^{\alpha} := x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n} \in X\}.$$

② The **Newton Polyhedron** of a monomial ideal *I* is defined to be

$$NP(I) = \text{convex hull } \exp(I)$$

■ Theorem: (B. Teissier, 1975) Let I be a monomial ideal of R. Then the integral closure of I is also a monomial ideal and

$$\exp(\overline{I}) = NP(I) \cap \mathbb{N}^n$$
.

Theorem: (L. Reid-L. G. Roberts-M. Vitulli, 2002) Suppose that I is a monomial ideal in the polynomial ring $k[x_1, x_2, \ldots, x_d]$. Then

$$I, I^2, \dots, I^{d-1}$$
 are complete $\implies I^n$ is complete for all n .

p_g -ideals (Okuma-Watanabe-Yoshida, 2014)

- **Definition:** Let (R, \mathfrak{m}, k) be a 2-dimensional excellent normal local domain where k is algebraically closed. A complete \mathfrak{m} -primary ideal I is called a p_g -ideal if $\overline{e}_2(I) = 0$.
- **Theorem:** (Okuma-Watanabe-Yoshida, 2014) Let I and J be p_g -ideals of R. Then IJ is also a p_g ideal. Moreover the Rees algebra of such ideals is a Cohen-Macaulay normal domain with minimal multiplicity at its maximal homogeneous ideal.
- **Quantize Remark:** This result also follows from Rees' Theorem since for such ideals there are $a \in I$ and $b \in J$ so that $IJ = aJ + bI = \overline{IJ}$ is complete.
- **1** Moreover r(I) = 1 which implies that $\mathcal{R}(I)$ is CM normal domain.
- **1** It can then be proved that $r(\mathfrak{m}, It) = 1$ which shows that $\mathcal{R}(I)$ has minimal multiplicity.

Multi-graded filtrations of ideals

- **1** (R, \mathfrak{m}) denotes a local ring of dimension d with infinite residue field and $I = I_1, \ldots, I_s$ denotes a sequence of \mathfrak{m} -primary ideals of R.
- ② Put e = (1, ..., 1), $\mathbf{0} = (0, ..., 0) \in \mathbb{Z}^s$ and for all i = 1, ..., s, $e_i = (0, ..., 1, ..., 0)$ denotes the i^{th} vector in the standard basis of \mathbb{Q}^s .
- **3** For $\mathbf{n}=(n_1,\ldots,n_s)\in\mathbb{Z}^s$, we write $\mathbf{l}^{\mathbf{n}}=l_1^{n_1}\cdots l_s^{n_s}$.
- For $s \geq 2$ and $\alpha = (\alpha_1, \dots, \alpha_s) \in \mathbb{N}^s$, put $|\alpha| = \alpha_1 + \dots + \alpha_s$.
- **3** Define $\mathbf{m} = (m_1, \dots, m_s) \ge \mathbf{n} = (n_1, \dots, n_s)$ if $m_i \ge n_i$ for all $i = 1, \dots, s$.
- **1** The phrase "for all large \mathbf{n} ," means $\mathbf{n} \in \mathbb{N}^s$ and $n_i \gg 0$ for all $i = 1, \dots, s$.
- **Q** A set of ideals $\mathcal{F} = \{\mathcal{F}(\mathbf{n})\}_{\mathbf{n} \in \mathbb{Z}^s}$ is called a \mathbb{Z}^s -graded \mathbf{I} **filtration** if for all $\mathbf{m}, \mathbf{n} \in \mathbb{Z}^s$,
 - $\mathrm{(i)}\ I^n\subseteq\mathcal{F}(n),\ \mathrm{(ii)}\ \mathcal{F}(n)\mathcal{F}(m)\subseteq\mathcal{F}(n+m)\quad \mathrm{(iii)}\ \mathrm{if}\ m\geq n,\, \mathcal{F}(m)\subseteq\mathcal{F}(n).$

Multi-graded admissible filtrations of ideals

- Let t_1, \ldots, t_s be indeterminates. For $\mathbf{n} \in \mathbb{Z}^s$, we put $\mathbf{t^n} = t_1^{n_1} \cdots t_s^{n_s}$ and denote the \mathbb{N}^s -graded **Rees ring of** \mathcal{F} by $\mathcal{R}(\mathcal{F}) = \bigoplus_{\mathbf{n} \in \mathbb{N}^s} \mathcal{F}(\mathbf{n})\mathbf{t^n}$
- $\bullet \ \, \text{For} \,\, \mathcal{F} = \{\textbf{I}^{\textbf{n}}\}_{\textbf{n} \in \mathbb{Z}^{\textbf{s}}}, \,\, \text{Put} \,\, \mathcal{R}(\mathcal{F}) = \mathcal{R}(\textbf{I}), \, \mathcal{R}'(\mathcal{F}) = \mathcal{R}'(\textbf{I}) \,\, \text{and} \,\, \mathcal{R}(\textbf{I})_{++} = \mathcal{R}_{++}.$
- **③** The associated multi-graded ring of $\mathcal F$ with respect to $\mathcal F(e)$ is the ring

$$G(\mathcal{F}) = \bigoplus_{\mathbf{n} \in \mathbb{N}^s} \frac{\mathcal{F}(\mathbf{n})}{\mathcal{F}(\mathbf{n} + e)}$$

- **Operation:** (Rees) A \mathbb{Z}^s -graded $\mathbf{I} = (I_1, \dots, I_s)$ -filtration $\mathcal{F} = \{\mathcal{F}(\mathbf{n})\}_{\mathbf{n} \in \mathbb{Z}^s}$ of ideals in R is called an $\mathbf{I} = (I_1, \dots, I_s)$ -admissible filtration if $\mathcal{R}(\mathcal{F})$ is a finite $\mathcal{R}(\mathbf{I})$ -module.
- Two main examples of admissible filtrations are
 - (i) the I-adic filtration $\{I^n\}_{n\in\mathbb{Z}^s}$ in any ring and
 - (ii) the filtration $\{\overline{\mathbf{I}^n}\}_{n\in\mathbb{Z}^s}$ in an analytically unramified local ring.

Joint reductions of multi-graded filtrations of ideals

• Let $\mathcal{F} = \{\mathcal{F}(\mathbf{n})\}_{\mathbf{n} \in \mathbb{Z}^s}$ be a \mathbb{Z}^s -graded **I**-admissible filtration of ideals in R. Let $\mathbf{q} = (q_1, \dots, q_s) \in \mathbb{N}^s$ such that $|\mathbf{q}| = \dim R = d \ge 1$. The set

$$\mathcal{J}_{\mathbf{q}}(\mathcal{F}) = \{a_{ij} \in I_i : j = 1, \dots, q_i; i = 1, \dots, s\}$$

② is called a **joint reduction of** $\mathcal F$ of type **q** if there exists an $\mathbf m \in \mathbb N^s$ such that for all $\mathbf n > \mathbf m$ we have

$$\sum_{i=1}^{s}\sum_{j=1}^{q_i}a_{ij}\mathcal{F}(\mathbf{n}-e_i)=\mathcal{F}(\mathbf{n}).$$

- **1** The vector \mathbf{m} is called a **joint reduction vector** of \mathcal{F} with respect to the joint reduction $\mathcal{J}_{\mathbf{q}}(\mathcal{F})$.
- **Question:** How to detect joint reduction vectors using graded components of the local cohomology modules of the Rees algebra $\mathcal{R}(\mathcal{F})$?

Filter-regular sequences and joint reductions

Oefinition: (N. V. Trung) Suppose $R = \bigoplus_{\mathbf{n} \in \mathbb{N}^s} R_{\mathbf{n}}$ is a standard \mathbb{N}^s -graded ring defined over a local ring (R_0, \mathfrak{m}) , and $M = \bigoplus_{\mathbf{n} \in \mathbb{Z}^s} M_{\mathbf{n}}$ is a finitely generated \mathbb{Z}^s -graded R-module. A homogeneous element $a \in R$ is called M-filter-regular if for all large \mathbf{n}

$$(0:_M a)_n = 0$$

- ② Let $a_1, \ldots, a_r \in R$ be homogeneous elements. Then a_1, \ldots, a_r is called an M-filter-regular sequence if a_i is $M/(a_1, \ldots, a_{i-1})M$ -filter-regular for all $i = 1, \ldots, r$.
- **Theorem:** Let (R, \mathfrak{m}) be a local ring of dimension $d \geq 1$ and I_1, \ldots, I_s be \mathfrak{m} -primary ideals in R. Let $\mathcal{F} = \{\mathcal{F}(\mathbf{n})\}_{\mathbf{n} \in \mathbb{Z}^s}$ be an \mathbf{I} -admissible filtration of ideals in R and $\mathbf{q} = (q_1, \ldots, q_s) \in \mathbb{N}^s$ such that $|\mathbf{q}| = d$ Then there exists a joint reduction of \mathcal{F} of type \mathbf{q} such that images of its elements in $G(\mathbf{I})$ form a $G(\mathcal{F})$ -filter-regular sequence.

Eero Hyry's condition $H_{\mathbf{m}}$

- **Theorem:**(E. Hyry) Let S be a \mathbb{Z} -graded ring defined over a local ring (R,\mathfrak{m}) . Let \mathcal{M} be the homogeneous maximal ideal of S. Let $\mathfrak{a} \subset \mathfrak{m}$ be an ideal of S. Let \mathcal{M} be a finitely generated \mathbb{Z} -graded S-module and $n_0 \in \mathbb{Z}$. Then $[H^i_{\mathcal{M}}(M)]_n = 0$ for all $n \geq n_0$ and $i \geq 0$ $\iff [H^i_{(\mathfrak{a},S_+)}(M)]_n = 0$ for all $n \geq n_0$ and $i \geq 0$.
- **② Definition:** Let R be a standard \mathbb{N}^s -graded ring and $\mathbf{m} \in \mathbb{Z}^s$. We say that a finitely generated \mathbb{Z}^s -graded R-module M satisfies **Hyry's condition** $H_{\mathbf{m}}$ if

$$[H^i_{R_{++}}(M)]_{\mathbf{n}}=0$$
 for all $i\geq 0$ and $\mathbf{n}\geq \mathbf{m}$.

1 Theorem: Let $R = \bigoplus_{\mathbf{n} \in \mathbb{N}^s} R_{\mathbf{n}}$ be a standard \mathbb{N}^s -graded ring defined over a local ring (R_0, \mathfrak{m}) , $R_{e_i} \neq 0$ for all $i = 1, \ldots, s$ and $M = \bigoplus_{\mathbf{n} \in \mathbb{Z}^s} M_{\mathbf{n}}$ be a finitely generated \mathbb{Z}^s -graded R-module. Let $\mathbf{a} = (a_1, \ldots, a_s) \in \mathbb{Z}^s$. Suppose $[H^i_{\mathcal{M}}(M)]_{\mathbf{n}} = 0$ for all $i \geq 0$ and $\mathbf{n} \in \mathbb{Z}^s$ such that $n_k > a_k$ for at least one $k \in \{1, \ldots, s\}$. Then M satisfies Hyry's condition $H_{\mathbf{a}+\mathbf{e}}$.

Filter-regular elements and Hyry's condition

- Let (R, \mathfrak{m}) be a local ring of dimension $d \geq 1$ and I_1, \ldots, I_s be \mathfrak{m} -primary ideals in R. Let $\mathcal{F} = \{\mathcal{F}(\mathbf{n})\}_{\mathbf{n} \in \mathbb{Z}^s}$ be an I-admissible filtration of ideals in R.
- ② Lemma: If $\mathcal{R}(\mathcal{F})$ satisfies H_m then $\mathcal{G}(\mathcal{F})$ satisfies H_m .
- **Quantizeta** Let $R = \bigoplus_{\mathbf{n} \in \mathbb{N}^s} R_{\mathbf{n}}$ be a standard \mathbb{N}^s -graded ring defined over a local ring (R_0, \mathfrak{m}) and $M = \bigoplus_{\mathbf{n} \in \mathbb{Z}^s} M_{\mathbf{n}}$ be a finitely generated \mathbb{Z}^s -graded R-module. Suppose M satisfies Hyry's condition $H_{\mathbf{m}}$. Let $a \in R_{e_j}$ be M-filter-regular. Then M/aM satisfies $H_{\mathbf{m}+e_i}$.
- **1** Theorem: Suppose $G(\mathcal{F})$ satisfies $H_{\mathbf{m}}$. Let $\mathbf{q} \in \mathbb{N}^s$ such that $|\mathbf{q}| = d$ and $\mathcal{J} = \{a_{ij} \in I_i : j = 1, \dots, q_i; i = 1, \dots, s\}$ be a joint reduction of \mathcal{F} of type \mathbf{q} such that $a_{11}^*, \dots, a_{1q_1}^*, \dots, a_{s1}^*, \dots, a_{sq_s}^*$ is a $G(\mathcal{F})$ -filter-regular sequence where a_{ij}^* is the image of a_{ij} in $G(\mathbf{l})_{\mathbf{e}_i}$ for all i and j. Then $\mathbf{m} + \mathbf{q}$ is a joint reduction vector of \mathcal{F} with respect to \mathcal{J} . In other words

$$\mathcal{F}(\mathbf{n}) = \sum_{i=1}^s \sum_{i=1}^{q_i} a_{ij} \mathcal{F}(\mathbf{n} - e_i) \text{ for all } \mathbf{n} \geq \mathbf{m} + \mathbf{q}.$$

Product of complete ideals in any dimension (Sarkar-Verma)

- **Theorem:** (E. Hyry) Let (R, \mathfrak{m}) be a local ring of dimension d and l_1, \ldots, l_s be \mathfrak{m} -primary ideals in R. Let $\mathcal{F} = \{\mathcal{F}(\mathbf{n})\}_{\mathbf{n} \in \mathbb{Z}^s}$ be an \mathbf{l} -admissible filtration of ideals in R. If $\mathcal{R}(\mathcal{F})$ is CM then it satisfies Hyry's condition $H_{\underline{0}}$.
- **3 Theorem:** Let (R, \mathfrak{m}) be an analytically unramified local ring of dimension $d \geq 2$ and let I_1, \ldots, I_s be \mathfrak{m} -primary ideals in R. Let $\mathcal{F} = \{\overline{\mathbf{I}^n}\}$ and $\mathcal{R}(\mathcal{F})$ satisfy Hyry's condition H_0 . Suppose $\mathbf{I^n}$ is complete for all $\mathbf{n} \in \mathbb{N}^s$ with $1 \leq |\mathbf{n}| \leq d-1$. Then $\mathbf{I^n}$ is complete for all $\mathbf{n} \in \mathbb{N}^s$ where $|\mathbf{n}| \geq d$.
- **Proof:** We use induction on $|\mathbf{n}|$. By given hypothesis the result is true for $|\mathbf{n}| \leq d-1$. Suppose $|\mathbf{n}| \geq d$. Let $\mathbf{m} \in \mathbb{N}^s$ such that $\mathbf{m} \leq \mathbf{n}$ and $|\mathbf{m}| = d$.
- Consider the filtration $\mathcal{F} = \{\overline{\mathbf{I}^n}\}_{n \in \mathbb{Z}}$. Then there exists a joint reduction $\{a_{ij} \in I_i : j = 1, \dots, m_i; i = 1, \dots, s\}$ of \mathcal{F} of type \mathbf{m} such that

$$\overline{\mathbf{I}^{\mathbf{r}}} = \sum_{i=1}^{s} \sum_{j=1}^{m_i} a_{ij} \overline{\mathbf{I}^{\mathbf{r} - \mathbf{e}_i}} \text{ for all } \mathbf{r} \geq \mathbf{m}. \quad \text{Hence} \quad \overline{\mathbf{I}^{\mathbf{n}}} = \sum_{i=1}^{s} \sum_{j=1}^{m_i} a_{ij} \overline{\mathbf{I}^{\mathbf{n} - \mathbf{e}_i}}.$$

3 As $\overline{I^{n-e_i}}$ are complete for all *i* by induction hypothesis, I^n is also complete.

The RRV Theorem for products of monomial ideals

- **Theorem:** Let $R = k[X_1, \ldots, X_d]$ and let \mathfrak{m} be its maximal homogeneous ideal. Let I_1, \ldots, I_s be \mathfrak{m} -primary monomial R-ideals. Suppose $\mathbf{I}^{\mathbf{n}}$ is complete for all $\mathbf{n} \in \mathbb{N}^s$ such that $1 \leq |\mathbf{n}| \leq d-1$. Then $\mathbf{I}^{\mathbf{n}}$ is complete for all $\mathbf{n} \in \mathbb{N}^s$.
- **Proof:** If d = 1 then R is a PID and hence normal. Therefore every ideal is complete since principal ideals in normal domains are complete.
- ① Let $d \geq 2$. Since I_1, \ldots, I_s are monomial ideals, $\overline{\mathcal{R}}(\mathbf{I})$ is Cohen-Macaulay. Let $W = R \setminus \mathfrak{m}$. Then $S = W^{-1}\overline{\mathcal{R}}(\mathbf{I})$ is Cohen-Macaulay. We have

$$W^{-1}\overline{\mathcal{R}}(\mathbf{I}) = \bigoplus_{\mathbf{n} \in \mathbb{N}^s} W^{-1}\overline{\mathbf{I}^{\mathbf{n}}} = \bigoplus_{\mathbf{n} \in \mathbb{N}^s} (\overline{W^{-1}(\mathbf{I}^{\mathbf{n}})}) = \overline{\mathcal{R}}(W^{-1}I_1, \dots, W^{-1}I_s).$$

- Therefore S satisfies Hyry's condition H_0 .
- **5** $W^{-1}(\mathbf{I}^{\mathbf{n}})$ is complete for all $\mathbf{n} \in \mathbb{N}^s$ such that $|\mathbf{n}| \geq 1$.
- **3** Since \mathfrak{m} is the maximal homogeneous ideal of R and $W^{-1}\left(\overline{\mathbf{I}^{\mathbf{n}}}/\mathbf{I}^{\mathbf{n}}\right)=0,\ \mathbf{I}^{\mathbf{n}}$ is complete for all $\mathbf{n}\in\mathbb{N}^{\mathbf{s}}$.

Normality of power products of monomial ideals

• Theorem: (Pooja Singla, 2007) Let I be a monomial ideal of analytic spread ℓ in the polynomial ring $K[X_1, X_2, \ldots, X_d]$ over a field K. Suppose that I^n is complete for all $n \le \ell - 1$ then I^n is complete for all n.

Recent results of Futoshi Hayasaka (2017)

- Theorem: Let (R, \mathbf{m}) be an analytically unramified local ring of dimension d. Let I_1, I_2, \ldots, I_s be ideals of positive height in R.
- Let the integral closure of the multi-Rees algebra $\mathcal{R}(I_1, I_2, \dots, I_s)$ in the polynomial ring $R[t_1, t_2, \dots, t_s]$ be Cohen-Macaulay. Let $\ell = \ell(I_1 I_2 \dots I_s)$.
- Suppose that $\mathbf{I}^{\mathbf{n}}$ is complete for all $\mathbf{n} \in \mathbb{N}^{s}$ where $|\mathbf{n}| \leq \ell 1$.
- Then Iⁿ is complete for all n.
- Corollary: Let I_1, I_2, \ldots, I_s are monomial ideals in $K[X_1, X_2, \ldots, X_d]$ and $\ell = \ell(I_1I_2 \ldots I_s)$. Suppose that $I_1^{n_1}I_2^{n_2} \ldots, I_s^{n_s}$ is complete for all $\mathbf{n} = (n_1, n_2, \ldots, n_s) \in \mathbb{N}^s$ where $|\mathbf{n}| \leq \ell 1$ then $\mathbf{I}^\mathbf{n}$ is complete for all \mathbf{n} .