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Generalities about abelian varieties
Basic facts and notation

Classification of endomorphism algebras

Abelian variety - projective algebraic variety that is also an
algebraic group, i.e., has a group law that can be defined by
regular functions.
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algebraic group, i.e., has a group law that can be defined by
regular functions.
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Generalities about abelian varieties
Basic facts and notation

Classification of endomorphism algebras

Abelian variety - projective algebraic variety that is also an
algebraic group, i.e., has a group law that can be defined by
regular functions.

m:AxA—A

inv:A— A

An affine group variety is called a linear algebraic group

Each such variety can be realized as closed subgroup of GL,
for some n

In particular G, = GL; is a linear algebraic group.
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Classification of endomorphism algebras

A(C) = CI/A
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A(C) = C9/A A- a lattice in R29

Theorem

A torus C9 /N is the set of complex points A(C) of an abelian
variety iff there exists an R-bilinear form
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Classification of endomorphism algebras

A(C) = C9/A A- a lattice in R29

Theorem

A torus C9 /N is the set of complex points A(C) of an abelian
variety iff there exists an R-bilinear form

E:CIxCI—->R

such that
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Generalities about abelian varieties
Basic facts and notation

Classification of endomorphism algebras

A(C) = C9/A A- a lattice in R29

Theorem

A torus C9 /N is the set of complex points A(C) of an abelian
variety iff there exists an R-bilinear form

E:CIxCI—->R

such that
(1) E(iv,iw) = E(v,w)
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Basic facts and notation
Classification of endomorphism algebras

A(C) = C9/A A- a lattice in R29

Theorem

A torus C9 /N is the set of complex points A(C) of an abelian
variety iff there exists an R-bilinear form

E:CIxCI—->R

such that
(1) E(iv,iw) = E(v,w)

(2) (v,w) — E(v,iw) is a symmetric positive defined bilinear
form
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A(C) = C9/A A- a lattice in R29

Theorem

A torus C9 /N is the set of complex points A(C) of an abelian
variety iff there exists an R-bilinear form

E:CIxCI—->R

such that
(1) E(iv,iw) = E(v,w)

(2) (v,w) — E(v,iw) is a symmetric positive defined bilinear
form

(3) E(v,w)e Zforv,we A

[NER On linear



Generalities about abelian varieties

Basic facts and notation
Classification of endomorphism algebras

A(C) = C9/A A- a lattice in R29

Theorem

A torus C9 /N is the set of complex points A(C) of an abelian
variety iff there exists an R-bilinear form

E:CIxCI—->R

such that
(1) E(iv,iw) = E(v,w)

(2) (v,w) — E(v,iw) is a symmetric positive defined bilinear
form

(3) E(v,w)e Zforv,we A

If such a form exists then A — P”
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Generalities about abelian varieties

Basic facts and notation
Classification of endomorphism algebras

A(C) = C9/A A- a lattice in R29

Theorem

A torus C9 /N is the set of complex points A(C) of an abelian
variety iff there exists an R-bilinear form

E:CIxCI—->R

such that
(1) E(iv,iw) = E(v,w)

(2) (v,w) — E(v,iw) is a symmetric positive defined bilinear
form

(3) E(v,w)e Zforv,we A

If such a form exists then A — P" (by means of #-functions)
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Generalities about abelian varieties
Basic facts and notation

Classification of endomorphism algebras

f: A— Bis called an isogeny if f is surjective and has finite
kernel.
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Classification of endomorphism algebras

f: A— Bis called an isogeny if f is surjective and has finite
kernel.

The product of an abelian variety A of dimension m, and an
abelian variety B of dimension n, over the same field, is an
abelian variety of dimension m + n.
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f: A— Bis called an isogeny if f is surjective and has finite
kernel.

The product of an abelian variety A of dimension m, and an
abelian variety B of dimension n, over the same field, is an
abelian variety of dimension m + n.

An abelian variety is simple if it is not isogenous to a product of
abelian varieties of lower dimension.
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Generalities about abelian varieties
Basic facts and notation

Classification of endomorphism algebras

f: A— Bis called an isogeny if f is surjective and has finite
kernel.

The product of an abelian variety A of dimension m, and an
abelian variety B of dimension n, over the same field, is an
abelian variety of dimension m + n.

An abelian variety is simple if it is not isogenous to a product of
abelian varieties of lower dimension.

Any abelian variety is isogenous to a product of simple abelian

varieties.
A%Af‘ X -0 X AT
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there exists AY such that A = AV
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Classification of endomorphism algebras

there exists A such that A= AVY
polarisation - an isogeny X : A — AY

principal polarisation - deg\ = 1
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Generalities about abelian varieties
Basic facts and notation

Classification of endomorphism algebras

there exists A such that A = AV
polarisation - an isogeny X : A — AY
principal polarisation - deg\ = 1

over C polarisation is equivalent to the choice of skew-
symmetic form
P ANXN—Z
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Generalities about abelian varieties
Basic facts and notation

Classification of endomorphism algebras

there exists A such that A = AV
polarisation - an isogeny X : A — AY
principal polarisation - deg\ = 1

over C polarisation is equivalent to the choice of skew-
symmetic form
P ANXN—Z

dety) = 1 - polarisation is principal

PKrason On lin



Generalities about abelian varieties
Basic facts and notation

Classification of endomorphism algebras

Since \ is an isogeny there exists A~ in Hom(AY, A) ® Q
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Generalities about abelian varieties
Basic facts and notation

Classification of endomorphism algebras

Since \ is an isogeny there exists A~ in Hom(AY, A) ® Q
Rosati involution on End®(A) = End(A) @ Q

1

R :a—a =X""oa"o\
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0 Generalities about abelian varieties

@ Classification of endomorphism algebras
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Generalities about abelian varieties
Basic facts and notation
Classification of endomorphism algebras

Albert’s classification

A/F -simple; E = Z(End°(A)) = Z(End(A) ® Q);
EO — ERinv

@ (I) End®(A) = E = Ey is a totally real number field R;,, = id
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Generalities about abelian varieties
Basic facts and notation
Classification of endomorphism algebras

Albert’s classification

A/F -simple; E = Z(End°(A)) = Z(End(A) ® Q);
EO — ERinv

@ (I) E = Eyis a totally real number field; End®(A) is a
division algebra over E such that every component of
End®(A)®gR is isomorphic to My (R);

B End(A), 8=—8; Rnla)=p8"(a)8
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Generalities about abelian varieties
Basic facts and notation
Classification of endomorphism algebras

Albert’s classification

A/F -simple; E = Z(End°(A)) = Z(End(A) ® Q);
EO — ERinv

@ (Ill) E = E is totally real; End®(A) is a division algebra
over E such that every component of End®(A)@gR is
isomorphicto H  Rj,,(a) = la
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Generalities about abelian varieties
Basic facts and notation
Classification of endomorphism algebras

Albert’s classification

A/F -simple; E = Z(End°(A)) = Z(End(A) ® Q);
EO — ERinv

Q (IV) Ey is totally real;  E - totally imaginary quadratic
extension of Eg;  Riny|e = cc|g; End®(A) is a division
algebra over E
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

K - a number field

Theorem (A.Schinzel 1973)
Ifaq,...ak, B are non-zero elements of K and the congruence

X{ X xk_
ay'ay ..« B mod p
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

K - a number field

Theorem (A.Schinzel 1973)
Ifaq,...ak, B are non-zero elements of K and the congruence

X1 Xo Xk
ay'an? .. ol = B mody

is soluble for almost all prime ideals p of K then the
corresponding equation is soluble in rational integers.
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Results in this direction

History of the problem

K - a number field
Theorem (A.Schinzel 1973)

Ifaq,...ak, B are non-zero elements of K and the congruence

X1 Xo Xk
ay'an? .. ol = B mody

is soluble for almost all prime ideals p of K then the
corresponding equation is soluble in rational integers. i.e. there
existny ... ng € Z such that 8 = aq4™ ... ax"™
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

K - a number field
Theorem (A.Schinzel 1973)

Ifaq,...ak, B are non-zero elements of K and the congruence

X1 Xo Xk
ay'an? .. ol = B mody

is soluble for almost all prime ideals p of K then the
corresponding equation is soluble in rational integers. i.e. there
existny ... ng € Z such that 8 = aq4™ ... ax"™

proved again by C.Khare by different methods
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem of A.Schinzel does not extend in full generality to the
system of congruences.
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem of A.Schinzel does not extend in full generality to the
system of congruences.

Theorem (A. Schinzel 1973)

Letajj,pi (i=1,...,hj=1,... k) be non-zero elements of
K, D a positive integer.
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History of the problem

Theorem of A.Schinzel does not extend in full generality to the
system of congruences.

Theorem (A. Schinzel 1973)

Letajj,pi (i=1,...,hj=1,... k) be non-zero elements of
K, D a positive integer.If the system of congruences

Mo =B modm  (i=1,...,h)
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem of A.Schinzel does not extend in full generality to the
system of congruences.

Theorem (A. Schinzel 1973)

Letajj,pi (i=1,...,hj=1,... k) be non-zero elements of
K, D a positive integer.If the system of congruences

Mo =B modm  (i=1,...,h)

is soluble for all moduli m prime to D then the corresponding
system of equations is soluble in integers.
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Results in this direction

History of the problem

Counterexample: [A.Schinzel 1973]
2*3¥ = 1mod p

23 =4 mod p
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Counterexample: [A.Schinzel 1973]
2*3¥ = 1mod p

23 =4 mod p
forp=2,3
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Counterexample: [A.Schinzel 1973]
2*3¥ = 1mod p

23 =4 mod p
forp=2,3 (x,y,z) =(0,1,0) resp. (0,0,0)
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Counterexample: [A.Schinzel 1973]
2*3¥ = 1mod p

23 =4 mod p
forp=2,3 (x,y,z) =(0,1,0) resp. (0,0,0)
For other p, fix a primitive root mod p
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Counterexample: [A.Schinzel 1973]
2*3¥ = 1mod p

23 =4 mod p
forp=2,3 (x,y,z) =(0,1,0) resp. (0,0,0)
For other p, fix a primitive root mod p

xind2 + yind3 =0 mod p — 1,

yind2 + zind3 = 2ind2 mod p — 1

PKrason On linear



number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

(ind2)?
909 o cd(ind?. ind3)’

ind3) | ind2
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

(ind2)?
909 o cd(ind?. ind3)’

ind3) | ind2

(ind2)?

god(ind2, ing3) + #nd3 = 2ina2
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

(ind2)?

909 o otinda. ing3)’ M3 | ind2

(ind2)?

god(ind2, ing3) + #nd3 = 2ina2

. —tind3 _ tind2
= ged(ind2,ind3)’ ¥ T ged(ind2, ind3)
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@ Statement of the problem for abelian varieties
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

A/F  red,: A(F) — A(ky)

QUESTION (W.GAJDA 2002)
Let X be a subgroup of A(F).
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

A/F red, : A(F) = A(kv)
QUESTION (W.GAJDA 2002)

Let Y be a subgroup of A(F). Suppose that x is a point of A(F)
such that red, x lies in redy %~ for almost all places v of F.
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

A/F  red,: A(F) — A(ky)

QUESTION (W.GAJDA 2002)

Let Y be a subgroup of A(F). Suppose that x is a point of A(F)
such that red, x lies in red\ %~ for almost all places v of F. Does
it then follow that x lies in X ?
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9 History of the problem

@ Results in this direction
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem (Weston 2003)

Let A be an abelian variety over a number field F and assume
that EndrA is commutative.
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem (Weston 2003)

Let A be an abelian variety over a number field F and assume
that Endr A is commutative. Let ¥ be a subgroup of A(F) and

suppose that x € A(F) is such that red,x € red, ¥ for almost all
places v of F.
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number field case
Statement of the problem for abelian varieties

History of the problem

Results in this direction

Theorem (Weston 2003)

Let A be an abelian variety over a number field F and assume
that Endr A is commutative. Let ¥ be a subgroup of A(F) and
suppose that x € A(F) is such that red,x € red, ¥ for almost all
places v of F. Then x € ¥ + A(F)tors
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem (Weston 2003)

Let A be an abelian variety over a number field F and assume
that Endr A is commutative. Let ¥ be a subgroup of A(F) and
suppose that x € A(F) is such that red,x € red, ¥ for almost all
places v of F. Then x € ¥ + A(F)tors

this covers product of non-isogenous elliptic curves.
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem (G.Banaszak, W.Gajda, P.K 2005)

Let A be a principally polarized abelian variety of dimension g
defined over the number field F such that Endz(A) = Z and
dim(A) = g is either odd or g = 2 or 6.
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem (G.Banaszak, W.Gajda, P.K 2005)

Let A be a principally polarized abelian variety of dimension g
defined over the number field F such that Endz(A) = Z and
dim(A) = g is eitherodd org =2 or 6. Let P and Py ... P, be
non-torsion elements of A(F) such that Py ... P, are linearly
independent over 7.
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem (G.Banaszak, W.Gajda, P.K 2005)

Let A be a principally polarized abelian variety of dimension g
defined over the number field F such that Endz(A) = Z and
dim(A) = g is eitherodd org =2 or 6. Let P and Py ... P, be
non-torsion elements of A(F) such that Py ... P, are linearly
independent over Z. Denote by A the subgroup of A(F)
generated by Py ... P;.
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Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem (G.Banaszak, W.Gajda, P.K 2005)

Let A be a principally polarized abelian variety of dimension g
defined over the number field F such that Endz(A) = Z and
dim(A) = g is eitherodd org =2 or 6. Let P and Py ... P, be
non-torsion elements of A(F) such that Py ... P, are linearly
independent over Z. Denote by A the subgroup of A(F)
generated by P; ... P,. Then the following are equivalent:
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem (G.Banaszak, W.Gajda, P.K 2005)

Let A be a principally polarized abelian variety of dimension g
defined over the number field F such that Endz(A) = Z and
dim(A) = g is eitherodd org =2 or 6. Let P and Py ... P, be
non-torsion elements of A(F) such that Py ... P, are linearly
independent over Z. Denote by A the subgroup of A(F)
generated by P; ... P,. Then the following are equivalent:

(1) PeA
(2) rn(P) € r(N)
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem (BGK 2005)

Let P and Py ... P, be non-torsion elements of A(F) such that
RP is a free R-module and P; . .. P, are linearly independent
over R.
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem (BGK 2005)

Let P and Py ... P, be non-torsion elements of A(F) such that
RP is a free R-module and P; . .. P, are linearly independent
over R. Denote by N\ the R-submodule of A(F) generated by
Py ... P.. Assume that r,(P) € r,(N\) for almost all primes v of
F.
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem (BGK 2005)

Let P and Py ... P, be non-torsion elements of A(F) such that
RP is a free R-module and P; . .. P, are linearly independent
over R. Denote by N\ the R-submodule of A(F) generated by
Py ... P.. Assume that r,(P) € r,(N\) for almost all primes v of
F. Then there exists a natural number a such that aP € A.
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem (BGK 2005)

Let P and Py ... P, be non-torsion elements of A(F) such that
RP is a free R-module and P; . .. P, are linearly independent
over R. Denote by N\ the R-submodule of A(F) generated by
Py ... P.. Assume that r,(P) € r,(N\) for almost all primes v of
F. Then there exists a natural number a such that aP € A.

W. Gajda and K.Gérnisiewicz refined this theorem to a = 1
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem (G.Banaszak 2008)

Let Py,..., P be elements of A(F) linearly independent over
R = End=(A).
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem (G.Banaszak 2008)

Let Py,..., P be elements of A(F) linearly independent over
R = End=(A). Let P be a point of A(F) such that RP is a free
‘R-module.
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem (G.Banaszak 2008)

Let Py,..., P be elements of A(F) linearly independent over
R = End=(A). Let P be a point of A(F) such that RP is a free
‘R-module. The following conditions are equivalent:

(1) Pe Xi_|ZP;
(2) rv(P) e Z,(:1Z”v(":,i)
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number field case
Statement of the problem for abelian varieties
Results in this direction

History of the problem

Theorem (G.Banaszak 2008)

Let Py,..., P be elements of A(F) linearly independent over
R = End=(A). Let P be a point of A(F) such that RP is a free
‘R-module. The following conditions are equivalent:

(1) Pe Xi_|ZP;
(2) rv(P) e Z,(:1Z”v(":,i)

A. Perucca generalized this theorem to semiabelian varieties
and removed the hypotheses that RP is a free R-module
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Corollaries
A counterexample

Mai )
ain Theorem Case of algebraic tori

THEOREM A (G.BANASZAK, P.KRASON)

Let A/F be an abelian variety defined over a number field F.
Assume that A is isogeneous to AT' x --- x A{* with A; simple,
pairwise nonisogenous abelian varieties such that
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Corollaries
A counterexample

Mai )
ain Theorem Case of algebraic tori

THEOREM A (G.BANASZAK, P.KRASON)

Let A/F be an abelian variety defined over a number field F.
Assume that A is isogeneous to AT' x --- x A{* with A; simple,
pairwise nonisogenous abelian varieties such that
dimgng,, a0 Hi1(Ai(C); Q) > ej foreach1 <i<t,

[NER On linear .....



Corollaries
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Mai )
ain Theorem Case of algebraic tori

THEOREM A (G.BANASZAK, P.KRASON)

Let A/F be an abelian variety defined over a number field F.
Assume that A is isogeneous to AT' x --- x A{* with A; simple,
pairwise nonisogenous abelian varieties such that
dimgng,, a0 Hi1(Ai(C); Q) > ej foreach1 < i <t, where
Endr:(A)° := Endr(A;) ® Q and F'/F is a finite extension
such that the isogeny is defined over F’.
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Corollaries
A counterexample

Mai )
ain Theorem Case of algebraic tori

THEOREM A (G.BANASZAK, P.KRASON)

Let A/F be an abelian variety defined over a number field F.
Assume that A is isogeneous to AT' x --- x A{* with A; simple,
pairwise nonisogenous abelian varieties such that

dimgng,, a0 Hi1(Ai(C); Q) > ej foreach1 < i <t, where
Endr:(A)° := Endr(A;) ® Q and F'/F is a finite extension
such that the isogeny is defined over F'. Let P € A(F) and let \
be a subgroup of A(F).
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Corollaries
A counterexample

Mai )
ain Theorem Case of algebraic tori

THEOREM A (G.BANASZAK, P.KRASON)

Let A/F be an abelian variety defined over a number field F.
Assume that A is isogeneous to AT' x --- x A{* with A; simple,
pairwise nonisogenous abelian varieties such that

dimgng,, a0 Hi1(Ai(C); Q) > ej foreach1 < i <t, where
Endr:(A)° := Endr(A;) ® Q and F'/F is a finite extension
such that the isogeny is defined over F'. Let P € A(F) and let \
be a subgroup of A(F). If r,(P) € r,(N\) for almost all v of O
then P € N+ A(F)or-
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Corollaries
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THEOREM A (G.BANASZAK, P.KRASON)

Let A/F be an abelian variety defined over a number field F.
Assume that A is isogeneous to AT' x --- x A{* with A; simple,
pairwise nonisogenous abelian varieties such that

dimgng,, a0 Hi1(Ai(C); Q) > ej foreach1 < i <t, where
Endg:(A;)° := Endr(A;) ® Q and F'/F is a finite extension
such that the isogeny is defined over F'. Let P € A(F) and let \
be a subgroup of A(F). If r,(P) € r,(N\) for almost all v of O
then P € N + A(F)r. Moreover if A(F)wr C A, then the
following conditions are equivalent:
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Main Theorem Case of algebraic tori

THEOREM A (G.BANASZAK, P.KRASON)

Let A/F be an abelian variety defined over a number field F.
Assume that A is isogeneous to AT' x --- x A{* with A; simple,
pairwise nonisogenous abelian varieties such that

dimgng,, a0 Hi1(Ai(C); Q) > ej foreach1 < i <t, where
Endg:(A;)° := Endr(A;) ® Q and F'/F is a finite extension
such that the isogeny is defined over F'. Let P € A(F) and let \
be a subgroup of A(F). If r,(P) € r,(N\) for almost all v of O
then P € N + A(F)r. Moreover if A(F)wr C A, then the
following conditions are equivalent:

1T PeA
2 ry(P) € ry(N) for almost all v of Of.
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PROBLEM

Let A/F be an abelian variety over a number field F and let
P € A(F) and let A C A(F) be a subgroup.
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Main Theorem

PROBLEM

Let A/F be an abelian variety over a number field F and let

P € A(F) and let N C A(F) be a subgroup. Is there an
effectively computable finite set S of primes v of O,
depending only on A, P and \ such that the following conditions
are equivalent? :
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Main Theorem

PROBLEM

Let A/F be an abelian variety over a number field F and let

P € A(F) and let N C A(F) be a subgroup. Is there an
effectively computable finite set S of primes v of O,
depending only on A, P and \ such that the following conditions
are equivalent? :

(1) PeA
(2) r,(P) € ry(N) for every v € Séf

[NER On linear




Corollaries
A counterexample

Main Theorem Case of algebraic tori

THEOREM B ( G.BANASZAK, P.KRASON)

Let A/F satisfy the hypotheses of Theorem A. Let P € A(F)
and let \ be a subgroup of A(F).
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Main Theorem Case of algebraic tori

THEOREM B ( G.BANASZAK, P.KRASON)

Let A/F satisfy the hypotheses of Theorem A. Let P € A(F)
and let \ be a subgroup of A(F).There is a finite set of primes v
of Of, such that the condition: r,(P) € r,(A) for all v € S™
implies P € N+ A(F)ior-
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Main Theorem Case of algebraic tori

THEOREM B ( G.BANASZAK, P.KRASON)

Let A/F satisfy the hypotheses of Theorem A. Let P € A(F)
and let \ be a subgroup of A(F).There is a finite set of primes v
of Of, such that the condition: r,(P) € r,(A) for all v € S™
implies P € A+ A(F)ir. Moreover if A(F)wr C A, then the
following conditions are equivalent:

(1) PeA
() r(P) € r,(A) forv e S™.
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Corollaries
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Main Th )
ain theorem Case of algebraic tori

Corollary (Weston )

Let A be an abelian variety defined over a number field such
that Endg(A) is commutative. Then Theorem A holds for A.
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Main Theorem Case of algebraic tori

Since Endg(A) is commutative,
Alis isogeneous to Ay x - -- x A;

with A; simple, pairwise nonisogenous.

PKrason On line: .



Corollaries
A counterexample
Case of algebraic tori

Main Theorem

Since Endg(A) is commutative,
Alis isogeneous to Ay x - -- x A;
with A; simple, pairwise nonisogenous.

In this case the assumption of our theorem
dimgng,, (a0 Hi(Ai(C); Q) > 1

for each 1 </ < t always holds.
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Corollary

LetA=E{" x --- x E, where Ey, ..., E; are pairwise
nonisogenous élliptic curves defined over F.

[NER On line: .



Corollaries
A counterexample

Main Theorem Case of algebraic tori

Corollary

LetA=E{" x --- x E, where Ey, ..., E; are pairwise
nonisogenous elliptic curves defined over F.Assume that
1 < e <2ifEnde(E;) =7 and e; = 1 if Endr(E;) # Z.
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LetA=E{" x --- x E, where Ey, ..., E; are pairwise
nonisogenous elliptic curves defined over F.Assume that

1 <e <2ifEnde(E;) =7 and e; = 1 if Endr(E;) # 7Z. Then
Theorem A holds for A.
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Observe that for an elliptic curve E/F we have
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A counterexample

Main Th )
ain theorem Case of algebraic tori

Observe that for an elliptic curve E/F we have
dimEndF(E)o H1(E(C), Q) =2if EndF(E) =7
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Main Th )
ain theorem Case of algebraic tori

Observe that for an elliptic curve E/F we have
dimEndF(E)o H1 (E(C), Q) =2if EndF(E) =7
dimEndF(E)o H1(E(C), Q) =1if EndF(E) ;é Z L]
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Corollaries
A counterexample

Main Theorem Case of algebraic tori

E := Eydefinedover @  y? = x3 — d?x
E4 has CM by Z[i]
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Main Theorem Case of algebraic tori

E := Eydefinedover @  y? = x3 — d?x
E4 has CM by Z[i]
K.Rubin, A.Silverberg showed that rankE,(Q) can reach 6.
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Main Theorem Case of algebraic tori

E := Eydefinedover @  y? = x3 — d?x

E4 has CM by Z[i]

K.Rubin, A.Silverberg showed that rankE,(Q) can reach 6.
d=234 rankEy4(Q) =2
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Main Theorem Case of algebraic tori

E := Eydefinedover @  y? = x3 — d?x

E4 has CM by Z[i]

K.Rubin, A.Silverberg showed that rankE,(Q) can reach 6.
d=234 rankEy4(Q) =2

d=1254 rankEy4(Q) =3
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A counterexample

Main Theorem Case of algebraic tori

E := Eydefinedover @  y? = x3 — d?x

E4 has CM by Z[i]

K.Rubin, A.Silverberg showed that rankE,(Q) can reach 6.
d=234 rankEy4(Q) =2

d=1254 rankEy4(Q) =3

d = 29274 rankEy(Q) = 4
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A counterexample

Main Theorem Case of algebraic tori

E := Eydefinedover @  y? = x3 — d?x

E4 has CM by Z[i]

K.Rubin, A.Silverberg showed that rankE,(Q) can reach 6.
d=234 rankEy4(Q) =2

d=1254 rankEy4(Q) =3

d=29274  rankEy(Q) =4

d = 205015206 rankE4(Q) =5
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Corollaries
A counterexample

Main Theorem Case of algebraic tori

E := Eydefinedover @  y? = x3 — d?x

E4 has CM by Z[i]

K.Rubin, A.Silverberg showed that rankE,(Q) can reach 6.
d=234 rankEy4(Q) =2

d=1254 rankEy4(Q) =3

d=29274  rankEy(Q) =4

d = 205015206 rankE4(Q) =5

d =61471349610 rankEy(Q) =6
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Corollaries
A counterexample

Main Theorem

Case of algebraic tori

Let Ay := E4 x Eg4 defined over Q(/)

PROPOSITION

There is a nontorsion point P € Ag(Q(/)) and a free Z[i]-module
A C Ag(Q(i)) such that P ¢ A and r,(P) € r,(N\) for all primes
v f2d in Z[i]
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Main Theorem Case of algebraic tori

Since rankE4(Q) > 2 we can find Qy, Qo € E4(Q(/)) such that
they are linearly independent over Z|i]
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Main Theorem Case of algebraic tori

Since rankE4(Q) > 2 we can find Qy, Qo € E4(Q(/)) such that
they are linearly independent over Z|i]

P8 ] e8] (8] m[a]
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Main Theorem Case of algebraic tori

Since rankE4(Q) > 2 we can find Qy, Qo € E4(Q(/)) such that
they are linearly independent over Z|i]

P8 ] e8] (8] m[a]

A == Z[i]Py + Z[i]P2 + Z[i]Ps € A(Q(/))
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Main Th )
ain theorem Case of algebraic tori

Since rankE4(Q) > 2 we can find Qy, Qo € E4(Q(/)) such that
they are linearly independent over Z|i]

P8 ] e8] (8] m[a]

N = Z[i|Py + Z[i|P> + Z[i]Ps C A(Q(/))
A is free over Z[i] hence also free over Z.
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Main Th )
ain theorem Case of algebraic tori

Since rankE4(Q) > 2 we can find Qy, Qo € E4(Q(/)) such that
they are linearly independent over Z|i]

P8 ] e8] (8] m[a]

N = Z[i|Py + Z[i|P> + Z[i]Ps C A(Q(/))
A is free over Z[i] hence also free over Z.
A'is not free over Endy;y A = Mz (Z[i]).
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Main Th )
ain theorem Case of algebraic tori

Since rankE4(Q) > 2 we can find Qy, Qo € E4(Q(/)) such that
they are linearly independent over Z|i]

P8 ] e8] (8] m[a]

N = Z[i|Py + Z[i|P> + Z[i]Ps C A(Q(/))
A is free over Z[i] hence also free over Z.
A'is not free over Endy;y A = Mz (Z[i]).
Pé¢A
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Corollaries
A counterexample

Main Theorem Case of algebraic tori

Let Q =, (Q)fori=1,2,
P :=r,(P;) fori=1,2,3 and P := r,(P).
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Main Theorem Case of algebraic tori

Let Q; := n,(Q) fori=1,2,

P :=r,(P;) fori=1,2,3 and P := r,(P).

We will prove that r,(P) € r,(A) for all v of Z[i] over a prime
p f2d.

PKrason On linear



Corollaries
A counterexample

Main Theorem Case of algebraic tori

Let Q =, (Q)fori=1,2,

P :=r,(P;) fori=1,2,3 and P := r,(P).

We will prove that r,(P) € r,(A) for all v of Z[i] over a prime
p f2d.

The equation

P = 1Py +r2Ps + r3Ps.

in Ey(ky) x Ev(ky) with ry, ro, r3 € Z[i] is equivalent to a system
of equations in E,(ky) :
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A counterexample

Main Theorem Case of algebraic tori

Let Q =, (Q)fori=1,2,
P :=r,(P;) fori=1,2,3 and P := r,(P).

We will prove that r,(P) € r,(A) for all v of Z[i] over a prime
p f2d.

The equation

P = 1Py +r2Ps + r3Ps.

in Ey(ky) x Ev(ky) with ry, ro, r3 € Z[i] is equivalent to a system
of equations in E,(ky) :

nQy+nQ =0
Q4+ rQ=Q
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Ey(kv) = Z[i]/~(v),

PKrason
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Case of algebraic tori

Ev(kv) = Z[i]/v(v),
C1,Co € Z]i]

Qi = cymody(v)

Q> = comod (V).
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Main Theorem

Ev(kv) = Z[i]/7(v),

C1,Co € Z]i]

Qi = cymod~(v)

Q; = comod(v).

the above system of equations is equivalent to the system of
congruences in Z[i]/~(v) :

PKrason On linear



Corollaries
A counterexample
Case of algebraic tori

Main Theorem

Ev(kv) = Z[i]/7(v),
C1,Co € Z]i]
Qi = cymod~(v)

Q; = comod(v).
the above system of equations is equivalent to the system of

congruences in Z[i]/~(v) :

rcy + rac; = 0mod~(v)

r2Cy + r3C; = ¢y mod~y(v).
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Main Theorem Case of algebraic tori

Ev(kv) = Z[i]/7(v),

C1,Co € Z]i]

Qi = cymod~(v)

Q; = comod(v).

the above system of equations is equivalent to the system of
congruences in Z[i]/~(v) :

rcy + rac; = 0mod~(v)
r2Cy + r3C; = ¢y mod~y(v).

If c; = 0mod~(v) or ¢, = 0 mod~(v) then the last system of
congruences trivially has a solution.
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¢1 # 0mod~(v) and ¢z # 0mod (V).
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A counterexample

Main Theorem Case of algebraic tori

¢1 # 0mod~(v) and ¢z # 0mod (V).
D := gcd(cy, ¢p). Then

gecd (2/D, ¢) = D
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Main Theorem Case of algebraic tori

¢1 # 0mod~(v) and ¢z # 0mod (V).
D := gcd(cy, ¢p). Then

gecd (2/D, ¢) = D

and since D| ¢
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Main Theorem Case of algebraic tori

¢1 # 0mod~(v) and ¢z # 0mod (V).
D := gcd(cy, ¢p). Then

gcd (c5/D, &) = D
and since D| ¢

the equation r ¢ /D + r3¢; = ¢
has a solutionin r, r3 € Z][i].
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Main Theorem Case of algebraic tori

¢1 # 0mod~(v) and ¢z # 0mod (V).
D := gcd(cy, ¢p). Then

gecd (2/D, ¢) = D

and since D| ¢

the equation r ¢ /D + r3¢; = ¢
has a solutionin r, r3 € Z][i].

—rco G
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Corollaries
A counterexample

Main Th . .
ain Theorem Case of algebraic tori

The methods of the proof of Main Theorem work for some
algebraic tori over a number field F.
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Main Th . .
ain Theorem Case of algebraic tori

The methods of the proof of Main Theorem work for some
algebraic tori over a number field F.

Let T/F be an algebraic torus and let F’/F be a finite
extension that splits T.
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Main Theorem

Case of algebraic tori

The methods of the proof of Main Theorem work for some
algebraic tori over a number field F.

Let T/F be an algebraic torus and let F’/F be a finite
extension that splits T.

Hence T F/ 2GS :=Gm x -+ x Gy
—_—

e—times
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A counterexample

Main Th . .
ain Theorem Case of algebraic tori

The methods of the proof of Main Theorem work for some
algebraic tori over a number field F.

Let T/F be an algebraic torus and let F’/F be a finite
extension that splits T.

Hence T @ F' =2 G§, := Gy x - - x Gy Where
—_—

e—times

Gm := spec F'[t, t7].
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Corollaries
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Main Th . .
ain Theorem Case of algebraic tori

For any field extension F’ ¢ M C F we have Endy (Gp) = Z
and Hy(Gm(C); Z) = Z.
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For any field extension F’ ¢ M C F we have Endy (Gp) = Z
and Hy(Gm(C); Z) = Z.

Hence the condition e < dimg,q,, (g0 H1(Gm(C); Q) =1,
analogous to the corresponding condition of our Theorem ,
means that e = 1.
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Main Th . .
ain Theorem Case of algebraic tori

For any field extension F’ ¢ M C F we have Endy (Gp) = Z
and Hy(Gm(C); Z) = Z.

Hence the condition e < dimg,q,, (g0 H1(Gm(C); Q) =1,
analogous to the corresponding condition of our Theorem ,
means that e = 1.

Hence we can prove the analogue of the Main Theorem for one
dimensional tori which is basically the A. Schinzel’s Theorem .

PKrason On linear



Corollaries
A counterexample

Main Th . .
ain Theorem Case of algebraic tori

For any field extension F’ ¢ M C F we have Endy (Gp) = Z
and Hy(Gm(C); Z) = Z.

Hence the condition e < dimg,q,, (g0 H1(Gm(C); Q) =1,
analogous to the corresponding condition of our Theorem ,
means that e = 1.

Hence we can prove the analogue of the Main Theorem for one
dimensional tori which is basically the A. Schinzel’s Theorem .

The torsion ambiguity that appears in our Theorem can be in
this case removed.
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On the other hand A. Schinzel showed that his theorem does
not extend in full generality to G,n/F x Gn/F ,
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Main Theorem Case of algebraic tori

On the other hand A. Schinzel showed that his theorem does
not extend in full generality to G,/F x Gp/F , hence it does
not extend in full generality to algebraic tori T with dim T > 1.
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Main Theorem Case of algebraic tori

On the other hand A. Schinzel showed that his theorem does
not extend in full generality to G,/F x Gp/F , hence it does
not extend in full generality to algebraic tori T with dim T > 1.

The phrase full generality in the last sentence means for any
P € T(F) and any subgroup A C T(F).
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Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

Since the theorem is up to torsion we can assume
A=A x . x A




Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

Since the theorem is up to torsion we can assume
A=A x . x A

Put ¢ := |A(F)wr| and Q := c A(F).
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Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

Since the theorem is up to torsion we can assume
A=A x . x A

Put ¢ := |A(F)wr| and Q := c A(F).

Q is torsion free.
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Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

Since the theorem is up to torsion we can assume
A=A x . x A

Put ¢ := |A(F)tr| and Q := c A(F).
Q is torsion free.
we canassume P Q, P#0,AC QandA # {0},
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Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

Since the theorem is up to torsion we can assume
A=A x . x A

Put ¢ := |A(F)tr| and Q := c A(F).

Q is torsion free.

we canassume P Q, P#0,AC QandA # {0},
Let Py,..., P, ..., Ps be such a Z-basis of Q that:
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Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

Since the theorem is up to torsion we can assume
A=A x . x A

Put ¢ := |A(F)tr| and Q := c A(F).

Q is torsion free.

we canassume P Q, P#0,AC QandA # {0},
Let Py,..., P, ..., Ps be such a Z-basis of Q that:

where d; € Z\{0} for1 <i<randd;=0fori>r.
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put Q; := c Aj(F). Note that @ = Bj_; .




Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

put Q; := c Aj(F). Note that @ = Bj_; .
For P Q=>Y7 ,ZP; we write

where nj € Z



Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

put Q; := c Aj(F). Note that @ = Bj_; .
For P Q=>Y7 ,ZP; we write

where nj € Z

Let K/Q be a finite extension such that D; ®g K = M, (K) for
each1 <ij<t
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Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

put Q; := c Aj(F). Note that @ = Bj_; .

For P Q=>Y7 ,ZP; we write
P=mPi+--+nPr+- -+ ngPg

where n; € Z

Let K/Q be a finite extension such that D; ®g K = M, (K) for
each1 <ij<t

Di:=R;®zQ
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Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

Since A C Q is a free subgroup of the free finitely generated
abelian group €,
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Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

Since A C Q is a free subgroup of the free finitely generated
abelian group €,

observe that P e Aifandonly if P® 1 € A ®z Ok.
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Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

Since A C Q is a free subgroup of the free finitely generated
abelian group €,

observe that P e Aifandonly if P® 1 € A ®z Ok.

The latter is equivalentto P® 1 € A @ O, for all prime ideals
A|l'in Ok and all prime numbers /.
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Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

Outline

e Basic ingredients of proof of Theorem A

@ Theorems about reduction
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Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

Using Kummer maps for abelian varieties we prove the
following:

Theorem

Let Q; € Ai(L) for1 < j < r; be independent over R; for each
1<i<t
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Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

Using Kummer maps for abelian varieties we prove the
following:

Let Q; € Ai(L) for1 < j < r; be independent over R; for each
1 < i<t Thereis a family of primes w of O, of positive density
such that r,(Qj) = 0 in Aijw(Kw), forall1 <j<riand1 <i<t.
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Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

Let | be a prime number. Let m € NU {0} forall1 <j < r; and
1<i<t.
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Some easy reductions

Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

Theorem

Let | be a prime number. Let m € NU {0} forall1 <j < r; and
1 <i<t.LetL/F be afinite extension and let P; € A;(L) be
independent over R; and let Tj; € A;[I™] be aribitrary torsion
elements forall1 <j<riand1 <<t
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Theorem

Let | be a prime number. Let m € NU {0} forall1 <j < r; and
1 <i<t.LetL/F be afinite extension and let P; € A;(L) be
independent over R; and let Tj; € A;[I™] be aribitrary torsion
elements for all1 < j<r,and1 < i < t.There is a family of
primes w of O, of positive density such that

rW’(Tij) = rw(Pij) in Ai,w(kw)l

forall1 <j<riand1<i<s,
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Theorem

Let | be a prime number. Let m € NU {0} forall1 <j < r; and
1 <i<t.LetL/F be afinite extension and let P; € A;(L) be
independent over R; and let Tj; € A;[I™] be aribitrary torsion
elements for all1 < j<r,and1 < i < t.There is a family of
primes w of O, of positive density such that

rW’(Tij) = rw(Pij) in Ai,w(kw)l

forall1 <j<rand1<i<s, where w is aprime in O m)
overw and ry : Ai(L(A[I™])) — Aiw(kw) is the corresponding
reduction map.
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Let D be a division algebra and let K; ¢ Mg(D) denote the left
ideal of Mg(D) which consists of i-the column matrices of the

form
0O ...a;j ... O
G 0 ....82,' O c K
0 ..ai .. 0
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Forw € W put
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Theorem

Every nonzero simple submodule of the Mg¢(D)-module W€ has
the following form

ajw

e~ a1 w .
Kio ={aw, ay € K1} ={ . ,ap1 €D 1<i<e}

ae1 w

for some w € W.
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Let D; be a finite dimensional division algebra over Q for every
1<i<t

The trace homomorphisms: tr; : Me,(D;) — Q, forall 1 <i <,
give the trace homomorphism tr : Me(D) — Q, where

tr:=S!, tn.
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Let D; be a finite dimensional division algebra over Q for every
1<i<t

The trace homomorphisms: tr; : Me,(D;) — Q, forall 1 <i <,
give the trace homomorphism tr : Me(D) — Q, where

tr:=S!, tn.
Let W; be a finite dimensional D;-vector space for each
1 <i<t Then W is afinitely generated M (ID)-module.
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Let D; be a finite dimensional division algebra over Q for every
1<i<t

The trace homomorphisms: tr; : Me,(D;) — Q, forall 1 <i <,
give the trace homomorphism tr : Me(D) — Q, where

tr:=S!, tn.
Let W; be a finite dimensional D;-vector space for each
1 <i<t Then W is afinitely generated M (ID)-module.

The homomorphism tr gives a natural map of Q-vector spaces

tr - Homy,my(W, Me(D)) — Homg(W, Q).
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The map tr is an isomorphism.
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Assume P¢ AN P® 1 ¢ A®z O, for some A |/ for some prime
number /.
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Assume P¢ AN P® 1 ¢ A®z O, for some A |/ for some prime
number /.

Hence n; # 0 for some 1 < j < sin the expression
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Assume P¢ AN P® 1 ¢ A®z O, for some A |/ for some prime
number /.

Hence n; # 0 for some 1 < j < sin the expression

Consider the equality in Q ®7 Ok.
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Assume P¢ AN P® 1 ¢ A®z O, for some A |/ for some prime
number /.

Hence n; # 0 for some 1 < j < sin the expression

Consider the equality in Q ®7 Ok.

Since P ¢ A @z O, then there is 1 < jo < s such that A™ || nj,
and A | d; for natural numbers my < ms.
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Assume P¢ AN P® 1 ¢ A®z O, for some A |/ for some prime
number /.

Hence n; # 0 for some 1 < j < sin the expression

Consider the equality in Q ®7 Ok.

Since P ¢ A @z O, then there is 1 < jo < s such that A™ || nj,
and A | d; for natural numbers my < ms.

Consider the map of Z-modules
T Q-7
7(R) = uj,

for R =37, piP; with u; € Zforall 1 < i <s.
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Lift 7 ® Q (by last Lemma) to

T e HOITIMe(D)(Q Kz Q7 MG(D))
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Lift 7 ® Q (by last Lemma) to
TE HomMe(D)(Q ®z Q, Me(D))

s € Homy,my(Im7, Q ®z Q) such that 7o s = Id.
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Lift 7 ® Q (by last Lemma) to
TE HomMe(D)(Q ®z Q, Me(D))

s € Homy,my(Im7, Q ®z Q) such that 7o s = Id.

Choose, for each 1 < i < t, alattice £} C £; such that £} is a
free R;-module.
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Lift 7 ® Q (by last Lemma) to
TE HomMe(D)(Q ®z Q, Me(D))

s € Homy,my(Im7, Q ®z Q) such that 7o s = Id.

Choose, for each 1 < i < t, alattice £} C £; such that £} is a
free R;-module.

L; - Riemann lattice (A;(C) = CY9/L))
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Lift 7 ® Q (by last Lemma) to
TE HomMe(D)(Q ®z Q, Me(D))

s € Homy,my(Im7, Q ®z Q) such that 7o s = Id.

Choose, for each 1 < i < t, alattice £} C £; such that £} is a
free R;-module.

L; - Riemann lattice (A;(C) = CY9/L))
Put£:=@!_, Liand £ := P!, L.
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Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

Analyze

z(n,\) - L @y OA/)\En,C/ Rz Or = L Ry O)\/)\en£®z Oh,
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Analyze

z(n,\) - L @y OA/)\En,C/ Rz Or = L Ry O)\/)\en£®z Oh,

IOK:H)\‘I)‘ga
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Analyze

z(n,\) - L @y OA/)\En,C/ Rz Or = L Ry O)\/)\en£®z Oh,

/OK = H)\ |1 )‘6a
Here we need dimension condition
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Analyze

z(n,\) - L @y OA/)\En,C/ Rz Or = L Ry OA/Aen,C@Z Oh,

/OK = H)\ |1 )‘6a
Here we need dimension condition

Use the reduction theorem

PKrason On line:



Some easy reductions
Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

By Reduction Theorem there is a set of primes w of O,
of positive density such that ry(wk(i)) =0 for 1 < i<,
ki+1<k<uy;

and ry(wk () = r(Tk(i)) forall 1 < i<t 1<k <Kk;.
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Choose such a prime w. Since ry(P) € ry(\) we take Q € A
such that ry(P) = rw(Q). Applying the reduction map r, to the
equation

t ki
Mo(P— Q) = > (a(i)1 — Bi(i)1)Mowi (i)
i=1 k=1
t Ui
+y ()1 = Br(i)1)wk (1)
i=1 k=ki+1
we obtain
t ki
0=> > (a1 = Brl(i)1)Mo ra(Tx(i)).
i=1 k=1
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Since r,, is injective on torsion we have

t kK
0= ZZ N1 — Br(i)1)Mo Tk(i).

i=1 k=1

and thus
ak(i) = B(i) € XK (i) 0
On the other hand

ak(i) = Bi(i) & A™K(i)1,x
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This part is PK. Yuval Flicker

P.Kraso! n lineal



Some easy reductions

Theorems about reduction

some semisimple algebras and modules
Basic ingredients of proof of Theorem A idea of the proof

Theorem (Schinzel)

Let F be a number field, and D > 0 a rational infeger. Let T be
the torus GJ,. Fix ty, ..., t-, ty in T(F). Suppose for each ideal
m in the ring O of integers of F, that is prime to D, there are
Xim-- - Xrm inZ such that t;"™ - - - ™ = to(mod m). Then
there are Xy, ..., Xy € Zwitht]" - - -t/ = t,.
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Conjecture

Let F be a number field. Let G be a linear algebraic group over
O, viewed as a subgroup of some matrix group GL(n). Fix gy,

., 0r, 9o in G(F). Let D > 0 a rational integer, depending on
91, ---, gr- Suppose for each ideal m in the ring O of integers of
F, that is prime to D, there are Xy , . . ., Xrm in Z such that

g™ - g™ = go(modm). Then there are x4, ..., X € Z with
X1 Xr
&' g = o
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If gi = (8 ‘1") when F = Q Conjecture states the following.
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If gi = (8 ‘1") when F = Q Conjecture states the following.

PROPOSITION

Suppose uy, u4, ..., U are nonzero rational integers. Let D > 0
be an integer prime to the g.c.d. u = (uy, ..., uy). Suppose for
each m > 1 prime to D there are integers X; , (1 < i < r) with
X1, mU1 + - - + Xr, mUr = Up(mod m). Then there are integers x;
(1 <i<r)withxiu + -+ X Ur = Up.
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When G is a Heisenberg group, say the unipotent radical of the
upper triangular subgroup of SL(3), the following question
comes up, first again in the context of integers. Suppose,
instead of ug, u4, ..., Uy, SAy we have two sequences of
integers ug, U1, ..., Ur and vy, V4, ..., V¢; and for D prime to
(uy,...,ur)and (vq,..., V), for each mprime to D the
equations xy muy + - - - + Xr, mUr = Up(mod m) and

X1,mV1 + -+ + Xr mVr = Vo(mod m) are solvable, with the same
integral x’s.
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Thus x; , are the same for the u’s and for the v’s. Then there is
a solutionto xjuy +---+ x,u = Up and to y1 vy +- - -+ yrvr = 1.
We should be able to choose y; = x;. Is this true? Yes it is, even
more generally, in the context of G being the unipotent radical
U of the upper triangular subgroup of SL(n).
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Regarding the above diagonal, that is, the derived group
U/[U, U] of U, we have, in the context of F = Q:
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Regarding the above diagonal, that is, the derived group
U/[U, U] of U, we have, in the context of F = Q:

PROPOSITION

Suppose Uy j, Uy j, ..., Urj (1 < j < n) are nonzero integers. Let
D > 0 be an integer prime to the g.c.d. u; = (uy,...,U;), all j.
Suppose for each m > 1 prime to D there are integers Xx;

(1 <i<r)with Xy muy j+ - - + XrmUr j = Up j(mod m) for all j.
Then there are integers x; (1 < i < r) with

XqUyj+ -+ XelUpj = Up ;-
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Theorem

LetT be a subgroup of SL(n, O) of finite index. Let ¢ be a
nontrivial homomorphism from T to I'. Suppose there is an
infinite set S of prime ideals p of O with the following property.
For all p in S, the homomorphism ¢ factors to give an
homomorphism ¢, : SL(n, O /p) — SL(n, O/p), thus the
following diagram exists and is commutative:
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I r

mod p mod p

SL(n, 0/p) —2~SL(n, O/p)
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Moreover, suppose ¢, is inner, thus ¢,(g) = Int(x)g := xgx~',
for some x = x(¢,) in GL(n,O/p), forallp € S. Then ¢ is an
automorphism of I which is the restriction to I of the
inner-conjugation action by an element of GL(n, F).
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Proof:
Put B = [[,cs O/p. The ring O embeds in the ring B. Hence

there is an injection SL(n, ©) < SL(n, B). So ¢ liesin a
commutative diagram

r— % .r
SL(n, B) 1 9 SL(n, B)
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and it is locally inner. Hence the representation
¢ : I — GL(n, F) and the identity — natural embedding —
representation id : ' — GL(n, F), have equal traces.
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and it is locally inner. Hence the representation
¢ : I — GL(n, F) and the identity — natural embedding —
representation id : ' — GL(n, F), have equal traces.

But id is irreducible, hence ¢ and id are conjugate by an
element of GL(n, F), namely ¢ is the restriction to I' of Int(x),
for some x € GL(n, F), and Int(x) takes I to itself.
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and it is locally inner. Hence the representation
¢ : I — GL(n, F) and the identity — natural embedding —
representation id : ' — GL(n, F), have equal traces.

But id is irreducible, hence ¢ and id are conjugate by an
element of GL(n, F), namely ¢ is the restriction to I' of Int(x),
for some x € GL(n, F), and Int(x) takes I to itself.

But the index [SL(n, O) : T'] equals [SL(n, O) : Int(x)l], hence
¢ = Int(x) is an automorphism of T
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