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Albert’s classification

A/F - simple; E = Z (End0(A)) = Z (End(A)⌦Q);
E

0

= ERinv

1

(I) End0(A) = E = E
0

is a totally real number field Rinv = id
2

(II) E = E
0

is a totally real number field; End0(A) is a

division algebra over E such that every component of

End0(A)⌦QR is isomorphic to M
2

(R);
� 2 End0(A), t� = ��; Rinv (↵) = ��1 (t↵)�

3

(III) E = E
0

is totally real; End0(A) is a division algebra

over E such that every component of End0(A)⌦QR is

isomorphic to H Rinv (↵) =
t↵

4

(IV) E
0

is totally real; E - totally imaginary quadratic

extension of E
0

; Rinv |E = cc|E ; End0(A) is a division

algebra over E
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Statement of the problem for abelian varieties

Results in this direction

K - a number field

Theorem (A.Schinzel 1973)

If ↵
1

, . . .↵k ,� are non-zero elements of K and the congruence

↵x
1

1

↵x
2

2

. . .↵xk
k ⌘ � mod p

is soluble for almost all prime ideals p of K then the
corresponding equation is soluble in rational integers. i.e. there
exist n

1

. . . nk 2 Z such that � = ↵
1

n
1 . . .↵k

nk

proved again by C.Khare by different methods
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Results in this direction

Theorem of A.Schinzel does not extend in full generality to the

system of congruences.

Theorem (A. Schinzel 1973)

Let ↵i,j ,�i (i = 1, . . . , h, j = 1, . . . k) be non-zero elements of
K , D a positive integer.If the system of congruences

⇧k
j=1

↵
xj
ij ⌘ �i mod m (i = 1, . . . , h)

is soluble for all moduli m prime to D then the corresponding
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Theorem (G.Banaszak, W.Gajda, P.K 2005)

Let A be a principally polarized abelian variety of dimension g
defined over the number field F such that EndF (A) = Z and
dim(A) = g is either odd or g = 2 or 6. Let P and P

1

. . .Pr be
non-torsion elements of A(F ) such that P

1

. . .Pr are linearly
independent over Z. Denote by ⇤ the subgroup of A(F )
generated by P

1

. . .Pr . Then the following are equivalent:

(1) P 2 ⇤

(2) rv (P) 2 rv (⇤)

P.Kraso´n On linear .....



Generalities about abelian varieties

History of the problem

Main Theorem

Basic ingredients of proof of Theorem A

number field case

Statement of the problem for abelian varieties

Results in this direction

Theorem (G.Banaszak, W.Gajda, P.K 2005)

Let A be a principally polarized abelian variety of dimension g
defined over the number field F such that EndF (A) = Z and
dim(A) = g is either odd or g = 2 or 6. Let P and P

1

. . .Pr be
non-torsion elements of A(F ) such that P

1

. . .Pr are linearly
independent over Z. Denote by ⇤ the subgroup of A(F )
generated by P

1

. . .Pr . Then the following are equivalent:

(1) P 2 ⇤

(2) rv (P) 2 rv (⇤)

P.Kraso´n On linear .....



Generalities about abelian varieties

History of the problem

Main Theorem

Basic ingredients of proof of Theorem A

number field case

Statement of the problem for abelian varieties

Results in this direction

Theorem (G.Banaszak, W.Gajda, P.K 2005)

Let A be a principally polarized abelian variety of dimension g
defined over the number field F such that EndF (A) = Z and
dim(A) = g is either odd or g = 2 or 6. Let P and P

1

. . .Pr be
non-torsion elements of A(F ) such that P

1

. . .Pr are linearly
independent over Z. Denote by ⇤ the subgroup of A(F )
generated by P

1

. . .Pr . Then the following are equivalent:

(1) P 2 ⇤

(2) rv (P) 2 rv (⇤)

P.Kraso´n On linear .....



Generalities about abelian varieties

History of the problem

Main Theorem

Basic ingredients of proof of Theorem A

number field case

Statement of the problem for abelian varieties

Results in this direction

Theorem (G.Banaszak, W.Gajda, P.K 2005)

Let A be a principally polarized abelian variety of dimension g
defined over the number field F such that EndF (A) = Z and
dim(A) = g is either odd or g = 2 or 6. Let P and P

1

. . .Pr be
non-torsion elements of A(F ) such that P

1

. . .Pr are linearly
independent over Z. Denote by ⇤ the subgroup of A(F )
generated by P

1

. . .Pr . Then the following are equivalent:

(1) P 2 ⇤

(2) rv (P) 2 rv (⇤)

P.Kraso´n On linear .....



Generalities about abelian varieties

History of the problem

Main Theorem

Basic ingredients of proof of Theorem A

number field case

Statement of the problem for abelian varieties

Results in this direction

Theorem (G.Banaszak, W.Gajda, P.K 2005)

Let A be a principally polarized abelian variety of dimension g
defined over the number field F such that EndF (A) = Z and
dim(A) = g is either odd or g = 2 or 6. Let P and P

1

. . .Pr be
non-torsion elements of A(F ) such that P

1

. . .Pr are linearly
independent over Z. Denote by ⇤ the subgroup of A(F )
generated by P

1

. . .Pr . Then the following are equivalent:

(1) P 2 ⇤

(2) rv (P) 2 rv (⇤)

P.Kraso´n On linear .....



Generalities about abelian varieties

History of the problem

Main Theorem

Basic ingredients of proof of Theorem A

number field case

Statement of the problem for abelian varieties

Results in this direction

Theorem (BGK 2005)

Let P and P
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P
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Let P
1

, . . . ,Pr be elements of A(F ) linearly independent over
R = EndF (A). Let P be a point of A(F ) such that RP is a free
R-module. The following conditions are equivalent:
(1) P 2 ⌃r

i=1

ZPi

(2) rv (P) 2 ⌃r
i=1

Zrv (Pi)

A. Perucca generalized this theorem to semiabelian varieties

and removed the hypotheses that RP is a free R-module
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THEOREM A (G.BANASZAK, P.KRASO

´

N)

Let A/F be an abelian variety defined over a number field F .
Assume that A is isogeneous to Ae

1

1

⇥ · · ·⇥ Aet
t with Ai simple,

pairwise nonisogenous abelian varieties such that
dimEndF 0 (Ai )0

H
1

(Ai(C); Q) � ei for each 1  i  t , where
EndF 0(Ai)

0 := EndF 0(Ai)⌦Q and F 0/F is a finite extension
such that the isogeny is defined over F 0. Let P 2 A(F ) and let ⇤
be a subgroup of A(F ). If rv (P) 2 rv (⇤) for almost all v of OF
then P 2 ⇤+ A(F )tor . Moreover if A(F )tor ⇢ ⇤, then the
following conditions are equivalent:

1 P 2 ⇤

2 rv (P) 2 rv (⇤) for almost all v of OF .
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Since rankEd(Q) � 2 we can find Q
1
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2 Ed(Q(i)) such that
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
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⇤ is not free over EndQ(i) A = M
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Case of algebraic tori

Let Qi := rv (Qi) for i = 1, 2,

Pi := rv (Pi) for i = 1, 2, 3 and P := rv (P).

We will prove that rv (P) 2 rv (⇤) for all v of Z[i] over a prime

p 6 | 2d .

The equation

P = r
1

P
1

+ r
2

P
2

+ r
3

P
3

.

in Ev (kv )⇥ Ev (kv ) with r
1

, r
2

, r
3

2 Z[i] is equivalent to a system

of equations in Ev (kv ) :

r
1

Q
1

+ r
2

Q
2

= 0

r
2

Q
1

+ r
3

Q
2

= Q
1
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and H
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analogous to the corresponding condition of our Theorem ,

means that e = 1.
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On the other hand A. Schinzel showed that his theorem does
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Since the theorem is up to torsion we can assume

A = Ae
1

1

⇥ · · ·⇥ Aet
t

Put c := |A(F )tor | and ⌦ := c A(F ).

⌦ is torsion free.

we can assume P 2 ⌦, P 6= 0, ⇤ ⇢ ⌦ and ⇤ 6= {0},
Let P

1

, . . . ,Pr , . . . ,Ps be such a Z-basis of ⌦ that:

⇤ = Zd
1

P
1

+ · · ·+ Zdr Pr + · · ·+ ZdsPs.

where di 2 Z\{0} for 1  i  r and di = 0 for i > r .
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put ⌦j := c Aj(F ). Note that ⌦ =
Lt

j=1

⌦
ej
j .

For P 2 ⌦ =
Ps

i=1

ZPi we write

P = n
1

P
1

+ · · ·+ nr Pr + · · ·+ nsPs

where ni 2 Z

Let K/Q be a finite extension such that Di ⌦Q K ⇠= Mdi (K ) for

each 1  i  t .
Di := Ri ⌦Z Q
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e↵i :=
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6664

0 . . . a
1i . . . 0

0 . . . a
2i . . . 0
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.

.

.

.

. . . .
.

.
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1

e! = {e↵
1

e!, e↵
1

2 K
1

} = {

2

6664

a
11

!
a

21

!
...

ae1

!

3

7775
, ai1 2 D, 1  i  e}
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Assume P /2 ⇤ P ⌦ 1 /2 ⇤⌦Z O� for some � | l for some prime

number l .

Hence nj 6= 0 for some 1  j  s in the expression

P = n
1

P
1

+ · · ·+ nr Pr + · · ·+ nsPs

Consider the equality in ⌦⌦Z OK .

Since P /2 ⇤⌦Z O� then there is 1  j
0

 s such that �m
1 || nj

0

and �m
2 | dj

0

for natural numbers m
1

< m
2

.

Consider the map of Z-modules

⇡ : ⌦ ! Z

⇡(R) := µj
0

for R =
Ps

i=1

µiPi with µi 2 Z for all 1  i  s.
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Lift ⇡ ⌦Q (by last Lemma) to

e⇡ 2 HomM
e

(D)(⌦⌦Z Q, M
e
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es 2 HomM
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Choose, for each 1  i  t , a lattice L0
i ⇢ Li such that L0
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By Reduction Theorem there is a set of primes w of OL
of positive density such that rw (!k (i)) = 0 for 1  i  t ,
ki + 1  k  ui
and rw (!k (i)) = rw (Tk (i)) for all 1  i  t , 1  k  ki .
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Choose such a prime w . Since rw (P) 2 rw (⇤) we take Q 2 ⇤
such that rw (P) = rw (Q). Applying the reduction map rw to the

equation

M
2

(P � Q) =
tX

i=1

kiX

k=1

(↵k (i)1

� �k (i)1

)M
0

!k (i)

+
tX

i=1

uiX

k=ki+1

(↵k (i)1

� �k (i)1

)!k (i),

we obtain

0 =
tX

i=1

kiX

k=1

(↵k (i)1

� �k (i)1

)M
0

rw (T k (i)).
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Since rw is injective on torsion we have

0 =
tX

i=1

kiX

k=1

(↵k (i)1

� �k (i)1

)M
0

T k (i).

and thus

↵k (i)� �k (i) 2 �an+bK (i)
1,�

On the other hand

↵k (i)� �k (i) /2 �m
2K (i)

1,�
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This part is P.K. Yuval Flicker
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Theorem (Schinzel)

Let F be a number field, and D > 0 a rational integer. Let T be
the torus Gn

m. Fix t
1

, . . . , tr , t
0

in T (F ). Suppose for each ideal
m in the ring O of integers of F , that is prime to D, there are
x

1,m . . . , xr ,m in Z such that tx
1,m

1

· · · txr,m
r ⌘ t

0

(modm). Then
there are x

1

, . . . , xr 2 Z with tx
1

1

· · · txr
r = t

0

.
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Conjecture

Let F be a number field. Let G be a linear algebraic group over
O, viewed as a subgroup of some matrix group GL(n). Fix g

1

,
. . . , gr , g

0

in G(F ). Let D > 0 a rational integer, depending on
g

1

, . . . , gr . Suppose for each ideal m in the ring O of integers of
F , that is prime to D, there are x

1,m . . . , xr ,m in Z such that
gx

1,m

1

· · · gxr,m
r ⌘ g

0

(modm). Then there are x
1

, . . . , xr 2 Z with
gx

1

1

· · · gxr
r = g

0

.
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If gi =
⇣

1 ui
0 1

⌘
, when F = Q Conjecture states the following.

PROPOSITION

Suppose u
0

, u
1

, . . . , ur are nonzero rational integers. Let D > 0

be an integer prime to the g.c.d. u = (u
1

, . . . , ur ). Suppose for
each m > 1 prime to D there are integers xi,m (1  i  r) with
x

1,mu
1

+ · · ·+ xr ,mur ⌘ u
0

(mod m). Then there are integers xi
(1  i  r) with x

1

u
1

+ · · ·+ xr ur = u
0

.
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When G is a Heisenberg group, say the unipotent radical of the

upper triangular subgroup of SL(3), the following question

comes up, first again in the context of integers. Suppose,

instead of u
0

, u
1

, . . . , ur , say we have two sequences of

integers u
0

, u
1

, . . . , ur and v
0

, v
1

, . . . , vr ; and for D prime to

(u
1

, . . . , ur ) and (v
1

, . . . , vr ), for each m prime to D the

equations x
1,mu

1

+ · · ·+ xr ,mur ⌘ u
0

(mod m) and

x
1,mv

1

+ · · ·+ xr ,mvr ⌘ v
0

(mod m) are solvable, with the same

integral x ’s.
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Thus xi,m are the same for the u’s and for the v ’s. Then there is

a solution to x
1

u
1

+ · · ·+ xr ur = u
0

and to y
1

v
1

+ · · ·+ yr vr = v
0

.

We should be able to choose yi = xi . Is this true? Yes it is, even

more generally, in the context of G being the unipotent radical

U of the upper triangular subgroup of SL(n).
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Regarding the above diagonal, that is, the derived group

U/[U,U] of U, we have, in the context of F = Q:

PROPOSITION

Suppose u
0,j , u

1,j , . . . , ur ,j (1  j < n) are nonzero integers. Let
D > 0 be an integer prime to the g.c.d. uj = (u

1,j , . . . , ur ,j), all j .
Suppose for each m > 1 prime to D there are integers xi,m
(1  i  r) with x

1,mu
1,j + · · ·+ xr ,mur ,j ⌘ u

0,j(mod m) for all j .
Then there are integers xi (1  i  r) with
x

1

u
1,j + · · ·+ xr ur ,j = u

0,j .
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Theorem

Let � be a subgroup of SL(n,O) of finite index. Let � be a
nontrivial homomorphism from � to �. Suppose there is an
infinite set S of prime ideals p of O with the following property.
For all p in S, the homomorphism � factors to give an
homomorphism �p : SL(n,O/p) ! SL(n,O/p), thus the
following diagram exists and is commutative:
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�
� //

mod p
✏✏

�

mod p
✏✏

SL(n,O/p)
�p //

SL(n,O/p)
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Moreover, suppose �p is inner, thus �p(g) = Int(x)g := xgx�1

,

for some x = x(�p) in GL(n,O/p), for all p 2 S. Then � is an

automorphism of � which is the restriction to � of the

inner-conjugation action by an element of GL(n,F ).
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Proof:

Put B =
Q

p2S O/p. The ring O embeds in the ring B. Hence

there is an injection SL(n,O) ,! SL(n,B). So � lies in a

commutative diagram

�
� //

✏✏

�

✏✏
SL(n,B)

Q
p �p
//

SL(n,B).
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and it is locally inner. Hence the representation

� : � ! GL(n,F ) and the identity – natural embedding –

representation id : � ! GL(n,F ), have equal traces.

But id is irreducible, hence � and id are conjugate by an

element of GL(n,F ), namely � is the restriction to � of Int(x),
for some x 2 GL(n,F ), and Int(x) takes � to itself.

But the index [SL(n,O) : �] equals [SL(n,O) : Int(x)�], hence

� = Int(x) is an automorphism of �.
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