Defect extensions of prime degree

Anna Blaszczok joint work with Franz-Viktor Kuhlmann

The Twentieth Colloquiumfest

May 20, 2017

(K, v) a valued field vK the value group, Kv the residue field.

If (L|K, v) is a finite extension of valued fields and the extension of v from K to L is unique, then

$$[L:K] = p^n(vL:vK)[Lv:Kv],$$

where $p = \operatorname{char} Kv$ if it is positive and p = 1 otherwise.

$$d(L|K,v) := p^n$$
 - the **defect** of $(L|K,v)$.

If $p^n > 1$, then (L|K, v) is called a **defect extension**. Otherwise it is called a **defectless extension**.

$$[L:K] = (vL:vK)[Lv:Kv].$$

(K, v) a valued field vK the value group, Kv the residue field.

If (L|K,v) is a finite extension of valued fields and the extension of v from K to L is unique, then

$$[L:K] = p^n(vL:vK)[Lv:Kv],$$

where $p = \operatorname{char} Kv$ if it is positive and p = 1 otherwise.

$$d(L|K,v) := p^n$$
 - the **defect** of $(L|K,v)$.

If $p^n > 1$, then (L|K, v) is called a **defect extension**. Otherwise it is called a **defectless extension**.

$$[L:K] = (vL:vK)[Lv:Kv].$$

(K, v) a valued field vK the value group, Kv the residue field.

If (L|K,v) is a finite extension of valued fields and the extension of v from K to L is unique, then

$$[L:K] = p^n(vL:vK)[Lv:Kv],$$

where $p = \operatorname{char} Kv$ if it is positive and p = 1 otherwise.

$$d(L|K,v) := p^n$$
 - the **defect** of $(L|K,v)$.

If $p^n > 1$, then (L|K, v) is called a **defect extension**. Otherwise it is called a **defectless extension**.

$$[L:K] = (vL:vK)[Lv:Kv].$$

(K, v) a valued field vK the value group, Kv the residue field.

If (L|K, v) is a finite extension of valued fields and the extension of v from K to L is unique, then

$$[L:K] = p^n(vL:vK)[Lv:Kv],$$

where $p = \operatorname{char} Kv$ if it is positive and p = 1 otherwise.

$$d(L|K,v) := p^n$$
 - the **defect** of $(L|K,v)$.

If $p^n > 1$, then (L|K, v) is called a **defect extension**. Otherwise it is called a **defectless extension**.

$$[L:K] = (vL:vK)[Lv:Kv].$$

(K, v) a valued field vK the value group, Kv the residue field.

If (L|K, v) is a finite extension of valued fields and the extension of v from K to L is unique, then

$$[L:K] = p^n(vL:vK)[Lv:Kv],$$

where $p = \operatorname{char} Kv$ if it is positive and p = 1 otherwise.

$$d(L|K,v) := p^n$$
 - the **defect** of $(L|K,v)$.

If $p^n > 1$, then (L|K, v) is called a **defect extension**. Otherwise it is called a **defectless extension**.

$$[L:K] = (vL:vK)[Lv:Kv].$$

A valued field extension (L|K,v) is called immediate if

$$(vL:vK) = [Lv:Kv] = 1.$$

A valued field which admits no nontrivial immediate algebraic (separable-algebraic) extension is called algebraically maximal (separable-algebraically maximal).

• algebraically maximal \Rightarrow defectless

Theorem 1 (F.-V. Kuhlmann)

A valued field extension (L|K,v) is called immediate if

$$(vL:vK) = [Lv:Kv] = 1.$$

A valued field which admits no nontrivial immediate algebraic (separable-algebraic) extension is called **algebraically** maximal (separable-algebraically maximal).

Theorem 1 (F.-V. Kuhlmann)

A valued field extension (L|K,v) is called immediate if

$$(vL:vK) = [Lv:Kv] = 1.$$

A valued field which admits no nontrivial immediate algebraic (separable-algebraic) extension is called **algebraically** maximal (separable-algebraically maximal).

• algebraically maximal \Rightarrow defectless

Theorem 1 (F.-V. Kuhlmann)

A valued field extension (L|K,v) is called immediate if

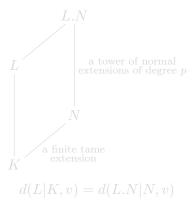
$$(vL:vK) = [Lv:Kv] = 1.$$

A valued field which admits no nontrivial immediate algebraic (separable-algebraic) extension is called **algebraically** maximal (separable-algebraically maximal).

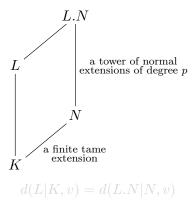
• algebraically maximal \Rightarrow defectless

Theorem 1 (F.-V. Kuhlmann)

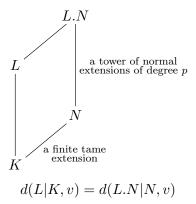
(L|K,v) - a finite extension of henselian fields, charKv=p>0.



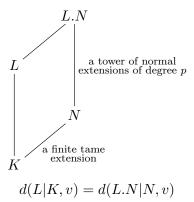
(L|K,v) - a finite extension of henselian fields, charKv=p>0.



(L|K,v) - a finite extension of henselian fields, charKv=p>0.



(L|K,v) - a finite extension of henselian fields, charKv=p>0.



(K, v) a valued field of characteristic p > 0,

 $(K(\vartheta)|K,v)$ an Artin-Schreier defect extension, where ϑ is an **Artin-Schreier generator**, that is, a root of a polynomial

$$X^p - X - a$$

- $(K(\vartheta)|K,v)$ is an immediate extension,
- $v(\vartheta K) := \{v(\vartheta c) \, | \, c \in K\}$ is an initial segment of vK,
- $v(\vartheta K) \subseteq vK^{<0}$ and does not depend on the choice of ϑ .

(K, v) a valued field of characteristic p > 0,

 $(K(\vartheta)|K,v)$ an Artin-Schreier defect extension, where ϑ is an **Artin-Schreier generator**, that is, a root of a polynomial

$$X^p - X - a$$

- $(K(\vartheta)|K,v)$ is an immediate extension,
- $v(\vartheta-K):=\{v(\vartheta-c)\,|\,c\in K\}$ is an initial segment of vK,
- $v(\vartheta K) \subseteq vK^{<0}$ and does not depend on the choice of ϑ .

(K, v) a valued field of characteristic p > 0,

 $(K(\vartheta)|K,v)$ an Artin-Schreier defect extension, where ϑ is an **Artin-Schreier generator**, that is, a root of a polynomial

$$X^p - X - a$$

- $(K(\vartheta)|K,v)$ is an immediate extension,
- $v(\vartheta-K):=\{v(\vartheta-c)\,|\,c\in K\}$ is an initial segment of vK,
- $v(\vartheta K) \subseteq vK^{<0}$ and does not depend on the choice of ϑ .

(K, v) a valued field of characteristic p > 0,

 $(K(\vartheta)|K,v)$ an Artin-Schreier defect extension, where ϑ is an **Artin-Schreier generator**, that is, a root of a polynomial

$$X^p - X - a$$

- $(K(\vartheta)|K,v)$ is an immediate extension,
- $v(\vartheta K) := \{v(\vartheta c) \mid c \in K\}$ is an initial segment of vK,
- $v(\vartheta K) \subseteq vK^{<0}$ and does not depend on the choice of ϑ .

(K, v) a valued field of characteristic p > 0,

 $(K(\vartheta)|K,v)$ an Artin-Schreier defect extension, where ϑ is an **Artin-Schreier generator**, that is, a root of a polynomial

$$X^p - X - a$$

- $(K(\vartheta)|K,v)$ is an immediate extension,
- $v(\vartheta K) := \{v(\vartheta c) \, | \, c \in K\}$ is an initial segment of vK,
- $v(\vartheta K) \subseteq vK^{<0}$ and does not depend on the choice of ϑ .

$(K(\vartheta)|K,v)$ an Artin-Schreier defect extension

If there is a purely inseparable defect extension $(K(\eta)|K,v)$ of degree p such that

$$v(\eta - \vartheta) > v(\vartheta - K),$$

then $(K(\vartheta)|K,v)$ is called a **dependent Artin-Schreier defect extension**. Otherwise $(K(\vartheta)|K,v)$ is called an independent Artin-Schreier defect extension.

Proposition 2

 $(K(\vartheta)|K,v)$ is an independent Artin-Schreier defect extension if and only if the smallest initial segment of the divisible hull \widetilde{vK} of vK containing $v(\vartheta - K)$ is equal to

$$\{\alpha \in \widetilde{vK} \,|\, \alpha < H\}$$

 $(K(\vartheta)|K,v)$ an Artin-Schreier defect extension

If there is a purely inseparable defect extension $(K(\eta)|K,v)$ of degree p such that

$$v(\eta - \vartheta) > v(\vartheta - K),$$

then $(K(\vartheta)|K,v)$ is called a **dependent Artin-Schreier defect extension**. Otherwise $(K(\vartheta)|K,v)$ is called an **independent Artin-Schreier defect extension**.

Proposition 2

 $(K(\vartheta)|K,v)$ is an independent Artin-Schreier defect extension if and only if the smallest initial segment of the divisible hull \widetilde{vK} of vK containing $v(\vartheta - K)$ is equal to

$$\{\alpha \in \widetilde{vK} \,|\, \alpha < H\}$$

 $(K(\vartheta)|K,v)$ an Artin-Schreier defect extension

If there is a purely inseparable defect extension $(K(\eta)|K,v)$ of degree p such that

$$v(\eta - \vartheta) > v(\vartheta - K),$$

then $(K(\vartheta)|K,v)$ is called a **dependent Artin-Schreier defect extension**. Otherwise $(K(\vartheta)|K,v)$ is called an independent Artin-Schreier defect extension.

Proposition 2

 $(K(\vartheta)|K,v)$ is an independent Artin-Schreier defect extension if and only if the smallest initial segment of the divisible hull \widetilde{vK} of vK containing $v(\vartheta - K)$ is equal to

$$\{\alpha \in \widetilde{vK} \,|\, \alpha < H\}$$

 $(K(\vartheta)|K,v)$ an Artin-Schreier defect extension

If there is a purely inseparable defect extension $(K(\eta)|K,v)$ of degree p such that

$$v(\eta - \vartheta) > v(\vartheta - K),$$

then $(K(\vartheta)|K,v)$ is called a **dependent Artin-Schreier defect extension**. Otherwise $(K(\vartheta)|K,v)$ is called an **independent Artin-Schreier defect extension**.

Proposition 2

 $(K(\vartheta)|K,v)$ is an independent Artin-Schreier defect extension if and only if the smallest initial segment of the divisible hull \widetilde{vK} of vK containing $v(\vartheta - K)$ is equal to

$$\{\alpha \in \widetilde{vK} \,|\, \alpha < H\}$$

 $(K(\vartheta)|K,v)$ an Artin-Schreier defect extension

If there is a purely inseparable defect extension $(K(\eta)|K,v)$ of degree p such that

$$v(\eta - \vartheta) > v(\vartheta - K),$$

then $(K(\vartheta)|K,v)$ is called a **dependent Artin-Schreier defect extension**. Otherwise $(K(\vartheta)|K,v)$ is called an independent Artin-Schreier defect extension.

Proposition 2

 $(K(\vartheta)|K,v)$ is an independent Artin-Schreier defect extension if and only if the smallest initial segment of the divisible hull \widetilde{vK} of vK containing $v(\vartheta - K)$ is equal to

$$\{\alpha \in \widetilde{vK} \,|\, \alpha < H\}$$

Theorem

- (K, v) admits no purely inseparable defect extensions $\downarrow \downarrow$ every finite extension of K admits no purely inseparable defect extensions

 (hence also no dependent Artin-Schreier defect extensions)
- (K, v) separable-algebraically maximal ψ every finite defectless extension of K admits no independent Artin-Schreier defect extensions.

Theorem

- (K, v) admits no purely inseparable defect extensions $\qquad \qquad \downarrow$ every finite extension of K admits no purely inseparable defect extensions (hence also no dependent Artin-Schreier defect extensions)
- (K, v) separable-algebraically maximal ψ every finite defectless extension of K admits no independent Artin-Schreier defect extensions.

Theorem

- (K, v) admits no purely inseparable defect extensions ψ every finite extension of K admits no purely inseparable defect extensions (hence also no dependent Artin-Schreier defect extensions);
- (K, v) separable-algebraically maximal ψ every finite defectless extension of K admits no independent Artin-Schreier defect extensions.

Theorem

- (K, v) admits no purely inseparable defect extensions ψ every finite extension of K admits no purely inseparable defect extensions (hence also no dependent Artin-Schreier defect extensions);
- (K, v) separable-algebraically maximal ψ every finite defectless extension of K admits no independent Artin-Schreier defect extensions.

(K, v) a henselian field; char K = 0, char Kv = p > 0;

(L|K,v) a Galois defect extension of degree p. Then:

- L = K(a), where $a^p \in K$;
- (K(a)|K,v) is an immediate extension;
- we can choose $a \in 1 + \mathcal{M}_L$.

Lemma 3

•
$$v(a-K) \nsubseteq vK^{<0}$$

(K, v) a henselian field; charK = 0, char Kv = p > 0; $\varepsilon_p \in K$, where ε_p is a primitive p-th root of unity.

(L|K,v) a Galois defect extension of degree p. Then:

- L = K(a), where $a^p \in K$;
- (K(a)|K,v) is an immediate extension;
- we can choose $a \in 1 + \mathcal{M}_L$.

Lemma 3

•
$$v(a-K) \nsubseteq vK^{<0}$$

(K, v) a henselian field; charK = 0, char Kv = p > 0; $\varepsilon_p \in K$, where ε_p is a primitive p-th root of unity.

(L|K,v) a Galois defect extension of degree p. Then:

- L = K(a), where $a^p \in K$;
- (K(a)|K,v) is an immediate extension;
- we can choose $a \in 1 + \mathcal{M}_L$.

Lemma 3

•
$$v(a-K) \nsubseteq vK^{<0}$$

(K, v) a henselian field; charK = 0, char Kv = p > 0; $\varepsilon_p \in K$, where ε_p is a primitive p-th root of unity.

(L|K,v) a Galois defect extension of degree p. Then:

- L = K(a), where $a^p \in K$;
- (K(a)|K,v) is an immediate extension;
- we can choose $a \in 1 + \mathcal{M}_L$.

Lemma 3

•
$$v(a-K) \nsubseteq vK^{<0}$$

(K, v) a henselian field; charK = 0, char Kv = p > 0; $\varepsilon_p \in K$, where ε_p is a primitive p-th root of unity.

(L|K,v) a Galois defect extension of degree p. Then:

- L = K(a), where $a^p \in K$;
- (K(a)|K,v) is an immediate extension;
- we can choose $a \in 1 + \mathcal{M}_L$.

Lemma 3

•
$$v(a-K) \not\subseteq vK^{<0}$$

(K, v) a henselian field; charK = 0, char Kv = p > 0; $\varepsilon_p \in K$, where ε_p is a primitive p-th root of unity.

(L|K,v) a Galois defect extension of degree p. Then:

- L = K(a), where $a^p \in K$;
- (K(a)|K,v) is an immediate extension;
- we can choose $a \in 1 + \mathcal{M}_L$.

Lemma 3

•
$$v(a-K) \nsubseteq vK^{<0}$$

(K, v) a henselian field; charK = 0, char Kv = p > 0; $\varepsilon_p \in K$, where ε_p is a primitive p-th root of unity.

(L|K,v) a Galois defect extension of degree p. Then:

- L = K(a), where $a^p \in K$;
- (K(a)|K,v) is an immediate extension;
- we can choose $a \in 1 + \mathcal{M}_L$.

Lemma 3

•
$$v(a-K) \not\subseteq vK^{<0}$$

(K, v) a henselian field; charK = 0, char Kv = p > 0; $\varepsilon_p \in K$, where ε_p is a primitive p-th root of unity.

(L|K,v) a Galois defect extension of degree p. Then:

- L = K(a), where $a^p \in K$;
- (K(a)|K,v) is an immediate extension;
- we can choose $a \in 1 + \mathcal{M}_L$.

Lemma 3

•
$$v(a-K) \not\subseteq vK^{<0}$$

(K, v) a henselian field; charK = 0, char Kv = p > 0; $\varepsilon_p \in K$, where ε_p is a primitive p-th root of unity.

(L|K,v) a Galois defect extension of degree p. Then:

- L = K(a), where $a^p \in K$;
- (K(a)|K,v) is an immediate extension;
- we can choose $a \in 1 + \mathcal{M}_L$.

Lemma 3

The set v(a-K) is an initial segment of vK and does not depend on the choice of the generator a which satisfies the above assumptions.

•
$$v(a-K) \not\subseteq vK^{<0}$$

$h_a(X) := X^p - a^p$ - the minimal polynomial of a over K,

Take $C \in \tilde{\mathbb{Q}}$ such that $C^{p-1} = -p$.

• Since K is henselian and $\varepsilon_p \in K$, we obtain that $C \in K$.

Consider the transformation X = CY + 1 for h_a and divide the polynomial by C^p .

We then obtain the polynomial

$$f_a(Y) = Y^p + g(Y) - Y - \frac{a^p - 1}{C^p},$$

where g(Y) has all coefficients in \mathcal{M}_K .

$$K(a) = K(\vartheta_a)$$
 and $f_a(\vartheta_a) = 0$.

 $h_a(X) := X^p - a^p$ - the minimal polynomial of a over K,

Take $C \in \tilde{\mathbb{Q}}$ such that $C^{p-1} = -p$.

• Since K is henselian and $\varepsilon_p \in K$, we obtain that $C \in K$.

Consider the transformation X = CY + 1 for h_a and divide the polynomial by C^p .

We then obtain the polynomial

$$f_a(Y) = Y^p + g(Y) - Y - \frac{a^p - 1}{C^p},$$

where g(Y) has all coefficients in \mathcal{M}_K .

$$K(a) = K(\vartheta_a)$$
 and $f_a(\vartheta_a) = 0$.

 $h_a(X) := X^p - a^p$ - the minimal polynomial of a over K,

Take $C \in \tilde{\mathbb{Q}}$ such that $C^{p-1} = -p$.

• Since K is henselian and $\varepsilon_p \in K$, we obtain that $C \in K$.

Consider the transformation X = CY + 1 for h_a and divide the polynomial by C^p .

We then obtain the polynomial

$$f_a(Y) = Y^p + g(Y) - Y - \frac{a^p - 1}{C^p},$$

where g(Y) has all coefficients in \mathcal{M}_K .

$$K(a) = K(\vartheta_a)$$
 and $f_a(\vartheta_a) = 0$.

 $h_a(X) := X^p - a^p$ - the minimal polynomial of a over K,

Take $C \in \tilde{\mathbb{Q}}$ such that $C^{p-1} = -p$.

• Since K is henselian and $\varepsilon_p \in K$, we obtain that $C \in K$.

Consider the transformation X = CY + 1 for h_a and divide the polynomial by C^p .

We then obtain the polynomial

$$f_a(Y) = Y^p + g(Y) - Y - \frac{a^p - 1}{C^p},$$

where g(Y) has all coefficients in \mathcal{M}_K .

$$K(a) = K(\vartheta_a)$$
 and $f_a(\vartheta_a) = 0$.

 $h_a(X) := X^p - a^p$ - the minimal polynomial of a over K,

Take $C \in \tilde{\mathbb{Q}}$ such that $C^{p-1} = -p$.

• Since K is henselian and $\varepsilon_p \in K$, we obtain that $C \in K$.

Consider the transformation X = CY + 1 for h_a and divide the polynomial by C^p .

We then obtain the polynomial

$$f_a(Y) = Y^p + g(Y) - Y - \frac{a^p - 1}{C^p},$$

where g(Y) has all coefficients in \mathcal{M}_K .

$$K(a) = K(\vartheta_a)$$
 and $f_a(\vartheta_a) = 0$.

 $h_a(X) := X^p - a^p$ - the minimal polynomial of a over K,

Take $C \in \tilde{\mathbb{Q}}$ such that $C^{p-1} = -p$.

• Since K is henselian and $\varepsilon_p \in K$, we obtain that $C \in K$.

Consider the transformation X = CY + 1 for h_a and divide the polynomial by C^p .

We then obtain the polynomial

$$f_a(Y) = Y^p + g(Y) - Y - \frac{a^p - 1}{C^p},$$

where g(Y) has all coefficients in \mathcal{M}_K .

$$K(a) = K(\vartheta_a)$$
 and $f_a(\vartheta_a) = 0$.

 $h_a(X) := X^p - a^p$ - the minimal polynomial of a over K,

Take $C \in \tilde{\mathbb{Q}}$ such that $C^{p-1} = -p$.

• Since K is henselian and $\varepsilon_p \in K$, we obtain that $C \in K$.

Consider the transformation X = CY + 1 for h_a and divide the polynomial by C^p .

We then obtain the polynomial

$$f_a(Y) = Y^p + g(Y) - Y - \frac{a^p - 1}{C^p},$$

where g(Y) has all coefficients in \mathcal{M}_K .

Set
$$\vartheta_a := \frac{a-1}{C}$$
. Then

$$K(a) = K(\vartheta_a)$$
 and $f_a(\vartheta_a) = 0$.

 $h_a(X) := X^p - a^p$ - the minimal polynomial of a over K,

Take $C \in \tilde{\mathbb{Q}}$ such that $C^{p-1} = -p$.

• Since K is henselian and $\varepsilon_p \in K$, we obtain that $C \in K$.

Consider the transformation X = CY + 1 for h_a and divide the polynomial by C^p .

We then obtain the polynomial

$$f_a(Y) = Y^p + g(Y) - Y - \frac{a^p - 1}{C^p},$$

where g(Y) has all coefficients in \mathcal{M}_K .

$$K(a) = K(\vartheta_a)$$
 and $f_a(\vartheta_a) = 0$.

Lemma 4

The initial segment $v(\vartheta_a - K)$ of vK does not depend on the choice of the generator ϑ_a and

$$v(\vartheta_a - K) \subseteq vK^{<0}.$$

 $(K(\vartheta_a)|K,v)$ is called an **independent Kummer defect extension** if the smallest initial segment of \widetilde{vK} containing $v(\vartheta_a - K)$ is equal to

$$\{\alpha \in \widetilde{vK} \mid \alpha < H\}$$

for some proper convex subgroup H of vK. Otherwise $(K(\vartheta_a)|K,v)$ is called a **dependent Kummer defect extension**.

• Both types of Kummer defect extensions exist.

Lemma 4

The initial segment $v(\vartheta_a - K)$ of vK does not depend on the choice of the generator ϑ_a and

$$v(\vartheta_a - K) \subseteq vK^{<0}.$$

 $(K(\vartheta_a)|K,v)$ is called an **independent Kummer defect extension** if the smallest initial segment of \widetilde{vK} containing $v(\vartheta_a - K)$ is equal to

$$\{\alpha \in \widetilde{vK} \mid \alpha < H\}$$

for some proper convex subgroup H of vK. Otherwise $(K(\vartheta_a)|K,v)$ is called a **dependent Kummer defect extension**.

• Both types of Kummer defect extensions exist.

Lemma 4

The initial segment $v(\vartheta_a - K)$ of vK does not depend on the choice of the generator ϑ_a and

$$v(\vartheta_a - K) \subseteq vK^{<0}.$$

 $(K(\vartheta_a)|K,v)$ is called an **independent Kummer defect extension** if the smallest initial segment of \widetilde{vK} containing $v(\vartheta_a - K)$ is equal to

$$\{\alpha \in \widetilde{vK} \,|\, \alpha < H\}$$

for some proper convex subgroup H of \widetilde{vK} .

Otherwise $(K(\vartheta_a)|K,v)$ is called a **dependent Kummer** defect extension.

Both types of Kummer defect extensions exist.

Lemma 4

The initial segment $v(\vartheta_a - K)$ of vK does not depend on the choice of the generator ϑ_a and

$$v(\vartheta_a - K) \subseteq vK^{<0}.$$

 $(K(\vartheta_a)|K,v)$ is called an **independent Kummer defect extension** if the smallest initial segment of \widetilde{vK} containing $v(\vartheta_a - K)$ is equal to

$$\{\alpha \in \widetilde{vK} \,|\, \alpha < H\}$$

for some proper convex subgroup H of vK. Otherwise $(K(\vartheta_a)|K,v)$ is called a **dependent Kummer defect extension**.

Both types of Kummer defect extensions exist.

Lemma 4

The initial segment $v(\vartheta_a - K)$ of vK does not depend on the choice of the generator ϑ_a and

$$v(\vartheta_a - K) \subseteq vK^{<0}.$$

 $(K(\vartheta_a)|K,v)$ is called an **independent Kummer defect extension** if the smallest initial segment of \widetilde{vK} containing $v(\vartheta_a - K)$ is equal to

$$\{\alpha \in \widetilde{vK} \,|\, \alpha < H\}$$

for some proper convex subgroup H of vK. Otherwise $(K(\vartheta_a)|K,v)$ is called a **dependent Kummer defect extension**.

• Both types of Kummer defect extensions exist.

(K,v)a henselian field, $\mathrm{char} Kv=p>0$ (L|K,v)a Galois defect extension of degree p

• $\operatorname{char} K = p$

$$L = K(\vartheta), \qquad \vartheta^p - \vartheta - d = 0$$

$$L = K(a), \quad a^p \in K, \ a \in 1 + \mathcal{M}_L$$

$$L = K(\vartheta_a), \ \vartheta_a = \frac{a-1}{C} \qquad \vartheta_a^p + g(\vartheta_a) - \vartheta_a - d = 0$$

(K,v)a henselian field, $\mathrm{char} Kv=p>0$ (L|K,v) a Galois defect extension of degree p

• $\operatorname{char} K = p$

$$L = K(\vartheta), \qquad \vartheta^p - \vartheta - d = 0$$

• $\operatorname{char} K = 0, \ \varepsilon_p \in K$

$$L = K(a), \quad a^p \in K, \ a \in 1 + \mathcal{M}_L$$

 $L = K(\vartheta_a), \ \vartheta_a = \frac{a-1}{C} \qquad \vartheta_a^p + g(\vartheta_a) - \vartheta_a - d = 0.$

(K,v)a henselian field, $\mathrm{char} Kv=p>0$ (L|K,v)a Galois defect extension of degree p

• $\operatorname{char} K = p$

$$L = K(\vartheta), \qquad \vartheta^p - \vartheta - d = 0$$

$$L = K(a), \quad a^p \in K, \ a \in 1 + \mathcal{M}_L$$

$$L = K(\vartheta_a), \ \vartheta_a = \frac{a-1}{C} \qquad \vartheta_a^p + g(\vartheta_a) - \vartheta_a - d = 0.$$

(K,v)a henselian field, $\mathrm{char} Kv=p>0$ (L|K,v)a Galois defect extension of degree p

• $\operatorname{char} K = p$

$$L = K(\vartheta), \qquad \vartheta^p - \vartheta - d = 0$$

$$L = K(a), \quad a^p \in K, \ a \in 1 + \mathcal{M}_L$$

$$L = K(\vartheta_a), \ \vartheta_a = \frac{a-1}{C} \qquad \vartheta_a^p + g(\vartheta_a) - \vartheta_a - d = 0.$$

(K,v)a henselian field, $\mathrm{char} Kv=p>0$ (L|K,v)a Galois defect extension of degree p

• $\operatorname{char} K = p$

$$L = K(\vartheta), \qquad \vartheta^p - \vartheta - d = 0$$

$$L = K(a), \quad a^p \in K, \ a \in 1 + \mathcal{M}_L$$

$$L = K(\vartheta_a), \ \vartheta_a = \frac{a-1}{C} \qquad \vartheta_a^p + g(\vartheta_a) - \vartheta_a - d = 0.$$

$$I \triangleleft \mathcal{O}_L \mapsto G_I := \{ \sigma \in \operatorname{Gal}(L|K) \mid \frac{\sigma b - b}{b} \in I \text{ for all } b \in L^{\times} \}.$$

 $vK^{\geq 0} \supseteq \Sigma \text{ a final segment of } vK \ \mapsto I_{\Sigma} = \{a \in L \, | \, va \in \Sigma \cup \{\infty\}\}$

$$G_{\Sigma} := \left\{ \sigma \in \operatorname{Gal}(L|K) \, | \, v\left(\frac{\sigma b - b}{b}\right) \in \Sigma \cup \{\infty\} \text{ for all } b \in L^{\times} \right\}$$

$$\Sigma_{+}(1) = \bigcup_{G_{\Sigma}=1} \Sigma$$
 $\Sigma_{-}(G) = \bigcap_{G_{\Sigma}=G} \Sigma$

Theorem 5

For every $\sigma \in Gal(L|K) \setminus \{id\}$ we have

$$\begin{split} \Sigma_{+}(1) &= \Sigma_{-}(G) = \left\{ v \left(\frac{\sigma b - b}{b} \right) \mid b \in L^{\times} \right\} \\ &= \left\{ \begin{array}{ll} -v(\vartheta - K), & \operatorname{char} K = p, \\ -v(\vartheta_{a} - K), & \operatorname{char} K = 0. \end{array} \right. \end{split}$$

$$I \triangleleft \mathcal{O}_L \quad \mapsto \quad G_I := \{ \sigma \in \operatorname{Gal}(L|K) \mid \frac{\sigma b - b}{b} \in I \text{ for all } b \in L^{\times} \}.$$
$$vK^{\geq 0} \supseteq \Sigma \text{ a final segment of } vK \quad \mapsto \ I_{\Sigma} = \{ a \in L \mid va \in \Sigma \cup \{\infty\} \}$$

$$G_{\Sigma} := \left\{ \sigma \in \operatorname{Gal}(L|K) \mid v\left(\frac{\sigma b - b}{b}\right) \in \Sigma \cup \{\infty\} \text{ for all } b \in L^{\times} \right\}$$

$$\Sigma_{+}(1) = \bigcup_{G_{\Sigma}=1} \Sigma$$
 $\Sigma_{-}(G) = \bigcap_{G_{\Sigma}=G} \Sigma$

Theorem 5

For every $\sigma \in Gal(L|K) \setminus \{id\}$ we have

$$\Sigma_{+}(1) = \Sigma_{-}(G) = \left\{ v \left(\frac{\sigma b - b}{b} \right) \mid b \in L^{\times} \right\}$$
$$= \left\{ \begin{array}{cc} -v(\vartheta - K), & \text{char} K = p, \\ -v(\vartheta_{a} - K), & \text{char} K = 0. \end{array} \right.$$

$$I \triangleleft \mathcal{O}_L \quad \mapsto \quad G_I := \{ \sigma \in \operatorname{Gal}(L|K) \mid \frac{\sigma b - b}{b} \in I \text{ for all } b \in L^{\times} \}.$$
$$vK^{\geq 0} \supseteq \Sigma \text{ a final segment of } vK \quad \mapsto \ I_{\Sigma} = \{ a \in L \mid va \in \Sigma \cup \{\infty\} \}$$

$$G_{\Sigma} := \left\{ \sigma \in \operatorname{Gal}(L|K) \, | \, v\left(\frac{\sigma b - b}{b}\right) \in \Sigma \cup \{\infty\} \text{ for all } b \in L^{\times} \right\}$$

$$\Sigma_{+}(1) = \bigcup_{G_{\Sigma}=1} \Sigma$$
 $\Sigma_{-}(G) = \bigcap_{G_{\Sigma}=G} \Sigma$

Theorem 5

For every $\sigma \in Gal(L|K) \setminus \{id\}$ we have

$$\Sigma_{+}(1) = \Sigma_{-}(G) = \left\{ v\left(\frac{\sigma b - b}{b}\right) \mid b \in L^{\times} \right\}$$

 $= \begin{cases} -v(\vartheta - K), & \operatorname{char} K = p, \\ -v(\vartheta_{\alpha} - K), & \operatorname{char} K = 0. \end{cases}$

$$\begin{split} I \triangleleft \mathcal{O}_L & \mapsto & G_I := \{ \sigma \in \operatorname{Gal}(L|K) \, | \, \frac{\sigma b - b}{b} \in I \text{ for all } b \in L^\times \}. \\ vK^{\geq 0} \supseteq \Sigma \text{ a final segment of } vK & \mapsto & I_\Sigma = \{ a \in L \, | \, va \in \Sigma \cup \{\infty\} \} \end{split}$$

$$G_{\Sigma} := \left\{ \sigma \in \operatorname{Gal}(L|K) \, | \, v\left(\frac{\sigma b - b}{b}\right) \in \Sigma \cup \{\infty\} \text{ for all } b \in L^{\times} \right\}$$

$$\Sigma_{+}(1) = \bigcup_{G_{\Sigma}=1} \Sigma$$
 $\Sigma_{-}(G) = \bigcap_{G_{\Sigma}=G} \Sigma$

Theorem 5

For every $\sigma \in Gal(L|K) \setminus \{id\}$ we have

$$\Sigma_{+}(1) = \Sigma_{-}(G) = \left\{ v \left(\frac{\sigma b - b}{b} \right) \mid b \in L^{\times} \right\}$$

 $= \begin{cases} -v(\vartheta - K), & \operatorname{char} K = p, \\ -v(\vartheta_a - K), & \operatorname{char} K = 0. \end{cases}$

$$\begin{split} I \triangleleft \mathcal{O}_L & \mapsto & G_I := \{ \sigma \in \operatorname{Gal}(L|K) \, | \, \frac{\sigma b - b}{b} \in I \text{ for all } b \in L^\times \}. \\ vK^{\geq 0} \supseteq \Sigma \text{ a final segment of } vK & \mapsto & I_\Sigma = \{ a \in L \, | \, va \in \Sigma \cup \{\infty\} \} \end{split}$$

$$G_{\Sigma} := \left\{ \sigma \in \operatorname{Gal}(L|K) \mid v\left(\frac{\sigma b - b}{b}\right) \in \Sigma \cup \{\infty\} \text{ for all } b \in L^{\times} \right\}$$

$$\Sigma_{+}(1) = \bigcup_{G_{\Sigma}=1} \Sigma$$
 $\Sigma_{-}(G) = \bigcap_{G_{\Sigma}=G} \Sigma$

Theorem 5

For every $\sigma \in Gal(L|K) \setminus \{id\}$ we have

$$\Sigma_{+}(1) = \Sigma_{-}(G) = \left\{ v \left(\frac{\sigma b - b}{b} \right) \mid b \in L^{\times} \right\}$$
$$= \left\{ \begin{array}{ll} -v(\vartheta - K), & \operatorname{char} K = p, \\ -v(\vartheta_{a} - K), & \operatorname{char} K = 0. \end{array} \right.$$

$$I \triangleleft \mathcal{O}_L \quad \mapsto \quad G_I := \{ \sigma \in \operatorname{Gal}(L|K) \mid \frac{\sigma b - b}{b} \in I \text{ for all } b \in L^{\times} \}.$$
$$vK^{\geq 0} \supseteq \Sigma \text{ a final segment of } vK \quad \mapsto \quad I_{\Sigma} = \{ a \in L \mid va \in \Sigma \cup \{\infty\} \}$$

$$G_{\Sigma} := \left\{ \sigma \in \operatorname{Gal}(L|K) \mid v\left(\frac{\sigma b - b}{b}\right) \in \Sigma \cup \{\infty\} \text{ for all } b \in L^{\times} \right\}$$

$$\Sigma_{+}(1) = \bigcup_{G_{\Sigma}=1} \Sigma$$
 $\Sigma_{-}(G) = \bigcap_{G_{\Sigma}=G} \Sigma$

Theorem 5

For every $\sigma \in Gal(L|K) \setminus \{id\}$ we have

$$\Sigma_{+}(1) = \Sigma_{-}(G) = \left\{ v \left(\frac{\sigma b - b}{b} \right) \mid b \in L^{\times} \right\}$$
$$= \left\{ \begin{array}{ll} -v(\vartheta - K), & \operatorname{char} K = p, \\ -v(\vartheta_{a} - K), & \operatorname{char} K = 0. \end{array} \right.$$

$\operatorname{Tr}_{L|K}:L\to K$ - the trace map of the Galois extension L|K,

 \mathcal{M}_L , \mathcal{M}_K - the valuation ideals of L and K

 Λ - the smallest final segment of \widetilde{vK} containing

- $-(p-1)v(\vartheta K)$, if charK = p,
- $-(p-1)v(\vartheta_a K)$, if charK = 0.

Theorem 6

$$Tr_{L|K}(\mathcal{M}_L) = \{ d \in K \mid vd \in \Lambda \}$$

Theorem 7

Assume that (L|K,v) is an independent Artin-Schreier/Kummer defect extension. Then

$$\operatorname{Tr}_{L|K}(\mathcal{M}_L) = \{d \in K \mid vd > H\}$$

for some proper convex subgroup H of \widetilde{vK} . In particular, if $H = \{0\}$, then

 $\operatorname{Tr}_{L|K} \colon L \to K$ - the trace map of the Galois extension L|K, \mathcal{M}_L , \mathcal{M}_K - the valuation ideals of L and K

 Λ - the smallest final segment of \widetilde{vK} containing

- $-(p-1)v(\vartheta-K)$, if char K=p,
- $-(p-1)v(\vartheta_a K)$, if charK = 0.

Theorem 6

$$Tr_{L|K}(\mathcal{M}_L) = \{ d \in K \mid vd \in \Lambda \}$$

Theorem 7

Assume that (L|K,v) is an independent Artin-Schreier/Kummer defect extension. Then

$$\operatorname{Tr}_{L|K}(\mathcal{M}_L) = \{ d \in K \mid vd > H \}$$

for some proper convex subgroup H of \widetilde{vK} . In particular, if $H = \{0\}$, then

 $\operatorname{Tr}_{L|K}(\mathcal{M}_L) = \mathcal{M}_K.$

 $\mathrm{Tr}_{L|K}\colon L\to K$ - the trace map of the Galois extension L|K,

 \mathcal{M}_L , \mathcal{M}_K - the valuation ideals of L and K

 Λ - the smallest final segment of \widetilde{vK} containing

- $-(p-1)v(\vartheta K)$, if charK = p,
- $-(p-1)v(\vartheta_a K)$, if charK = 0.

Theorem 6

$$Tr_{L|K}(\mathcal{M}_L) = \{ d \in K \mid vd \in \Lambda \}$$

Theorem 7

Assume that (L|K,v) is an independent Artin-Schreier/Kummer defect extension. Then

$$\operatorname{Tr}_{L|K}(\mathcal{M}_L) = \{ d \in K \mid vd > H \}$$

for some proper convex subgroup H of \widetilde{vK} . In particular, if $H = \{0\}$, then

 $\operatorname{Tr}_{L|K}(\mathcal{M}_L) = \mathcal{M}_{K}$

 $\operatorname{Tr}_{L|K}:L\to K$ - the trace map of the Galois extension L|K,

 \mathcal{M}_L , \mathcal{M}_K - the valuation ideals of L and K

 Λ - the smallest final segment of \widetilde{vK} containing

- $-(p-1)v(\vartheta K)$, if charK = p,
- $-(p-1)v(\vartheta_a K)$, if charK = 0.

Theorem 6

$$Tr_{L|K}(\mathcal{M}_L) = \{ d \in K \mid vd \in \Lambda \}$$

Theorem 7

Assume that (L|K,v) is an independent Artin-Schreier/Kummer defect extension. Then

$$\operatorname{Tr}_{L|K}(\mathcal{M}_L) = \{ d \in K \,|\, vd > H \}$$

for some proper convex subgroup H of \widetilde{vK} . In particular, if $H = \{0\}$, then

 $\operatorname{Tr}_{L|K}(\mathcal{M}_L) = \mathcal{M}_K.$

 $\operatorname{Tr}_{L|K} \colon L \to K$ - the trace map of the Galois extension L|K,

 \mathcal{M}_L , \mathcal{M}_K - the valuation ideals of L and K

 Λ - the smallest final segment of \widetilde{vK} containing

- $-(p-1)v(\vartheta K)$, if charK = p,
- $-(p-1)v(\vartheta_a K)$, if charK = 0.

Theorem 6

$$Tr_{L|K}(\mathcal{M}_L) = \{ d \in K \mid vd \in \Lambda \}$$

Theorem 7

Assume that (L|K,v) is an independent Artin-Schreier/Kummer defect extension. Then

$$\operatorname{Tr}_{L|K}(\mathcal{M}_L) = \{ d \in K \mid vd > H \}$$

for some proper convex subgroup H of \widetilde{vK} . In particular, if $H = \{0\}$, then

 $\operatorname{Ir}_{L|K}(\mathcal{M}_L) = \mathcal{M}_K.$

 $\operatorname{Tr}_{L|K}:L\to K$ - the trace map of the Galois extension L|K,

 \mathcal{M}_L , \mathcal{M}_K - the valuation ideals of L and K

 Λ - the smallest final segment of \widetilde{vK} containing

- $-(p-1)v(\vartheta K)$, if charK = p,
- $-(p-1)v(\vartheta_a K)$, if charK = 0.

Theorem 6

$$Tr_{L|K}(\mathcal{M}_L) = \{ d \in K \mid vd \in \Lambda \}$$

Theorem 7

Assume that (L|K,v) is an independent Artin-Schreier/Kummer defect extension. Then

$$\operatorname{Tr}_{L|K}(\mathcal{M}_L) = \{ d \in K \mid vd > H \}$$

for some proper convex subgroup H of \widetilde{vK} . In particular, if

$$\operatorname{Tr}_{L|K}(\mathcal{M}_L) = \mathcal{M}_K.$$

 $\operatorname{Tr}_{L|K}:L\to K$ - the trace map of the Galois extension L|K,

 \mathcal{M}_L , \mathcal{M}_K - the valuation ideals of L and K

 Λ - the smallest final segment of \widetilde{vK} containing

- $-(p-1)v(\vartheta K)$, if charK = p,
- $-(p-1)v(\vartheta_a K)$, if charK = 0.

Theorem 6

$$Tr_{L|K}(\mathcal{M}_L) = \{ d \in K \mid vd \in \Lambda \}$$

Theorem 7

Assume that (L|K,v) is an independent Artin-Schreier/Kummer defect extension. Then

$$\operatorname{Tr}_{L|K}(\mathcal{M}_L) = \{ d \in K \mid vd > H \}$$

for some proper convex subgroup H of \widetilde{vK} . In particular, if $H = \{0\}$, then

$$\operatorname{Tr}_{L|K}(\mathcal{M}_L) = \mathcal{M}_K.$$

Proposition 8

Assume that (K, v) is a valued field of characteristic 0 and positive characteristic p and $\varepsilon_p \in K$. If (K, v) is algebraically maximal, then every finite defectless extension of K admits no independent Kummer defect extensions.

(K, v) of residue char. p > 0 is called **deeply ramified** if

- vK is p-divisible,
- the Frobenius homomorphism $\mathcal{O}/p\mathcal{O} \to \mathcal{O}/p\mathcal{O}$ is surjective.

If char K = p, then:

(K, v) deeply ramified if and only if K is perfect.

Theorem 9

Proposition 8

Assume that (K, v) is a valued field of characteristic 0 and positive characteristic p and $\varepsilon_p \in K$. If (K, v) is algebraically maximal, then every finite defectless extension of K admits no independent Kummer defect extensions.

(K, v) of residue char. p > 0 is called **deeply ramified** if

- vK is p-divisible,
- the Frobenius homomorphism $\mathcal{O}/p\mathcal{O} \to \mathcal{O}/p\mathcal{O}$ is surjective.

If char K = p, then:

(K, v) deeply ramified if and only if K is perfect.

Theorem 9

Proposition 8

Assume that (K, v) is a valued field of characteristic 0 and positive characteristic p and $\varepsilon_p \in K$. If (K, v) is algebraically maximal, then every finite defectless extension of K admits no independent Kummer defect extensions.

(K, v) of residue char. p > 0 is called **deeply ramified** if

- \bullet vK is p-divisible,
- the Frobenius homomorphism $\mathcal{O}/p\mathcal{O} \to \mathcal{O}/p\mathcal{O}$ is surjective.

If char K = p, then:

(K, v) deeply ramified if and only if K is perfect.

Theorem 9

Proposition 8

Assume that (K, v) is a valued field of characteristic 0 and positive characteristic p and $\varepsilon_p \in K$. If (K, v) is algebraically maximal, then every finite defectless extension of K admits no independent Kummer defect extensions.

(K, v) of residue char. p > 0 is called **deeply ramified** if

- vK is p-divisible,
- the Frobenius homomorphism $\mathcal{O}/p\mathcal{O} \to \mathcal{O}/p\mathcal{O}$ is surjective.

If char K = p, then:

(K, v) deeply ramified if and only if K is perfect.

Theorem 9

Proposition 8

Assume that (K, v) is a valued field of characteristic 0 and positive characteristic p and $\varepsilon_p \in K$. If (K, v) is algebraically maximal, then every finite defectless extension of K admits no independent Kummer defect extensions.

(K, v) of residue char. p > 0 is called **deeply ramified** if

- \bullet vK is p-divisible,
- the Frobenius homomorphism $\mathcal{O}/p\mathcal{O} \to \mathcal{O}/p\mathcal{O}$ is surjective.

If char K = p, then:

(K, v) deeply ramified if and only if K is perfect.

Theorem 9

Proposition 8

Assume that (K, v) is a valued field of characteristic 0 and positive characteristic p and $\varepsilon_p \in K$. If (K, v) is algebraically maximal, then every finite defectless extension of K admits no independent Kummer defect extensions.

(K, v) of residue char. p > 0 is called **deeply ramified** if

- vK is p-divisible,
- the Frobenius homomorphism $\mathcal{O}/p\mathcal{O} \to \mathcal{O}/p\mathcal{O}$ is surjective.

If char K = p, then:

(K, v) deeply ramified if and only if K is perfect.

Theorem 9

Theorem 10

Assume that (K, v) is a valued field of characteristic 0 and positive characteristic p. If (K, v) is deeply ramified and algebraically maximal, then it is defectless.

THANK YOU FOR YOUR ATTENTION!