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Hilbert’s 16th Problem

Classify all real algebraic curves of degree d in the plane P2
R.

Stratify the parameter space Pd(d+3)/2
R .

Assume that the complex curve in P2
C is smooth.

Complete answers are known up to d = 7, due to Harnack, Hilbert,
Rohn, Petrovsky, Rokhlin, Gudkov, Nikulin, Kharlamov, Viro, ....

Two curves C1 and C2 have same topological type if some
homeomorphism of P2

R → P2
R restricts to a homeo C1 → C2.

Finer notion of equivalence comes from the discriminant ∆,

a hypersurface of degree 3(d − 1)2 in Pd(d+3)/2
R .

Points on ∆ are singular curves. The rigid isotopy types are the

connected components of Pd(d+3)/2
R \∆. Two curves C1 and C2

in the same rigid isotopy class have the same topological type

... the converse is not true for d ≥ 5.
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Sextics

Our paper: d = 6

Theorem (Rokhlin-Nikulin Classification)

The discriminant of plane sextics is a hypersurface of degree 75
in P27

R . Its complement has 64 connected components. The 64
rigid isotopy types are grouped into 56 topological types, with
number of ovals ranging from 0 to 11. The distribution equals

# ovals 0 1 2 3 4 5 6 7 8 9 10 11 all
Rigid isotopy 1 1 2 4 4 7 6 10 8 12 6 3 64
Topological 1 1 2 4 4 5 6 7 8 9 6 3 56

The 56 types are seen in our poset.

Rokhlin (1978) carried out the classification of rigid isotopy types.
Nikulin (1980) completed the proof in his study of real K3 surfaces.
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14 Are Dividing

The following eight types consist of two rigid isotopy classes:

(41) (21)2 (51) 1 (31)3 (11)5 (81) (41)4 9.

The six maximal types necessarily divide their Riemann surface:

(91)1 (51)5 (11)9 (61)2 (21)6 (hyp).

Corollary

Of the 56 topological types of smooth plane sextics, 42 types
are non-dividing, six are dividing, and eight can be dividing or
non-dividing. This accounts for all 64 rigid isotopy types in P27

R \∆.
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Polynomials

Proposition

Each of the 64 rigid isotopy types is realized by a sextic in
Z[x , y , z ]6 whose coefficients have abs. value ≤ 1.5× 1038.

0 nd x6 + y6 + z6

1 nd x6 + y6 − z6

(11) nd 6(x4 + y4 − z4)(x2 + y2 − 2z2) + x5y
2 nd (x4 + y4 − z4)((x + 4z)2 + (y + 4z)2 − z2) + z6

(21) nd 16((x+z)2+(y+z)2−z2)(x2+y2−7z2)((x−z)2+(y−z)2−z2) + x3y3

(11)1 nd ((x + 2z)2 + (y + 2z)2 − z2)(x2+y2−3z2)(x2+y2−z2) + x5y
3 nd (x2 + y2 − z2)(x2 + y2 − 2z2)(x2 + y2 − 3z2) + x6

(hyp) d 6(x2+y2−z2)(x2+y2−2z2)(x2+y2−3z2)+x3y3

(31) nd (10(x4−x3z+2x2y2+3xy2z+y4)+z4)(x2+y2−z2)+x5y
(21)1 nd (10(x4 − x3z+2x2y2+3xy2z+y4)+z4)((x+z )2+y2 − 2z2)+x5y
(11)2 nd (10(x4−x3z+2x2y2+3xy2z+y4)+z4)(x2+(y − z)2 − z2)+x5y
· · · · · · · · · · · · · · · · · · · · · · · ·

and many more representatives
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Robinson Sextic
Consider this net of sextics:

a(x6+y6+z6) + bx2y2z2 + c(x4y2+x4z2+x2y4+x2z4+y4z2+y2z4).

For (a : b : c) = (1 : 3 : −1) this a nonnegative sextic that is not SOS.

The discriminant of this net is the following curve of degree 75 in P2
R:

∆ = a3(a + c)6(3a − c)18(3a + b + 6c)4(3a + b − 3c)8(9a3 − 3a2b + ab2 − 3ac2 − bc2 + 2c3)12
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-1.3
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-0.9
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-0.7

(a : b : c) = (19 : 60 : −20) gives our sextic for the ten ovals type 10d.
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Eleven Ovals
Hilbert (1891) argued that type (51)5 does not exist.
Gudkov (1969) showed that Hilbert had made a mistake.

(91)1 d (1941536164(yz−x2)(60(x+z)z − (6x+6z−y)2)+

118(10x+8y+3z)(12x+32y+z)(12x−32y−z)(10x−8y−3z))(x2 − yz) − y6

(51)5 d −3401397120x6 − 3195251840x5y − 2164525440x4y2 − 869728640x3y3 + 332217600x2y4

+316096000xy5 + 53760001y6 + 1597625920x5z + 36848468800000000000x4yz

+7988129600000000000x3y2z3373286400000000000x2y3z − 130099200x2z4 − 1199390720x4z2

−7988129600000000000x3yz2−127552392000000000000000000000x2y2z2 + 764952320x3z3

+23425600000000000000000000000y4z2 + 3654393600000000000x2yz3 + 3824761600000000000xy4z

+141724880000000000000000000000000000000y3z3 + 1618496000000000000y5z

−3824761600000000000xyz4 + 11712800000000000000000000000y2z4 + 650496000000000000yz5 − z6

(11)9 d (340291(yz − x2)((x + 2z)z − 2(y − 2z)2)

+(10x − 8y − 3z)(12x − 27y − z)(12x + 28y + z)(10x + 7y + 3z))(x2 − yz) + y6
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SexticClassifier
We wrote fast Mathematica code, using built-in method
for cylindrical algebraic decomposition. Its input is a sextic
f ∈ Z[x , y , z ]6. Its output is the topological type of VR(f ).

We computed various empirical distributions.
Here is one experiment with 1, 500, 000 samples:

1 2 3 (11) 4 (11)1 (21) 5 ∅ (11)2 (21)1 6 (31) (hyp)
875109 423099 97834 90316 7594 4360 1180 245 127 118 8 7 2 1

Table: Topological types sampled from the U(3)-invariant distribution

For the uniform distribution on {−1012, . . . , 1012} we obtained

1 2 3 (11) ∅ 4
77.51% 18.24% 2.09% 1.44% 0.65% 0.06%

Conclusion: Most types never occur when sampling at random!!
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Transitions

Theorem (Itenberg 1994)

For each edge in our poset, both combinatorial transitions
(shrinking or fusing) can be realized by a singular curve

with exactly one ordinary node.
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Transitions

Theorem
For curves of even degree, every discriminantal transition between

rigid isotopy types is one of the following: shrinking an ovals, fusing
two ovals, and turning an oval inside out.

Figure: Type (21)2d transitions into Type (21)2nd by turning inside out.
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Sylvester’s Formula
We evaluate ∆ as the determinant of a 45× 45-matrix

...found in [Gelfand-Kapranov-Zelevinsky].

Each entry in the first 30 columns is either 0 or one of the cijk .
The last 15 columns contain cubics in the cijk . The matrix is

(R[x , y , z ]3 )3 ⊕ R[x , y , z ]4 −→ R[x , y , z ]8

On the first summand, it maps a triple of cubics to an octic:

(a, b, c) 7→ a
∂f

∂x
+ b

∂f

∂y
+ c

∂f

∂z
.

On the second summand, it maps a quartic monomial x ry sz t to the octic
det(Mrst), where Mrst is any 3× 3-matrix of ternary forms satisfying∂f /∂x∂f /∂y

∂f /∂z

 = Mrst ·

x r+1

y s+1

z t+1

 .

Proposition

The discriminant ∆ is the determinant of this 45×45-matrix.
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Avoidance Locus
For a real curve C of even degree d , the avoidance locus AC

is the set of lines in P2
R that do not intersect CR. This is a

semialgebraic subset of the dual projective plane (P2)∨R.

The dual curve C∨ has degree d(d−1) in (P2)∨.
It divides (P2)∨R into connected components.

Points on C∨ are lines in P2 tangent to C .

Proposition

The avoidance locus AC is a union of connected components
of (P2)∨R\C∨

R . Each component appearing in AC is convex.
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Avoiding Sextics

Figure: A smooth sextic of type 10nd whose avoidance locus is empty

Proposition

Let deg(C ) = d even. The number of convex components
of the avoidance locus AC is bounded above by

9

128
d4 − 9

32
d3 +

15

32
d2 − 3

8
d + 1.

Corollary

For all m ∈ {0, 1, . . . , 46} there exists a smooth sextic C in P2
R

whose avoidance locus AC has exactly m convex components.
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Avoiding Sextics

Figure: A sextic C of type 8nd; its 68 relevant bitangents represent AC .
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Bitangents and Flexes

A general sextic in P2
C has 324 bitangents and 72 inflection points.

Conjecture

The number of real bitangents of a smooth sextic in P2
R ranges

from 12 to 306. The lower bound is attained by curves of types
0, 1, (11) and (hyp). The upper bound is attained by (51)5.

Transitions:

(411) C has an undulation point.

(222) C has a tritangent line.

(321) C has a flex-bitangent.

Theorem
The loci (222) and (321) are irreducible hypersurfaces in P27 of
degree 1224 and 306 respectively. Their union is the Zariski closure
of the set of smooth sextics having fewer than 324 bitangent lines.
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Experiments
Type Flex Eigenvec Bitang Rank

0 0 3−31 12 3
1 0−12 3−31∗ 12−56 3

(11) 0−14 11−31∗ 12−66 10
2 0−8 5−31∗ 12−52 13

(21) 0−10 7−31∗ 16−86 14
(11)1 2−6 7−31∗ 20−66 15

3 0−8 7−31∗ 24−94 13
(hyp) 0−14 11−31∗ 12−52 13
(31) 2−10 19−31∗ 24−90 13

(21)1 0−6 11−31∗ 28−72 14
(11)2 0−4 11−31∗ 32−82 13

4 0−2 11−31∗ 36−54 11
(41)nd 14−16 21−31∗ 48−90 16
(41)d 12−14 27−31∗ 98−104 14
(31)1 2−8 15−31∗ 40−86 14

(21)2nd 10−16 17−31∗ 54−82 20
(21)2d 8−16 19−31∗ 60−70 17
(11)3 8−12 19−31∗ 48−94 14

5 2−10 19−31∗ 52−112 15
(51) 12−16 21−31∗ 54−64 14

(41)1 22 27−31∗ 90−104 14
(31)2 14−18 27−31∗ 126−130 14
(21)3 16 27−31∗ 112−116 14
(11)4 6−10 25−31∗ 76−106 15

6 10−12 23−31∗ 78−108 14
(61) 16 27−31∗ 78−88 14

(51)1nd 16 23−25 110−124 15
(51)1d 20−24 29 136 16
(41)2 16−20 29−31 126−128 14

(31)3nd 12 25−31∗ 124−148 15
(31)3d 20−22 29 132 16
(21)4 14−20 27−31∗ 138−142 15

Type Flex Eigenvec Bitang Rank
(11)5nd 6−16 29−31∗ 116−122 16
(11)5d 8−16 25−31∗ 120−128 16

7 4−14 25−31∗ 96−124 14
(71) 20−24 29 108 16

(61)1 20−22 25 104−214 15
(51)2 22 25−31 226−228 15
(41)3 20 23−25 154−214 14
(31)4 22 21 162−214 14
(21)5 16−20 29−31 168 13
(11)6 12−14 27−31∗ 172−176 14

8 0−12 23−31∗ 124−142 13
(81)nd 18−22 23 122−196 14
(81)d 18−24 29 124−132 12
(71)1 14−18 21−31 104−240 13
(61)2 18−20 23−31 228−276 13
(51)3 22 25 192−254 13

(41)4nd 14−16 25 188−220 9
(41)4d 18 25 194−230 11
(31)5 20 25−31 198−260 13
(21)6 20 23−31 242−258 15
(11)7 14−16 29−31 216 14
9nd 8−16 25−31∗ 162−172 15
9d 4−16 29−31∗ 156 15

(91) 18−22 23 124−236 13
(81)1 16−20 23−31 162−240 14
(51)4 20 27 232−234 10
(41)5 18−20 27−31 232 10
(11)8 14−18 25−31 142−210 13

10 0−24 21−31∗ 192 12
(91)1 18−22 25−31 200−284 14
(51)5 20−22 25−31 276−306 10
(11)9 16−20 25−31 174−250 14
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Critical Points on the Sphere

A sextic f can have as many as 20 local maxima on the unit
sphere S2. The picture shows one with 62 = 2 · 31 critical points.
Its Morse complex is the icosahedron, with f-vector (12, 30, 20).

The critical points are the eigenvectors of f . 19 / 24



Eigenvectors of Tensors
Ternary sextics are symmetric tensors of format 3×3×3×3×3×3.

Such a symmetric tensor f has 28 distinct entries cijk . A vector
v ∈ C3 is an eigenvector of f if v is parallel to the gradient at v :

rank

(
x y z
∂f
∂x

∂f
∂y

∂f
∂z

)
= 1.

A general f ∈ R[x , y , z ]d has d2 − d + 1 eigenvectors in P2
C.

Among them are pairs of critical points of f on the sphere S2.

The number of real eigenvectors is ≥ 2ω + 1 , where ω is the
number of ovals (Maccioni 2017). If f is a product of d linear
forms, then all complex eigenvectors are real (Abo-Seigal-St 2017).

Conclusion: The number of real eigenvectors of a
general sextic is an odd integer between 3 and 31.

Our table summarizes empirical distribution over the 64 types.
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Ranks of Tensors
The rank of a symmetric tensor f ∈ R[x , y , z ]d is the
minimum number of summands in a representation

f (x , y , z) =
r∑

i=1

λi (aix + biy + ciz)d .

For a generic sextic f , the complex rank is 10, and the real
rank is between 10 and 19 (Michalek-Moon-St-Ventura 2017).

Computing real ranks exactly is very difficult.
We used the numerical software tensorlab to determine
(our best guess for) the real ranks of the 64 representatives.
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Quartic Surfaces
Our 64 sextics represent K3 surfaces over Q.

The two basic models for algebraic K3 surfaces are quartic surfaces
in P3 and double-covers of P2 branched at a sextic curve. A real
K3 surface is orientable and has ≤ 10 connected components.
Its Euler characteristic is between −18 and 20. (Silhol 1989)

Can construct quartic surfaces with desired topology from our curves:

Example
Let F be the quartic

100w4−12500w2x2+104x4−12500w2y2+1640x2y2+1550y4+12500w2yz
−75x2yz − 1552y3z + 9375w2z2 − 487x2z2 − 1533y2z2 + 354yz3 + 314z4.

The surface VR(F ) is connected of genus 10, so χ = 20.

Example (Rohn 1913)
Let G = τ(s2

1 − 6s2)2 + (s2
1 − 4s2)2 − 64s4, where si is the ith

elementary symmetric polynomial in x , y , z ,w and τ = 16
√

10−20
135 .

Then VR(G ) consists of 10 spheres, so χ = −18. 22 / 24



Conclusion
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The geometry and topology of real algebraic varieties is a beautiful
subject, with many great results, especially from the Russian school.

We seek to connect this to current problems and developments in
Applied Algebraic Geometry. This requires computational and
experimental work with polynomials. We studied explicit sextics like

(1941536164(yz−x2)(60(x+z)z − (6x+6z−y)2)+
118(10x+8y+3z)(12x+32y+z)(12x−32y−z)(10x−8y−3z))(x2−yz)− y6

Quiz: What does the real picture look like for this curve?
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Eleven Ovals
(91)1 d (1941536164(yz−x2)(60(x+z)z − (6x+6z−y)2)+

118(10x+8y+3z)(12x+32y+z)(12x−32y−z)(10x−8y−3z))(x2 − yz) − y6

(51)5 d −3401397120x6 − 3195251840x5y − 2164525440x4y2 − 869728640x3y3 + 332217600x2y4

+316096000xy5 + 53760001y6 + 1597625920x5z + 36848468800000000000x4yz

+7988129600000000000x3y2z3373286400000000000x2y3z − 130099200x2z4 − 1199390720x4z2

−7988129600000000000x3yz2−127552392000000000000000000000x2y2z2 + 764952320x3z3

+23425600000000000000000000000y4z2 + 3654393600000000000x2yz3 + 3824761600000000000xy4z

+141724880000000000000000000000000000000y3z3 + 1618496000000000000y5z

−3824761600000000000xyz4 + 11712800000000000000000000000y2z4 + 650496000000000000yz5 − z6

(11)9 d (340291(yz − x2)((x + 2z)z − 2(y − 2z)2)

+(10x − 8y − 3z)(12x − 27y − z)(12x + 28y + z)(10x + 7y + 3z))(x2 − yz) + y6
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