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Bȩdlewo, July 2017

Franz-Viktor Kuhlmann Barrier of imperfection



Collaborators

These people have on occasion helped to push the barrier:

Sylvy Anscombe,
Salih Azgin (now Salih Durhan),
Anna Blaszczok,
Hagen Knaf,
Koushik Pal,
Florian Pop.

Franz-Viktor Kuhlmann Barrier of imperfection



Collaborators

These people have on occasion helped to push the barrier:
Sylvy Anscombe,

Salih Azgin (now Salih Durhan),
Anna Blaszczok,
Hagen Knaf,
Koushik Pal,
Florian Pop.

Franz-Viktor Kuhlmann Barrier of imperfection



Collaborators

These people have on occasion helped to push the barrier:
Sylvy Anscombe,
Salih Azgin (now Salih Durhan),

Anna Blaszczok,
Hagen Knaf,
Koushik Pal,
Florian Pop.

Franz-Viktor Kuhlmann Barrier of imperfection



Collaborators

These people have on occasion helped to push the barrier:
Sylvy Anscombe,
Salih Azgin (now Salih Durhan),
Anna Blaszczok,

Hagen Knaf,
Koushik Pal,
Florian Pop.

Franz-Viktor Kuhlmann Barrier of imperfection



Collaborators

These people have on occasion helped to push the barrier:
Sylvy Anscombe,
Salih Azgin (now Salih Durhan),
Anna Blaszczok,
Hagen Knaf,

Koushik Pal,
Florian Pop.

Franz-Viktor Kuhlmann Barrier of imperfection



Collaborators

These people have on occasion helped to push the barrier:
Sylvy Anscombe,
Salih Azgin (now Salih Durhan),
Anna Blaszczok,
Hagen Knaf,
Koushik Pal,

Florian Pop.

Franz-Viktor Kuhlmann Barrier of imperfection



Collaborators

These people have on occasion helped to push the barrier:
Sylvy Anscombe,
Salih Azgin (now Salih Durhan),
Anna Blaszczok,
Hagen Knaf,
Koushik Pal,
Florian Pop.

Franz-Viktor Kuhlmann Barrier of imperfection



Imperfection

The word “imperfection” in our title refers to:

• fields that are not perfect,

• the defect of valued field extensions.
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Defect

By (L|K, v) we denote a field extension L|K where v is a
valuation on L and K is endowed with the restriction of v.

The
value group of the valued field (L, v) will be denoted by vL,
and its residue field by Lv.
If (L|K, v) is a finite extension of valued fields and the valuation
v of K admits a unique extension to the field L, then by the
Lemma of Ostrowski,

[L : K] = pν · (vL : vK)[Lv : Kv] ,

where ν ≥ 0 is an integer and p is the characteristic exponent of
Kv, that is, p = charKv if it is positive and p = 1 otherwise.
The factor d(L|K, v) = pν is called the defect of the extension
(L|K, v). If pν > 1, then (L|K, v) is called a defect extension. If
pν = 1, then we call (L|K, v) a defectless extension.
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The problem with imperfection

Imperfection is a main obstacle in the following problems,

when positive characteristic is involved:

• resolution of singularities, more precisely, its local form
(called local uniformization),

• the model theory of valued fields, in particular the open
problems whether the elementary theories of Fp((t)) and of its
perfect hull Fp((t))1/p∞

are decidable.
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Defect and imperfect fields

The defect is only indirectly connected to imperfect fields.

It
can appear also over perfect fields:

Let vt be the t-adic valuation on Fp((t)) and Fp((t))1/p∞
.

The polynomial Xp −X− 1
t is irreducible over

K := Fp((t))1/p∞
. If ϑ is a root of it, then [K(ϑ) : K] = p.

Since (Fp((t)), vt) is henselian, so is Fp((t))1/p∞
, hence the

extension of vt from K to K(ϑ) is unique.
But vtK(ϑ) = 1

p∞ Z = vtK and K(ϑ)vt = Fp = Kvt,
whence d(K(ϑ)|K, vt) = p.
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Abhyankar

The above is a famous example from the 1950s due to
S. Abhyankar.

He pointed out that ϑ does not lie in the Puiseux
series field over Fp , that is, although it is algebraic over Fp((t)),
the exponents in its power series expansion do not admit a
common denominator.

But at that time, Abhyankar did not know the notion of the
defect.
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A model theoretic consequence

The example also shows that the following Ax–Kochen–Ershov
Principle does not hold for K = Fp((t))1/p∞

and v = vt

(although (K, vt) is henselian):

(K, v) ⊆ (L, v) ∧ vK ≺∃ vL ∧ Kv ≺∃ Lv =⇒ (K, v) ≺∃ (L, v) ,

where “≺∃” means “existentially closed in”.
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Common underlying problem

The common underlying problem for local uniformization and
the model theory of valued fields is

the structure theory of
valued function fields.

In the case of model theory, the proof of Ax–Kochen–Ershov
Principles is reduced to embedding lemmas for finitely
generated extensions of valued fields; these are valued function
fields. After having dealt with embeddings of rational function
fields, in most cases the only tool available for extending these
embeddings to the full function field is Hensel’s Lemma.
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Local uniformization

Local uniformization means eliminating one singularity at a
time by passing to a new, birationally equivalent variety.

Zariski introduced the use of valuations on the function field of
the variety in order to trace the point on the new variety which
corresponds to the original singular point. We want the new
point to be smooth, meaning that the Implicit Function
Theorem is satisfied. This is essentially the same as saying that
the point satisfies the assumptions of Hensel’s Lemma.
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Elimination of ramification

Ramification is the valuation theoretical expression of the
failure of the Implicit Function Theorem.

So we wish to
eliminate ramification in a given valued function field (F|K, v).
This means to find a transcendence basis T such that F lies in
the absolute inertia field (also called strict henselization) of
(K(T), v), or in other words, the extension (Fh|K(T)h, v) of
respective henselizations shall satisfy:
1) it is defectless,
2) the value group extension is trivial,
3) the residue field extension is separable.

When we try to achieve this in positive characteristic, we meet
our enemy: the defect.
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Deep open problems

It is not known whether

• resolution of singularities,
• or even only local uniformization,
• or even only elimination of ramification
holds in positive characteristic for dimensions greater than 3.
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Tame valued fields

A henselian valued field (K, v) is called tame if every finite
extension L|K satisfies the following conditions:

(T1) the ramification index (vL : vK) is not divisible by char Kv,
(T2) the residue field extension Lv|Kv is separable,
(T3) the extension (L|K, v) is defectless.
All tame fields are perfect (but they are not necessarily
Kaplansky fields).

Theorem (K)

Tame fields (K, v) satisfy model completeness and decidability relative
to the elementary theories of their value groups vK and their residue
fields Kv. If char K = char Kv, then also relative completeness holds.

Fp((t))1/p∞
is perfect, but does not satisfy (T3).
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Elimination of ramification over tame fields

Crucial for the proof of the above theorem is the following
result,

which eliminates ramification in particular function
fields over tame fields:

Theorem (K)

Let (K, v) be a tame field and (F|K, v) a valued function field with
vF = vK and Fv = Kv. If its transcendence degree is 1, then (F|K, v)
is henselian rational, i.e., there is some x ∈ F such that F ⊂ K(x)h.
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Local uniformization by alteration

The Henselian Rationality Theorem is also a crucial ingredient
in the proof that every valued function field admits local
uniformization

if one takes a finite extension of the function
field (alteration) into the bargain (joint work with H. Knaf).
This is a local version of de Jong’s resolution by alteration. But
here it can be shown in addition that the extension can be taken
to be Galois, and the proof is purely valuation theoretical.

Can we do without alteration and can we get from the tame
fields to Fp((t)) if we sufficiently push back the barrier of
imperfection?
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Separably tame fields

A henselian valued field (K, v) is called separably tame if every
finite separable extension L|K satisfies conditions (T1), (T2), (T3).

Theorem (K. Pal, K)

Separably tame fields (K, v) of characteristic p and finite p-degree
satisfy relative completeness and relative decidability. They satisfy
relative model completeness in a language of valued fields enriched by
predicates for p-independence (which guarantee that the extensions
under consideration are separable).

Separably tame fields are not necessarily perfect. However,
they are dense in their perfect hulls.
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Large fields

Question: Assume that (F|K, v) is a valued function field with
v trivial on K and Fv = K

(i.e., F admits a K-rational place).
Does it follow that K ≺∃ F?

For this to hold for all such F, the field K needs to be rich
enough. A field K is called large if for every smooth curve over
K the set of rational points is infinite as soon as it is nonempty,
or equivalently, if K ≺∃ K((t)). For example, if a field satisfies
an Implicit Function Theorem (which is the case if it is
henselian w.r.t. some nontrivial valuation), then it is large.

Theorem (K)

If K is perfect, then the following are equivalent:
a) K is large,
b) K ≺∃ K((G)) for every ordered abelian group G,
c) if the function field F|K admits a K-rational place, then K ≺∃ F.
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An open question

What if K is large, but not perfect?

Interestingly, we have the following result:

Theorem
Let K be a large field and F|K an algebraic function field with a
K-rational place P. If (F|K, P) admits local uniformization, then
K ≺∃ F.
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Extremal valued fields - a false start

In 2003 Yu. Ershov gave the following definition.

A valued
field (K, v) is extremal if for all n ∈N and all polynomials
f ∈ K[X1, . . . , Xn], the set

{vf (a1, . . . , an) | a1, . . . , an ∈ K}

has a maximal element (which may be ∞ if f has a zero on Kn).

Ershov stated that all Laurent series fields k((t)) with their
t-adic valuations are extremal. But S. Starchenko showed that
R((t)) is not extremal. S. Azgin twisted Starchenko’s example
in order to prove that every valued field which is extremal
must be algebraically closed.
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Extremal valued fields - corrected

We corrected the definition:

A valued field (K, v) with
valuation ring O is extremal if for all n ∈N and all
polynomials f ∈ K[X1, . . . , Xn], the set

{vf (a1, . . . , an) | a1, . . . , an ∈ O}

has a maximal element. With this new definition, we proved
Ershov’s claim. This means that extremality is an elementary
property of Fp((t)); this had not been known before.
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An important open question

Is the following axiom system complete?

(K, v) is an extremal valued field of characteristic p with value
group a Z-group and residue field Fp .

Note that “extremal” implies “henselian” and “defectless”.
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An incomplete characterization of extremal fields

In joint work with S. Anscombe, S. Azgin and F. Pop,

the
following incomplete characterization of extremal fields has
been achieved:

Theorem (S. Anscombe, S. Azgin, F. Pop, K)

Let (K, v) be a nontrivially valued field. If (K, v) is extremal, then it
is henselian and defectless, and
(i) vK is a Z-group, or
(ii) vK is divisible and Kv is large.
Conversely, if (K, v) is henselian and defectless, and
(i) vK ' Z, or vK is a Z-group and char Kv = 0, or
(ii) vK is divisible and Kv is large and perfect,
then (K, v) is extremal.

Completing the characterization would mean pushing the
barrier of imperfection.
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Abundance of extremal fields

In a way (which we do not really understand),

extremal fields
are the building blocks of all ℵ1-saturated valued fields:

Theorem
Let (K, v) be any ℵ1-saturated valued field. Assume that the place P
associated with v is decomposed as follows: P = P1P2P3 with P2 of
rank 1 (i.e., its value group is isomorphic to a subgroup of R). Then
(KP1, P2) is extremal and large, and its value group is isomorphic
either to Z or to R. In the latter case, also KP1P2 is large.
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Temkin’s inseparable uniformization

M. Temkin proved that local uniformization can also be
achieved after a finite purely inseparable extension of the
function field.

But this does not mean that we conquered the
defect, we just “stowed it away” in a separable or a purely
inseparable extension. However, this tells us something about
the type of defect that we have not mastered.
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Classification of defect in positive characteristic

Take a valued field (K, v) of characteristic p.

We call a Galois
defect extension of degree p dependent if it can be obtained
from a purely inseparable defect extension by a simple
transformation; otherwise, we call it independent. From the
work of Temkin it appears that the dependent defect is more
harmful for the solution of our open problems.

D. Cutkosky and O. Piltant gave a crucial example which
shows the possible failure of strong monomialization in the
presence of defect. In work of S. ElHitti, L. Ghezzi and
Cutkosky it was later determined that the Galois defect
extensions appearing in the example are dependent.

If a field is perfect (such as Fp((t))1/p∞
), it has no dependent

defect extensions.
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Can we push the barrier further?

There is some hope that results on elimination of ramification
can be generalized to the case of ground fields that do not
admit dependent defect extensions.

What would be a good
framework for this?
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Classification in mixed characteristic

What is a suitable analogue of the classification of defect
extensions in mixed characteristic,

i.e., for valued fields of
characteristic 0 with residue fields of positive characteristic?
What are the “purely inseparable” extensions in this case?

A modern tool for transferring information between the mixed
and the positive characteristic case are the perfectoid fields, via
the tilting construction. Can information about defects also be
transferred?

It turns out that perfectoid fields are a bit too special for our
purposes. By definition, they are complete, so they do not form
an elementary class. It is better to work with deeply ramified
fields in the sense of O. Gabber and L. Ramero.
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It turns out that perfectoid fields are a bit too special for our
purposes. By definition, they are complete, so they do not form
an elementary class. It is better to work with deeply ramified
fields in the sense of O. Gabber and L. Ramero.
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Deeply ramified fields

Here is our own definition that works best for us.

A valued
field (K, v) is deeply ramified if either char Kv = 0, or
char Kv = p > 0, the value v(p) is not the smallest positive
element in vK and the Frobenius homomorphism on Ô/pÔ is
surjective. Here, Ô denotes the completion of the valuation
ring O of (K, v).

If char K > 0, the definition means that (K, v) lies dense in its
perfect hull.
(Fp((t))1/p∞

, vt) is a henselian deeply ramified field.
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Deeply ramified fields

In joint work with A. Blaszczok, an attempt of transferring the
definition of independent defect extensions had already been
made.

Recently, our approach was justified by the following
result:

Theorem (K)

Over deeply ramified fields all Galois defect extensions of prime
degree are independent.

Hence henselian deeply ramified fields constitute an interesting
generalization of the tame fields, because

Theorem (K)

All tame fields are deeply ramified (but not vice versa).
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Pushing the barrier, again

We hope to be able to generalize several results about tame
fields

to the case of henselian deeply ramified fields. For
example:

Conjecture: The Henselian Rationality Theorem also holds
over henselian deeply ramified ground fields in place of tame
ground fields, provided they are relatively algebraically closed
in the function field.

Can interesting model theoretic results about henselian deeply
ramified fields be proven in suitable extensions of the language
of valued fields?
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Three classes of valued fields, pushing the barrier

1) Separably tame fields:

defect appears only within purely inseparable extensions, and they are
contained in the completion.
DONE.

2) Extremal fields:
defectless, in general not perfect. Include (Fp((t)), vt).
TO DO.

3) Henselian deeply ramified fields:
almost perfect, in general not defectless, but only have the more
harmless defect. Include (Fp((t))1/p∞

, vt).
TO DO.
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Preprints and further information

The Valuation Theory Home Page
http://math.usask.ca/fvk/Valth.html
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