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defect extensions

(K, v) a valued field
vK the value group, Kv the residue field.

If (L|K, v) is a finite extension of valued fields and the extension
of v from K to L is unique, then

[L : K] = pn(vL : vK)[Lv : Kv],

where p =charKv if it is positive and p = 1 otherwise.

d(L|K, v) := pn - the defect of (L|K, v).

If pn > 1, then (L|K, v) is called a defect extension.
Otherwise it is called a defectless extension.

A henselian field (K, v) is called defectless if every finite
extension (L|K, v) is defectless, i.e.,

[L : K] = (vL : vK)[Lv : Kv].
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a characterization of defectless fields

A valued field extension (L|K, v) is called immediate if

(vL : vK) = [Lv : Kv] = 1.

A valued field which admits no nontrivial immediate algebraic
(separable-algebraic) extension is called algebraically
maximal (separable-algebraically maximal).

algebraically maximal ; defectless

Theorem 1 (F.-V. Kuhlmann)
A valued field of positive characteristic is henselian and
defectless if and only if it is separable-algebraically maximal and
admits no purely inseparable defect extension.
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defect extensions

(L|K, v) - a finite extension of henselian fields,
charKv = p > 0.

L.N

L

N

a tower of normal
extensions of degree p

K
a finite tame
extension

d(L|K, v) = d(L.N |N, v)

If charK = p, then Galois extensions of degree p are
Artin-Schreier extensions, i.e., extensions generated by
roots of polynomials Xp −X − a, for a ∈ K.
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Artin-Schreier defect extensions

(K, v) a valued field of characteristic p > 0,

(K(ϑ)|K, v) an Artin-Schreier defect extension, where ϑ is an
Artin-Schreier generator, that is, a root of a polynomial

Xp −X − a
for some a ∈ K.

(K(ϑ)|K, v) is an immediate extension,

v(ϑ−K) := {v(ϑ− c) | c ∈ K} is an initial segment of vK,

v(ϑ−K) ⊆ vK<0 and does not depend on the choice of ϑ.
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Artin-Schreier defect extensions

(K(ϑ)|K, v) an Artin-Schreier defect extension

If there is a purely inseparable defect extension (K(η)|K, v) of
degree p such that

v(η − ϑ) > v(ϑ−K),

then (K(ϑ)|K, v) is called a dependent Artin-Schreier
defect extension. Otherwise (K(ϑ)|K, v) is called an
independent Artin-Schreier defect extension.

Proposition 2
(K(ϑ)|K, v) is an independent Artin-Schreier defect extension if
and only if the smallest initial segment of the divisible hull ṽK
of vK containing v(ϑ−K) is equal to

{α ∈ ṽK |α < H}

for some proper convex subgroup H of ṽK.
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of vK containing v(ϑ−K) is equal to
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Artin-Schreier defect extensions

Theorem
A valued field of positive characteristic is henselian and
defectless if and only if it is separable-algebraically maximal and
admits no purely inseparable defect extension.

(K, v) admits no purely inseparable defect extensions
⇓

every finite extension of K admits no purely inseparable
defect extensions
(hence also no dependent Artin-Schreier defect extensions);

(K, v) separable-algebraically maximal
⇓

every finite defectless extension of K admits no
independent Artin-Schreier defect extensions.

Anna Blaszczok Defect extensions of prime degree



Artin-Schreier defect extensions

Theorem
A valued field of positive characteristic is henselian and
defectless if and only if it is separable-algebraically maximal and
admits no purely inseparable defect extension.

(K, v) admits no purely inseparable defect extensions
⇓

every finite extension of K admits no purely inseparable
defect extensions
(hence also no dependent Artin-Schreier defect extensions);

(K, v) separable-algebraically maximal
⇓

every finite defectless extension of K admits no
independent Artin-Schreier defect extensions.

Anna Blaszczok Defect extensions of prime degree



Artin-Schreier defect extensions

Theorem
A valued field of positive characteristic is henselian and
defectless if and only if it is separable-algebraically maximal and
admits no purely inseparable defect extension.

(K, v) admits no purely inseparable defect extensions
⇓

every finite extension of K admits no purely inseparable
defect extensions
(hence also no dependent Artin-Schreier defect extensions);

(K, v) separable-algebraically maximal
⇓

every finite defectless extension of K admits no
independent Artin-Schreier defect extensions.

Anna Blaszczok Defect extensions of prime degree



Artin-Schreier defect extensions

Theorem
A valued field of positive characteristic is henselian and
defectless if and only if it is separable-algebraically maximal and
admits no purely inseparable defect extension.

(K, v) admits no purely inseparable defect extensions
⇓

every finite extension of K admits no purely inseparable
defect extensions
(hence also no dependent Artin-Schreier defect extensions);

(K, v) separable-algebraically maximal
⇓

every finite defectless extension of K admits no
independent Artin-Schreier defect extensions.

Anna Blaszczok Defect extensions of prime degree



Kummer defect extensions

(K, v) a henselian field; charK = 0, char Kv = p > 0;
εp ∈ K, where εp is a primitive p-th root of unity.

(L|K, v) a Galois defect extension of degree p. Then:

L = K(a), where ap ∈ K;

(K(a)|K, v) is an immediate extension;

we can choose a ∈ 1 + ML.

Lemma 3
The set v(a−K) is an initial segment of vK and does not
depend on the choice of the generator a which satisfies the above
assumptions.

v(a−K) * vK<0
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Kummer defect extensions

ha(X) := Xp − ap - the minimal polynomial of a over K,

Take C ∈ Q̃ such that Cp−1 = −p.
Since K is henselian and εp ∈ K, we obtain that C ∈ K.

Consider the transformation X = CY + 1 for ha and divide the
polynomial by Cp.
We then obtain the polynomial

fa(Y ) = Y p + g(Y )− Y − ap − 1

Cp
,

where g(Y ) has all coefficients inMK .

Set ϑa := a−1
C . Then

K(a) = K(ϑa) and fa(ϑa) = 0.
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Kummer defect extensions

Lemma 4
The initial segment v(ϑa −K) of vK does not depend on the
choice of the generator ϑa and

v(ϑa −K) ⊆ vK<0.

(K(ϑa)|K, v) is called an independent Kummer defect
extension if the smallest initial segment of ṽK containing
v(ϑa −K) is equal to

{α ∈ ṽK |α < H}

for some proper convex subgroup H of ṽK.
Otherwise (K(ϑa)|K, v) is called a dependent Kummer
defect extension.

Both types of Kummer defect extensions exist.
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Otherwise (K(ϑa)|K, v) is called a dependent Kummer
defect extension.

Both types of Kummer defect extensions exist.

Anna Blaszczok Defect extensions of prime degree



Kummer defect extensions

Lemma 4
The initial segment v(ϑa −K) of vK does not depend on the
choice of the generator ϑa and

v(ϑa −K) ⊆ vK<0.

(K(ϑa)|K, v) is called an independent Kummer defect
extension if the smallest initial segment of ṽK containing
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Galois defect extensions of prime degree

(K, v) a henselian field, charKv = p > 0

(L|K, v) a Galois defect extension of degree p

charK = p

L = K(ϑ), ϑp − ϑ− d = 0

charK = 0, εp ∈ K

L = K(a), ap ∈ K, a ∈ 1 +ML

L = K(ϑa), ϑa =
a− 1

C
ϑpa + g(ϑa)− ϑa − d = 0.
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higher ramification groups

I /OL 7→ GI := {σ ∈ Gal(L|K) | σb−bb ∈ I for all b ∈ L×}.

vK≥0 ⊇ Σ a final segment of vK 7→ IΣ = {a ∈ L | va ∈ Σ ∪ {∞}}

GΣ :=

{
σ ∈ Gal(L|K) | v

(
σb− b
b

)
∈ Σ ∪ {∞} for all b ∈ L×

}

Σ+(1) =
⋃
GΣ=1

Σ Σ−(G) =
⋂

GΣ=G

Σ

Theorem 5
For every σ ∈ Gal(L|K) \ {id} we have

Σ+(1) = Σ−(G) =

{
v

(
σb− b
b

)
| b ∈ L×

}
=

{
−v(ϑ−K), charK = p,
−v(ϑa −K), charK = 0.
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the trace map

TrL|K : L→ K - the trace map of the Galois extension L|K,
ML,MK - the valuation ideals of L and K

Λ - the smallest final segment of ṽK containing
−(p− 1)v(ϑ−K), if charK = p,
−(p− 1)v(ϑa −K), if charK = 0.

Theorem 6
TrL|K(ML) = {d ∈ K | vd ∈ Λ}

Theorem 7
Assume that (L|K, v) is an independent Artin-Schreier/Kummer
defect extension. Then

TrL|K(ML) = {d ∈ K | vd > H}
for some proper convex subgroup H of ṽK. In particular, if
H = {0}, then

TrL|K(ML) =MK .
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Kummer defect extensions

Proposition 8
Assume that (K, v) is a valued field of characteristic 0 and
positive characteristic p and εp ∈ K. If (K, v) is algebraically
maximal, then every finite defectless extension of K admits no
independent Kummer defect extensions.

(K, v) of residue char. p > 0 is called deeply ramified if
vK is p-divisible,
the Frobenius homomorphism O/pO → O/pO is surjective.

If charK = p, then:
(K, v) deeply ramified if and only if K is perfect.

Theorem 9
Assume that (K, v) is a henselian deeply ramified field of
characteristic 0 and positive characteristic p and such that
εp ∈ K. Then every finite extension of K admits no dependent
Kummer defect extensions.
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Kummer defect extensions

Theorem 10
Assume that (K, v) is a valued field of characteristic 0 and
positive characteristic p. If (K, v) is deeply ramified and
algebraically maximal, then it is defectless.
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