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17-th Hilbert Problem

Take f ∈ R[X1, ...,Xn] with non-negative values. Are there
fi ∈ R(X1, ...,Xn) such that

f =
k

∑
i=1

f 2i

for some natural number k?

Hilbert’s 17th Problem was positively solved by E. Artin in 1927 by
the theory of formally real fields.
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Schülting’s Problem (1987)

Schülting’s Problem

Let f , g ∈ R[X ] be of the same degree and without real zeros.
Assume that f

g is positive definite. Are there fi , gi ∈ R[X ] without
real zeros with deg fi = deg gi such that

f

g
=

k

∑
i=1

(
fi
gi

)2

for some natural number k?
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Artin’s solution for function fields

F - a formally real function field over a real closed field R

X - any smooth projective model of F

X (R) - the set of rational points of X

Xf - the set of rational points in which f is defined

Artin’s Solution: f ∈ ∑ F 2 ⇔ f (x) ≥ 0 for every x ∈ Xf

Can the real holomorphy ring of F be characterized in a similar way?
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R-places

F – a formally real field
P – an ordering of F
A(P) – the convex hull of Q in F with respect to P
I (P) – the set of infinitesimals in F with respect to P

• The set A(P) is a valuation ring in F and I (P) is its maximal
ideal.
• If A(P) = F , then we say that the ordering P is archimedean.
• The ordering induced by P on the residue field A(P)/I (P) is
archimedean, therefore there is an embedding

ι : A(P)/I (P) ↪→ R.

• The composition of the residue map with ι gives a real place of
F (R-place).
• The Baer-Krull Theorem says that every R-place can be
obtained in this way.
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The space of orderings

X (F ) – the set of all orderings of a field F .

X (F ) is a topological space with a subbasis of Harrison sets:

H(a) := {P ∈ X (F ) : a ∈ P}, a ∈ Ḟ = F \ {0}.

Properties of X (F ):
compact,
Hausdorff,
totally disconnected.
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The topology on M(F )

M(F ) - the set of all R-places of F .

The map:
X (F ) 3 P 7→ ξP ∈ M(F )

is onto, so we consider the quotient topology on M(F ) which is
(D.W. Dubois, 1970):

compact,
Hausdorff.
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Orderings and R-places of R(X )

P+∞ = { fg | lc(f ) · lc(g) > 0}

P−∞ = { fg | (−1)deg f−deg g · lc(f ) · lc(g) > 0}

Pa+ = {(x − a)k f1
g1
| f1(a)g1(a) > 0}

Pa− = {(x − a)k f1
g1
| (−1)k f1(a)g1(a) > 0}

M(R(X )) ∼= R∪ {∞} ∼= S1

If F is a function field over a totally archimedean field K with finite
number of orderings and trdeg(F/K ) = 1, then M(F ) is a disjoint
finite union of circles (R. Brown 1980).
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Orderings and R-places of R(X )

R - a real closed field

C (R) - the set of all cuts in R

X (R(X )) ∼= C (R)

(A,B) < (C ,D) - cuts in R .
Corresponding orderings determine the same R-place iff B ∩ C is a
coset of a convex subgroup of R .
The space M(R(X )) is:

connected,
not metrizable,
self-similar,
of topological dimension 1.
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Orderings and R-places of R(X ,Y )

X (R(X ,Y )) ∼=
⋃̇
{X (R(Y )) ; R real closure of R(X )}.

The space M(R(X ,Y )) is:

path-connected (R. Brown, J. Merzel),
not metrizable (M. Marshall, M. Machura, K.K.),
of topological dimension 2 and cohomological dimension 1
(T. Banakh).
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The Key Theorem

Theorem
Let F be a function field over a nonarchimedean real closed field R
with natural valuation v0. Take P ∈ X (F ) and:

a1, ..., am ∈ P,

am+1, ..., an ∈ I (P).

Then there is a rational place λ : F → R ∪ {∞} such that

λ(ai ) > 0 for i = 1, ...,m,

λ(ai ) ∈ I(Ṙ2) for i = m+ 1, ..., n.
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The Key Theorem - proof

t := (t1, ..., tk) - a transcendence base of F over R .

F = R(t, y),

where y is algebraic over R(t).

f ∈ R [t,Y ] - an irreducible polynomial of y over R [t].

ai =
fi (t, y)

gi (t)
,

where gi (t) 6= 0 for i = 1, ..., n.
We obtain the following elementary sentences:

f (t, y) = 0,
δf
δY (t, y) 6= 0,
gi (t) 6= 0 for i = 1, ..., n,
fi (t, y)gi (t) ∈ P for i = 1, ...,m,
vP(fi (t, y)) > vP(gi (t)) for i = m+ 1, ..., n.
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The Key Theorem - proof

Since R is nonarchimedean valued, we have that (R, Ṙ2, v0) is
existentially closed in (F ,P, vP).

So there are t ′ = (t ′1, ..., t
′
k) ∈ Rk

and y ′ ∈ R such that:
f (t ′, y ′) = 0,
δf
δY (t ′, y ′) 6= 0,
gi (t ′) 6= 0 for i = 1, ..., n,
fi (t ′, y ′)gi (t ′) > 0 for i = 1, ...,m,
v0(fi (t ′, y ′)) > v0(gi (t ′)) for i = m+ 1, ..., n.
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The Key Theorem - proof

Consider the field R(X1, ...,Xk) with some rational place
λ : R(X1, ...,Xk) −→ R ∪ {∞}.

Let (K ,λ) be the henselization of (R(X1, ...,Xk),λ). Choose
t∗ = (t∗1 , ..., t

∗
k ) ∈ K k such that t∗1 , ..., t

∗
k are algebraically

independent and vλ(t
′
i − t∗i ) > 0.

Since K is henselian, the Implicit Function Theorem holds in K .
Therefore the polynomial equation

f (t∗,Y ) = 0

has a solution y ∗ ∈ K such that vλ(y
′ − y ∗) > 0.

Now we embed F in K by sending t 7→ t∗ and y 7→ y ∗ and we
identify F with its image in K . Then we restrict λ to F .
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Real places of F

M(F ) − the space of R-places of F

M(F |R) − the set of rational places of F which are identity on R

MR(F ) := {ξ ∈ M(F ) | ∃λ : F → R ∪ {∞}; ξ = ξR ◦ λ}
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The real holomorphy ring of F

H(F ) =
⋂
{V : |V real valuation ring of F}

H(F ) =
⋂
{Vξ : ξ ∈ M(F )}
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Density

Basis for the topology of M(F ):

U(f1, ..., fn) := {ξ ∈ M(F ) | ξ(fi ) > 0}, fi ∈ H(F )

Assume that for some ξ ∈ M(F ) and positive rationals q1 and q2
we have

q1 <ξ fi <ξ q2 .

There is λ : F → R ∪ {∞} such that

q1 < λ(fi ) < q2 .

Therefore
q1 ≤ ξR ◦ λ(fi ) ≤ q2 ,

which shows that ξR ◦ λ is in U(f1, ..., fn).

Proposition

MR(F ) is dense in M(F ).
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The relative real holomorphy ring H(F |R) and topology on
M(F |R)

H(F |R) :=
⋂
{V |V real valuation ring of F which contains R }

Basis for the Euclidean topology of M(F |R):

U(f1, ..., fn) := {λ ∈ M(F |R) | λ(fi ) > 0}, fi ∈ H(F |R)
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Rational places and R-places

Consider the mapping

M(F |R) 3 λ→ ξR ◦ λ ∈ MR(F )

Proposition

1) The mapping defined above is a continuous bijection.
2) The topology induced on MR(F ) via this bijection is equal to
the subspace topology of MR(F ) ⊂ M(F ), i.e., the bijection is a
topological embedding of M(F |R) in M(F ).
3) All nonempty open sets in M(F |R) and in M(F ) contain
infinitely many places, i.e., the spaces M(F |R) and M(F ) do not
have isolated points.
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Schülting’s results

Theorem (H.W. Schülting)

Let F be a function field over R and let D be a set of real
valuations of F . The following statements are equivalent:
1) For every regular projective model X of F and every point
x ∈ X there exists a valuation v ∈ D with center x ,
2) H(F ) = H(F |R) =

⋂
v∈D Ov .

Proposition (H.W. Schülting)

There exists a minimal class D of real valuations such that

H(F ) =
⋂
v∈D
Ov

if and only if tr.deg(F |R) = 1.
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A characterization of H(F )

Proposition
Let F be a function field over a real closed field R . Then the real
holomorphy ring H(F ) is the intersection of the valuation rings of
R-places belonging to MR(F ):

H(F ) =
⋂

ξ∈MR (F )

Oξ .
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A characterization of H(F |B)

H(F |B) :=
⋂
{O ⊆ F | O real valuation ring with B ⊆ O} .

Note that H(F ) = H(F |H(R)).

Proposition
For every real valuation ring B ⊆ R , we have

H(F |B) = H(F ).B =
⋂

λ∈M(F |R)

OπB◦λ.
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A minimal representation

Theorem
Let B , C be real valuation rings of R such that B  C . Then:
1) H(F |B)  H(F |C );
2) the following statements are equivalent for each subset F of
M(F |R):
(a) H(F |B) =

⋂
λ∈F OπB◦λ ,

(b) F is dense in M(F |R);
3) There is no representation of the form (a) with minimal F .
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A geometrical characterization of H(F )

X - any smooth projective model of F

X (R) - the set of rational points of X

Xf - the set of rational points in which f is defined

f ∈ H(F )⇒ f (x) ∈ H(R) for every x ∈ Xf .

Define

HX := {f ∈ F | f (x) ∈ H(R) for every x ∈ Xf } .

Xf is Zariski-open, so we have:

H(F ) ⊆ HX ⊆ H(F |R) .
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A geometrical characterization of H(F )

H(F ) ⊆
⋂
{HX | X smooth, real complete model of F}

Take f in the intersection

f ∈ H(F |R), so λ(f ) ∈ R for every λ ∈ M(F |R)

There is a smooth real complete model X0 such that f is regular in
every point of X0(R)

Take λ ∈ M(F |R) and the center c(λ) in X0(R)

f (c(λ)) = λ(f ) ∈ H(R)

ξR ◦ λ(f ) 6= ∞

f ∈ Oξ for every ξ ∈ MR (F )

f ∈ H(F ).
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A geometrical characterization of H(F )

Proposition
Take a function field F over a nonarchimedean real closed field R .
Then H(F ) is the intersection of the sets HX where X runs
through all smooth, real complete models of F .

The proposition above is not true for an archimedean real closed
field R since in this case HX = F for every smooth real complete
model X of F .
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Totally positive units of the real holomorphy ring

U(F ) - the set of units of H(F )

U+(F ) := H(F ) ∩ ΣF ∗2

Example:

U+(R(X )) =

{
f

g
∈ R(X ) : deg f = deg g and f , g ∈ ΣṘ[X ]2

}

M(Q(X )) ∼= M(R(X ))

U+(Q(X )) = U+(R(X )) ∩Q(X )
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Schülting’s Problem

Schülting’s Problem

Let f , g ∈ R[X ] be of the same degree and without real zeros.
Assume that f

g is positive definite. Are there fi , gi ∈ R[X ] without
real zeros with deg fi = deg gi such that

f

g
=

k

∑
i=1

(
fi
gi

)2

for some natural number k?

Generalization of Schülting’s Problem
Is every totally positive unit of the real holomorphy ring a sum of
squares of totally positive units?
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Schmid’s solution of Schülting’s Problem

The Pythagorean number P(F ) of a field F is the minimal
natural number such that every element which is a sum of squares
is a sum of (at most) P(F ) squares.

Theorem (Schmid 1994)

Let a ∈ U+(F ). Then there exists a natural number n ≤ P(F ) and
elements u1, ..., un+1 ∈ U+(F ) such that

a =
n+1

∑
i=1

u2i .

Can we reduce n+ 1 to n?

If P(F ) = 1 the hypothesis is true iff M(F ) is connected.
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A gap

In 1994 Joachim Schmid gave a proof for the case P(F ) = 2.

a ≺ b :⇔ b− a ∈ ΣḞ 2.

Take a, b ∈ U+(F ) such that a ≺ b. Is there y ∈ F such that

a ≺ y4 ≺ b?
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A counterexample

Take:

a = (
X 2

X 2 + 1
)2 + 22 =

5X 4 + 8X 2 + 4
(X 2 + 1)2

∈ U+(Q(X ))

b =
5X 4 + 8X 2 + 4

(X 2 + 1)2
+(

X 2

X 2 + 1
)2 =

6X 4 + 8X 2 + 4
(X 2 + 1)2

∈ U+(Q(X )).

Take the X -adic place λ0.

Note that λ0(a) = λ0(b) = 4.
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A counterexample

Assume that there exists y ∈ U+(Q(X )) such that

a ≺ y4 ≺ b .

So, for every P ∈ X (F ),

a <P y4 <P b .

Then
λ0(a) ≤ λ0(y

4) ≤ λ0(b) ,

4 ≤ λ0(y
4) ≤ 4 .

Since λ0(y) ∈ Q and

λ0(y
4) = (λ0(y))

4 = 4 ,

we obtain a contradiction.
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Becker’s approach

For a ∈ H(F ), the function

â : M(F )→ R,

â(ξ) = ξ(a)

is continuous.

The map

H(F )→ C (M(F ),R),

a 7→ â

is a Q-algebra homomorphism with dense image (by the
Stone-Weierstraß Theorem).
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is a Q-algebra homomorphism with dense image (by the
Stone-Weierstraß Theorem).

Katarzyna Kuhlmann (joint work with E. Becker and F.-V. Kuhlmann)Real holomorphy rings in function fields and their units



Becker’s approach

Sn(H(F )) := {(a0, ..., an) ∈ F n+1 |∑ a2i = 1}

For a = (a0, ..., an) ∈ Sn(H(F )) consider the function

â : M(F ) −→ Sn,

â(ξ) = (ξ(a0), ...ξ(an)).

The function â is continuous.
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Becker’s approach

Φ : Sn(H(F )) −→ C (M(F ),Sn)

Φ(a) = â

Theorem (Becker)

The following conditions are equivalent:

1 Sn−1(H(F )) = C (M(F ),Sn−1),
2 if a = a21 + ...+ a2n ∈ U+(F )⇒ a = b21 + ...+ b2n for

bi ∈ U+(F ).
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Becker’s solution of Schülting’s problem for R(X )

M(R(X )) ∼= S1;

Sn−1(H) contains all homotopy classes of â, a ∈ Sn(H);
all homotopy classes of C (S1,S1) are characterized by the
degree of the functions;
every continuous function M(R(X )) −→ S1 is homotopic to
ˆf d , where f = ( 2X

X 2+1 ,
X 2−1
X 2+1 ).
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Open problem - making Schmid’s proof complete

Let R be a real closed field. Take f , g ∈ U+(R(X )) such that
f ≺ g . Is there some h ∈ U+(R(X )) such that

f ≺ h4 ≺ g?
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Thank you very much for your attention!
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