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This talk is dedicated to the memory of Serban Basarab, a
collaborator and friend, who passed away all of a sudden on

July 14, 2014.

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



FIXED POINT THEOREMS

metric spaces: Banach FPT,

ultrametric spaces: Prieß-Crampe and Ribenboim,
topological spaces: Brouwer FPT, Schauder FPT,
partially ordered sets: Bourbaki-Witt FPT,
lattices: Knaster-Tarski FPT

For most FPTs a notion of “completeness” is needed.
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Banach’s FPT for metric spaces

On a metric space (X, d), a function f : X→ X is called strictly
contracting if there is a positive real number 0 < c < 1 such
that d(fx, fy) ≤ cd(x, y) for all x, y ∈ X.

Theorem (Banach FPT)

Every strictly contracting function on a complete metric space (X, d)
has a unique fixed point.
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Ultrametric spaces

An ultrametric space is a set X together with a function
u : X×X→ Γ, where Γ is a totally ordered set with minimal
element 0, satisfying the following conditions:

(1) u(x, y) = 0⇔ x = y,
(2) u(x, y) = u(y, x),
(3) u(x, z) 6 max{u(x, y) , u(y, z)}
for all γ ∈ Γ and x, y, z ∈ X.

A (“closed”) ball in an ultrametric space (X, u) is a set

Bγ(x) := {y ∈ X | u(x, y) 6 γ} .

For x, y ∈ X,

B(x, y) := Bu(x,y)(x) = Bu(x,y)(y)

is the smallest ball containing x and y.
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Spherically complete ultrametric spaces

A nest of balls is a nonempty collection of balls which is totally
ordered by inclusion.

An ultrametric space (X, u) is spherically complete if the
intersection of every nest of balls is nonempty.
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Ultrametric version of Banach’s FPT

Theorem (S. Prieß-Crampe)

Take a function f on a spherically complete ultrametric space (X, u)
which is contracting, that is,

u(fx, fy) < u(x, y) .

Then f admits a unique fixed point.

Theorem (S. Prieß-Crampe)

Take a function f on a spherically complete ultrametric space (X, u)
such that:
(1) u(fx, fy) 6 u(x, y) (f is nonexpanding),
(2) u(fx, f 2x) < u(x, fx) (f is contracting on orbits).
Then f admits a fixed point.
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An “attractor theorem”

Let (Y, u) and (Y′, u′) be non-empty ultrametric spaces, and
take a function f : Y→ Y′.

For y ∈ Y, we will write fy instead of f (y).
An element z′ ∈ Y′ is called attractor for f if for every y ∈ Y
such that z′ 6= fy, there is an element z ∈ Y which satisfies:

(AT1) u′(fz, z′) < u′(fy, z′),
(AT2) f (B(y, z)) ⊆ B(fy, z′).

Condition (AT1) says that the approximation fy of z′ from
within the image of f can be improved, and condition (AT2)
says that this can be done in a somewhat “continuous” way.
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An “attractor theorem”

Theorem (FVK)

Assume that z′ ∈ Y′ is an attractor for f and that (Y, u) is spherically
complete. Then z′ ∈ f (Y).

The function f will be called immediate if every z′ ∈ Y′ is an
attractor for f .

Theorem (FVK)

Assume that f is immediate and that (Y, u) is spherically complete.
Then f is surjective and (Y′, u′) is spherically complete.
Moreover, for every y ∈ Y and every ball B′ in Y′ containing fy, there
is a ball B in Y containing y and such that f (B) = B′.
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Attempts of “reconciliation”

In the mid 90’s FVK and S. Watson wondered about a
possible unification of metric and ultrametric FPTs;

In 2011, M. Kostanek and P. Waszkiewicz unified Banach,
Caristi, Knaster-Tarski and Bourbaki-Witt FPTs in their
paper Reconciliation of elementary order and metric fixpoint
theorems.
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Origin of our work

The set XF of all orderings of a field F carries a natural
topology, the so-called Harrison topology, which is Boolean,
i.e., compact, Hausdorff, and totally disconnected.

Conversely,
T. Craven has shown that every Boolean space is realizable as
the space XF of orderings for some field F.

An important quotient space of XF is the space MF of all
R-places of F. The topology induced on MF by the Harrison
topology of XF is compact and Hausdorff, but in general not
totally disconnected. Little is known about the question which
topological spaces appear as the space of R-places of some field
F. We do not even know whether the torus can be realized.

Katarzyna has studied spaces of R-places together with I. Efrat,
M. Marshall, T. Banakh, M. Machura and FVK.

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



Origin of our work

The set XF of all orderings of a field F carries a natural
topology, the so-called Harrison topology, which is Boolean,
i.e., compact, Hausdorff, and totally disconnected. Conversely,
T. Craven has shown that every Boolean space is realizable as
the space XF of orderings for some field F.

An important quotient space of XF is the space MF of all
R-places of F. The topology induced on MF by the Harrison
topology of XF is compact and Hausdorff, but in general not
totally disconnected. Little is known about the question which
topological spaces appear as the space of R-places of some field
F. We do not even know whether the torus can be realized.

Katarzyna has studied spaces of R-places together with I. Efrat,
M. Marshall, T. Banakh, M. Machura and FVK.

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



Origin of our work

The set XF of all orderings of a field F carries a natural
topology, the so-called Harrison topology, which is Boolean,
i.e., compact, Hausdorff, and totally disconnected. Conversely,
T. Craven has shown that every Boolean space is realizable as
the space XF of orderings for some field F.

An important quotient space of XF is the space MF of all
R-places of F. The topology induced on MF by the Harrison
topology of XF is compact and Hausdorff, but in general not
totally disconnected.

Little is known about the question which
topological spaces appear as the space of R-places of some field
F. We do not even know whether the torus can be realized.

Katarzyna has studied spaces of R-places together with I. Efrat,
M. Marshall, T. Banakh, M. Machura and FVK.

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



Origin of our work

The set XF of all orderings of a field F carries a natural
topology, the so-called Harrison topology, which is Boolean,
i.e., compact, Hausdorff, and totally disconnected. Conversely,
T. Craven has shown that every Boolean space is realizable as
the space XF of orderings for some field F.

An important quotient space of XF is the space MF of all
R-places of F. The topology induced on MF by the Harrison
topology of XF is compact and Hausdorff, but in general not
totally disconnected. Little is known about the question which
topological spaces appear as the space of R-places of some field
F. We do not even know whether the torus can be realized.

Katarzyna has studied spaces of R-places together with I. Efrat,
M. Marshall, T. Banakh, M. Machura and FVK.

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



Origin of our work

The set XF of all orderings of a field F carries a natural
topology, the so-called Harrison topology, which is Boolean,
i.e., compact, Hausdorff, and totally disconnected. Conversely,
T. Craven has shown that every Boolean space is realizable as
the space XF of orderings for some field F.

An important quotient space of XF is the space MF of all
R-places of F. The topology induced on MF by the Harrison
topology of XF is compact and Hausdorff, but in general not
totally disconnected. Little is known about the question which
topological spaces appear as the space of R-places of some field
F. We do not even know whether the torus can be realized.

Katarzyna has studied spaces of R-places together with I. Efrat,
M. Marshall, T. Banakh, M. Machura and FVK.

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



Origin of our work

In our work we have seen spaces of R-places
1 carrying lots of selfsimilarities;

2 with a topology which is a combination of order and
ultrametric topology;

3 usually nonmetrizable.

Structures which look like fractals, but cannot be described by
the usual definitions for fractals, were also found in:

algebraic geometry;
complex spaces;
modal logic.
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Origin of our work

Can we come up with fixed point theorems that could help us
with defining generalized notions of fractals?
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Our general framework for FPTs

A ball space is a set X together with a nonempty collection B of
nonempty subsets of X (“balls”).

A nest of balls is a nonempty collection of balls that is totally
ordered by inclusion.

A ball space is called spherically complete if the intersection of
every nest of balls is nonempty.
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FPT for spherically complete ball spaces, I

Take a function f : X→ X. A subset B ⊆ X is called
f -contracting if it is a singleton containing a fixed point or
satisfies f (B) ( B.

Theorem
Take a spherically complete ball space (X,B) and a function
f : X→ X.

If for every ball B ∈ B, f (B) contains an f -contracting ball, then
f has a fixed point in every ball.
If X ∈ B and for every ball B ∈ B, f (B) is an f -contracting ball,
then f has a unique fixed point.
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Adjusting the ball space to the given function

Because of the flexibility of the concept of ball spaces, we can
adjust our ball space (X,B) to a given function on X.

Take a function f : X→ X. A subset B ⊆ X is called f -closed if
f (B) ⊆ B.
Set

Bf := {B ∈ B | B is f -closed} .

If N is a nest in Bf , then f (
⋂N ) ⊆ ⋂N , showing that the

intersection is also f -closed. Hence if it is a singleton, it contains
a fixed point.
As we will see later, some important ball spaces (X,B) have the
property that the intersection over a nest of balls is again a ball.
It then follows that the same is true for (X,Bf ), provided that
Bf is nonempty.
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FPT for spherically complete ball spaces, II

Theorem (General FPT)

Assume that there is a ball space structure (X,Bf ) on X for which the
following conditions are satisfied:
(1) every B ∈ Bf is f -closed,

(2) every B ∈ Bf contains a fixed point or some smaller ball B′ ∈ Bf ,
(3) the intersection of every nest of balls in Bf contains a fixed point
or a ball B ∈ Bf .
Then f admits a fixed point in every ball.
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FPT for spherically complete ball spaces, III

Actually, as a nest is allowed to consist of just one ball, we can
combine conditions (2) and (3) in one condition:

Theorem (General FPT)

Assume that there is a ball space structure (X,Bf ) on X for which the
following conditions are satisfied:
(1) every ball in Bf is f -closed,
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The proof

The set of nests of balls is partially ordered by inclusion.

The union over a linearly ordered set of nests is a nest.
By Zorn’s Lemma, there is a maximal nest N containing a
given ball B0 .
Suppose that

⋂N does not contain a fixed point. Then by
condition (2), it contains a smaller ball B.
But then, N ∪ {B} is a larger nest, contradicting the
maximality of N .
Hence there is a fixed point in

⋂N ⊆ B0 .
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An alternate proof

Set B′ := Bf ∪ {{x} | {x} f -closed}.

(Note that at this point
we do not know whether any f -closed sets {x}, that is, any fixed
points x, exist.)
If (X,Bf ) is spherically complete, then so is (X,B′)
(because we are only adding singletons).
By condition (2), every chain in B′ has a lower bound in B′.
By Zorn’s Lemma, there is a minimal ball B0 in B′.
By condition (2), B0 must contain a fixed point of f .
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Application to ultrametric spaces

Theorem (S.Prieß-Crampe, P. Ribenboim)

Take a function f on a spherically complete ultrametric space (X, u)
such that:
(1) u(fx, fy) 6 u(x, y),

(2) u(fx, f 2x) < u(x, fx).
Then f admits a fixed point.

Consider the ball space (X, {Bx | x ∈ X}), where

Bx := {z ∈ X | u(x, z) ≤ u(x, fx)} .

If x 6= fx, then
f (Bx) ⊆ Bfx ( Bx.
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Application to metric spaces

(X, d) - a metric space

Br(x) = {y ∈ X | d(x, y) 6 r}, r ∈ R+

For a subset S ⊆ R+ define:

BS = {Br(x) : x ∈ X, r ∈ S}.

Theorem

Take a set S ⊆ R+ which has 0 as its unique limit point. A metric
space (X, d) is complete if and only if the ball space (X,BS) is
spherically complete.
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Applications to metric spaces

Theorem (Banach FPT)

Every strictly contracting function on a complete metric space (X, d)
has a unique fixed point.

Choose x ∈ X and set d := d(x, fx). Take k ∈N such that
ck < 1

2(1−c) . Then the balls

Bi := Bcki d
1−c

(f ki(x))

are f -closed, and

Bi+1 ( Bi.
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Spherically complete ordered groups and fields

In any ordered abelian group or field, we can set

d(x, y) :=| y− x |

d defines a metric on R (or any subset of R)
d defines a generalized metric on any ordered group or
field

Fact
The only field which is complete with respect to the metric d is R.
Since R is cut complete, that is, for every cut (C, D) in (R,<), C has
a largest or D has a smallest element, it is a spherically complete ball
space, where the balls are the nonempty closed bounded intervals.
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Spherically complete ordered groups and fields

Let X be any ordered group or field.

Consider the ball space (X,B), where B contains all nonempty
closed bounded intervals of X.

Under which conditions is (X,B) spherically complete?

Take a nest N of closed intervals [aν, bν] indexed by
ordinals ν < λ such that if µ > ν, then aν 6 aµ 6 bµ 6 bν.
Then

⋂N 6= ∅ if and only if there is x ∈ X such that
aν 6 x 6 bν for every ν.
If
⋂N 6= ∅, then N determines a cut C which is not filled

in X.
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Asymmetric cuts

If (C, D) is a cut where the cofinality of C is smaller than the
coinitiality of D (= the cofinality of D under the reverse
ordering),

then a nest {[aν, bν] | ν < λ} will never be able to
“zoom in” on the cut because if it is a sequence whose length is
the coinitiality of D, then the aν will eventually become
stationary, and their eventual value will be an element in the
intersection of the nest.

The same happens if the cofinality of C is larger than the
coinitiality of D.
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Symmetrically complete ordered groups and fields

The cut C is called asymmetric if the cofinality of the lower cut
set is not equal to the coinitiality of the upper cut set.

By what we have seen, nests of closed bounded intervals over
asymmetric cuts will always have nonempty intersection.

An ordered set in which every cut is asymmetric is called
symmetrically complete.
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Symmetrically complete ordered groups and fields

For an ordered group or field X we take B to be the collection
of all nonempty closed bounded intervals of X. Then the
following theorem holds:

Theorem
(X,B) is spherically complete if and only if it is symmetrically
complete.
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Symmetrically complete ordered groups and fields

A function f : X→ X on an ordered group X is nonexpanding
if |fx− fy| ≤ |x− y| for all x, y ∈ X.

The function f is strictly contracting on orbits if there is a
positive rational number m

n < 1 with m, n ∈N such that
n|fx− f 2x| ≤ m|x− fx| for all x ∈ X.

Theorem
Take a symmetrically complete ordered group X. Then every
nonexpanding function on X which is strictly contracting on orbits
has a fixed point.
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Symmetrically complete ordered groups and fields

Do symmetrically complete ordered groups and fields (other
than R) exist?

(1908) F. Hausdorff constructed ordered sets in which
every cut is asymmetric.
(2004) S. Shelah introduced the notion of “symmetrically
complete ordered fields” and proved that every ordered
field can be extended to a symmetrically complete ordered
field.
(2013) In joint work with S. Shelah we extended his result
to ordered abelian groups and characterized all
symmetrically complete ordered abelian groups and fields.
(To appear in Israel J. Math.)
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What are the balls in topological spaces?

The nonempty open sets?

Not a good idea!
A topological space is compact if and only if every centered
system of closed sets has a nonempty intersection.
A collection of sets is a centered system if the intersection of
any finite subcollection is nonempty.

If X is a topological space, then we will consider its associated
ball space (X,B) where B consists of all nonempty closed sets.
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Directed systems

We will also need directed systems when we deal with partially
ordered sets (posets). A directed system in a poset is a
nonempty subset in which every two elements have an upper
bound which is also contained in the subset.

A poset (X,6) is called a directed complete partial order
(DCPO) if every directed system of elements has a supremum.
This condition implies that the poset is chain complete, that is,
every nonempty chain of elements of X has a supremum in X.
The two properties are equivalent if the axiom of choice is
assumed (which we always do, as we are also working with
Zorn’s Lemma).

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



Directed systems

We will also need directed systems when we deal with partially
ordered sets (posets). A directed system in a poset is a
nonempty subset in which every two elements have an upper
bound which is also contained in the subset.

A poset (X,6) is called a directed complete partial order
(DCPO) if every directed system of elements has a supremum.

This condition implies that the poset is chain complete, that is,
every nonempty chain of elements of X has a supremum in X.
The two properties are equivalent if the axiom of choice is
assumed (which we always do, as we are also working with
Zorn’s Lemma).

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



Directed systems

We will also need directed systems when we deal with partially
ordered sets (posets). A directed system in a poset is a
nonempty subset in which every two elements have an upper
bound which is also contained in the subset.

A poset (X,6) is called a directed complete partial order
(DCPO) if every directed system of elements has a supremum.
This condition implies that the poset is chain complete, that is,
every nonempty chain of elements of X has a supremum in X.
The two properties are equivalent if the axiom of choice is
assumed (which we always do, as we are also working with
Zorn’s Lemma).

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



Directed systems of balls

In ball spaces we are concerned with intersections of balls, so
we define a directed system of balls to be a nonempty set of
balls such that for every two balls in this set there is a ball in the
set that is contained in their intersection.

What about ball spaces in which all intersections of directed
systems, or of centered systems, are nonempty?

Moreover, observe that in a topological space arbitrary
intersections of closed sets are again closed. What about ball
spaces in which all (nonempty) intersections of nests, directed
systems, or centered systems, are again balls?
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Hierarchy of spherical completeness

S1: The intersection of each nest in (X,B) is nonempty.

S2: The intersection of each nest in (X,B) contains a ball.
S3: The intersection of each nest in (X,B) contains a largest ball.
S4: The intersection of each nest in (X,B) is a ball.

(S1 is our original notion of “spherically complete”.)

Sd
i : The same as Si, but with “directed system” in place of

“nest”.

Sc
i : The same as Si, but with “centered system” in place of

“nest”.

We will also write S∗ for Sc
4 because this turns out to be the

“star” (the strongest) among the ball spaces:
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Hierarchy of spherical completeness

S1 ⇐ Sd
1 ⇐ Sc

1
⇑ ⇑ ⇑
S2 ⇐ Sd

2 ⇐ Sc
2

⇑ ⇑ ⇑
S3 ⇐ Sd

3 ⇐ Sc
3

⇑ ⇑ ⇑
S4 ⇐ Sd

4 ⇐ Sc
4 = S∗
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Spherical completeness

spaces balls completeness equiv.
property to

ultrametric spaces all ultrametric balls spherically S1
complete

metric spaces metric balls with radii complete S1
in suitable sets of
positive real numbers

ordered abelian all intervals [a, b] symmetrically S1
groups and fields with a ≤ b complete
topological spaces all nonempty closed sets compact Sc

1
posets final segments directed Sd

4
↑ a = {b | a ≤ b} complete

lattices final segments ↑ a, complete S∗

initial segments
↓ a = {b | a ≥ b},
and intervals [a, b], a ≤ b
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Connection with posets

Take a ball space (X,B). If we order B by setting B1 ≤ B2 if
B1 ⊇ B2 , then we obtain a poset (B,<).

Nests of balls in B
correspond to chains in the poset.

Proposition

The ball space (X,B) is S3 if and only if (B,<) is chain complete,
and it is Sd

3 if and only if (B,<) is directed complete.

As we always assume the axiom of choice, we have:

Proposition

A poset is directed complete if and only if it is chain complete.

Corollary

A ball space is S3 if and only if it is Sd
3 .
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Intersection closed ball spaces

A ball space (X,B) will be called finitely intersection closed if B
is closed under nonempty intersections of any finite collection
of balls,

and it will be called intersection closed if B is closed
under nonempty intersections of arbitrary collections of balls.

Theorem

1) If the ball space (X,B) is finitely intersection closed, then Sd
i is

equivalent to Sc
i , for i = 1, 2, 3, 4.

2) If the ball space (X,B) is intersection closed, then all properties in
the hierarchy are equivalent.
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Intersection closed ball spaces

The ball space associated with a topological space is
intersection closed.

For an ultrametric space, the full ultrametric ball space,
which we obtain from the already defined ball space by
closing under unions and nonempty intersections of nests,
is intersection closed.
The ball space of a lattice with top and bottom, consisting
of all intervals of the form [a, b], is finitely intersection
closed, and it is intersection closed if and only if the lattice
is complete.

A complete lattice is a poset (X,6) in which every subset has
infimum and supremum.
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Intersection closed ball spaces

The ball space of a totally ordered set, ordered abelian group or
field, consisting of all intervals of the form [a, b], is finitely
intersection closed. But:

Lemma
Assume that (I,<) is a totally ordered set whose associated ball space
is Sd

1 . Then (I,<) is cut complete.

The only cut complete densely ordered abelian groups or fields
are the reals. So we have:

Proposition

The associated ball space of the reals is S∗ . For all other densely
ordered abelian groups or fields the associated ball space can at best be
S1 or S2 .
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Applications to topological spaces

Theorem
Take a topological space X. The following are equivalent:
a) X is compact,

b) the ball space associated with X is S1 ,
c) the ball space associated with X is S∗ .

Theorem
Take a compact space X and a function f : X→ X. If for every closed
and f -closed set B with at least two elements there is a nonempty
closed and f -closed set B′ ( B, then f has a fixed point in every closed
and f -closed set.
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Applications to topological spaces

We consider a family

B = {B ⊆ X | B is closed and f -closed}.

For a nest N in B, the set
⋂N is closed and f (

⋂N ) ⊆ N , so⋂N ∈ B.

Theorem (General FPT)

Assume that there is a ball space structure (X,B) on X for which the
following conditions are satisfied:
(1) every B ∈ B is f -closed,
(2) every nonsingleton B ∈ B properly contains some B′ ∈ B,
(3) the intersection of every nest of balls in B is a singleton or
contains some B ∈ B.
Then f admits a fixed point in every ball.
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Applications to topological spaces

Theorem
Take a compact space X and a closed function f : X→ X. If every
nonempty closed and f -closed set B in X is f -contracting, then f has a
unique fixed point in X.

Take Bf to be the collection of all nonempty closed and f -closed
sets B in X. Recall that if X is compact, then (X,B) is
spherically complete. Now apply:

Theorem

Take a spherically complete ball space (X,Bf ) and a function
f : X→ X. If X ∈ Bf and for every ball B ∈ Bf , f (B) is
f -contracting, then f has a unique fixed point.
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Applications to topological spaces

Take a continuous function f : X→ X on a topological space X.
An open cover U of X is called J-contractive for f if for every
U ∈ U there is U′ ∈ U such that f (clU) ⊆ U′.

A continuous function f : X→ X on a topological space X is
called J-contraction if any open cover U has a finite open
J-contractive refinement for f .

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



Applications to topological spaces

Take a continuous function f : X→ X on a topological space X.
An open cover U of X is called J-contractive for f if for every
U ∈ U there is U′ ∈ U such that f (clU) ⊆ U′.

A continuous function f : X→ X on a topological space X is
called J-contraction if any open cover U has a finite open
J-contractive refinement for f .

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



Applications to topological spaces

Proposition (J. Steprans, S. Watson, W. Just)

Let f be J-contraction on a connected compact Hausdorff space.
1) If B is a closed and f -closed subset of X, then the restriction of f to
B is also a J-contraction.

2) If f is onto, then |X| = 1.

This proposition says that every closed and f -closed subset B of
X is f -contracting. So we obtain from our general fixed point
theorem:

Theorem (J. Steprans, S. Watson, W. Just )

If f is a J-contraction on any connected compact Hausdorff space, then
f has a unique fixed point.
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Reminder

spaces balls completeness equiv.
property to

ultrametric spaces all ultrametric balls spherically S1
complete

metric spaces metric balls with radii complete S1
in suitable sets of
positive real numbers

ordered abelian all intervals [a, b] symmetrically S1
groups and fields with a ≤ b complete
topological spaces all nonempty closed sets compact Sc

1
posets final segments directed Sd

4
↑ a = {b | a ≤ b} complete

lattices final segments ↑ a, complete S∗

initial segments
↓ a = {b | a ≥ b},
and intervals [a, b], a ≤ b
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DCPOs

If {ai | i ∈ I} is a directed system in the poset (X,<), then
{↑ ai | i ∈ I} is a directed system of balls in its ball space, and
vice versa.

Observe that
⋂

i ↑ ai is a ball if and only if it is of the
form ↑ a, and ↑ a =

⋂
i ↑ ai holds if and only if a = supi ai .

This proves:

Proposition

A poset X is directed complete if and only if its associated ball space
(X, {↑ a | a ∈ X}) is Sd

4 .
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FPTs for DCPOs

A poset is called pointed if it has a least element ⊥.

Theorem
(Bourbaki–Witt Theorem) Every increasing function f : X→ X
on a DCPO X has a fixed point.
Every order-preserving function f : X→ X on a pointed DCPO
X has a fixed point.
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FPTs for DCPOs

We prove this theorem by checking, simultaneously for both
cases, that the conditions of our general FPT are satisfied.

Theorem (General FPT)

Assume that there is a ball space structure (X,Bf ) on X for which the
following conditions are satisfied:
(1) every B ∈ Bf is f -closed,
(2) every B ∈ Bf contains a fixed point or some smaller ball B′ ∈ Bf ,
(3) the intersection of every nest of balls in Bf contains a fixed point
or a ball B ∈ Bf .
Then f admits a fixed point in every ball.

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



FPTs for DCPOs

We prove this theorem by checking, simultaneously for both
cases, that the conditions of our general FPT are satisfied.

Theorem (General FPT)

Assume that there is a ball space structure (X,Bf ) on X for which the
following conditions are satisfied:
(1) every B ∈ Bf is f -closed,
(2) every B ∈ Bf contains a fixed point or some smaller ball B′ ∈ Bf ,
(3) the intersection of every nest of balls in Bf contains a fixed point
or a ball B ∈ Bf .
Then f admits a fixed point in every ball.

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



Proof

f increasing

f order-preserving

Bf := {↑ x | fx > x}.

Bf = {↑ x | x ∈ X} ↑ ⊥ ∈ Bf 6= ∅

(1): f (↑ x) ⊆↑ x because for y > x we have

fy > y > x fy > fx > x

(2): If x 6= fx then ↑ fx  ↑ x and ↑ fx ∈ Bf

because f is inreasing because f is order-preserving

(3): Take a nest of intervals N = (↑ xi)i∈I .
Set s = sup{xi | i ∈ I}. Then

⋂N =↑ s, with ↑ s ∈ Bf because

fs ≥ s fs > fxi > xi ⇒ fs > sup{xi} = s
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When does a DCPO have an S∗ ball space?

The ball space associated with a directed complete poset is not
always an S∗ ball space.

Example: Take X := {a, b} ∪ −N, where −N denotes the
negative integers. Extend the natural ordering of −N to X by
letting a and b be incomparable, but both of them smaller than
each element of −N.
Then (X,<) is a DCPO. But ↑ a∩ ↑ b = −N is not a ball.

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



When does a DCPO have an S∗ ball space?

The ball space associated with a directed complete poset is not
always an S∗ ball space.

Example: Take X := {a, b} ∪ −N, where −N denotes the
negative integers.

Extend the natural ordering of −N to X by
letting a and b be incomparable, but both of them smaller than
each element of −N.
Then (X,<) is a DCPO. But ↑ a∩ ↑ b = −N is not a ball.

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



When does a DCPO have an S∗ ball space?

The ball space associated with a directed complete poset is not
always an S∗ ball space.

Example: Take X := {a, b} ∪ −N, where −N denotes the
negative integers. Extend the natural ordering of −N to X by
letting a and b be incomparable, but both of them smaller than
each element of −N.

Then (X,<) is a DCPO. But ↑ a∩ ↑ b = −N is not a ball.

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



When does a DCPO have an S∗ ball space?

The ball space associated with a directed complete poset is not
always an S∗ ball space.

Example: Take X := {a, b} ∪ −N, where −N denotes the
negative integers. Extend the natural ordering of −N to X by
letting a and b be incomparable, but both of them smaller than
each element of −N.
Then (X,<) is a DCPO.

But ↑ a∩ ↑ b = −N is not a ball.

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



When does a DCPO have an S∗ ball space?

The ball space associated with a directed complete poset is not
always an S∗ ball space.

Example: Take X := {a, b} ∪ −N, where −N denotes the
negative integers. Extend the natural ordering of −N to X by
letting a and b be incomparable, but both of them smaller than
each element of −N.
Then (X,<) is a DCPO. But ↑ a∩ ↑ b = −N is not a ball.

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



Bounded complete posets

A poset is called bounded complete if every subset admitting
an upper bound has a supremum.

Proposition

A poset is bounded complete if and only if its associated ball space is
intersection closed.

For the proof, observe that⋂
i ↑ ai is nonempty if and only if the subset formed by the

elements ai admits an upper bound, and
as before

⋂
i ↑ ai is a ball if and only if it is of the form ↑ a,

and this holds if and only if a = supi ai .
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When does a DCPO have an S∗ ball space?

As we have seen, a poset (X,<) is a DCPO if and only if its ball
space is Sd

4 .

If the poset is also bounded complete, then its ball
space is intersection closed, and Sd

4 implies S∗ .
Conversely, if the ball space is S∗ , then it is Sd

4 and the poset is a
DCPO. If {ai | i ∈ I} is a subset bounded by an element b in
(X,<), then b lies in

⋂
i∈I ↑ ai , so this intersection is nonempty.

In particular, the intersection of any finite subset of {↑ ai | i ∈ I}
is nonempty, that is, {↑ ai | i ∈ I} is a centered system of balls.
It follows from S∗ that

⋂
i∈I ↑ ai is a ball, hence of the form ↑ a

with a = supi ai . This shows that (X,<) is bounded complete.
We have proved:

Proposition

A poset is directed complete and bounded complete if and only if the
ball space defined by the final segments ↑ a is S∗ .
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Complete lattices

A poset (X,<) is a complete lattice if and only if it is a
complete upper semilattice (every subset has a supremum) and
a complete lower semilattice (every subset has an infimum).

If a poset has a top element, then all subsets are bounded. If its
ball space is S∗, then it is bounded complete and all subsets
have a supremum.
Similarly, if a poset has a bottom element, then in the reverse
ordering, all subsets are bounded. If the ball space
(X, {↓ a | a ∈ X}) is S∗, then X with the reverse ordering is
bounded complete and all subsets have a minimum.
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Complete lattices

Proposition

A poset (X,<) with top and bottom element is a complete lattice if
and only if the ball spaces

{↑ a | a ∈ X} and {↓ a | a ∈ X}

are S∗.

Note that the ball space

{↑ a , ↓ b | a, b ∈ X, a ≤ b}

is not intersection closed, but

{↑ a , ↓ b , [a, b] | a, b ∈ X, a ≤ b}

is. In the presence of top and bottom, it is equal to
{[a, b] | a, b ∈ X, a ≤ b}.
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Complete lattices

Take a complete lattice (X,<) and a centered system
{[ai, bi] | i ∈ I} of nonempty intervals.

Then⋂
i∈I

[ai, bi] = [sup
i∈I

ai, inf
i∈I

bi] .

This is a ball if and only if supi ai ≤ infi bi . Suppose this were
not the case. Then there would be some j with aj > infi bi and
there would be some k with aj > bk . So [aj, bj] ∩ [ak, bk] = ∅, a
contradiction to the fact that we took a centered system of
intervals. This proves:

Theorem
A poset (X,<) with top and bottom element is a complete lattice if
and only if the ball space (X, {[a, b] | a, b ∈ X, a ≤ b}) is S∗.
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Complete lattices

What if (X,<) is already a lattice?

Then for any subset S ⊂ X,
{↓ s | s ∈ S} and {↑ s | s ∈ S} are centered systems in
{↑ a , ↓ b , [a, b] | a, b ∈ X, a ≤ b}. Hence if the ball space
(X, {↑ a , ↓ b , [a, b] | a, b ∈ X, a ≤ b}) is S∗, then S has infimum
and supremum. This shows:

Theorem
A lattice (X,<) is complete if and only if the ball space
(X, {↑ a , ↓ b , [a, b] | a, b ∈ X, a ≤ b}) is S∗ .
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Summary of S∗ ball spaces

An ultrametric space is S1 (spherically complete) if and
only if the full ultrametric ball space is S∗ .

A topological space is compact if and only if the ball space
defined by its nonempty closed subsets is S∗ .
A poset is directed complete and bounded complete if and
only if the ball space defined by the final segments ↑ a is
S∗ .
A poset is a complete lattice if and only if it has a bottom
and a top element and the ball space defined by its
nonempty closed intervals [a, b] is S∗ .
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Spherical closure in S∗ ball spaces

Suppose that (X,B) is an S∗ ball space.

Suppose that S ⊆ B for some B ∈ B.

The spherical closure of S is

sclB(S) :=
⋂
{B ∈ B | S ⊆ B}

sclB(S) ∈ B is the smallest ball containing S.
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The Knaster-Tarski FPT

Theorem
Let X be a complete lattice and f : X→ X an order-preserving
function. Then the set of fixed points of f in X is also a complete
lattice.

Is there an analogue for ball spaces?
Can it be used to transfer the Knaster-Tarski FPT to other
applications?

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



The Knaster-Tarski FPT

Theorem
Let X be a complete lattice and f : X→ X an order-preserving
function. Then the set of fixed points of f in X is also a complete
lattice.

Is there an analogue for ball spaces?

Can it be used to transfer the Knaster-Tarski FPT to other
applications?

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



The Knaster-Tarski FPT

Theorem
Let X be a complete lattice and f : X→ X an order-preserving
function. Then the set of fixed points of f in X is also a complete
lattice.

Is there an analogue for ball spaces?
Can it be used to transfer the Knaster-Tarski FPT to other
applications?

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



The structure of fixed point sets in S∗ ball spaces

Theorem
Take a function f : X→ X. Assume that there is a ball space structure
(X,Bf ) on X for which the following conditions are satisfied:

(1) every B ∈ Bf is f -closed,
(2) every B ∈ Bf contains a fixed point or some smaller ball B′ ∈ Bf ,
(3) (X,Bf ) is an S∗ ball space.
Let Fix(f ) be the set of fixed points of f , and set

Bf
Fix := {B∩ Fix(f ) | B ∈ Bf } .

Then (Fix(f ),Bf
Fix) is an S∗ ball space.
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Proof

By General FPT, B∩ Fix(f ) 6= ∅ for each B ∈ Bf .

Since
Bf 6= ∅, also Bf

Fix 6= ∅. So (Fix(f ),Bf
Fix) is a ball space.

Take a centered system of balls {Bi | i ∈ I} in Bf
Fix.

Bi = B′i ∩ Fix(f ) for some B′i ∈ Bf , so
sclBf (Bi) ∩ Fix(f ) = Bi .
{sclBf (Bi) | i ∈ I} is a centered system of balls in X.
By condition (3),

⋂
i∈I sclBf (Bi) is a ball B ∈ Bf , so⋂

i∈I

Bi =
⋂
i∈I

sclBf (Bi) ∩ Fix(f ) = B∩ Fix(f ) ∈ BFix .
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Proof of Knaster-Tarski FPT

For an order-preserving function f on a complete lattice X take
the family

Bf := {[a, b] | f ([a, b]) ⊆ [a, b]}.

So condition (1) of the previous theorem is met.

We check that also condition (2) is met:

If fa = a or fb = b, then a or b, respectively, is a fixed point and
there is nothing more to check.

If fa 6= a and fb 6= b we take B′ = [fa, fb] ( [a, b]. Since f is
order-preserving, this is f -closed, hence B′ ∈ Bf .

Now we check that condition (3) is met:
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Proof of Knaster-Tarski FPT

Take a centered system of balls (Bi)i∈I in Bf .

Since X is a complete lattice,
⋂
i∈I

Bi is a closed interval.

Since f (Bi) ⊆ Bi for all i,

f (
⋂
i∈I

Bi) ⊆
⋂
i∈I

Bi .

Hence,
⋂
i∈I

Bi ∈ Bf .

By the previous theorem, (Fix(f ),Bf
Fix) is an S∗ ball space.
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Proof of Knaster-Tarski FPT

In order to show that the poset Fix(f ) of fixed points is a
complete lattice, we will apply the characterization of posets
that are complete lattices which we have presented earlier. For
this, we have to show two things:

The ball space (Fix(f ), {B∩ Fix(f ) | B ∈ Bf }) is equal to the
ball space

(Fix(f ), {↑ a , ↓ b , [a, b] | a, b ∈ X, a ≤ b})

of the poset Fix(f ),
the poset Fix(f ) has a top and a bottom element.

We will show the second assertion first.
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Proof of Knaster-Tarski FPT

The collection C = {[a,>] | fa = a} is a nonempty centered
system of balls in Bf .

Since (X,Bf ) is an S∗ ball space,
⋂ C is a ball [b,>) ∈ Bf .

Consequently, [b,>) contains a fixed point c.
For every such c, [c,>] ∈ C, so [b,>] ⊆ [c,>] and b = c.
It follows that b is the largest fixed point in X.
Similarly, one finds the smallest fixed point.
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Proof of Knaster-Tarski FPT

Now we show that the ball space (Fix(f ), {B∩ Fix(f ) | B ∈ Bf })
is equal to

(Fix(f ), {↑ a , ↓ b , [a, b] | a, b ∈ X, a ≤ b})

which in turn is equal to

(Fix(f ), {[a, b] | a, b ∈ Fix(f ), a ≤ b})

because we have already shown that Fix(f ) has a top and a
bottom element.
Take B ∈ Bf

Fix. Then sclBf (B) = [a, b] for some a, b ∈ X.

Since B = f (B) ⊆ [fa, fb] ⊆ [a, b] and [fa, fb] is f -closed, but [a, b]
is the smallest ball in Bf containing B, we have that fa = a and
fb = b.
Thus B = sclBf (B) ∩ Fix(f ) = {c ∈ Fix(f ) | a ≤ c ≤ b} with
a, b ∈ Fix(f ).

This proves that Fix(f ) is a complete lattice.
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The Knaster-Tarski FPT for ultrametric spaces

In the ultrametric case, where B is the full ultrametric ball
space of (X, u) and Bf again consists of all f -closed balls in B,

(Fix(f ), {B∩ Fix(f ) | B ∈ Bf }) is equal to the full ultrametric
ball space of (Fix(f ), u).
So we obtain:

Theorem
Take a spherically complete ultrametric space (X, u) and a
nonexpanding function f : X→ X which is contracting on orbits.
Then every f -closed ultrametric ball and in particular every ball of the
form B(x, y) contains a fixed point, and (Fix(f ), u) is again a
spherically complete ultrametric space.
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The Knaster-Tarski FPT for topological spaces

Take a quasi-compact topological space X and (X,B) the
associated ball space formed by the collection B of all
nonempty closed sets.

If f : X→ X is any function, then the set
Bf of all closed and f -closed sets forms the collection of all
closed sets of a (possibly coarser) topology, as arbitrary unions
and intersections of f -closed sets are again f -closed.
We obtain:

Theorem
Take a quasi-compact topological space X and a function f : X→ X.
Assume that every closed, f -closed set contains a fixed point or a
smaller closed, f -closed set. Then the topology on the set Fix(f ) of
fixed points of f having Bf ∩ Fix(f ) as its collection of closed sets is
itself quasi-compact.
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An open question for topologists

As we are rather interested in the topology on Fix(f ) induced
by the original topology of X, we ask:

Open question: Give a criterion on f which guarantees that

Bf ∩ Fix(f ) = B ∩ Fix(f ) .
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The Tychonoff theorem for ball spaces

Given a collection of ball spaces (Xj,Bj)j∈J, we define their
(box) product by setting

B :=

{
∏
j∈J

Bj | ∀j ∈ J : Bj ∈ Bj

}
.

Theorem
Take S to be any of the properties in the hierarchy of spherical
completeness.The product (∏j∈J Xj,B) has property S if and only if
all ball spaces (Xj,Bj), j ∈ J, have property S.
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Sketch of proof

Take ball spaces (Xj,Bj), j ∈ J, and in every Bj take a set of balls
{Bi,j | i ∈ I}.

Then we have:

⋂
i∈I

∏
j∈J

Bi,j = ∏
j∈J

⋂
i∈I

Bi,j . (1)

If N = {∏j∈J Bi,j | i ∈ I} is a nest of balls in (∏j∈J Xj,B), then
for every j ∈ J, also {Bi,j | i ∈ I}must be a nest. If all (Xj,Bj) are
S1, then all of these nests have nonempty intersection, so N has
nonempty intersection, which shows that the product space is
also S1.
As “nonempty intersection” can be replaced by “contains a
ball”, “contains a largest ball” or “is a ball”, a similar argument
shows that also the properties S2, S3 and S4 are transfered.
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Sketch of proof

Now assume that (∏j∈J Xj,B) is spherically complete.

Take
j0 ∈ J and a nest of balls N = {Bi | i ∈ I} in (Xj0 ,Bj0). For each
i ∈ I, set Bi,j0 = Bi and take Bi,j to be a fixed ball Bj in Bj for
j 6= j0 . Then {∏j∈J Bi,j | i ∈ I} is a nest in (∏j∈J Xj,B). By
assumption,

∅ 6=
⋂
i∈I

∏
j∈J

Bi,j =

(⋂
i∈I

Bi

)
×
(

∏
j0 6=j∈J

Bj

)
,

whence
⋂

i∈I Bi 6= ∅. We have proved that for every j ∈ J,
(Xj,Bj) is spherically complete.
A similar proof works for the properties S2, S3 and S4 .
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Sketch of proof

For the transfer of the other properties, observe that
{∏j∈J Bi,j | i ∈ I} will be a directed system if and only if all sets
{Bi,j | i ∈ I}, j ∈ J, are.

The same holds for “centered system” in place of “directed
system”.

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



Sketch of proof

For the transfer of the other properties, observe that
{∏j∈J Bi,j | i ∈ I} will be a directed system if and only if all sets
{Bi,j | i ∈ I}, j ∈ J, are.
The same holds for “centered system” in place of “directed
system”.

Franz-Viktor Kuhlmann joint work with Katarzyna Kuhlmann A general framework for fixed point theorems, and more



Smaller products

It is possible to pass to smaller products by imposing
restrictions on the tuples of balls.

As in topology when the open sets of the products are defined,
one can ask that Bj = Xj for all but finitely many j ∈ J. This
leads to a smaller set B′ of balls.
If (∏j∈J Xj,B) is spherically complete, then so is (∏j∈J Xj,B′).
However, the stronger properties of the hierarchy may get lost
under this restriction.
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The product of ultrametric spaces

If (Xj, uj), j ∈ J are ultrametric spaces with value sets
Γj = {uj(a, b) | a, b ∈ Xj},

and if Bj = Bγj(aj) is an ultrametric
ball in (Xj, uj) for each j, then

∏
j∈J

Bj = {(bj)j∈J | ∀j ∈ J : uj(aj, bj) ≤ γj} .

This shows that the product is the ultrametric ball space for the
product ultrametric on ∏j∈J Xj which is defined as

u((aj)j∈J , (bj)j∈J) = (uj(aj, bj))j∈J ∈∏
j∈J

Γj .

The latter is a poset, but in general not totally ordered, even if
all Γj are and even if J is finite. So the product ultrametric is a
natural example for an ultrametric with partially ordered value
set.
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Finite products of ultrametric spaces

If the index set J is finite and all Γj are contained in some totally
ordered set Γ such that all of them have a common least
element,

then we can define an ultrametric on the product
∏j∈J Xj which takes values in

⋃
j∈J Γj ⊆ Γ as follows:

umax((aj)j∈J , (bj)j∈J) = max
j

uj(aj, bj) .

For this ultrametric, the ultrametric balls are of the form

{(bj)j∈J | ∀j ∈ J : uj(aj, bj) ≤ γ}

with γ ∈ ⋃j∈J Γj . Now the value set is totally ordered. It turns
out that the collection of balls so obtained is a (usually proper)
subset of the full ultrametric ball space of the product
ultrametric. Therefore, if all (Xj, uj) are spherically complete,
then so is (∏j∈J Xj, umax ).
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Finite products of ultrametric spaces: an appliction

A valued field (K, v) is spherically complete if its underlying
ultrametric,

defined by

u(a, b) := v(a− b)

is spherically complete.
If (K, v) is spherically complete, then for every n ∈N,
(Kn, umax) is spherically complete. This can for instance be used
to prove an Implicit Function Theorem for spherically complete
valued fields. One can do it by using the ultrametric fixed point
theorem, but the attractor theorem is a much better tool.
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An infinite dimensional Implicit Function Theorem?

When the index set J is infinite, do we still have the chance to
obtain an ultrametric on the product with a totally ordered
value set?

The answer is: yes, if the totally ordered set Γ in
which all Γj are embedded, is anti-wellordered. In this case, the
maximum maxj uj(aj, bj) always exists.
This fact has been applied to spherically complete subrings R of
valued fields that have anti-wellordered value set: if (R, v) is
spherically complete, then so is (RJ, umax). This can be used to
prove an infinite-dimensional Implicit Function Theorem over
the ring R. This theorem has been applied by B. Teissier in his
approach to local uniformization, which is a local form of
resolution of singularities. Both are longstanding open
problems in positive characteristic.
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The Tychonoff theorem for topological spaces

In which way does Tychonoff’s theorem follow from its
analogue for ball spaces?

The problem in the case of topological
spaces is that the product ball space we have defined, while
containing only closed sets of the product, does not contain all
of them, as it is not necessarily closed under finite unions and
arbitrary intersections. If we close it under these operations, are
its spherical completeness properties maintained?
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Closure under finite unions

Theorem
If (X,B) is an Sc

1 ball space and B′ is the closure of B under finite
unions,

then also (X,B′) is Sc
1 .

In order to prove this theorem, we need a lemma that is
inspired by Alexander’s Subbase Theorem:

Lemma
If S is a maximal centered system of balls in B′ (that is, no subset of
B′ properly containg S is a centered system), then there is a subset S0
of S which is a centered system in B and has the same intersection as
S .
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Proof of the lemma

It suffices to prove the following: if B1, . . . , Bn ∈ B such that
B1 ∪ . . . ∪ Bn ∈ S ,

then there is some i ∈ {1, . . . , n} such that
Bi ∈ S .
Suppose that B1, . . . , Bn ∈ B \ S . By the maximality of S this
implies that for each i ∈ {1, . . . , n}, S ∪ {Bi} is not centered.
This in turn means that there is a finite subset Si of S such that⋂ Si ∩ Bi = ∅. But then S1 ∪ . . . ∪ Sn is a finite subset of S such
that ⋂

(S1 ∪ . . . ∪ Sn) ∩ (B1 ∪ . . . ∪ Bn) = ∅ .

This yields that B1 ∪ . . . ∪ Bn /∈ S , which proves our assertion.
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Proof of the theorem

Take a centered system S ′ of balls in B′. The set of all centered
systems of balls in B′ that contain S ′ is inductively ordered by
inclusion.

Hence there is a maximal centered system S of balls
B′ that contains S ′. By the lemma, there is a centered system S0
of balls in B such that

⋂ S0 =
⋂ S ⊆ ⋂ S ′. Since (X,B) is an Sc

1
ball space, we have that

⋂ S0 6= ∅, which yields that
⋂ S ′ 6= ∅.

This proves that (X,B′) is an Sc
1 ball space.
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Closure under nonempty intersections

Theorem
If (X,B) is an Sc

1 ball space and B′ is the closure of B under arbitrary
nonempty intersections,

then also (X,B′) is Sc
1 .

For the proof, take a centered system {Bi | i ∈ I} in (X,B′).
Write Bi =

⋂
j∈Ji

Bi,j with Bi,j ∈ B. Then {Bi,j | i ∈ I, j ∈ Ji} is a
centered system in (X,B): the intersection of finitely many
balls Bi1,j1 , . . . , Bin,jn contains the intersection Bi1 ∩ . . . ∩ Bin ,
which by assumption is nonempty. Since (X,B) is Sc

1,⋂
i Bi =

⋂
i,j Bi,j 6= ∅. This proves the theorem.
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Closure under unions and intersections

From the previous two theorems we obtain:

Theorem
Take an Sc

1 ball space (X,B). If B′ is obtained from B by first closing
under finite unions and then under arbitrary nonempty intersections,
then:

a) B′ is closed under finite unions,
b) B′ is intersection closed,
c) (X,B′) is an S∗ ball space.

Note that since (X,B′) is an Sc
1 ball space by the previous two

theorems and is intersection closed, it follows that it is an S∗

ball space.
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The topology associated to a ball space

If we also add X and ∅ to B′, then we obtain a basis of closed
sets for a topology.

Theorem
This associated topology is compact if and only if (X,B) is an Sc

1 ball
space.

One direction of the equivalence follows from the previous
theorem. For the other direction observe the following:

If B ⊆ B′ and (X,B′) is an Sc
1 ball space, then so is (X,B). The same

holds for S1 and Sd
1 in place of Sc

1.

Which are the topologies we obtain in this way?
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Example: the p-adics

The field Qp of p-adic numbers together with the p-adic
valuation vp is spherically complete.

(This fact can be used to
prove the original Hensel’s Lemma via the ultrametric fixed
point theorem, or even better, via the ultrametric attractor
theorem.) Therefore, the topology derived from its ball space is
compact.
However, Qp is known to be locally compact, but not compact.
But this refers to the topology which has the balls

Bγ(x) := {y ∈ X | u(x, y) > γ}

as basic open sets. It turns out that this topology is finer than
the one we derived from the ball space.
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Unions of ball spaces (“hybrid” ball spaces)

Proposition

If (X,B1) and (X,B2) are S1 ball spaces,

then so is (X,B1 ∪ B2).
The same holds with S2 or S4 in place of S1 .

Note that the assertion may become false if we replace S1 by
S3 . Indeed, the intersection of a nest in B1 may properly
contain a largest ball which does not remain the largest ball
contained in the intersection in B1 ∪ B2 .

Open problem: What sbout directed and centered systems in
unions of ball spaces?
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Symmetrically complete fields revisited

All symmetrically complete fields other than the reals are
nonarchimedean ordered, that is, they contain infinitesimals.

Such ordered fields have nontrivial associated natural
valuations.

Proposition

Every symmetrically complete field together with its natural
valuation is spherically complete. In fact, they are power series fields
with coefficients in the reals and exponents in a symmetrically
complete ordered abelian group.

So we have two ball spaces on such fields: the one given by the
closed bounded intervals, and the one given by the ultrametric
balls.

If we join them, we obtain an S2 ball space.
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The bar-bell problem

In the S2 ball space we have so obtained (call it B), each ball is
either a closed bounded interval or an ultrametric ball.

What if
we allow to substitute endpoints of the intervals by ultrametric
balls (think of the result as a bar-bell)?

Open problem: Is the ball space so obtained spherically
complete?

Observe that this ball space is contained in the ball space
obtained from B by closing under finite unions. But as B is not
Sc

1 , we cannot apply our theorem about finite unions.
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Pulling nests back and forth

Take two ball spaces (X,B) and (X′,B′) and a function
f : X→ X′ .

Then we will (for now) call f ball continuous if the
preimage of every ball in B′ is a ball in B, and ball closed if the
image of every ball in B is a ball in B′.

Lemma
a) If f is ball continuous and N ′ is a nest of balls in B′, then the
preimages of the balls in N ′ form a nest of balls in B.
b) If f is ball closed and N is a nest of balls in B, then the images of
the balls in N form a nest of balls in B′.
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Pulling nests back and forth

From these facts we immediately obtain the following results:

Theorem
Take two ball spaces (X,B) and (X′,B′) and a function f : X→ X′ .
a) If f is ball continuous and (X,B) is spherically complete, then so
is (X′,B′).
b) If f is ball continuous, ball closed and surjective, then the posets B
and B′ are isomorphic and all spherical completeness properties
transfer in both directions.
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Quotient ball spaces

Take a ball space (X,B) and a surjective function f : X→ X′ .

Then we define the quotient ball space (X′,B′) on X′ by taking
B′ to be the collection of all subsets of X′ whose preimages are
balls in B.

Corollary

If (X′,B′) is a quotient space of (X,B) and if (X,B) is spherically
complete, then so is (X′,B′).
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Reminder: the Ultrametric Attractor Theorem

Theorem (FVK)

Assume that f is immediate and that (Y, u) is spherically complete.
Then f is surjective

and (Y′, u′) is spherically complete.
Moreover, for every y ∈ Y and every ball B′ in Y′ containing fy, there
is a ball B in Y containing y and such that f (B) = B′.

The latter property may give the right idea for the definition of
“spherically continuous” functions for ultrametric spaces as
well as for ball spaces — new work in progress with Katarzyna
and Rene Bartsch (TU Darmstadt).
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An Ultrametric Coincidence Point Theorem

Theorem
Let (Y, u) and (Y′, u′) be non-empty ultrametric spaces, and take
functions f , g : Y→ Y′.

Assume that for every y ∈ Y such that fy 6= gy, there is an element
z ∈ Y which satisfies:

(AT1) u′(fz, gz) < u′(fy, gy),
(AT2) f (B(y, z)) ⊆ B(fy, gy).

Then there is some x ∈ Y such that fx = gx.
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Ultrametrics on posets

This theorem is very flexible as it connects two ultrametric
spaces.

For instance, Y′ could be the power set P(Y), endowed
with some suitable ultrametric.
As P(Y) is a poset, partially ordered by inclusion or reverse
inclusion, the following observation is interesting:

Proposition

Every poset admits a canonical ultrametric.

This ultrametric can be constructed as follows. Take a poset
(T,<). For s, t ∈ T, we set

u(s, t) := {r ∈ T | r ≤ s if and only if r ≤ t} ∈ P(T) .

Proposition

With respect to the order on P(T) defined by reverse inclusion, u is
an ultrametric on T. Its value set is P(T), with least element T.
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Is there an ultrametric with a smaller value set?

Suppose there is a subset T0 ⊂ T such that every element in T is
the supremum of a subset of T0 . Then for each s, t ∈ T, we set

u0(s, t) := {r ∈ T0 | r ≤ s if and only if r ≤ t} ∈ P(T0) .

Proposition

With respect to the order on P(T0) defined by reverse inclusion, u is
an ultrametric on T with its value set contained in P(T0).
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Is there an ultrametric with a totally ordered value set?

Take a function ϕ : T0 → β where β is some ordinal.

Then let
uϕ(s, t) be the ordinal

min{α ≤ β | r ≤ s if and only if r ≤ t
for every r ∈ T0 with ϕ(r) < α} .

Proposition

This is an ultrametric on T. Its value set is the ordinal
β + 1 = β ∪ {β}, endowed with the reverse ordering and having β as
its least element.
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Scott domains

A Scott domain is a directed complete and bounded complete
poset which contains a subset C (the set of compact elements)
such that

every element in T is the supremum of a subset of C,
if S ⊆ C and t ∈ C with t ≤ sup S, then there is s ∈ S such
that t ≤ s.

Because of the first condition, there is an ultrametric on T with
values in P(C). In order to obtain an ultrametric uϕ with a
totally ordered value set, one usually takes a rank function ϕ
from C into a countable ordinal β.
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totally ordered value set, one usually takes a rank function ϕ
from C into a countable ordinal β.
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The Coincidence Point Theorem for ball spaces

Theorem
Take a ball space (X,B) and functions f , g : X→ Y. If

(C1) f (B) ⊆ g(B) for every B ∈ B,
(C2) for every nest of balls N , either

⋂
B∈N g(B) is a singleton or

there is B′ ∈ B such that B′ (
⋂N ,

then there is some x in every ball such that fx = gx.

Note that by taking Y = X and g to be the identity function we obtain
the General FPT for ball spaces.
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Proof of the Coincidence Point Theorem

By Zorn’s Lemma there is a maximal nest N0, containing
any given ball B0 .

By (C2),
⋂

B∈N0
g(B) = {y} for some y ∈ Y.

By (C1),
⋂

B∈N0
f (B) ⊆ ⋂B∈N0

g(B) = {y}.
Thus f (x) = g(x) = y for every x ∈ ⋂B∈N0

B ⊆ B0.
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The Coincidence Point Theorem II

If the ball space (X,B) is S2 , then the conditions for a
coincidence point theorem can be taken nicely symmetric:

Theorem
Take an S2 ball space (X,B) and functions f , g : X→ Y. If for every
B ∈ B,
(CS1) f (B) ∩ g(B) 6= ∅,
(CS2) either f (B) is a singleton or g(B) is a singleton or there is
B′ ∈ B such that B′ (

⋂
B,

then there is some x in every ball such that fx = gx.
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Proof of the Coincidence Point Theorem II

Let N0 be a maximal nest (containing a ball B0).

Since (X,B) is an S2 ball space, the intersection of N0
contains a ball B.
By the maximality of N0 and (CS2) we obtain that f (B) or
g(B) is a singleton {y} for some y ∈ Y.
By (CS1), f (B) ∩ g(B) = {y}, so for some x ∈ B ⊆ B0,
fx = gx = y.
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Another Ultrametric Coincidence Point Theorem

Consider an ultrametric space (X, u) and a map g : X→ X.

Set
Γg = {u(gx, gy) | x, y ∈ X}. Then (g(X), u) becomes an
ultrametric space with Γg as its set of values.

Theorem (S. Prieß-Crampe, P. Ribenboim )

Let (X, u) be an ultrametric space and f , g : X→ X. Assume that:
(1) (g(X), u) is spherically complete,
(2) f (X) ⊆ g(X),
(3) if gx 6= fx = gy, then u(fx, fy) < u(fx, gx),
(4) if u(gx, gy) 6 u(gx, fx), then u(gy, fy) 6 u(gx, fx).
Then there is x ∈ X such that fx = gx.

This version is interesting as now the image space is assumed
to be spherically complete. Work in progress: deduce this
theorem from a version where the source space is assumed to
be spherically complete.
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Preprints and further information

The Valuation Theory Home Page
http://math.usask.ca/fvk/Valth.html
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