Generalities about abelian varieties
History of the problem
Main Theorem
Basic ingredients of proof of Theorem A

On linear relations in algebraic groups

P.Krasoń, Szczecin University

G. Banaszak, P. Krasoń

On arithmetic in Mordell-Weil groups,

Acta Arithmetica 150.4 2011 pp.315-337

Outline

- Generalities about abelian varieties
 - Basic facts and notation
 - Classification of endomorphism algebras
- 2 History of the problem
 - number field case
 - Statement of the problem for abelian varieties
 - Results in this direction
- Main Theorem
 - Corollaries
 - A counterexample
 - Case of algebraic tori
- Basic ingredients of proof of Theorem A
 - Some easy reductions
 - Theorems about reduction
 - some semisimple algebras and modules (2) (2) (2) (2)

Outline

- Generalities about abelian varieties
 - Basic facts and notation
 - Classification of endomorphism algebras
- 2 History of the problem
 - number field case
 - Statement of the problem for abelian varieties
 - Results in this direction
- Main Theorem
 - Corollaries
 - A counterexample
 - Case of algebraic tori
- Basic ingredients of proof of Theorem A
 - Some easy reductions
 - Theorems about reduction

$$m:A\times A\to A$$

An affine group variety is called a linear algebraic group Each such variety can be realized as closed subgroup of GL_r for some n

$$m: A \times A \rightarrow A$$

$$inv: A \rightarrow A$$

An affine group variety is called a linear algebraic group Each such variety can be realized as closed subgroup of *GL* for some *n*

$$m: A \times A \rightarrow A$$

$$inv: A \rightarrow A$$

An affine group variety is called a linear algebraic group

Each such variety can be realized as closed subgroup of GL_n for some n

$$m: A \times A \rightarrow A$$

$$inv: A \rightarrow A$$

An affine group variety is called a linear algebraic group Each such variety can be realized as closed subgroup of GL_n for some n

$$m: A \times A \rightarrow A$$

$$inv: A \rightarrow A$$

An affine group variety is called a linear algebraic group

Each such variety can be realized as closed subgroup of GL_n for some n

$$A(\mathbb{C}) = \mathbb{C}^g/\Lambda$$
 Λ - a lattice in \mathbb{R}^{2g}

A torus \mathbb{C}^g/Λ is the set of complex points $A(\mathbb{C})$ of an abelian variety iff there exists an \mathbb{R} -bilinear form

$$E: \mathbb{C}^g \times \mathbb{C}^g \to \mathbb{R}$$

such that

- (1) E(iv, iw) = E(v, w)
- (2) $(v, w) \rightarrow E(v, iw)$ is a symmetric positive defined bilinear form
- (3) $E(v, w) \in \mathbb{Z}$ for $v, w \in \Lambda$

A torus \mathbb{C}^g/Λ is the set of complex points $A(\mathbb{C})$ of an abelian variety iff there exists an \mathbb{R} -bilinear form

$$E: \mathbb{C}^g \times \mathbb{C}^g \to \mathbb{R}$$

such that

- (1) E(iv, iw) = E(v, w)
- (2) $(v, w) \rightarrow E(v, iw)$ is a symmetric positive defined bilinear form
- (3) $E(v, w) \in \mathbb{Z}$ for $v, w \in \Lambda$

$$A(\mathbb{C}) = \mathbb{C}^g/\Lambda$$
 Λ - a lattice in \mathbb{R}^{2g}

A torus \mathbb{C}^g/Λ is the set of complex points $A(\mathbb{C})$ of an abelian variety iff there exists an \mathbb{R} -bilinear form

$$E: \mathbb{C}^g \times \mathbb{C}^g \to \mathbb{R}$$

such that

- (1) E(iv, iw) = E(v, w)
- (2) $(v, w) \rightarrow E(v, iw)$ is a symmetric positive defined bilinear form
- (3) $E(v, w) \in \mathbb{Z}$ for $v, w \in \Lambda$

$$A(\mathbb{C}) = \mathbb{C}^g/\Lambda$$
 Λ - a lattice in \mathbb{R}^{2g}

A torus \mathbb{C}^g/Λ is the set of complex points $A(\mathbb{C})$ of an abelian variety iff there exists an \mathbb{R} -bilinear form

$$E: \mathbb{C}^g \times \mathbb{C}^g \to \mathbb{R}$$

such that

- (1) E(iv, iw) = E(v, w)
- (2) $(v, w) \rightarrow E(v, iw)$ is a symmetric positive defined bilinear form
- (3) $E(v, w) \in \mathbb{Z}$ for $v, w \in \Lambda$

$$A(\mathbb{C}) = \mathbb{C}^g/\Lambda$$
 Λ - a lattice in \mathbb{R}^{2g}

A torus \mathbb{C}^g/Λ is the set of complex points $A(\mathbb{C})$ of an abelian variety iff there exists an \mathbb{R} -bilinear form

$$E: \mathbb{C}^g \times \mathbb{C}^g \to \mathbb{R}$$

such that

- (1) E(iv, iw) = E(v, w)
- (2) $(v, w) \rightarrow E(v, iw)$ is a symmetric positive defined bilinear form
- (3) $E(v, w) \in \mathbb{Z}$ for $v, w \in \Lambda$

$$A(\mathbb{C}) = \mathbb{C}^g/\Lambda$$
 Λ - a lattice in \mathbb{R}^{2g}

A torus \mathbb{C}^g/Λ is the set of complex points $A(\mathbb{C})$ of an abelian variety iff there exists an \mathbb{R} -bilinear form

$$E: \mathbb{C}^g \times \mathbb{C}^g \to \mathbb{R}$$

such that

- (1) E(iv, iw) = E(v, w)
- (2) $(v, w) \rightarrow E(v, iw)$ is a symmetric positive defined bilinear form
- (3) $E(v, w) \in \mathbb{Z}$ for $v, w \in \Lambda$

$$A(\mathbb{C}) = \mathbb{C}^g/\Lambda$$
 Λ - a lattice in \mathbb{R}^{2g}

A torus \mathbb{C}^g/Λ is the set of complex points $A(\mathbb{C})$ of an abelian variety iff there exists an \mathbb{R} -bilinear form

$$E: \mathbb{C}^g \times \mathbb{C}^g \to \mathbb{R}$$

such that

- (1) E(iv, iw) = E(v, w)
- (2) $(v, w) \rightarrow E(v, iw)$ is a symmetric positive defined bilinear form
- (3) $E(v, w) \in \mathbb{Z}$ for $v, w \in \Lambda$

$$A(\mathbb{C}) = \mathbb{C}^g/\Lambda$$
 Λ - a lattice in \mathbb{R}^{2g}

A torus \mathbb{C}^g/Λ is the set of complex points $A(\mathbb{C})$ of an abelian variety iff there exists an \mathbb{R} -bilinear form

$$E: \mathbb{C}^g \times \mathbb{C}^g \to \mathbb{R}$$

such that

- (1) E(iv, iw) = E(v, w)
- (2) $(v, w) \rightarrow E(v, iw)$ is a symmetric positive defined bilinear form
- (3) $E(v, w) \in \mathbb{Z}$ for $v, w \in \Lambda$

$$A(\mathbb{C}) = \mathbb{C}^g/\Lambda$$
 Λ - a lattice in \mathbb{R}^{2g}

A torus \mathbb{C}^g/Λ is the set of complex points $A(\mathbb{C})$ of an abelian variety iff there exists an \mathbb{R} -bilinear form

$$E: \mathbb{C}^g \times \mathbb{C}^g \to \mathbb{R}$$

such that

- (1) E(iv, iw) = E(v, w)
- (2) $(v, w) \rightarrow E(v, iw)$ is a symmetric positive defined bilinear form
- (3) $E(v, w) \in \mathbb{Z}$ for $v, w \in \Lambda$

$f: A \rightarrow B$ is called an isogeny if f is surjective and has finite kernel.

The product of an abelian variety A of dimension m, and an abelian variety B of dimension n, over the same field, is an abelian variety of dimension m + n.

An abelian variety is simple if it is not isogenous to a product of abelian varieties of lower dimension.

$$A \cong A_1^{e_1} \times \cdots \times A_r^{e_r}$$

 $f: A \rightarrow B$ is called an isogeny if f is surjective and has finite kernel.

The product of an abelian variety A of dimension m, and an abelian variety B of dimension n, over the same field, is an abelian variety of dimension m + n.

An abelian variety is simple if it is not isogenous to a product of abelian varieties of lower dimension.

$$A \cong A_1^{e_1} \times \cdots \times A_r^{e_r}$$

 $f: A \rightarrow B$ is called an isogeny if f is surjective and has finite kernel

The product of an abelian variety A of dimension m, and an abelian variety B of dimension n, over the same field, is an abelian variety of dimension m + n.

An abelian variety is simple if it is not isogenous to a product of abelian varieties of lower dimension.

$$A \cong A_1^{e_1} \times \cdots \times A_r^{e_r}$$

 $f: A \rightarrow B$ is called an isogeny if f is surjective and has finite kernel

The product of an abelian variety A of dimension m, and an abelian variety B of dimension n, over the same field, is an abelian variety of dimension m + n.

An abelian variety is simple if it is not isogenous to a product of abelian varieties of lower dimension.

$$A \cong A_1^{e_1} \times \cdots \times A_r^{e_r}$$

polarisation - an isogeny $\lambda: A \to A^{\vee}$

principal polarisation - $deg\lambda = 1$

over $\ensuremath{\mathbb{C}}$ polarisation is equivalent to the choice of skew-symmetic form

$$\psi: \Lambda \times \Lambda \to \mathbb{Z}$$

 $det\psi=$ 1 - polarisation is principal

polarisation - an isogeny $\lambda: A \to A^{\vee}$

principal polarisation - $deg\lambda=1$

over $\ensuremath{\mathbb{C}}$ polarisation is equivalent to the choice of skew-symmetic form

$$\psi: \Lambda \times \Lambda \to \mathbb{Z}$$

 $det\psi=$ 1 - polarisation is principal

polarisation - an isogeny $\lambda: A \to A^{\vee}$

principal polarisation - $deg \lambda = 1$

over $\ensuremath{\mathbb{C}}$ polarisation is equivalent to the choice of skew-symmetic form

$$\psi: \Lambda \times \Lambda \to \mathbb{Z}$$

 $extit{det}\psi=$ 1 - polarisation is principal

polarisation - an isogeny $\lambda: A \to A^{\vee}$

principal polarisation - $deg\lambda = 1$

over $\mathbb C$ polarisation is equivalent to the choice of skew-symmetic form

$$\psi: \Lambda \times \Lambda \to \mathbb{Z}$$

 $det\psi=$ 1 - polarisation is principal

polarisation - an isogeny $\lambda: A \to A^{\vee}$

principal polarisation - $deg\lambda = 1$

over $\ensuremath{\mathbb{C}}$ polarisation is equivalent to the choice of skew-symmetic form

$$\psi: \Lambda \times \Lambda \to \mathbb{Z}$$

 $extit{det}\psi=$ 1 - polarisation is principal

polarisation - an isogeny $\lambda: A \to A^{\vee}$

principal polarisation - $deg\lambda = 1$

over $\ensuremath{\mathbb{C}}$ polarisation is equivalent to the choice of skew-symmetic form

$$\psi: \Lambda \times \Lambda \to \mathbb{Z}$$

 $det\psi = 1$ - polarisation is principal

Since λ is an isogeny there exists λ^{-1} in $Hom(A^{\vee}, A) \otimes \mathbb{Q}$

Rosati involution on
$$End^0(A)=End(A)\otimes \mathbb{Q}$$

$$R_{inv}: \alpha \to \alpha' = \lambda^{-1} \circ \alpha^{\vee} \circ \lambda$$

Since λ is an isogeny there exists λ^{-1} in $Hom(A^{\vee},A)\otimes \mathbb{Q}$ Rosati involution on $End^0(A)=End(A)\otimes \mathbb{Q}$ $R_{inv}: \alpha \to \alpha' = \lambda^{-1}\circ \alpha^{\vee}\circ \lambda$

Outline

- Generalities about abelian varieties
 - Basic facts and notation
 - Classification of endomorphism algebras
- 2 History of the problem
 - number field case
 - Statement of the problem for abelian varieties
 - Results in this direction
- Main Theorem
 - Corollaries
 - A counterexample
 - Case of algebraic tori
- Basic ingredients of proof of Theorem A
 - Some easy reductions
 - Theorems about reduction
 - some semisimple algebras and modules () () () () () ()

$$A/F$$
 - simple; $E = Z(End^0(A)) = Z(End(A) \otimes \mathbb{Q});$
 $E_0 = E^{R_{inv}}$

- (I) $End^0(A) = E = E_0$ is a totally real number field $R_{inv} = id$
- (II) $E = E_0$ is a totally real number field; $End^0(A)$ is a

$$A/F$$
 - simple; $E = Z(End^0(A)) = Z(End(A) \otimes \mathbb{Q});$
 $E_0 = E^{R_{inv}}$

- ① (I) $End^0(A) = E = E_0$ is a totally real number field $R_{inv} = id$
- ② (II) $E = E_0$ is a totally real number field; $End^0(A)$ is a division algebra over E such that every component of $End^0(A) \otimes_{\mathbb{Q}} \mathbb{R}$ is isomorphic to $M_2(\mathbb{R})$; $\beta \in End^0(A)$ $\beta \in End^0(A)$ $\beta \in End^0(A)$

$$\beta \in End^0(A), \quad {}^t\beta = -\beta; \quad R_{inv}(\alpha) = \beta^{-1}({}^t\alpha)\beta$$

- ① (III) $E = E_0$ is totally real; $End^0(A)$ is a division algebra over E such that every component of $End^0(A) \otimes_{\mathbb{Q}} \mathbb{R}$ is isomorphic to \mathbb{H} $R_{inv}(\alpha) = {}^t \alpha$
- (IV) E_0 is totally real; E totally imaginary quadratic extension of E_0 ; $R_{inv}|_E = cc|_E$; $End^0(A)$ is a division algebra over E

$$A/F$$
 - simple; $E = Z(End^0(A)) = Z(End(A) \otimes \mathbb{Q});$
 $E_0 = E^{R_{inv}}$

- (I) $End^0(A) = E = E_0$ is a totally real number field $R_{inv} = id$
- ② (II) $E = E_0$ is a totally real number field; $End^0(A)$ is a division algebra over E such that every component of $End^0(A) \otimes_{\mathbb{Q}} \mathbb{R}$ is isomorphic to $M_2(\mathbb{R})$; $\beta \in End^0(A)$, $t = -\beta$; $R_{inv}(\alpha) = \beta^{-1}(t \alpha)\beta$
- (III) $E = E_0$ is totally real; $End^0(A)$ is a division algebra over E such that every component of $End^0(A) \otimes_{\mathbb{Q}} \mathbb{R}$ is isomorphic to \mathbb{H} $R_{inv}(\alpha) = {}^t \alpha$
- (IV) E_0 is totally real; E totally imaginary quadratic extension of E_0 ; $R_{inv}|_E = cc|_E$; $End^0(A)$ is a division algebra over E

$$A/F$$
 - simple; $E = Z(End^0(A)) = Z(End(A) \otimes \mathbb{Q});$
 $E_0 = E^{R_{inv}}$

- (I) $End^0(A) = E = E_0$ is a totally real number field $R_{inv} = id$
- ② (II) $E = E_0$ is a totally real number field; $End^0(A)$ is a division algebra over E such that every component of $End^0(A) \otimes_{\mathbb{Q}} \mathbb{R}$ is isomorphic to $M_2(\mathbb{R})$; $\beta \in End^0(A)$, $t = -\beta$; $R_{inv}(\alpha) = \beta^{-1}(t \alpha)\beta$
- (III) $E = E_0$ is totally real; $End^0(A)$ is a division algebra over E such that every component of $End^0(A) \otimes_{\mathbb{Q}} \mathbb{R}$ is isomorphic to \mathbb{H} $R_{inv}(\alpha) = {}^t \alpha$
- (IV) E_0 is totally real; E totally imaginary quadratic extension of E_0 ; $R_{inv}|_E = cc|_E$; $End^0(A)$ is a division algebra over E

Outline

- Generalities about abelian varieties
 - Basic facts and notation
 - Classification of endomorphism algebras
- 2 History of the problem
 - number field case
 - Statement of the problem for abelian varieties
 - Results in this direction
- Main Theorem
 - Corollaries
 - A counterexample
 - Case of algebraic tori
- Basic ingredients of proof of Theorem A
 - Some easy reductions
 - Theorems about reduction
 - some semisimple algebras and modules (B) (E) (E) (E) (E)

Theorem (A.Schinzel 1973)

If $\alpha_1, \ldots \alpha_k, \beta$ are non-zero elements of K and the congruence

$$\alpha_1^{x_1}\alpha_2^{x_2}\dots\alpha_k^{x_k}\equiv\beta\,\,mod\,\mathfrak{p}$$

is soluble for almost all prime ideals $\mathfrak p$ of K then the corresponding equation is soluble in rational integers. i.e. there exist $n_1 \ldots n_k \in \mathbb Z$ such that $\beta = \alpha_1^{n_1} \ldots \alpha_k^{n_k}$

Theorem (A.Schinzel 1973)

If $\alpha_1, \dots \alpha_k, \beta$ are non-zero elements of K and the congruence

$$\alpha_1^{x_1}\alpha_2^{x_2}\dots\alpha_k^{x_k}\equiv\beta\,\, \bmod\,\mathfrak{p}$$

is soluble for almost all prime ideals $\mathfrak p$ of K then the corresponding equation is soluble in rational integers. i.e. there exist $n_1 \ldots n_k \in \mathbb Z$ such that $\beta = {\alpha_1}^{n_1} \ldots {\alpha_k}^{n_k}$

Theorem (A.Schinzel 1973)

If $\alpha_1, \dots \alpha_k, \beta$ are non-zero elements of K and the congruence

$$\alpha_1^{x_1}\alpha_2^{x_2}\dots\alpha_k^{x_k}\equiv\beta \mod \mathfrak{p}$$

is soluble for almost all prime ideals $\mathfrak p$ of K then the corresponding equation is soluble in rational integers. i.e. there exist $n_1 \ldots n_k \in \mathbb Z$ such that $\beta = \alpha_1^{n_1} \ldots \alpha_k^{n_k}$

Theorem (A.Schinzel 1973)

If $\alpha_1, \dots \alpha_k, \beta$ are non-zero elements of K and the congruence

$$\alpha_1^{x_1}\alpha_2^{x_2}\dots\alpha_k^{x_k}\equiv\beta\,\, \bmod\,\mathfrak{p}$$

is soluble for almost all prime ideals $\mathfrak p$ of K then the corresponding equation is soluble in rational integers. i.e. there exist $n_1 \ldots n_k \in \mathbb Z$ such that $\beta = \alpha_1^{n_1} \ldots \alpha_k^{n_k}$

Theorem (A.Schinzel 1973)

If $\alpha_1, \dots \alpha_k, \beta$ are non-zero elements of K and the congruence

$$\alpha_1^{x_1}\alpha_2^{x_2}\dots\alpha_k^{x_k}\equiv\beta \mod \mathfrak{p}$$

is soluble for almost all prime ideals $\mathfrak p$ of K then the corresponding equation is soluble in rational integers. i.e. there exist $n_1 \ldots n_k \in \mathbb Z$ such that $\beta = \alpha_1^{n_1} \ldots \alpha_k^{n_k}$

Theorem (A. Schinzel 1973)

Let $\alpha_{i,j}$, β_i (i = 1, ..., h, j = 1, ..., k) be non-zero elements of K, D a positive integer. If the system of congruences

$$\Pi_{j=1}^k \alpha_{ij}^{x_j} \equiv \beta_i \mod \mathfrak{m} \qquad (i = 1, \dots, h)$$

Theorem (A. Schinzel 1973)

Let $\alpha_{i,j}$, β_i (i = 1, ..., h, j = 1, ..., k) be non-zero elements of K, D a positive integer. If the system of congruences

$$\Pi_{j=1}^k \alpha_{ij}^{x_j} \equiv \beta_i \mod \mathfrak{m} \qquad (i = 1, \dots, h)$$

Theorem (A. Schinzel 1973)

Let $\alpha_{i,j}$, β_i (i = 1, ..., h, j = 1, ..., k) be non-zero elements of K, D a positive integer. If the system of congruences

$$\Pi_{j=1}^k \alpha_{ij}^{x_j} \equiv \beta_i \mod \mathfrak{m} \qquad (i = 1, \dots, h)$$

Theorem (A. Schinzel 1973)

Let $\alpha_{i,j}$, β_i (i = 1, ..., h, j = 1, ..., k) be non-zero elements of K, D a positive integer. If the system of congruences

$$\prod_{j=1}^k \alpha_{ij}^{x_j} \equiv \beta_i \mod \mathfrak{m} \qquad (i = 1, \dots, h)$$

$$2^x 3^y \equiv 1 \bmod p$$

$$2^y 3^z \equiv 4 \mod p$$

for
$$p = 2, 3 (x, y, z) = (0, 1, 0)$$
 resp. $(0, 0, 0)$

$$xind2 + yind3 \equiv 0 \mod p - 1$$

$$yind2 + zind3 \equiv 2ind2 \mod p - 1$$

$$2^x 3^y \equiv 1 \mod p$$

$$2^y 3^z \equiv 4 \mod p$$

for
$$p = 2, 3$$
 $(x, y, z) = (0, 1, 0)$ resp. $(0, 0, 0)$

$$xind2 + yind3 \equiv 0 \mod p - 1$$
,

$$yind2 + zind3 \equiv 2ind2 \mod p - 3$$

$$2^x 3^y \equiv 1 \mod p$$

$$2^y 3^z \equiv 4 \mod p$$

for
$$p = 2, 3$$
 $(x, y, z) = (0, 1, 0)$ resp. $(0, 0, 0)$

$$xind2 + yind3 \equiv 0 \mod p - 1$$
,

$$yind2 + zind3 \equiv 2ind2 \mod p - 3$$

$$2^x 3^y \equiv 1 \mod p$$

$$2^y 3^z \equiv 4 \mod p$$

for
$$p = 2, 3 (x, y, z) = (0, 1, 0)$$
 resp. $(0, 0, 0)$

$$xind2 + yind3 \equiv 0 \mod p - 1$$
,

$$yind2 + zind3 \equiv 2ind2 \mod p - 3$$

$$2^x 3^y \equiv 1 \mod p$$

$$2^y 3^z \equiv 4 \mod p$$

for
$$p = 2, 3 (x, y, z) = (0, 1, 0)$$
 resp. $(0, 0, 0)$

$$xind2 + yind3 \equiv 0 \mod p - 1,$$

$$yind2 + zind3 \equiv 2ind2 \mod p - 1$$

$$2^x 3^y \equiv 1 \mod p$$

$$2^y 3^z \equiv 4 \mod p$$

for
$$p = 2, 3 (x, y, z) = (0, 1, 0)$$
 resp. $(0, 0, 0)$

$$xind2 + yind3 \equiv 0 \mod p - 1$$
,

$$yind2 + zind3 \equiv 2ind2 \mod p - 1$$

$$gcd(\frac{(ind2)^2}{gcd(ind2,ind3)}, ind3) \mid ind2$$

$$t\frac{(ind2)^2}{gcd(ind2,ind3)} + zind3 = 2ind2$$

$$x = \frac{-tind3}{gcd(ind2, ind3)}, \qquad y = \frac{tind2}{gcd(ind2, ind3)}$$

number field case Statement of the problem for abelian varieties Results in this direction

$$gcd(\frac{(ind2)^2}{gcd(ind2,ind3)}, ind3) \mid ind2$$

$$t\frac{(ind2)^2}{gcd(ind2,ind3)} + zind3 = 2ind2$$

$$x = \frac{-tind3}{acd(ind2,ind3)}, \quad y = \frac{tind2}{acd(ind2,ind3)}$$

$$gcd(\frac{(ind2)^2}{gcd(ind2,ind3)}, ind3) \mid ind2$$

$$t\frac{(ind2)^2}{gcd(ind2,ind3)} + zind3 = 2ind2$$

$$x = \frac{-tind3}{gcd(ind2,ind3)}, \quad y = \frac{tind2}{gcd(ind2,ind3)}$$
 z

Outline

- Generalities about abelian varieties
 - Basic facts and notation
 - Classification of endomorphism algebras
- 2 History of the problem
 - number field case
 - Statement of the problem for abelian varieties
 - Results in this direction
- Main Theorem
 - Corollaries
 - A counterexample
 - Case of algebraic tori
- Basic ingredients of proof of Theorem A
 - Some easy reductions
 - Theorems about reduction

$$A/F$$
 $red_v: A(F) \rightarrow A(k_v)$

QUESTION (W.GAJDA 2002)

Let Σ be a subgroup of A(F). Suppose that x is a point of A(F) such that $\operatorname{red}_{v} x$ lies in $\operatorname{red}_{v} \Sigma$ for almost all places v of F. Does it then follow that x lies in Σ ?

$$A/F$$
 $red_{v}: A(F) \rightarrow A(k_{v})$

QUESTION (W.GAJDA 2002)

Let Σ be a subgroup of A(F). Suppose that x is a point of A(F) such that $\operatorname{red}_V x$ lies in $\operatorname{red}_V \Sigma$ for almost all places v of F. Does it then follow that x lies in Σ ?

$$A/F$$
 $red_v: A(F) \rightarrow A(k_v)$

QUESTION (W.GAJDA 2002)

Let Σ be a subgroup of A(F). Suppose that x is a point of A(F) such that $red_v x$ lies in $red_v \Sigma$ for almost all places v of F. Does it then follow that x lies in Σ ?

Outline

- Generalities about abelian varieties
 - Basic facts and notation
 - Classification of endomorphism algebras
- 2 History of the problem
 - number field case
 - Statement of the problem for abelian varieties
 - Results in this direction
- Main Theorem
 - Corollaries
 - A counterexample
 - Case of algebraic tori
- Basic ingredients of proof of Theorem A
 - Some easy reductions
 - Theorems about reduction
 - some semisimple algebras and modules () () () () ()

Let A be an abelian variety over a number field F and assume that $\operatorname{End}_F A$ is commutative. Let Σ be a subgroup of A(F) and suppose that $x \in A(F)$ is such that $\operatorname{red}_v x \in \operatorname{red}_v \Sigma$ for almost all places v of F. Then $x \in \Sigma + A(F)_{tors}$

Let A be an abelian variety over a number field F and assume that $\operatorname{End}_F A$ is commutative. Let Σ be a subgroup of A(F) and suppose that $x \in A(F)$ is such that $\operatorname{red}_v x \in \operatorname{red}_v \Sigma$ for almost all places v of F. Then $x \in \Sigma + A(F)_{tors}$

Let A be an abelian variety over a number field F and assume that $\operatorname{End}_F A$ is commutative. Let Σ be a subgroup of A(F) and suppose that $x \in A(F)$ is such that $\operatorname{red}_v x \in \operatorname{red}_v \Sigma$ for almost all places v of F. Then $x \in \Sigma + A(F)_{tors}$

Let A be an abelian variety over a number field F and assume that $\operatorname{End}_F A$ is commutative. Let Σ be a subgroup of A(F) and suppose that $x \in A(F)$ is such that $\operatorname{red}_v x \in \operatorname{red}_v \Sigma$ for almost all places v of F. Then $x \in \Sigma + A(F)_{tors}$

Let A be a principally polarized abelian variety of dimension g defined over the number field F such that $\operatorname{End}_{\overline{F}}(A) = \mathbb{Z}$ and $\dim(A) = g$ is either odd or g = 2 or 6. Let P and $P_1 \dots P_r$ be non-torsion elements of A(F) such that $P_1 \dots P_r$ are linearly independent over \mathbb{Z} . Denote by Λ the subgroup of A(F) generated by $P_1 \dots P_r$. Then the following are equivalent:

- (1) $P \in \Lambda$
- (2) $r_v(P) \in r_v(\Lambda)$

Let A be a principally polarized abelian variety of dimension g defined over the number field F such that $\operatorname{End}_F(A) = \mathbb{Z}$ and $\dim(A) = g$ is either odd or g = 2 or G. Let G and G non-torsion elements of G such that G independent over G. Denote by G the subgroup of G generated by G in the following are equivalent:

(1)
$$P \in \Lambda$$

(2)
$$r_v(P) \in r_v(\Lambda)$$

Let A be a principally polarized abelian variety of dimension g defined over the number field F such that $\operatorname{End}_{\overline{F}}(A) = \mathbb{Z}$ and $\dim(A) = g$ is either odd or g = 2 or 6. Let P and $P_1 \dots P_r$ be non-torsion elements of A(F) such that $P_1 \dots P_r$ are linearly independent over \mathbb{Z} . Denote by Λ the subgroup of A(F) generated by $P_1 \dots P_r$. Then the following are equivalent:

(1)
$$P \in \Lambda$$

(2)
$$r_v(P) \in r_v(\Lambda)$$

Let A be a principally polarized abelian variety of dimension g defined over the number field F such that $\operatorname{End}_{\overline{F}}(A) = \mathbb{Z}$ and $\dim(A) = g$ is either odd or g = 2 or 6. Let P and $P_1 \dots P_r$ be non-torsion elements of A(F) such that $P_1 \dots P_r$ are linearly independent over \mathbb{Z} . Denote by Λ the subgroup of A(F) generated by $P_1 \dots P_r$. Then the following are equivalent:

(1)
$$P \in \Lambda$$

(2)
$$r_v(P) \in r_v(\Lambda)$$

Let A be a principally polarized abelian variety of dimension g defined over the number field F such that $\operatorname{End}_{\overline{F}}(A) = \mathbb{Z}$ and $\dim(A) = g$ is either odd or g = 2 or G. Let G and G are non-torsion elements of G but that G are linearly independent over G. Denote by G the subgroup of G generated by G are equivalent:

- (1) $P \in \Lambda$
- (2) $r_v(P) \in r_v(\Lambda)$

Let P and $P_1 ldots P_r$ be non-torsion elements of A(F) such that $\mathcal{R}P$ is a free \mathcal{R} -module and $P_1 ldots P_r$ are linearly independent over \mathcal{R} . Denote by Λ the \mathcal{R} -submodule of A(F) generated by $P_1 ldots P_r$. Assume that $r_v(P) \in r_v(\Lambda)$ for almost all primes v of F. Then there exists a natural number a such that $aP \in \Lambda$.

W. Gajda and K.Górnisiewicz refined this theorem to a = 1

Let P and $P_1 ldots P_r$ be non-torsion elements of A(F) such that $\mathcal{R}P$ is a free \mathcal{R} -module and $P_1 ldots P_r$ are linearly independent over \mathcal{R} . Denote by Λ the \mathcal{R} -submodule of A(F) generated by $P_1 ldots P_r$. Assume that $r_v(P) \in r_v(\Lambda)$ for almost all primes v of F. Then there exists a natural number a such that $aP \in \Lambda$.

W. Gajda and K.Górnisiewicz refined this theorem to a=1

Let P and $P_1 ldots P_r$ be non-torsion elements of A(F) such that $\mathcal{R}P$ is a free \mathcal{R} -module and $P_1 ldots P_r$ are linearly independent over \mathcal{R} . Denote by Λ the \mathcal{R} -submodule of A(F) generated by $P_1 ldots P_r$. Assume that $r_v(P) \in r_v(\Lambda)$ for almost all primes v of F. Then there exists a natural number a such that $aP \in \Lambda$.

W. Gajda and K. Górnisiewicz refined this theorem to a = 1

Let P and $P_1 ldots P_r$ be non-torsion elements of A(F) such that $\mathcal{R}P$ is a free \mathcal{R} -module and $P_1 ldots P_r$ are linearly independent over \mathcal{R} . Denote by Λ the \mathcal{R} -submodule of A(F) generated by $P_1 ldots P_r$. Assume that $r_v(P) \in r_v(\Lambda)$ for almost all primes v of F. Then there exists a natural number a such that $aP \in \Lambda$.

W. Gajda and K.Górnisiewicz refined this theorem to a = 1

Let P_1, \ldots, P_r be elements of A(F) linearly independent over $\mathcal{R} = End_{\overline{F}}(A)$. Let P be a point of A(F) such that $\mathcal{R}P$ is a free \mathcal{R} -module. The following conditions are equivalent:

- $(1) P \in \Sigma_{i=1}^r \mathbb{Z} P_i$
- $(2) r_v(P) \in \Sigma_{i=1}^r \mathbb{Z} r_v(P_i)$

A. Perucca generalized this theorem to semiabelian varieties and removed the hypotheses that RP is a free R-module

Let P_1, \ldots, P_r be elements of A(F) linearly independent over $\mathcal{R} = End_{\overline{F}}(A)$. Let P be a point of A(F) such that $\mathcal{R}P$ is a free \mathcal{R} -module. The following conditions are equivalent:

- $(1) P \in \Sigma_{i=1}^r \mathbb{Z} P_i$
- (2) $r_v(P) \in \Sigma_{i=1}^r \mathbb{Z} r_v(P_i)$

A. Perucca generalized this theorem to semiabelian varieties and removed the hypotheses that $\mathcal{R}P$ is a free \mathcal{R} -module

Let P_1, \ldots, P_r be elements of A(F) linearly independent over $\mathcal{R} = End_{\overline{F}}(A)$. Let P be a point of A(F) such that $\mathcal{R}P$ is a free \mathcal{R} -module. The following conditions are equivalent:

- (1) $P \in \Sigma_{i=1}^r \mathbb{Z} P_i$
- $(2) r_{\nu}(P) \in \Sigma_{i=1}^{r} \mathbb{Z} r_{\nu}(P_{i})$

A. Perucca generalized this theorem to semiabelian varieties and removed the hypotheses that RP is a free R-module

Let P_1, \ldots, P_r be elements of A(F) linearly independent over $\mathcal{R} = End_{\overline{F}}(A)$. Let P be a point of A(F) such that $\mathcal{R}P$ is a free \mathcal{R} -module. The following conditions are equivalent:

(1)
$$P \in \Sigma_{i=1}^r \mathbb{Z} P_i$$

(2)
$$r_v(P) \in \Sigma_{i=1}^r \mathbb{Z} r_v(P_i)$$

A. Perucca generalized this theorem to semiabelian varieties and removed the hypotheses that $\mathcal{R}P$ is a free \mathcal{R} -module

Theorem A (G.Banaszak, P.Krasoń)

Let A/F be an abelian variety defined over a number field F. Assume that A is isogeneous to $A_1^{e_1} \times \cdots \times A_t^{e_t}$ with A_i simple, pairwise nonisogenous abelian varieties such that $\dim_{End_{F'}(A_i)^0} H_1(A_i(\mathbb{C}); \mathbb{Q}) \geq e_i$ for each $1 \leq i \leq t$, where $End_{F'}(A_i)^0 := End_{F'}(A_i) \otimes \mathbb{Q}$ and F'/F is a finite extension such that the isogeny is defined over F'. Let $P \in A(F)$ and let Λ be a subgroup of A(F). If $r_v(P) \in r_v(\Lambda)$ for almost all v of \mathcal{O}_F then $P \in \Lambda + A(F)_{tor}$. Moreover if $A(F)_{tor} \subset \Lambda$, then the following conditions are equivalent:

1 $P \in \Lambda$

Let A/F be an abelian variety defined over a number field F. Assume that A is isogeneous to $A_1^{e_1} \times \cdots \times A_t^{e_t}$ with A_i simple, pairwise nonisogenous abelian varieties such that

 $aim_{End_{F'}(A_i)^0} H_1(A_i(\mathbb{C}); \mathbb{Q}) \geq e_i$ for each $1 \leq l \leq t$, where $End_{F'}(A_i)^0 := End_{F'}(A_i) \otimes \mathbb{Q}$ and F'/F is a finite extension such that the isogeny is defined over F'. Let $P \in A(F)$ and let Λ be a subgroup of A(F). If $r_v(P) \in r_v(\Lambda)$ for almost all v of \mathcal{O}_F then $P \in \Lambda + A(F)_{tor}$. Moreover if $A(F)_{tor} \subset \Lambda$, then the following conditions are equivalent:

- 1 $P \in \Lambda$
- 2 $r_v(P) \in r_v(\Lambda)$ for almost all v of \mathcal{O}_F .

Let A/F be an abelian variety defined over a number field F. Assume that A is isogeneous to $A_1^{e_1} \times \cdots \times A_t^{e_t}$ with A_i simple, pairwise nonisogenous abelian varieties such that $\dim_{\operatorname{End}_{F'}(A_i)^0} H_1(A_i(\mathbb{C}); \mathbb{Q}) \geq e_i$ for each $1 \leq i \leq t$, where $\operatorname{End}_{F'}(A_i)^0 := \operatorname{End}_{F'}(A_i) \otimes \mathbb{Q}$ and F'/F is a finite extension such that the isogeny is defined over F'. Let $P \in A(F)$ and let A

such that the isogeny is defined over F'. Let $P \in A(F)$ and let be a subgroup of A(F). If $r_v(P) \in r_v(\Lambda)$ for almost all v of \mathcal{O}_F then $P \in \Lambda + A(F)_{tor}$. Moreover if $A(F)_{tor} \subset \Lambda$, then the following conditions are equivalent:

- 1 $P \in \Lambda$
- 2 $r_v(P) \in r_v(\Lambda)$ for almost all v of \mathcal{O}_F .

Let A/F be an abelian variety defined over a number field F. Assume that A is isogeneous to $A_1^{e_1} \times \cdots \times A_t^{e_t}$ with A_i simple, pairwise nonisogenous abelian varieties such that $\dim_{End_{F'}(A_i)^0} H_1(A_i(\mathbb{C}); \mathbb{Q}) \geq e_i$ for each $1 \leq i \leq t$, where $End_{F'}(A_i)^0 := End_{F'}(A_i) \otimes \mathbb{Q}$ and F'/F is a finite extension such that the isogeny is defined over F'. Let $P \in A(F)$ and let Λ be a subgroup of A(F). If $r_v(P) \in r_v(\Lambda)$ for almost all v of \mathcal{O}_F then $P \in \Lambda + A(F)_{tor}$. Moreover if $A(F)_{tor} \subset \Lambda$, then the following conditions are equivalent:

1 $P \in \Lambda$

Theorem A (G.Banaszak, P.Krasoń)

Let A/F be an abelian variety defined over a number field F. Assume that A is isogeneous to $A_1^{e_1} \times \cdots \times A_t^{e_t}$ with A_i simple, pairwise nonisogenous abelian varieties such that $\dim_{End_{F'}(A_i)^0} H_1(A_i(\mathbb{C}); \mathbb{Q}) \geq e_i$ for each $1 \leq i \leq t$, where $End_{F'}(A_i)^0 := End_{F'}(A_i) \otimes \mathbb{Q}$ and F'/F is a finite extension such that the isogeny is defined over F'. Let $P \in A(F)$ and let Λ be a subgroup of A(F). If $r_v(P) \in r_v(\Lambda)$ for almost all v of \mathcal{O}_F then $P \in \Lambda + A(F)_{tor}$. Moreover if $A(F)_{tor} \subset \Lambda$, then the following conditions are equivalent:

1 $P \in \Lambda$

Let A/F be an abelian variety defined over a number field F. Assume that A is isogeneous to $A_1^{e_1} \times \cdots \times A_t^{e_t}$ with A_i simple, pairwise nonisogenous abelian varieties such that $\dim_{End_{F'}(A_i)^0} H_1(A_i(\mathbb{C}); \mathbb{Q}) \geq e_i$ for each $1 \leq i \leq t$, where $End_{F'}(A_i)^0 := End_{F'}(A_i) \otimes \mathbb{Q}$ and F'/F is a finite extension such that the isogeny is defined over F'. Let $P \in A(F)$ and let Λ be a subgroup of A(F). If $r_v(P) \in r_v(\Lambda)$ for almost all v of \mathcal{O}_F then $P \in \Lambda + A(F)_{tor}$. Moreover if $A(F)_{tor} \subset \Lambda$, then the following conditions are equivalent:

 $1 P \in \Lambda$

Let A/F be an abelian variety defined over a number field F. Assume that A is isogeneous to $A_1^{e_1} \times \cdots \times A_t^{e_t}$ with A_i simple, pairwise nonisogenous abelian varieties such that $\dim_{End_{F'}(A_i)^0} H_1(A_i(\mathbb{C}); \mathbb{Q}) \geq e_i$ for each $1 \leq i \leq t$, where $End_{F'}(A_i)^0 := End_{F'}(A_i) \otimes \mathbb{Q}$ and F'/F is a finite extension such that the isogeny is defined over F'. Let $P \in A(F)$ and let Λ be a subgroup of A(F). If $r_v(P) \in r_v(\Lambda)$ for almost all v of \mathcal{O}_F then $P \in \Lambda + A(F)_{tor}$. Moreover if $A(F)_{tor} \subset \Lambda$, then the following conditions are equivalent:

- 1 $P \in \Lambda$
- 2 $r_v(P) \in r_v(\Lambda)$ for almost all v of \mathcal{O}_F .

Let A/F be an abelian variety defined over a number field F. Assume that A is isogeneous to $A_1^{e_1} \times \cdots \times A_t^{e_t}$ with A_i simple, pairwise nonisogenous abelian varieties such that $\dim_{End_{F'}(A_i)^0} H_1(A_i(\mathbb{C}); \mathbb{Q}) \geq e_i$ for each $1 \leq i \leq t$, where $End_{F'}(A_i)^0 := End_{F'}(A_i) \otimes \mathbb{Q}$ and F'/F is a finite extension such that the isogeny is defined over F'. Let $P \in A(F)$ and let Λ be a subgroup of A(F). If $r_v(P) \in r_v(\Lambda)$ for almost all v of \mathcal{O}_F then $P \in \Lambda + A(F)_{tor}$. Moreover if $A(F)_{tor} \subset \Lambda$, then the following conditions are equivalent:

- **1** *P* ∈ Λ
- 2 $r_v(P) \in r_v(\Lambda)$ for almost all v of \mathcal{O}_F .

PROBLEM

Let A/F be an abelian variety over a number field F and let $P \in A(F)$ and let $\Lambda \subset A(F)$ be a subgroup. Is there an effectively computable finite set S^{eff} of primes v of \mathcal{O}_F , depending only on A, P and Λ such that the following conditions are equivalent? :

- (1) $P \in \Lambda$
- (2) $r_v(P) \in r_v(\Lambda)$ for every $v \in S^{\text{eff}}$

PROBLEM

Let A/F be an abelian variety over a number field F and let $P \in A(F)$ and let $\Lambda \subset A(F)$ be a subgroup. Is there an effectively computable finite set S^{eff} of primes v of \mathcal{O}_F , depending only on A, P and Λ such that the following conditions are equivalent? :

- (1) $P \in \Lambda$
- (2) $r_v(P) \in r_v(\Lambda)$ for every $v \in S^{\text{eff}}$

PROBLEM

Let A/F be an abelian variety over a number field F and let $P \in A(F)$ and let $\Lambda \subset A(F)$ be a subgroup. Is there an effectively computable finite set S^{eff} of primes v of \mathcal{O}_F , depending only on A, P and Λ such that the following conditions are equivalent? :

- (1) $P \in \Lambda$
- (2) $r_v(P) \in r_v(\Lambda)$ for every $v \in S^{\text{eff}}$

Let A/F satisfy the hypotheses of Theorem A. Let $P \in A(F)$ and let Λ be a subgroup of A(F). There is a finite set of primes v of \mathcal{O}_F , such that the condition: $r_V(P) \in r_V(\Lambda)$ for all $v \in S^{fin}$ implies $P \in \Lambda + A(F)_{tor}$. Moreover if $A(F)_{tor} \subset \Lambda$, then the following conditions are equivalent:

- (1) $P \in \Lambda$
- (2) $r_v(P) \in r_v(\Lambda)$ for $v \in S^{fin}$.

Let A/F satisfy the hypotheses of Theorem A. Let $P \in A(F)$ and let Λ be a subgroup of A(F). There is a finite set of primes v of \mathcal{O}_F , such that the condition: $r_v(P) \in r_v(\Lambda)$ for all $v \in S^{fin}$ implies $P \in \Lambda + A(F)_{tor}$. Moreover if $A(F)_{tor} \subset \Lambda$, then the following conditions are equivalent:

- (1) $P \in \Lambda$
- (2) $r_v(P) \in r_v(\Lambda)$ for $v \in S^{fin}$.

Let A/F satisfy the hypotheses of Theorem A. Let $P \in A(F)$ and let Λ be a subgroup of A(F). There is a finite set of primes v of \mathcal{O}_F , such that the condition: $r_v(P) \in r_v(\Lambda)$ for all $v \in S^{fin}$ implies $P \in \Lambda + A(F)_{tor}$. Moreover if $A(F)_{tor} \subset \Lambda$, then the following conditions are equivalent:

- (1) $P \in \Lambda$
- (2) $r_v(P) \in r_v(\Lambda)$ for $v \in S^{fin}$.

Outline

- Generalities about abelian varieties
 - Basic facts and notation
 - Classification of endomorphism algebras
- 2 History of the problem
 - number field case
 - Statement of the problem for abelian varieties
 - Results in this direction
- Main Theorem
 - Corollaries
 - A counterexample
 - Case of algebraic tori
- Basic ingredients of proof of Theorem A
 - Some easy reductions
 - Theorems about reduction
 - some semisimple algebras and modules (B) (E) (E) (E) (E)

Corollary (Weston)

Let A be an abelian variety defined over a number field such that $End_{\overline{E}}(A)$ is commutative. Then Theorem A holds for A.

Since $End_{\overline{F}}(A)$ is commutative, A is isogeneous to $A_1 \times \cdots \times A_t$ with A_i simple, pairwise nonisogenous.

In this case the assumption of our theorem

$$dim_{End_{F'}(A_i)^0} H_1(A_i(\mathbb{C}); \mathbb{Q}) \geq 1$$

for each $1 \le i \le t$ always holds.

Since $End_{\overline{F}}(A)$ is commutative,

A is isogeneous to $A_1 \times \cdots \times A_t$

with A_i simple, pairwise nonisogenous.

In this case the assumption of our theorem

$$dim_{End_{F'}(A_i)^0} H_1(A_i(\mathbb{C}); \mathbb{Q}) \geq 1$$

for each $1 \le i \le t$ always holds.

Corollary

Let $A = E_1^{e_1} \times \cdots \times E_t^{e_t}$, where E_1, \dots, E_t are pairwise nonisogenous elliptic curves defined over F. Assume that $1 \le e_i \le 2$ if $End_F(E_i) = \mathbb{Z}$ and $e_i = 1$ if $End_F(E_i) \ne \mathbb{Z}$. Then Theorem A holds for A

Corollary

Let $A = E_1^{e_1} \times \cdots \times E_t^{e_t}$, where E_1, \dots, E_t are pairwise nonisogenous elliptic curves defined over F. Assume that $1 \le e_i \le 2$ if $End_F(E_i) = \mathbb{Z}$ and $e_i = 1$ if $End_F(E_i) \ne \mathbb{Z}$. Then Theorem A holds for A.

Corollary

Let $A = E_1^{e_1} \times \cdots \times E_t^{e_t}$, where E_1, \dots, E_t are pairwise nonisogenous elliptic curves defined over F. Assume that $1 \le e_i \le 2$ if $End_F(E_i) = \mathbb{Z}$ and $e_i = 1$ if $End_F(E_i) \ne \mathbb{Z}$. Then Theorem A holds for A.

Observe that for an elliptic curve E/F we have

$$dim_{End_F(E)^0} H_1(E(\mathbb{C}); \mathbb{Q}) = 2 \text{ if } End_F(E) = \mathbb{Z}$$

 $dim_{End_F(E)^0} H_1(E(\mathbb{C}); \mathbb{Q}) = 1 \text{ if } End_F(E) \neq \mathbb{Z}$

Observe that for an elliptic curve ${\it E}/{\it F}$ we have

$$dim_{End_F(E)^0} H_1(E(\mathbb{C}); \mathbb{Q}) = 2 \text{ if } End_F(E) = \mathbb{Z}$$

$$dim_{End_F(E)^0} H_1(E(\mathbb{C}); \mathbb{Q}) = 1 \text{ if } End_F(E) \neq \mathbb{Z}$$

Observe that for an elliptic curve E/F we have

$$dim_{End_F(E)^0} H_1(E(\mathbb{C}); \mathbb{Q}) = 2 \text{ if } End_F(E) = \mathbb{Z}$$

$$dim_{End_{F}(E)^{0}} H_{1}(E(\mathbb{C}); \mathbb{Q}) = 1 \text{ if } End_{F}(E) \neq \mathbb{Z}$$

Outline

- Generalities about abelian varieties
 - Basic facts and notation
 - Classification of endomorphism algebras
- 2 History of the problem
 - number field case
 - Statement of the problem for abelian varieties
 - Results in this direction
- Main Theorem
 - Corollaries
 - A counterexample
 - Case of algebraic tori
- Basic ingredients of proof of Theorem A
 - Some easy reductions
 - Theorems about reduction

$$E := E_d$$
 defined over \mathbb{Q} $y^2 = x^3 - d^2x$

 E_d has CM by $\mathbb{Z}[i]$

$$d=34$$
 $rankE_d(\mathbb{Q})=2$

$$d = 1254$$
 $rankE_d(\mathbb{Q}) = 3$

$$d = 29274$$
 $rankE_d(\mathbb{Q}) = 4$

$$d=205015206$$
 $rankE_d(\mathbb{Q})=5$

$$d = 61471349610$$
 $rankE_d(\mathbb{Q}) = 6$

$$E:=E_d$$
 defined over \mathbb{Q} $y^2=x^3-d^2x$ E_d has CM by $\mathbb{Z}[i]$

$$d = 34$$
 $rankE_d(\mathbb{Q}) = 2$
 $d = 1254$ $rankE_d(\mathbb{Q}) = 3$
 $d = 29274$ $rankE_d(\mathbb{Q}) = 4$
 $d = 205015206$ $rankE_d(\mathbb{Q}) = 5$
 $d = 61471349610$ $rankE_d(\mathbb{Q}) = 6$

$$E:=E_d$$
 defined over \mathbb{Q} $y^2=x^3-d^2x$

 E_d has CM by $\mathbb{Z}[i]$

$$d = 34$$
 $rankE_d(\mathbb{Q}) = 2$
 $d = 1254$ $rankE_d(\mathbb{Q}) = 3$
 $d = 29274$ $rankE_d(\mathbb{Q}) = 4$
 $d = 205015206$ $rankE_d(\mathbb{Q}) = 5$
 $d = 61471349610$ $rankE_d(\mathbb{Q}) = 6$

$$E := E_d$$
 defined over \mathbb{Q} $y^2 = x^3 - d^2x$

 E_d has CM by $\mathbb{Z}[i]$

$$d = 34$$
 $rankE_d(\mathbb{Q}) = 2$
 $d = 1254$ $rankE_d(\mathbb{Q}) = 2$

$$d=29274$$
 $rankE_d(\mathbb{Q})=4$

$$d = 205015206$$
 $rankE_d(\mathbb{Q}) = 5$

$$d = 61471349610$$
 $rankE_d(\mathbb{Q}) = 6$

$$E := E_d$$
 defined over \mathbb{Q} $y^2 = x^3 - d^2x$

$$E_d$$
 has CM by $\mathbb{Z}[i]$

$$d=34$$
 $rankE_d(\mathbb{Q})=2$

$$d = 1254$$
 $rankE_d(\mathbb{Q}) = 3$

$$d = 29274$$
 $rankE_d(\mathbb{Q}) = 4$

$$d=205015206$$
 $rankE_d(\mathbb{Q})=5$

$$d = 61471349610$$
 $rankE_d(\mathbb{Q}) = 6$

$$E := E_d$$
 defined over \mathbb{Q} $y^2 = x^3 - d^2x$

$$E_d$$
 has CM by $\mathbb{Z}[i]$

$$d = 34$$
 $rankE_d(\mathbb{Q}) = 2$

$$d = 1254$$
 $rankE_d(\mathbb{Q}) = 3$

$$d = 29274$$
 $rankE_d(\mathbb{Q}) = 4$

$$d=205015206$$
 $rankE_d(\mathbb{Q})=5$

$$d = 61471349610$$
 $rankE_d(\mathbb{Q}) = 6$

$$E := E_d$$
 defined over \mathbb{Q} $y^2 = x^3 - d^2x$

$$E_d$$
 has CM by $\mathbb{Z}[i]$

$$d = 34$$
 $rankE_d(\mathbb{Q}) = 2$

$$d = 1254$$
 $rankE_d(\mathbb{Q}) = 3$

$$d = 29274$$
 $rankE_d(\mathbb{Q}) = 4$

$$d = 205015206$$
 $rankE_d(\mathbb{Q}) = 5$

$$d = 61471349610$$
 $rankE_d(\mathbb{Q}) = 6$

$$E := E_d$$
 defined over \mathbb{Q} $y^2 = x^3 - d^2x$

$$E_d$$
 has CM by $\mathbb{Z}[i]$

K.Rubin, A.Silverberg showed that $rankE_d(\mathbb{Q})$ can reach 6.

$$d = 34$$
 $rankE_d(\mathbb{Q}) = 2$

$$d = 1254$$
 $rankE_d(\mathbb{Q}) = 3$

$$d = 29274$$
 $rankE_d(\mathbb{Q}) = 4$

$$d = 205015206$$
 $rankE_d(\mathbb{Q}) = 5$

$$d = 61471349610$$
 $rankE_d(\mathbb{Q}) = 6$

Let $A_d := E_d \times E_d$ defined over $\mathbb{Q}(i)$

PROPOSITION

There is a nontorsion point $P \in A_d(\mathbb{Q}(i))$ and a free $\mathbb{Z}[i]$ -module $\Lambda \subset A_d(\mathbb{Q}(i))$ such that $P \notin \Lambda$ and $r_v(P) \in r_v(\Lambda)$ for all primes $v \not\mid 2d$ in $\mathbb{Z}[i]$

Let $A_d := E_d \times E_d$ defined over $\mathbb{Q}(i)$

PROPOSITION

There is a nontorsion point $P \in A_d(\mathbb{Q}(i))$ and a free $\mathbb{Z}[i]$ -module $\Lambda \subset A_d(\mathbb{Q}(i))$ such that $P \notin \Lambda$ and $r_v(P) \in r_v(\Lambda)$ for all primes $v \not \mid 2d$ in $\mathbb{Z}[i]$

$$P := \left[egin{array}{c} 0 \ Q_1 \end{array}
ight], \ P_1 := \left[egin{array}{c} Q_1 \ 0 \end{array}
ight], \ P_2 := \left[egin{array}{c} Q_2 \ Q_1 \end{array}
ight], \ P_3 := \left[egin{array}{c} 0 \ Q_2 \end{array}
ight].$$

$$\Lambda := \mathbb{Z}[i]P_1 + \mathbb{Z}[i]P_2 + \mathbb{Z}[i]P_3 \subset A(\mathbb{Q}(i))$$

Λ is free over $\mathbb{Z}[i]$ hence also free over \mathbb{Z} .

$$P \notin \Lambda$$

$$P:=\left[\begin{array}{c} 0 \\ Q_1 \end{array}\right], \ P_1:=\left[\begin{array}{c} Q_1 \\ 0 \end{array}\right], \ P_2:=\left[\begin{array}{c} Q_2 \\ Q_1 \end{array}\right], \ P_3:=\left[\begin{array}{c} 0 \\ Q_2 \end{array}\right].$$

$$\Lambda := \mathbb{Z}[i]P_1 + \mathbb{Z}[i]P_2 + \mathbb{Z}[i]P_3 \subset A(\mathbb{Q}(i))$$

Λ is free over $\mathbb{Z}[i]$ hence also free over \mathbb{Z} .

$$P \notin \Lambda$$

$$P:=\left[\begin{array}{c} 0 \\ Q_1 \end{array}\right], \ P_1:=\left[\begin{array}{c} Q_1 \\ 0 \end{array}\right], \ P_2:=\left[\begin{array}{c} Q_2 \\ Q_1 \end{array}\right], \ P_3:=\left[\begin{array}{c} 0 \\ Q_2 \end{array}\right].$$

$$\Lambda := \mathbb{Z}[i]P_1 + \mathbb{Z}[i]P_2 + \mathbb{Z}[i]P_3 \subset A(\mathbb{Q}(i))$$

Λ is free over $\mathbb{Z}[i]$ hence also free over \mathbb{Z} .

$$P \notin \Lambda$$

$$P:=\left[\begin{array}{c} 0 \\ Q_1 \end{array}\right], \ P_1:=\left[\begin{array}{c} Q_1 \\ 0 \end{array}\right], \ P_2:=\left[\begin{array}{c} Q_2 \\ Q_1 \end{array}\right], \ P_3:=\left[\begin{array}{c} 0 \\ Q_2 \end{array}\right].$$

$$\Lambda := \mathbb{Z}[i]P_1 + \mathbb{Z}[i]P_2 + \mathbb{Z}[i]P_3 \subset A(\mathbb{Q}(i))$$

Λ is free over $\mathbb{Z}[i]$ hence also free over \mathbb{Z} .

$$P \notin \Lambda$$

$$P:=\left[\begin{array}{c} 0 \\ Q_1 \end{array}\right], \ P_1:=\left[\begin{array}{c} Q_1 \\ 0 \end{array}\right], \ P_2:=\left[\begin{array}{c} Q_2 \\ Q_1 \end{array}\right], \ P_3:=\left[\begin{array}{c} 0 \\ Q_2 \end{array}\right].$$

$$\Lambda := \mathbb{Z}[i]P_1 + \mathbb{Z}[i]P_2 + \mathbb{Z}[i]P_3 \subset A(\mathbb{Q}(i))$$

Λ is free over $\mathbb{Z}[i]$ hence also free over \mathbb{Z} .

$$P \notin \Lambda$$

$$P:=\left[\begin{array}{c} 0 \\ Q_1 \end{array}\right], \ P_1:=\left[\begin{array}{c} Q_1 \\ 0 \end{array}\right], \ P_2:=\left[\begin{array}{c} Q_2 \\ Q_1 \end{array}\right], \ P_3:=\left[\begin{array}{c} 0 \\ Q_2 \end{array}\right].$$

$$\Lambda := \mathbb{Z}[i]P_1 + \mathbb{Z}[i]P_2 + \mathbb{Z}[i]P_3 \subset A(\mathbb{Q}(i))$$

Λ is free over $\mathbb{Z}[i]$ hence also free over \mathbb{Z} .

$$P \notin \Lambda$$

Let
$$\overline{Q_i} := r_v(Q_i)$$
 for $i = 1, 2,$

$$\overline{P_i} := r_v(P_i)$$
 for $i = 1, 2, 3$ and $\overline{P} := r_v(P)$.

We will prove that $r_v(P) \in r_v(\Lambda)$ for all v of $\mathbb{Z}[i]$ over a prime $p \nmid 2d$.

The equation

$$\overline{P} = r_1 \overline{P_1} + r_2 \overline{P_2} + r_3 \overline{P_3}.$$

in $E_v(k_v) \times E_v(k_v)$ with $r_1, r_2, r_3 \in \mathbb{Z}[i]$ is equivalent to a system of equations in $E_v(k_v)$:

$$r_1 \overline{Q_1} + r_2 \overline{Q_2} = 0$$

$$r_2 \overline{Q_1} + r_3 \overline{Q_2} = \overline{Q_1}$$

Let
$$\overline{Q_i} := r_v(Q_i)$$
 for $i = 1, 2,$

$$\overline{P_i} := r_v(P_i)$$
 for $i = 1, 2, 3$ and $\overline{P} := r_v(P)$.

We will prove that $r_v(P) \in r_v(\Lambda)$ for all v of $\mathbb{Z}[i]$ over a prime $p \not\mid 2d$.

The equation

$$\overline{P} = r_1 \overline{P_1} + r_2 \overline{P_2} + r_3 \overline{P_3}.$$

in $E_{\nu}(k_{\nu}) \times E_{\nu}(k_{\nu})$ with $r_1, r_2, r_3 \in \mathbb{Z}[i]$ is equivalent to a system of equations in $E_{\nu}(k_{\nu})$:

$$r_1 \overline{Q_1} + r_2 \overline{Q_2} = 0$$

 $r_2 \overline{Q_1} + r_3 \overline{Q_2} = \overline{Q_1}$

Let
$$\overline{Q_i} := r_{\nu}(Q_i)$$
 for $i = 1, 2,$

$$\overline{P_i} := r_v(P_i)$$
 for $i = 1, 2, 3$ and $\overline{P} := r_v(P)$.

We will prove that $r_v(P) \in r_v(\Lambda)$ for all v of $\mathbb{Z}[i]$ over a prime $p \not\mid 2d$.

The equation

$$\overline{P} = r_1 \overline{P_1} + r_2 \overline{P_2} + r_3 \overline{P_3}.$$

in $E_v(k_v) \times E_v(k_v)$ with $r_1, r_2, r_3 \in \mathbb{Z}[i]$ is equivalent to a system of equations in $E_v(k_v)$:

$$r_1 \overline{Q_1} + r_2 \overline{Q_2} = 0$$
$$r_2 \overline{Q_1} + r_3 \overline{Q_2} = \overline{Q_1}$$

Let
$$\overline{Q_i} := r_v(Q_i)$$
 for $i = 1, 2,$

$$\overline{P_i} := r_v(P_i)$$
 for $i = 1, 2, 3$ and $\overline{P} := r_v(P)$.

We will prove that $r_v(P) \in r_v(\Lambda)$ for all v of $\mathbb{Z}[i]$ over a prime $p \nmid 2d$.

The equation

$$\overline{P} = r_1 \overline{P_1} + r_2 \overline{P_2} + r_3 \overline{P_3}.$$

in $E_{\nu}(k_{\nu}) \times E_{\nu}(k_{\nu})$ with $r_1, r_2, r_3 \in \mathbb{Z}[i]$ is equivalent to a system of equations in $E_{\nu}(k_{\nu})$:

$$r_1 \overline{Q_1} + r_2 \overline{Q_2} = 0$$

$$r_2 \overline{Q_1} + r_3 \overline{Q_2} = \overline{Q_1}$$

Let
$$\overline{Q_i} := r_{\nu}(Q_i)$$
 for $i = 1, 2,$

$$\overline{P_i} := r_v(P_i)$$
 for $i = 1, 2, 3$ and $\overline{P} := r_v(P)$.

We will prove that $r_v(P) \in r_v(\Lambda)$ for all v of $\mathbb{Z}[i]$ over a prime $p \nmid 2d$.

The equation

$$\overline{P} = r_1 \overline{P_1} + r_2 \overline{P_2} + r_3 \overline{P_3}.$$

in $E_{\nu}(k_{\nu}) \times E_{\nu}(k_{\nu})$ with $r_1, r_2, r_3 \in \mathbb{Z}[i]$ is equivalent to a system of equations in $E_{\nu}(k_{\nu})$:

$$r_1\overline{Q_1} + r_2\overline{Q_2} = 0$$

 $r_2\overline{Q_1} + r_3\overline{Q_2} = \overline{Q_1}$

$$E_{\nu}(k_{\nu}) \cong \mathbb{Z}[i]/\gamma(\nu),$$

$$\frac{C_1, C_2 \in \mathbb{Z}[I]}{\overline{Q_1}} = c_1 \operatorname{mod} \gamma(v)
\overline{Q_2} = c_2 \operatorname{mod} \gamma(v).$$

$$egin{aligned} r_1 \, c_1 + r_2 \, c_2 &\equiv 0 \, \mathrm{mod} \, \gamma(v) \ & r_2 \, c_1 + r_3 \, c_2 &\equiv c_1 \, \mathrm{mod} \, \gamma(v). \end{aligned}$$

$$E_{\nu}(k_{\nu}) \cong \mathbb{Z}[i]/\gamma(\nu),$$

$$\underline{c_1}, c_2 \in \mathbb{Z}[i]$$

$$\overline{Q_1} = c_1 \operatorname{mod} \gamma(v)$$

$$Q_2 = c_2 \operatorname{mod} \gamma(v).$$

$$r_1c_1 + r_2c_2 \equiv 0 \bmod \gamma(v)$$

$$r_2c_1+r_3c_2\equiv c_1\operatorname{mod}\gamma(v).$$

$$E_{\nu}(k_{\nu}) \cong \mathbb{Z}[i]/\gamma(\nu),$$

$$\underline{c_1}, c_2 \in \mathbb{Z}[i]$$

$$\overline{Q_1} = c_1 \operatorname{mod} \gamma(v)$$

$$\overline{Q_2} = c_2 \operatorname{mod} \gamma(v).$$

$$r_1c_1 + r_2c_2 \equiv 0 \bmod \gamma(v)$$

$$r_2c_1+r_3c_2\equiv c_1\operatorname{mod}\gamma(v).$$

$$E_{\mathbf{v}}(\mathbf{k}_{\mathbf{v}}) \cong \mathbb{Z}[\mathbf{i}]/\gamma(\mathbf{v}),$$

$$\underline{c_1}, c_2 \in \mathbb{Z}[i]$$

$$\overline{Q_1} = c_1 \operatorname{mod} \gamma(v)$$

$$Q_2 = c_2 \operatorname{mod} \gamma(v).$$

$$r_1c_1+r_2c_2\equiv 0\,\mathrm{mod}\,\gamma(v)$$

$$r_2c_1+r_3c_2\equiv c_1\operatorname{mod}\gamma(v).$$

$$E_{\nu}(k_{\nu}) \cong \mathbb{Z}[i]/\gamma(\nu),$$

$$\underline{c_1}, c_2 \in \mathbb{Z}[i]$$

$$\overline{Q_1} = c_1 \operatorname{mod} \gamma(v)$$

$$Q_2 = c_2 \operatorname{mod} \gamma(v).$$

$$r_1c_1+r_2c_2\equiv 0\,\mathrm{mod}\,\gamma(v)$$

$$r_2c_1+r_3c_2\equiv c_1\operatorname{mod}\gamma(v).$$

$c_1 \not\equiv 0 \mod \gamma(v)$ and $c_2 \not\equiv 0 \mod \gamma(v)$.

$$D := gcd(c_1, c_2)$$
. Then

$$gcd\left(c_1^2/D,\,c_2\right)\,=\,D$$

and since D | C

$$r_1 := \frac{-rc_2}{D}, \quad r_2 := \frac{rc_1}{D}$$

$$c_1 \not\equiv 0 \mod \gamma(v)$$
 and $c_2 \not\equiv 0 \mod \gamma(v)$.

$$D := gcd(c_1, c_2)$$
. Then

$$gcd(c_1^2/D, c_2) = D$$

and since D | c-

$$r_1 := \frac{-rc_2}{D}, \quad r_2 := \frac{rc_1}{D}$$

$$c_1 \not\equiv 0 \mod \gamma(v)$$
 and $c_2 \not\equiv 0 \mod \gamma(v)$.

$$D := gcd(c_1, c_2)$$
. Then

$$\gcd\left(c_1^2/D,\,c_2\right)\,=\,D$$

and since $D \mid c_1$

$$r_1 := \frac{-rc_2}{D}, \quad r_2 := \frac{rc_1}{D}$$

 $c_1 \not\equiv 0 \mod \gamma(v)$ and $c_2 \not\equiv 0 \mod \gamma(v)$.

 $D := gcd(c_1, c_2)$. Then

$$gcd(c_1^2/D, c_2) = D$$

and since $D \mid c_1$

$$r_1 := \frac{-rc_2}{D}, \quad r_2 := \frac{rc_1}{D}$$

$$c_1 \not\equiv 0 \mod \gamma(v)$$
 and $c_2 \not\equiv 0 \mod \gamma(v)$.

$$D := gcd(c_1, c_2)$$
. Then

$$gcd(c_1^2/D, c_2) = D$$

and since $D \mid c_1$

$$r_1:=\frac{-rc_2}{D},\quad r_2:=\frac{rc_1}{D}$$

Outline

- Generalities about abelian varieties
 - Basic facts and notation
 - Classification of endomorphism algebras
- 2 History of the problem
 - number field case
 - Statement of the problem for abelian varieties
 - Results in this direction
- Main Theorem
 - Corollaries
 - A counterexample
 - Case of algebraic tori
- Basic ingredients of proof of Theorem A
 - Some easy reductions
 - Theorems about reduction

Hence
$$T \otimes_F F' \cong \mathbb{G}_m^e := \underbrace{\mathbb{G}_m \times \cdots \times \mathbb{G}_m}_{e-times}$$
 where $\mathbb{G}_m := \text{spec } F'[t, t^{-1}].$

Hence
$$T \otimes_F F' \cong \mathbb{G}_m^e := \underbrace{\mathbb{G}_m \times \cdots \times \mathbb{G}_m}_{e-times}$$
 where $\mathbb{G}_m := \text{ spec } F'[t, t^{-1}].$

Hence
$$T \otimes_F F' \cong \mathbb{G}_m^e := \underbrace{\mathbb{G}_m \times \cdots \times \mathbb{G}_m}_{e-times}$$
 where $\mathbb{G}_m := \operatorname{Spec} F'[t, t^{-1}]$

Hence
$$T \otimes_F F' \cong \mathbb{G}_m^e := \underbrace{\mathbb{G}_m \times \cdots \times \mathbb{G}_m}_{e-times}$$
 where $\mathbb{G}_m := \text{spec } F'[t, t^{-1}].$

Hence the condition $e \leq dim_{End_{F'}}(\mathbb{G}_m)^0$ $H_1(\mathbb{G}_m(\mathbb{C}); \mathbb{Q}) = 1$, analogous to the corresponding condition of our Theorem means that e = 1.

Hence we can prove the analogue of the Main Theorem for one dimensional tori which is basically the A. Schinzel's Theorem.

Hence the condition $e \leq dim_{End_{F'}}(\mathbb{G}_m)^0$ $H_1(\mathbb{G}_m(\mathbb{C});\mathbb{Q})=1$, analogous to the corresponding condition of our Theorem means that e=1.

Hence we can prove the analogue of the Main Theorem for one dimensional tori which is basically the A. Schinzel's Theorem.

Hence the condition $e \leq dim_{End_{F'}}(\mathbb{G}_m)^0$ $H_1(\mathbb{G}_m(\mathbb{C});\mathbb{Q}) = 1$, analogous to the corresponding condition of our Theorem , means that e = 1.

Hence we can prove the analogue of the Main Theorem for one dimensional tori which is basically the A. Schinzel's Theorem .

Hence the condition $e \leq dim_{End_{F'}}(\mathbb{G}_m)^0$ $H_1(\mathbb{G}_m(\mathbb{C});\mathbb{Q}) = 1$, analogous to the corresponding condition of our Theorem , means that e = 1.

Hence we can prove the analogue of the Main Theorem for one dimensional tori which is basically the A. Schinzel's Theorem .

Hence the condition $e \leq dim_{End_{F'}}(\mathbb{G}_m)^0$ $H_1(\mathbb{G}_m(\mathbb{C}); \mathbb{Q}) = 1$, analogous to the corresponding condition of our Theorem , means that e = 1.

Hence we can prove the analogue of the Main Theorem for one dimensional tori which is basically the A. Schinzel's Theorem .

On the other hand A. Schinzel showed that his theorem does not extend in full generality to $\mathbb{G}_m/F \times \mathbb{G}_m/F$, hence it does not extend in full generality to algebraic tori T with dim T > 1.

The phrase *full generality* in the last sentence means *for any* $P \in T(F)$ and any subgroup $\Lambda \subset T(F)$.

On the other hand A. Schinzel showed that his theorem does not extend in full generality to $\mathbb{G}_m/F \times \mathbb{G}_m/F$, hence it does not extend in full generality to algebraic tori T with dim T > 1.

The phrase full generality in the last sentence means for any $P \in T(F)$ and any subgroup $\Lambda \subset T(F)$.

On the other hand A. Schinzel showed that his theorem does not extend in full generality to $\mathbb{G}_m/F \times \mathbb{G}_m/F$, hence it does not extend in full generality to algebraic tori T with dim T > 1.

The phrase *full generality* in the last sentence means *for any* $P \in T(F)$ and any subgroup $\Lambda \subset T(F)$.

Some easy reductions
Theorems about reduction
some semisimple algebras and modules
idea of the proof

Outline

- Generalities about abelian varieties
 - Basic facts and notation
 - Classification of endomorphism algebras
- 2 History of the problem
 - number field case
 - Statement of the problem for abelian varieties
 - Results in this direction
- Main Theorem
 - Corollaries
 - A counterexample
 - Case of algebraic tori
- Basic ingredients of proof of Theorem A
 - Some easy reductions
 - Theorems about reduction

Since the theorem is up to torsion we can assume $A = A_1^{e_1} \times \cdots \times A_r^{e_t}$

Put $c := |A(F)_{tor}|$ and $\Omega := c A(F)$

 Ω is torsion free.

we can assume $P \in \Omega$, $P \neq 0$, $\Lambda \subset \Omega$ and $\Lambda \neq \{0\}$,

Let $P_1, \ldots, P_r, \ldots, P_s$ be such a \mathbb{Z} -basis of Ω that:

$$\Lambda = \mathbb{Z}d_1P_1 + \cdots + \mathbb{Z}d_rP_r + \cdots + \mathbb{Z}d_sP_s.$$

Since the theorem is up to torsion we can assume $A = A^{e_1}$

$$A = A_1^{e_1} \times \cdots \times A_t^{e_t}$$

Put
$$c := |A(F)_{tor}|$$
 and $\Omega := c A(F)$.

 Ω is torsion free.

we can assume $P \in \Omega, \ P \neq 0, \Lambda \subset \Omega$ and $\Lambda \neq \{0\}$,

Let $P_1, \ldots, P_r, \ldots, P_s$ be such a \mathbb{Z} -basis of Ω that:

$$\Lambda = \mathbb{Z}d_1P_1 + \cdots + \mathbb{Z}d_rP_r + \cdots + \mathbb{Z}d_sP_s.$$

Since the theorem is up to torsion we can assume

$$A = A_1^{e_1} \times \cdots \times A_t^{e_t}$$

Put
$$c := |A(F)_{tor}|$$
 and $\Omega := c A(F)$.

Ω is torsion free.

we can assume $P \in \Omega$, $P \neq 0$, $\Lambda \subset \Omega$ and $\Lambda \neq \{0\}$,

Let $P_1, \ldots, P_r, \ldots, P_s$ be such a \mathbb{Z} -basis of Ω that:

$$\Lambda = \mathbb{Z}d_1P_1 + \cdots + \mathbb{Z}d_rP_r + \cdots + \mathbb{Z}d_sP_s.$$

Since the theorem is up to torsion we can assume

$$A = A_1^{e_1} \times \cdots \times A_t^{e_t}$$

Put
$$c := |A(F)_{tor}|$$
 and $\Omega := c A(F)$.

 Ω is torsion free.

we can assume $P \in \Omega$, $P \neq 0$, $\Lambda \subset \Omega$ and $\Lambda \neq \{0\}$,

$$\Lambda = \mathbb{Z}d_1P_1 + \cdots + \mathbb{Z}d_rP_r + \cdots + \mathbb{Z}d_sP_s.$$

Since the theorem is up to torsion we can assume $A = A_1^{e_1} \times \cdots \times A_r^{e_t}$

Put $c := |A(F)_{tor}|$ and $\Omega := c A(F)$.

 Ω is torsion free.

we can assume $P \in \Omega$, $P \neq 0$, $\Lambda \subset \Omega$ and $\Lambda \neq \{0\}$,

Let $P_1, \ldots, P_r, \ldots, P_s$ be such a \mathbb{Z} -basis of Ω that:

$$\Lambda = \mathbb{Z}d_1P_1 + \cdots + \mathbb{Z}d_rP_r + \cdots + \mathbb{Z}d_sP_s.$$

Since the theorem is up to torsion we can assume $A = A_1^{e_1} \times \cdots \times A_r^{e_t}$

Put
$$c := |A(F)_{tor}|$$
 and $\Omega := c A(F)$.

 Ω is torsion free.

we can assume $P \in \Omega$, $P \neq 0$, $\Lambda \subset \Omega$ and $\Lambda \neq \{0\}$,

Let $P_1, \ldots, P_r, \ldots, P_s$ be such a \mathbb{Z} -basis of Ω that:

$$\Lambda = \mathbb{Z}d_1P_1 + \cdots + \mathbb{Z}d_rP_r + \cdots + \mathbb{Z}d_sP_s.$$

Some easy reductions
Theorems about reduction
some semisimple algebras and modules
idea of the proof

put
$$\Omega_j := c A_j(F)$$
. Note that $\Omega = \bigoplus_{j=1}^t \Omega_j^{e_j}$.

For $P \in \Omega = \sum_{i=1}^{s} \mathbb{Z} P_i$ we write

$$P = n_1 P_1 + \cdots + n_r P_r + \cdots + n_s P_s$$

where $n_i \in \mathbb{Z}$

$$D_i := \mathcal{R}_i \otimes_{\mathbb{Z}} \mathbb{Q}$$

put
$$\Omega_j := c A_j(F)$$
. Note that $\Omega = \bigoplus_{j=1}^t \Omega_j^{e_j}$.

For $P \in \Omega = \sum_{i=1}^{s} \mathbb{Z} P_i$ we write

$$P = n_1 P_1 + \cdots + n_r P_r + \cdots + n_s P_s$$

where $n_i \in \mathbb{Z}$

$$D_i := \mathcal{R}_i \otimes_{\mathbb{Z}} \mathbb{Q}$$

put
$$\Omega_j := c A_j(F)$$
. Note that $\Omega = \bigoplus_{i=1}^t \Omega_i^{e_i}$.

For $P \in \Omega = \sum_{i=1}^{s} \mathbb{Z} P_i$ we write

$$P = n_1 P_1 + \cdots + n_r P_r + \cdots + n_s P_s$$

where $n_i \in \mathbb{Z}$

$$D_i := \mathcal{R}_i \otimes_{\mathbb{Z}} \mathbb{Q}$$

put
$$\Omega_j := c A_j(F)$$
. Note that $\Omega = \bigoplus_{i=1}^t \Omega_i^{e_i}$.

For
$$P \in \Omega = \sum_{i=1}^{s} \mathbb{Z} P_i$$
 we write

$$P = n_1 P_1 + \cdots + n_r P_r + \cdots + n_s P_s$$

where $n_i \in \mathbb{Z}$

$$D_i := \mathcal{R}_i \otimes_{\mathbb{Z}} \mathbb{Q}$$

Some easy reductions
Theorems about reduction
some semisimple algebras and modules
idea of the proof

Since $\Lambda \subset \Omega$ is a free subgroup of the free finitely generated abelian group $\Omega,$

observe that $P \in \Lambda$ if and only if $P \otimes 1 \in \Lambda \otimes_{\mathbb{Z}} \mathcal{O}_K$.

The latter is equivalent to $P \otimes 1 \in \Lambda \otimes_{\mathbb{Z}} \mathcal{O}_{\lambda}$ for all prime ideals $\lambda \mid I$ in \mathcal{O}_K and all prime numbers I.

Some easy reductions
Theorems about reduction
some semisimple algebras and modules
idea of the proof

Since $\Lambda \subset \Omega$ is a free subgroup of the free finitely generated abelian group Ω ,

observe that $P \in \Lambda$ if and only if $P \otimes 1 \in \Lambda \otimes_{\mathbb{Z}} \mathcal{O}_K$.

The latter is equivalent to $P \otimes 1 \in \Lambda \otimes_{\mathbb{Z}} \mathcal{O}_{\lambda}$ for all prime ideals $\lambda \mid I$ in \mathcal{O}_K and all prime numbers I.

Since $\Lambda \subset \Omega$ is a free subgroup of the free finitely generated abelian group Ω ,

observe that $P \in \Lambda$ if and only if $P \otimes 1 \in \Lambda \otimes_{\mathbb{Z}} \mathcal{O}_K$.

The latter is equivalent to $P \otimes 1 \in \Lambda \otimes_{\mathbb{Z}} \mathcal{O}_{\lambda}$ for all prime ideals $\lambda \mid I$ in \mathcal{O}_{K} and all prime numbers I.

Outline

- Generalities about abelian varieties
 - Basic facts and notation
 - Classification of endomorphism algebras
- 2 History of the problem
 - number field case
 - Statement of the problem for abelian varieties
 - Results in this direction
- Main Theorem
 - Corollaries
 - A counterexample
 - Case of algebraic tori
- Basic ingredients of proof of Theorem A
 - Some easy reductions
 - Theorems about reduction
 - some semisimple algebras and modules (●) (■) (■) (■) (■)

Using Kummer maps for abelian varieties we prove the following:

Theorem

Let $Q_{ij} \in A_i(L)$ for $1 \le j \le r_i$ be independent over \mathcal{R}_i for each $1 \le i \le t$. There is a family of primes w of \mathcal{O}_L of positive density such that $r_w(Q_{ij}) = 0$ in $A_{i,w}(k_w)_l$ for all $1 \le j \le r_i$ and $1 \le i \le t$.

Using Kummer maps for abelian varieties we prove the following:

Theorem

Let $Q_{ij} \in A_i(L)$ for $1 \le j \le r_i$ be independent over \mathcal{R}_i for each $1 \le i \le t$. There is a family of primes w of \mathcal{O}_L of positive density such that $r_w(Q_{ij}) = 0$ in $A_{i,w}(k_w)_l$ for all $1 \le j \le r_i$ and $1 \le i \le t$.

Let I be a prime number. Let $m \in \mathbb{N} \cup \{0\}$ for all $1 \le j \le r_i$ and $1 \le i \le t$. Let L/F be a finite extension and let $P_{ij} \in A_i(L)$ be independent over \mathcal{R}_i and let $T_{ij} \in A_i[I^m]$ be aribitrary torsion elements for all $1 \le j \le r_i$ and $1 \le i \le t$. There is a family of primes w of \mathcal{O}_L of positive density such that

$$r_{w'}(T_{ij}) = r_w(P_{ij})$$
 in $A_{i,w}(K_w)_I$

for all $1 \le j \le r_i$ and $1 \le i \le s$, where w' is a prime in $\mathcal{O}_{L(A_i[l^m])}$ over w and $r_{w'}: A_i(L(A_i[l^m])) \to A_{i,w}(k_{w'})$ is the corresponding reduction map.

Let I be a prime number. Let $m \in \mathbb{N} \cup \{0\}$ for all $1 \le j \le r_i$ and $1 \le i \le t$. Let L/F be a finite extension and let $P_{ij} \in A_i(L)$ be independent over \mathcal{R}_i and let $T_{ij} \in A_i[I^m]$ be aribitrary torsion elements for all $1 \le j \le r_i$ and $1 \le i \le t$. There is a family of primes w of \mathcal{O}_L of positive density such that

$$r_{w'}(T_{ij}) = r_w(P_{ij})$$
 in $A_{i,w}(k_w)_I$

for all $1 \le j \le r_i$ and $1 \le i \le s$, where w' is a prime in $\mathcal{O}_{L(A_i[I^m])}$ over w and $r_{w'}: A_i(L(A_i[I^m])) \to A_{i,w}(k_{w'})$ is the corresponding reduction map.

Let I be a prime number. Let $m \in \mathbb{N} \cup \{0\}$ for all $1 \le j \le r_i$ and $1 \le i \le t$.Let L/F be a finite extension and let $P_{ij} \in A_i(L)$ be independent over \mathcal{R}_i and let $T_{ij} \in A_i[I^m]$ be aribitrary torsion elements for all $1 \le j \le r_i$ and $1 \le i \le t$. There is a family of primes w of \mathcal{O}_L of positive density such that

$$r_{w'}(T_{ij}) = r_w(P_{ij})$$
 in $A_{i,w}(k_w)_l$

for all $1 \le j \le r_i$ and $1 \le i \le s$, where w' is a prime in $\mathcal{O}_{L(A_i[l^m])}$ over w and $r_{w'}: A_i(L(A_i[l^m])) \to A_{i,w}(k_{w'})$ is the corresponding reduction map.

Let I be a prime number. Let $m \in \mathbb{N} \cup \{0\}$ for all $1 \le j \le r_i$ and $1 \le i \le t$.Let L/F be a finite extension and let $P_{ij} \in A_i(L)$ be independent over \mathcal{R}_i and let $T_{ij} \in A_i[I^m]$ be aribitrary torsion elements for all $1 \le j \le r_i$ and $1 \le i \le t$. There is a family of primes w of \mathcal{O}_L of positive density such that

$$r_{w'}(T_{ij}) = r_w(P_{ij})$$
 in $A_{i,w}(k_w)_i$

for all $1 \le j \le r_i$ and $1 \le i \le s$, where w' is a prime in $\mathcal{O}_{L(A_i[I^m])}$ over w and $r_{w'}: A_i(L(A_i[I^m])) \to A_{i,w}(k_{w'})$ is the corresponding reduction map.

Outline

- Generalities about abelian varieties
 - Basic facts and notation
 - Classification of endomorphism algebras
- 2 History of the problem
 - number field case
 - Statement of the problem for abelian varieties
 - Results in this direction
- Main Theorem
 - Corollaries
 - A counterexample
 - Case of algebraic tori
- Basic ingredients of proof of Theorem A
 - Some easy reductions
 - Theorems about reduction
 - some semisimple algebras and modules (2) (2) (2) (2)

Let D be a division algebra and let $K_i \subset M_e(D)$ denote the left ideal of $M_e(D)$ which consists of i-the column matrices of the form

$$\widetilde{\alpha}_{i} := \left[egin{array}{cccc} 0 & \dots & a_{1i} & \dots & 0 \\ 0 & \dots & a_{2i} & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & \dots & a_{ei} & \dots & 0 \end{array}
ight] \in \mathcal{K}_{i}$$

Some easy reductions Theorems about reduction some semisimple algebras and modules idea of the proof

For $\omega \in W$ put

$$\widetilde{\omega} := \left[egin{array}{c} \omega \ 0 \ dots \ 0 \end{array}
ight] \in \emph{W}^{\emph{e}},$$

Every nonzero simple submodule of the $M_e(D)$ -module W^e has the following form

$$K_{1}\widetilde{\omega} = \{\widetilde{\alpha}_{1}\widetilde{\omega}, \ \widetilde{\alpha}_{1} \in K_{1}\} = \{ \begin{bmatrix} a_{11} \ \omega \\ a_{21} \ \omega \\ \vdots \\ a_{e1} \ \omega \end{bmatrix}, \ a_{i1} \in D, \ 1 \leq i \leq e \}$$

for some $\omega \in W$.

Let D_i be a finite dimensional division algebra over \mathbb{Q} for every 1 < i < t.

The trace homomorphisms: $tr_i: M_{e_i}(D_i) \to \mathbb{Q}$, for all $1 \le i \le t$, give the trace homomorphism $tr: \mathbb{M}_{e}(\mathbb{D}) \to \mathbb{Q}$, where $tr:=\sum_{i=1}^{t} tr_i$.

Let W_i be a finite dimensional D_i -vector space for each $1 \le i \le t$. Then W is a finitely generated $\mathbb{M}_e(\mathbb{D})$ -module.

$$tr: Hom_{\mathbb{M}_{e}(\mathbb{D})}(W, \mathbb{M}_{e}(\mathbb{D})) \to Hom_{\mathbb{Q}}(W, \mathbb{Q}).$$

Let D_i be a finite dimensional division algebra over \mathbb{Q} for every 1 < i < t.

The trace homomorphisms: $tr_i: M_{e_i}(D_i) \to \mathbb{Q}$, for all $1 \le i \le t$, give the trace homomorphism $tr: \mathbb{M}_{e}(\mathbb{D}) \to \mathbb{Q}$, where $tr:=\sum_{i=1}^{t} tr_i$.

Let W_i be a finite dimensional D_i -vector space for each $1 \le i \le t$. Then W is a finitely generated $\mathbb{M}_e(\mathbb{D})$ -module.

$$tr: Hom_{\mathbb{M}_{e}(\mathbb{D})}(W, \mathbb{M}_{e}(\mathbb{D})) \to Hom_{\mathbb{Q}}(W, \mathbb{Q}).$$

Let D_i be a finite dimensional division algebra over \mathbb{Q} for every 1 < i < t.

The trace homomorphisms: $tr_i: M_{e_i}(D_i) \to \mathbb{Q}$, for all $1 \le i \le t$, give the trace homomorphism $tr: \mathbb{M}_{e}(\mathbb{D}) \to \mathbb{Q}$, where $tr:=\sum_{i=1}^{t} tr_i$.

Let W_i be a finite dimensional D_i -vector space for each $1 \le i \le t$. Then W is a finitely generated $\mathbb{M}_e(\mathbb{D})$ -module.

$$tr: Hom_{\mathbb{M}_{e}(\mathbb{D})}(W, \mathbb{M}_{e}(\mathbb{D})) \to Hom_{\mathbb{Q}}(W, \mathbb{Q}).$$

Let D_i be a finite dimensional division algebra over \mathbb{Q} for every $1 \le i \le t$.

The trace homomorphisms: $tr_i: M_{e_i}(D_i) \to \mathbb{Q}$, for all $1 \le i \le t$, give the trace homomorphism $tr: \mathbb{M}_{e}(\mathbb{D}) \to \mathbb{Q}$, where $tr:=\sum_{i=1}^{t} tr_i$.

Let W_i be a finite dimensional D_i -vector space for each $1 \le i \le t$. Then W is a finitely generated $\mathbb{M}_e(\mathbb{D})$ -module.

$$tr: \mathit{Hom}_{\mathbb{M}_{e}(\mathbb{D})}(\mathit{W}, \ \mathbb{M}_{e}(\mathbb{D})) \to \mathit{Hom}_{\mathbb{Q}}(\mathit{W}, \ \mathbb{Q}).$$

Some easy reductions Theorems about reduction some semisimple algebras and modules idea of the proof

Lemma

The map tr is an isomorphism.

Some easy reductions
Theorems about reduction
some semisimple algebras and modules
idea of the proof

Outline

- Generalities about abelian varieties
 - Basic facts and notation
 - Classification of endomorphism algebras
- 2 History of the problem
 - number field case
 - Statement of the problem for abelian varieties
 - Results in this direction
- Main Theorem
 - Corollaries
 - A counterexample
 - Case of algebraic tori
- Basic ingredients of proof of Theorem A
 - Some easy reductions
 - Theorems about reduction

Hence $n_i \neq 0$ for some $1 \leq j \leq s$ in the expression

$$P = n_1 P_1 + \dots + n_r P_r + \dots + n_s P_s$$

Consider the equality in $\Omega \otimes_{\mathbb{Z}} \mathcal{O}_K$.

Since $P \notin \Lambda \otimes_{\mathbb{Z}} \mathcal{O}_{\lambda}$ then there is $1 \leq j_0 \leq s$ such that $\lambda^{m_1} || n_{j_0}$ and $\lambda^{m_2} || d_{j_0}$ for natural numbers $m_1 < m_2$.

Consider the map of Z-modules

$$\pi:\Omega\to\mathbb{Z}$$

$$\pi(R) := \mu_{j_0}$$

for $R=\sum_{i=1}^s \mu_i P_i$ with $\mu_i\in\mathbb{Z}$ for all $1\leq i\leq s$,

Hence $n_i \neq 0$ for some $1 \leq j \leq s$ in the expression

$$P = n_1 P_1 + \cdots + n_r P_r + \cdots + n_s P_s$$

Consider the equality in $\Omega \otimes_{\mathbb{Z}} \mathcal{O}_K$.

Since $P \notin \Lambda \otimes_{\mathbb{Z}} \mathcal{O}_{\lambda}$ then there is $1 \leq j_0 \leq s$ such that $\lambda^{m_1} || n_{j_0}$ and $\lambda^{m_2} || d_{j_0}$ for natural numbers $m_1 < m_2$.

Consider the map of Z-modules

$$\pi:\Omega\to\mathbb{Z}$$

$$\pi(R) := \mu_{j_0}$$

for $R = \sum_{i=1}^s \mu_i P_i$ with $\mu_i \in \mathbb{Z}$ for all $1 \leq i \leq \mathfrak{g}$, where \mathfrak{g} is a simple of \mathfrak{g} .

Hence $n_i \neq 0$ for some $1 \leq j \leq s$ in the expression

$$P = n_1 P_1 + \cdots + n_r P_r + \cdots + n_s P_s$$

Consider the equality in $\Omega \otimes_{\mathbb{Z}} \mathcal{O}_K$.

Since $P \notin \Lambda \otimes_{\mathbb{Z}} \mathcal{O}_{\lambda}$ then there is $1 \leq j_0 \leq s$ such that $\lambda^{m_1} || n_{j_0}$ and $\lambda^{m_2} || d_{j_0}$ for natural numbers $m_1 < m_2$.

Consider the map of Z-modules

$$\pi:\Omega\to\mathbb{Z}$$

$$\pi(R) := \mu_{j_0}$$

for $R=\sum_{i=1}^s \mu_i P_i$ with $\mu_i\in\mathbb{Z}$ for all $1\leq i\leq s$,

Hence $n_i \neq 0$ for some $1 \leq j \leq s$ in the expression

$$P = n_1 P_1 + \cdots + n_r P_r + \cdots + n_s P_s$$

Consider the equality in $\Omega \otimes_{\mathbb{Z}} \mathcal{O}_K$.

Since $P \notin \Lambda \otimes_{\mathbb{Z}} \mathcal{O}_{\lambda}$ then there is $1 \leq j_0 \leq s$ such that $\lambda^{m_1} || n_{j_0}$ and $\lambda^{m_2} || d_{j_0}$ for natural numbers $m_1 < m_2$.

Consider the map of Z-modules

$$\pi:\Omega\to\mathbb{Z}$$

$$\pi(R) := \mu_{j_0}$$

for $R=\sum_{i=1}^s \mu_i P_i$ with $\mu_i\in\mathbb{Z}$ for all $1\leq i\leq s$,

Assume $P \notin \Lambda$ $P \otimes 1 \notin \Lambda \otimes_{\mathbb{Z}} \mathcal{O}_{\lambda}$ for some $\lambda \mid I$ for some prime number I.

Hence $n_i \neq 0$ for some $1 \leq j \leq s$ in the expression

$$P = n_1 P_1 + \cdots + n_r P_r + \cdots + n_s P_s$$

Consider the equality in $\Omega \otimes_{\mathbb{Z}} \mathcal{O}_K$.

Since $P \notin \Lambda \otimes_{\mathbb{Z}} \mathcal{O}_{\lambda}$ then there is $1 \leq j_0 \leq s$ such that $\lambda^{m_1} || n_{j_0}$ and $\lambda^{m_2} || d_{j_0}$ for natural numbers $m_1 < m_2$.

Consider the map of \mathbb{Z} -modules

$$\pi: \Omega \to \mathbb{Z}$$

$$\pi(R) := \mu_{j_0}$$

for $R = \sum_{i=1}^s \mu_i P_i$ with $\mu_i \in \mathbb{Z}$ for all $1 \leq i \leq s$.

$$\widetilde{\pi} \in \mathit{Hom}_{\mathbb{M}_{\mathbf{e}}(\mathbb{D})}(\Omega \otimes_{\mathbb{Z}} \mathbb{Q}, \ \mathbb{M}_{\mathbf{e}}(\mathbb{D}))$$

 $\widetilde{s} \in Hom_{\mathbb{M}_{\mathbb{P}}(\mathbb{D})}(\operatorname{Im}\widetilde{\pi}, \ \Omega \otimes_{\mathbb{Z}} \mathbb{Q}) \text{ such that } \widetilde{\pi} \circ \widetilde{s} = Id.$

$$\mathcal{L}_i$$
 - Riemann lattice $(A_i(\mathbb{C}) = \mathbb{C}^g/\mathcal{L}_i)$

Put
$$\mathcal{L}:=igoplus_{i=1}^t \mathcal{L}_i$$
 and $\mathcal{L}':=igoplus_{i=1}^t \mathcal{L}_i'.$

$$\widetilde{\pi} \in \mathit{Hom}_{\mathbb{M}_{\mathbf{e}}(\mathbb{D})}(\Omega \otimes_{\mathbb{Z}} \mathbb{Q}, \ \mathbb{M}_{\mathbf{e}}(\mathbb{D}))$$

 $\widetilde{s} \in \mathit{Hom}_{\mathbb{M}_{\mathbf{e}}(\mathbb{D})}(\mathsf{Im}\widetilde{\pi},\ \Omega \otimes_{\mathbb{Z}} \mathbb{Q}) \ \mathsf{such that} \ \widetilde{\pi} \circ \widetilde{s} = \mathit{Id}.$

$$\mathcal{L}_i$$
 - Riemann lattice $(A_i(\mathbb{C}) = \mathbb{C}^g/\mathcal{L}_i)$

Put
$$\mathcal{L}:=igoplus_{i=1}^t \, \mathcal{L}_i$$
 and $\mathcal{L}':=igoplus_{i=1}^t \, \mathcal{L}'_i$.

$$\widetilde{\pi} \in \mathit{Hom}_{\mathbb{M}_{\mathbf{e}}(\mathbb{D})}(\Omega \otimes_{\mathbb{Z}} \mathbb{Q}, \ \mathbb{M}_{\mathbf{e}}(\mathbb{D}))$$

 $\widetilde{s} \in \mathit{Hom}_{\mathbb{M}_{\mathbf{e}}(\mathbb{D})}(\mathsf{Im}\widetilde{\pi},\ \Omega \otimes_{\mathbb{Z}} \mathbb{Q}) \ \mathsf{such that} \ \widetilde{\pi} \circ \widetilde{s} = \mathit{Id}.$

$$\mathcal{L}_i$$
 - Riemann lattice $(A_i(\mathbb{C}) = \mathbb{C}^g/\mathcal{L}_i)$

Put
$$\mathcal{L}:=igoplus_{i=1}^t \ \mathcal{L}_i$$
 and $\mathcal{L}':=igoplus_{i=1}^t \mathcal{L}'_i$.

$$\widetilde{\pi} \in \mathit{Hom}_{\mathbb{M}_{\mathbf{e}}(\mathbb{D})}(\Omega \otimes_{\mathbb{Z}} \mathbb{Q}, \ \mathbb{M}_{\mathbf{e}}(\mathbb{D}))$$

 $\widetilde{s} \in \mathit{Hom}_{\mathbb{M}_{\mathbf{e}}(\mathbb{D})}(\mathsf{Im}\widetilde{\pi},\ \Omega \otimes_{\mathbb{Z}} \mathbb{Q}) \ \mathsf{such that} \ \widetilde{\pi} \circ \widetilde{s} = \mathit{Id}.$

$$\mathcal{L}_i$$
 - Riemann lattice $(A_i(\mathbb{C}) = \mathbb{C}^g/\mathcal{L}_i)$

Put
$$\mathcal{L}:=igoplus_{i=1}^t \mathcal{L}_i$$
 and $\mathcal{L}':=igoplus_{i=1}^t \mathcal{L}'_i$.

$$\widetilde{\pi} \in \mathit{Hom}_{\mathbb{M}_{\mathbf{e}}(\mathbb{D})}(\Omega \otimes_{\mathbb{Z}} \mathbb{Q}, \ \mathbb{M}_{\mathbf{e}}(\mathbb{D}))$$

 $\widetilde{s} \in \mathit{Hom}_{\mathbb{M}_{\mathbf{e}}(\mathbb{D})}(\mathsf{Im}\widetilde{\pi},\ \Omega \otimes_{\mathbb{Z}} \mathbb{Q}) \ \mathsf{such that} \ \widetilde{\pi} \circ \widetilde{s} = \mathit{Id}.$

$$\mathcal{L}_i$$
 - Riemann lattice $(A_i(\mathbb{C}) = \mathbb{C}^g/\mathcal{L}_i)$

Put
$$\mathcal{L}:=igoplus_{i=1}^t \ \mathcal{L}_i$$
 and $\mathcal{L}':=igoplus_{i=1}^t \mathcal{L}'_i$.

Analyze

$$\textit{\textbf{z}}(\textit{\textbf{n}},\lambda)\,:\, \mathcal{L}'\otimes_{\mathbb{Z}}\mathcal{O}_{\lambda}\,/\,\lambda^{\epsilon\,\textit{\textbf{n}}}\,\mathcal{L}'\otimes_{\mathbb{Z}}\mathcal{O}_{\lambda}\rightarrow\mathcal{L}\otimes_{\mathbb{Z}}\mathcal{O}_{\lambda}\,/\,\lambda^{\epsilon\,\textit{\textbf{n}}}\,\mathcal{L}\otimes_{\mathbb{Z}}\mathcal{O}_{\lambda},$$

$$I\mathcal{O}_K = \prod_{\lambda \mid I} \lambda^{\epsilon},$$

Here we need dimension condition

Analyze

$$\textit{\textbf{z}}(\textit{\textbf{n}},\lambda)\,:\, \mathcal{L}'\otimes_{\mathbb{Z}}\mathcal{O}_{\lambda}\,/\,\lambda^{\epsilon\,\textit{\textbf{n}}}\,\mathcal{L}'\otimes_{\mathbb{Z}}\mathcal{O}_{\lambda}\rightarrow\mathcal{L}\otimes_{\mathbb{Z}}\mathcal{O}_{\lambda}\,/\,\lambda^{\epsilon\,\textit{\textbf{n}}}\,\mathcal{L}\otimes_{\mathbb{Z}}\mathcal{O}_{\lambda},$$

$$I\mathcal{O}_{K} = \prod_{\lambda \mid I} \lambda^{\epsilon},$$

Here we need dimension condition

Analyze

$$\textit{\textbf{z}}(\textit{\textbf{n}},\lambda)\,:\, \mathcal{L}'\otimes_{\mathbb{Z}}\mathcal{O}_{\lambda}\,/\,\lambda^{\epsilon\,\textit{\textbf{n}}}\,\mathcal{L}'\otimes_{\mathbb{Z}}\mathcal{O}_{\lambda}\to\mathcal{L}\otimes_{\mathbb{Z}}\mathcal{O}_{\lambda}\,/\,\lambda^{\epsilon\,\textit{\textbf{n}}}\,\mathcal{L}\otimes_{\mathbb{Z}}\mathcal{O}_{\lambda},$$

$$I\mathcal{O}_{K} = \prod_{\lambda \mid I} \lambda^{\epsilon},$$

Here we need dimension condition

Analyze

$$\textit{z}(\textit{n},\lambda)\,:\, \mathcal{L}'\otimes_{\mathbb{Z}}\mathcal{O}_{\lambda}\,/\,\lambda^{\epsilon\,\textit{n}}\,\mathcal{L}'\otimes_{\mathbb{Z}}\mathcal{O}_{\lambda}\rightarrow\mathcal{L}\otimes_{\mathbb{Z}}\mathcal{O}_{\lambda}\,/\,\lambda^{\epsilon\,\textit{n}}\,\mathcal{L}\otimes_{\mathbb{Z}}\mathcal{O}_{\lambda},$$

$$I\mathcal{O}_{\mathcal{K}} = \prod_{\lambda \mid I} \lambda^{\epsilon},$$

Here we need dimension condition

By Reduction Theorem there is a set of primes w of \mathcal{O}_L of positive density such that $r_w(\omega_k(i)) = 0$ for $1 \le i \le t$, $k_i + 1 \le k \le u_i$ and $r_w(\omega_k(i)) = r_w(T_k(i))$ for all $1 \le i \le t$, $1 \le k \le k_i$.

Choose such a prime w. Since $r_w(P) \in r_w(\Lambda)$ we take $Q \in \Lambda$ such that $r_w(P) = r_w(Q)$. Applying the reduction map r_w to the equation

$$M_{2}(P-Q) = \sum_{i=1}^{t} \sum_{k=1}^{k_{i}} (\alpha_{k}(i)_{1} - \beta_{k}(i)_{1}) M_{0}\omega_{k}(i)$$
$$+ \sum_{i=1}^{t} \sum_{k=k_{i}+1}^{u_{i}} (\alpha_{k}(i)_{1} - \beta_{k}(i)_{1})\omega_{k}(i),$$

we obtain

$$0 = \sum_{i=1}^{t} \sum_{k=1}^{k_i} (\alpha_k(i)_1 - \beta_k(i)_1) M_0 r_w(T_k(i)).$$

Since r_w is injective on torsion we have

$$0 = \sum_{i=1}^{t} \sum_{k=1}^{k_i} (\alpha_k(i)_1 - \beta_k(i)_1) M_0 T_k(i).$$

and thus

$$\alpha_k(i) - \beta_k(i) \in \lambda^{an+b} K(i)_{1,\lambda}$$

On the other hand

$$\alpha_k(i) - \beta_k(i) \notin \lambda^{m_2} K(i)_{1,\lambda}$$

This part is P.K. Yuval Flicker

Theorem (Schinzel)

Let F be a number field, and D > 0 a rational integer. Let T be the torus \mathbb{G}_m^n . Fix t_1, \ldots, t_r , t_0 in T(F). Suppose for each ideal \mathfrak{m} in the ring \mathcal{O} of integers of F, that is prime to D, there are $x_{1,\mathfrak{m}}\ldots,x_{r,\mathfrak{m}}$ in \mathbb{Z} such that $t_1^{x_{1,\mathfrak{m}}}\cdots t_r^{x_{r,\mathfrak{m}}}\equiv t_0(\mathsf{mod}\,\mathfrak{m})$. Then there are $x_1,\ldots,x_r\in\mathbb{Z}$ with $t_1^{x_1}\cdots t_r^{x_r}=t_0$.

Conjecture

Let F be a number field. Let G be a linear algebraic group over \mathcal{O} , viewed as a subgroup of some matrix group GL(n). Fix g_1 , ..., g_r , g_0 in G(F). Let D>0 a rational integer, depending on g_1,\ldots,g_r . Suppose for each ideal $\mathfrak m$ in the ring $\mathcal O$ of integers of F, that is prime to D, there are $x_{1,\mathfrak m}\ldots,x_{r,\mathfrak m}$ in $\mathbb Z$ such that $g_1^{x_{1,\mathfrak m}}\cdots g_r^{x_{r,\mathfrak m}}\equiv g_0(\mathsf{mod}\,\mathfrak m)$. Then there are $x_1,\ldots,x_r\in\mathbb Z$ with $g_1^{x_1}\cdots g_r^{x_r}=g_0$.

If
$$g_i = \begin{pmatrix} 1 & u_i \\ 0 & 1 \end{pmatrix}$$
, when $F = \mathbb{Q}$ Conjecture states the following.

Proposition

Suppose u_0, u_1, \ldots, u_r are nonzero rational integers. Let D > 0 be an integer prime to the g.c.d. $u = (u_1, \ldots, u_r)$. Suppose for each m > 1 prime to D there are integers $x_{i,m}$ ($1 \le i \le r$) with $x_{1,m}u_1 + \cdots + x_{r,m}u_r \equiv u_0 \pmod{m}$. Then there are integers x_i ($1 \le i \le r$) with $x_1u_1 + \cdots + x_ru_r = u_0$.

If
$$g_i = \begin{pmatrix} 1 & u_i \\ 0 & 1 \end{pmatrix}$$
, when $F = \mathbb{Q}$ Conjecture states the following.

PROPOSITION

Suppose u_0, u_1, \ldots, u_r are nonzero rational integers. Let D > 0 be an integer prime to the g.c.d. $u = (u_1, \ldots, u_r)$. Suppose for each m > 1 prime to D there are integers $x_{i,m}$ ($1 \le i \le r$) with $x_{1,m}u_1 + \cdots + x_{r,m}u_r \equiv u_0 \pmod{m}$. Then there are integers x_i ($1 \le i \le r$) with $x_1u_1 + \cdots + x_ru_r = u_0$.

When G is a Heisenberg group, say the unipotent radical of the upper triangular subgroup of SL(3), the following question comes up, first again in the context of integers. Suppose, instead of u_0, u_1, \ldots, u_r , say we have two sequences of integers u_0, u_1, \ldots, u_r and v_0, v_1, \ldots, v_r ; and for D prime to (u_1, \ldots, u_r) and (v_1, \ldots, v_r) , for each m prime to D the equations $x_{1,m}u_1 + \cdots + x_{r,m}u_r \equiv u_0 \pmod{m}$ and $x_{1,m}v_1 + \cdots + x_{r,m}v_r \equiv v_0 \pmod{m}$ are solvable, with the same integral x's.

Thus $x_{i,m}$ are the same for the u's and for the v's. Then there is a solution to $x_1u_1 + \cdots + x_ru_r = u_0$ and to $y_1v_1 + \cdots + y_rv_r = v_0$. We should be able to choose $y_i = x_i$. Is this true? Yes it is, even more generally, in the context of G being the unipotent radical U of the upper triangular subgroup of SL(n).

Regarding the above diagonal, that is, the derived group U/[U, U] of U, we have, in the context of $F = \mathbb{Q}$:

Proposition

Suppose $u_{0,j}$, $u_{1,j}$, ..., $u_{r,j}$ ($1 \le j < n$) are nonzero integers. Let D > 0 be an integer prime to the g.c.d. $u_j = (u_{1,j}, \ldots, u_{r,j})$, all j. Suppose for each m > 1 prime to D there are integers $x_{i,m}$ ($1 \le i \le r$) with $x_{1,m}u_{1,j} + \cdots + x_{r,m}u_{r,j} \equiv u_{0,j} \pmod{m}$ for all j. Then there are integers x_i ($1 \le i \le r$) with $x_1u_{1,j} + \cdots + x_ru_{r,j} = u_{0,j}$.

Regarding the above diagonal, that is, the derived group U/[U, U] of U, we have, in the context of $F = \mathbb{Q}$:

PROPOSITION

Suppose $u_{0,j}, u_{1,j}, \ldots, u_{r,j}$ $(1 \le j < n)$ are nonzero integers. Let D > 0 be an integer prime to the g.c.d. $u_j = (u_{1,j}, \ldots, u_{r,j})$, all j. Suppose for each m > 1 prime to D there are integers $x_{i,m}$ $(1 \le i \le r)$ with $x_{1,m}u_{1,j} + \cdots + x_{r,m}u_{r,j} \equiv u_{0,j} \pmod{m}$ for all j. Then there are integers x_i $(1 \le i \le r)$ with $x_1u_{1,j} + \cdots + x_ru_{r,j} = u_{0,j}$.

Theorem

Let Γ be a subgroup of $SL(n,\mathcal{O})$ of finite index. Let ϕ be a nontrivial homomorphism from Γ to Γ . Suppose there is an infinite set S of prime ideals $\mathfrak p$ of $\mathcal O$ with the following property. For all $\mathfrak p$ in S, the homomorphism ϕ factors to give an homomorphism $\phi_{\mathfrak p}: SL(n,\mathcal O/\mathfrak p) \to SL(n,\mathcal O/\mathfrak p)$, thus the following diagram exists and is commutative:

Moreover, suppose $\phi_{\mathfrak{p}}$ is inner, thus $\phi_{\mathfrak{p}}(g) = \operatorname{Int}(x)g := xgx^{-1}$, for some $x = x(\phi_{\mathfrak{p}})$ in $\operatorname{GL}(n, \mathcal{O}/\mathfrak{p})$, for all $\mathfrak{p} \in S$. Then ϕ is an automorphism of Γ which is the restriction to Γ of the inner-conjugation action by an element of $\operatorname{GL}(n, F)$.

Proof:

Put $B = \prod_{\mathfrak{p} \in \mathcal{S}} \mathcal{O}/\mathfrak{p}$. The ring \mathcal{O} embeds in the ring B. Hence there is an injection $\mathrm{SL}(n,\mathcal{O}) \hookrightarrow \mathrm{SL}(n,B)$. So ϕ lies in a commutative diagram

and it is locally inner. Hence the representation $\phi: \Gamma \to \operatorname{GL}(n, F)$ and the identity – natural embedding – representation id : $\Gamma \to \operatorname{GL}(n, F)$, have equal traces.

But id is irreducible, hence ϕ and id are conjugate by an element of GL(n, F), namely ϕ is the restriction to Γ of Int(x) for some $x \in GL(n, F)$, and Int(x) takes Γ to itself.

But the index $[SL(n, \mathcal{O}) : \Gamma]$ equals $[SL(n, \mathcal{O}) : Int(x)\Gamma]$, hence $\phi = Int(x)$ is an automorphism of Γ .

and it is locally inner. Hence the representation $\phi: \Gamma \to \operatorname{GL}(n, F)$ and the identity – natural embedding – representation id : $\Gamma \to \operatorname{GL}(n, F)$, have equal traces.

But id is irreducible, hence ϕ and id are conjugate by an element of GL(n, F), namely ϕ is the restriction to Γ of Int(x), for some $x \in GL(n, F)$, and Int(x) takes Γ to itself.

But the index $[SL(n, \mathcal{O}) : \Gamma]$ equals $[SL(n, \mathcal{O}) : Int(x)\Gamma]$, hence $\phi = Int(x)$ is an automorphism of Γ .

and it is locally inner. Hence the representation $\phi: \Gamma \to \operatorname{GL}(n, F)$ and the identity – natural embedding – representation id : $\Gamma \to \operatorname{GL}(n, F)$, have equal traces.

But id is irreducible, hence ϕ and id are conjugate by an element of GL(n, F), namely ϕ is the restriction to Γ of Int(x), for some $x \in GL(n, F)$, and Int(x) takes Γ to itself.

But the index $[SL(n, \mathcal{O}) : \Gamma]$ equals $[SL(n, \mathcal{O}) : Int(x)\Gamma]$, hence $\phi = Int(x)$ is an automorphism of Γ .