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Introduction

I We denote by (A,mA) a noetherian local ring and by κ(A) its residue
field.

I For a field k , k [[n]] := k[[X1, . . . ,Xn]] denotes the formal power series
ring in n indeterminates over k .

I If p ∈ Spec A, the residue field of A at p, denoted by κ(p), is defined as
κ(p) := Ap/pAp = Q(A/p).

I All homomorphisms between local rings are local homomorphism.

I Let A be a complete Noetherian local ring. Then it is excellent. Hence
for every finite extension L of its quotient field K = Q(A), the integral
closure of A in L is a finitely generated A-module.



The following example is due to Abhyankar.

I Let X ,Y be indeterminates over C. For any positive integer n, let
A := C[[X ,X (eY − 1),X (eY

2 − 1), ... ,X (eY
n − 1)]] ⊆ C[[X ,Y ]]. Then

dim A = n + 1, but dim B = 2.

Theorem

Let A ⊆ B be Noetherian rings with A being a catenary local ring. Suppose
that the maximal ideal of A is contained in the Jacobson radical of B. If the
induced map Spec B → Spec A is surjective, then dim A 6 dim B.



Theorem

Let A ⊆ B be finite dimensional Noetherian domains with B being catenary,
and P ⊆ B a prime ideal satisfying ht (P ∩ A) < ht P. Suppose that
J1, J2, . . . , Jn are prime ideals in B such that P is not contained in the union⋃n

i=1 Ji . Then there exists a nonzero element x ∈ P \
⋃n

i=1 Ji satisfying
xB ∩ A = (0).



I Let A ⊆ B be Noetherian local domains with B being regular and
dim A < dim B . Then we can find a part of a regular system of
parameters z1, z2, . . . , zm ∈ B , with m := dim B − dim A, such that
(z1, z2, . . . , zm) ∩ A = (0).
In particular, if A is a complete local ring over k satisfying A ⊆ k [[n]],
then A can be embedded in k [[dim A]].

I Let A ⊆ B be Noetherian local domains with dim A < dim B . If B is
catenary then there exists a prime ideal p ⊆ B such that
ht p = dim B − dim A and p ∩ A = (0).



Main Result

Theorem

If A ⊆ B are complete local domains such that κ(A) = κ(B) = C, the field
of complex numbers, and the natural map Spec B → Spec A is surjective.
Then the integral closure of A in B is a finite A-module.



Proof of main result

It is enough to show that any increasing sequence of complete local domains
A0(= A) ⊆ A1 ⊆ A2 ⊆ . . . , where each Ai is a finite A-module and
∪iAi ⊆ B , is eventually stationary.

We apply induction on dim A.

(i) If dim A = 0 or dim A = 1. Then B is a finite module over A.

(ii) If dim A = 2. Then we can further assume that dim B = 2.

I We can further consider that A and B are normal domains.

I We can find a prime ideal p ∈ Spec A such that htp = 1. Then Ap is a
DVR.

I Let π ∈ Ap be a uniformizing parameter and Q1,Q2, . . . ,Qn the prime
ideals of B , lying over p. Also htQi = 1 for all i .



I Consider Ap ⊂ Bp. Then for i = 1, . . . , n, we define

ei := ordBQi
(π) and fi := [κ(Qi) : κ(p)]

.

I Let K = Q(A) and L = Q(B).
If F/K be a finite field extension such that F ⊆ L.
We can show that [F : K ] 6

∑n
i=1 ei fi , thereby proving that the

algebraic closure of K in L is finite.



Flenner’s Theorem

Theorem

Let k be a field of characteristic zero and A an excellent normal local
k-domain of dimension m > 3 with κ(A) = k. If Q := (a1, .., am) is an
mA-primary ideal, then there exists a non-empty Zariski open set U ⊆ Am

k

such that for any (c1, . . . , cm) ∈ U, the linear combination Σciai ∈ A is a
prime element in A.

I Let A0 ⊆ A1 ⊆ · · · be an increasing sequence excellent normal local
domains of dimension m > 3 such that k := κ(A0) is an uncountable
field of characteristic zero and each Ai is a finite A0-module. If every Ai

contains its residue field κ(Ai), then there exists a non zero prime
element x ∈ A0 such that x is a prime in all Ai .



(iii) Let dim A = r , for some r ≥ 3. We can take A = κ(A)[[r ]] and B to be a
normal domain.

I Each Ai , being an excellent Henselian local domain, has a finite
normalization which is also local. Consequently, the sequence
A ⊆ A1 ⊆ A2 ⊆ . . . eventually stabilizes if and only if the induced
sequence of normalizations A ⊆ Ā1 ⊆ Ā2 ⊆ . . . stabilizes eventually. So
we can replace Ai by Āi .

I Using Flenner’s result we can find a prime element x ∈ A, which remains
a prime in every Ai .

I xAi = xB ∩ Ai for all i .
I Therefore, going modulo x , we get an induced sequence of

equicharacteristic complete local domains
A0/xA0(= A/xA) ⊆ A1/xA1 ⊆ A2/xA2 ⊆ . . . , such that each Ai/xAi is
a finite A/xA-module and

⋃
i Ai/xAi ⊆ B/xB .

I As dim A/xA < dim A, by induction hypothesis, the sequence
A/xA ⊆ A1/xA1 ⊆ A2/xA2 ⊆ . . . eventually stabilizes.

I Therefore the original sequence A ⊆ A1 ⊆ A2 ⊆ . . . also stabilizes
eventually.



Theorem

If A ⊆ B are complete local domains such that κ(A) is an uncountable field
of characteristic zero, κ(A) ⊆ κ(B) is a finite extension and the image of
Spec B contains all prime ideals of co-height two in A, then the integral
closure of A in B is a finite A-module.
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