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A Noetherian local ring O is called Cohen-Macaulay
if the length of a maximal regular sequence 1, ... xy
within its maximal ideal mo equals its Krull dimension:

depth(O) = dim(O).

Francis Macaulay (1862 — 1937)
The algebraic theory of modular systems,
Cambridge University Press 1916.

Irvin Cohen (1917 - 1955)
On the structure and ideal theory of complete local rings,

Trans. AMS 59 (1946).
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Introduction and motivation

There exist at least two published attempts to generalize the Cohen-Macaulay-
property to non-Noetherian rings:

e Michinori Sakaguchi, Generalized Cohen-Macaulay rings,
Hiroshima Mathematical Journal 10 (1980).

e Tracy Hamilton, Thomas Marley, Non-Noetherian Cohen-Macaulay rings,
Journal of Algebra 307 (2007).

Both approaches have severe drawbacks.
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Introduction and motivation

Attempts to generalise the Cohen-Macaulay-property to non-Noetherian rings
have to deal with the rather weak connection between finitely generated ideals
and the heights of the minimal prime ideals containing them:
e Krull’s principal ideal theorem fails miserably:
In a valuation domain O of finite dimension every prime ideal

is a minimal prime ideal of a principal ideal.

Sakaguchi without any further explanation replaces the Krull by the valuative
dimension, although this doesn’t improve the situation.

Hamilton and Marley redefine the notion of a regular sequence using
Cech cohomology.

In this talk Sakaguchi’s approach is discussed.
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Valuative dimension

DEFINITION: The valuative dimension of a domain R is defined to be
Dim(R) := sup(dim(O) : O is a valuation ring of Frac(R)).
The valuative dimension of an arbitrary commutative ring R is then defined as
Dim(R) := sup(Dim(R/p) : p € Spec(R)).
e For a Noetherian ring the Krull and the valuative dimension coincide.

e In general Dim(R) > dim(R) and the difference can be arbitrarily large.

THEOREM: For a domain R the equality Dim(R) = dim(R) is equivalent to the
condition

Vne N dim(R[Xq,...,X,]) =dim(R) + n.
Moreover Dim(R) = n if and only if dim(R[Xl, X)) =

04.06.2017 Hagen Knaf



Valuative dimension

DEFINITION: The valuative height of a prime ideal p of a ring R s defined to
be
Ht(p) := lim ht(pR[X1,..., Xk]).

k— 00

SOME PROPERTIES:
e Ht(p) =n < ht(p[Xy,..., X,]) =n.

e Ht(p/xR) < Ht(p) — 1 for every x € p not contained
in a minimal prime of R.

e Dim(R) = sup(Ht(p) : p € Spec(R)).
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Polynomial grade

e For an ideal I of a ring R the length of a maximal regular sequence is
denoted by grade(/, R) — »grade of I«.

e In the Noetherian case the useful equivalences
grade(I, R) > 0 < [ contains a non-zerodivisor < ann(/) = 0

hold.

e This is wrong for non-Noetherian rings: a finitely generated ideal I may
consist entirely of zero-divisors although ann(7) = 0.

Consider the trivial ring extension (>idealisation«)

R:=K[X,Y] x ( $ K[X,Y]/(p)).
peK[X,Y] prime

Then I := ((X,0),(Y,0)) is an example for that phenomenon
within the class of coherent rings.
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Polynomial grade

DEFINITION (M. HOECHSTER): For an ideal I of a ring R the polynomial grade
of I is defined to be

Grade(I, R) := lim grade(I[X1,...,X,], R[X1,...,X,])

n— 00

SOME PROPERTIES:
e Grade(I,R) >0« I[X1,...,X,]| contains a non-zerodivisor for some n.
e Grade(/,R) >0« ann(/) =0.
e Grade((z1,...,2,),R) <r.

e Grade((z1,...,2,),R) >0 if and only if x1 + 22X + ... 2, X"}
is a non-zerodivisor in (x1,...,x,)[X].

e Grade(VI, R) = Grade(I, R).
e Grade(I, R) = Grade(IS,S) for a faithfully flat ring extension S|R.
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Polynomial grade

PROPOSITION (M. SAKAGUCHI (1978)): For a local ring O with maximal ideal
mo the inequality
Grade(mop, O) < Dim(O)

holds.

This result is the main motivation for Sakaguchi’s non-Noetherian definition of
Cohen-Macaulay-rings.

04.06.2017 Hagen Knaf



Polynomial grade

(GRADE AND HOMOLOGICAL DIMENSION

DEFINITION: Let R be a ring. The weak dimension wdim(M) of an R-module
M is the length of a shortest resolution

0—Fy—... > Fy—M—0
by flat R-modules. The weak dimension of R is defined to be
wdim(R) := sup(wdim(M) : M an R-module).

PROPOSITION: A coherent local ring of finite weak dimension is Bertin-reqular.

THEOREM (S. GLAZ (1989)): A coherent local ring (O, mo) satisfies

wdim(O) = Grade(mp, O).
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Sakaguchi’s approach

DEFINITION: The ring R is called polynomially Cohen-Macaulay if the following
conditions are satisfied:

1. Vp € Spec(R) Dim(R,) # oo,
2. Vp,q € Spec(R), p C q Grade(R,) = Dim(R,) — Dim(R,/pR,).
In particular Grade(pR,, R,) = Dim(R,,) for all p € Spec(R).

e Sakaguchi used the nowadays misleading term >generalised Cohen-
Macaulay ring<.
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Sakaguchi’s approach

PROPOSITION: A noetherian ring R is polynomially Cohen-Macaulay
if and only if it is Cohen-Macaulay (in the > classical< sense).

PROPOSITION:

1. If R is a polynomially Cohen-Macaulay ring, then S™'R is polynomially
Cohen-Macaulay for every multiplicative set S C R.

2. The ring R is polynomially Cohen-Macaulay if and only if
R, is polynomially Cohen-Macaulay for every maximal ideal m of R.

3. If O is a local polynomially Cohen-Macaulay ring and x € mo 1S a non-
zerodivisor, then O/xO is polynomially Cohen-Macaulay.
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Sakaguchi’s approach

THEOREM: The ring R is polynomually Cohen-Macaulay if and only if
it possesses the following properties:

1. ¥p € Spec(R) Dim(R,) # oo,
2. ¥p € Spec(R) Grade(R,) = Dim(R,),

3. Vp,q € Spec(R), p C ¢ Ht(q) = Ht(p) + Ht(q/p).

e Property 3 of this theorem can be a motivation to define
polynomially catenarian rings and to consequently prove that every
polynomially Cohen-Macaulay ring is polynomially catenarian.
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Sakaguchi’s approach

EXAMPLES:
e Fvery ring R with Dim(R) = 0 is polynomially Cohen-Macaulay.

o A local ring (O,mo) with Dim(O) = 1 is polynomially Cohen-Macaulay
if and only if Grade(mo,O) > 0.

e A local ring (O,mo) with Dim(O) = 2 is polynomially Cohen-Macaulay
if and only if Grade(mo,O) = 2.

e A Krull domain R with Dim(R) < 2 is polynomially Cohen-Macaulay.

e Sakaguchi’s article: the polynomial rings R|X| and R|X,Y]| for a one-
dimensional valuation ring R are polynomially Cohen-Macaulay.
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Algebras over valuation domains

PROPOSITION (BAD NEWS):
A Priifer domain is polynomially Cohen-Macaulay if and only if dim(R) = 1.

e Consequently the class of polynomially Cohen-Macaulay domains
does not contain the class of coherent regular rings, because every
Priifer domain is regular.

e However, using properties of finitely generated algebras over Priifer do-
mains, that were uncovered only after Sakaguchi’s publications one can
obtain interesting results for such algebras in the case of a one-dimensional
base ring.
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Algebras over valuation domains

DEFINITION: A ring R 1s called catenarian if for all prime ideals p C q of R
the lengths of all non-refinable chains of prime ideals starting with p and
ending with q are finite and equal.

A ring R s called universally catenarian if R and all polynomial rings
R[X4,...,X,]|, n €N, are catenarian.

PROPERTIES:

1. If R is a universally catenarian ring, then ST R is universally
catenarian for every multiplicative set S C R.

2. If R is a universally catenarian ring, then R/I is universally catenarian
for every ideal I.
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Algebras over valuation domains

THEOREM: A universally catenarian ring R satisfies dim(R) = Dim(R).
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Algebras over valuation domains

POLYNOMIAL RINGS OVER PRUFER DOMAINS

THEOREM (G.SABBAGH (1974), B.ALFONSI (1981): The polynomial ring
R[X1,...,X,], n € N, over a Priifer domain is coherent.

THEOREM: For a Priifer domain R one has
wdim(R[ X1, ..., Xy,]) =n+1;
in particular R[X1,...,X,] is Bertin-regqular.

THEOREM (S.MALIK, J.MoTT (1983), A.BOUVIER, M.FONTANA (1985)):
A Priifer domain R with the property dim(R,) # oo for all p € Spec(R) is
unwersally catenarian.
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Algebras over valuation domains

NAGATA’S CONTRIBUTION

THEOREM (M. NAGATA (1966)): A finitely generated flat algebra A
over a valuation ring R is finitely presented.
In particular A is coherent.

THEOREM (M. NAGATA (1966)): Let A be a domain, finitely generated over a
valuation ring R. Then every non-refineable chain of prime ideals starting from
0 and ending with q has the length

¢ = ht(p) + trdeg(A|R) — trdeg(A/q|R/p),

where p :=q N R.
Moreover: if q is a minimal prime containing pA, then

trdeg(A|R) = trdeg(A/q|R/p).
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Algebras over valuation domains

RESULT 1: Let (O,mo) be a local ring, essentially finitely generated and flat
over the one-dimensional valuation ring R.

Then: if O is Bertin-reqular, it is also polynomially Cohen-Macauley and the
equations

grade(mo, O) = Grade(mo,O) = Dim(O) = dim(O)
hold.
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Algebras over valuation domains

RESULT 2: Let R be a one-dimensional valuation ring.

Let S be the integral closure of the polynomial ring R[X] in some finite extension
of the fraction field of R|X].

Assume that the extension S|R|X] is finite.

Let (O, mo) be a localisation of S at some prime.

Then O 1is polynomially Cohen-Macauley and the equations

grade(mop, O) = Grade(mp,O) = Dim(0O) = dim(0O) < 2

hold.
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Thank you for your attention.
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